
Abstract. We discuss various aspects of the inner structure
formation in virialized dark matter (DM) halos that form as
primordial density inhomogeneities evolve in the cosmological
standard model. The main focus is on the study of central cusps/
cores and of the profiles of DM halo rotation curves, problems
that reveal disagreements among the theory, numerical simula-
tions, and observations. A method that was developed by the
authors to describe equilibriumDM systems is presented, which
allows investigating these complex nonlinear structures analy-
tically and relating density distribution profiles within a halo
both to the parameters of the initial small-scale inhomogeneity
field and to the nonlinear relaxation characteristics of gravita-
tionally compressed matter. It is shown that cosmological ran-
dom motions of matter `heat up' the DM particles in collapsing
halos, suppressing cusp-like density profiles within developing
halos, facilitating the formation of DM cores in galaxies, and
providing an explanation for the difference between observed
and simulated galactic rotation curves. The analytic conclusions
obtained within this approach can be confirmed by the N-body

model simulation once improved spatial resolution is achieved
for central halo regions.

1. Introduction

This review is the second of two (see [1]) devoted to the
formation of the large-scale structure of the Universe and
problems of virialized dark matter (DM) halos. We do not
attempt to discuss all related problems of the physical
cosmology and focus in fact on DM evolution in the
cosmological standard model (CSM). The discussion is
based on the original papers of the authors and follows the
chapters of book [2]. Here, we present a more detailed
discussion of these problems using new observational data
and a comparison with the theory without invoking detailed
analytic calculations (theoretical results are described in the
appendices; see [2] for the proofs).

2. The essence and history of the problem

Explaining the internal structure formation of virialized DM
halos, which are studied both observationally and using
analytic and numerical simulations, is one of the key
cosmological issues.

Despite cosmologists' significant efforts, many aspects of
halo formation remain unclear. In particular, it is unclear
whether the universal density profile [3±5] (hereafter, the
Navarro±Frenk±White (NFW) profile), discovered in a wide
range of masses and sizes of DM halo formation models, is
truly universal. The NFW profile has been found to
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correspond well to the observed density profiles in galaxy
clusters [6], but at the same time it deviates from the observed
galactic profiles in many respects (see [7, 8]). This means that
many physical factors controlling galaxy formation are not
fully taken into account in numerical models.

Numerical calculations of the N-body problem, which
have been widely used for many years, are presently a
powerful tool to study the formation of the nonlinear
structure of the Universe. But numerical models have many
restrictions, which stimulates the development of analytic and
approximate methods that can reveal and qualitatively
characterize the effect of the main physical processes
responsible for halo formation. One of the key processes
that are difficult to model numerically is the relaxation of
matter contracted in a protohalo. To analyze this process, the
cosmological small-scale matter velocity and density fields
should be taken into account.

In the framework of the widely used spherically symmetric
model of the collapse, direct relations between the properties
of the initial density perturbations and virialized halos are
given by the Press±Schechter relations or their extensions (see
[9±20]). In this approach, the collapse is described as a
consecutive fall of spherical shells, with their subsequent
relaxation and redistribution inside the halo. Each spherical
layer is characterized by the mass and turn-around radius (the
moment of `decoupling' from the Hubble expansion), which
can be related to the spectrum of initial density perturbations,
for example, using the smoothing of the density perturbation
field by filters of different scales (see [17]). This approach can
be generalized to include the angular momentum of the shells,
external tidal forces, an external density distribution, etc. [21±
26]. Another description of halo formation, which is not based
on the quasispherical collapse but uses the Zeldovich approx-
imation, is proposed in [27].

It is well known that the formation of any dense object
means the relaxation of contracted matter. In the spherical
collapse model, this is the so-called violent relaxation process,
which provides the energy and mass redistribution of the
compressed matter, the removal of the excess energy from the
system, and the halo contraction. The simplest example of the
violent relaxation is given by the collapse of a homogeneous
nonrotating DM cloud of a finite size (see [28±30]). The
angular momentum does not stop the violent relaxation [21±
23], but does weaken it (see, for example, [26, 31]).

In contrast to such methodically transparent results,
numerical calculations show that to describe the halo
formation process, it is insufficient to consider the fall of
only diffusive matter (spherically symmetric or anisotropic).
In numerical models, the formation of a halo is accompanied
by the formation of random systems of low-mass high-density
subhalos and their subsequent coalescence in the main
protohalo. This process of hierarchical merger provides the
mass transfer inside the main halo, in which small subhalos
are `stripped' by the tidal interaction and dynamical friction
with the surrounding matter (see [32±35]). Both processesÐ
the fall of diffusive matter and the merger of satellite
subhalosÐplay similar roles in the halo formation.

The results of numerical calculations suggest that the
merger of early formed high-density subhalos can stimulate
the formation and later increase in the central density in the
main halo, and the violent relaxation here has a smaller effect.
For example, even one merger of subhalos with comparable
masses can strongly change the internal structure of the whole
halo [36]. The merged subhalos supply the common halo with

their kinetic energies and angular momenta, and hence the
destruction and stripping of subhalos inside the main halo
become the principal constituents of the relaxation process.
The interaction of subhalos with the main halo, other
subhalos, and diffusive matter redistributes the energy in the
main halo and changes its internal structure. The efficiency of
relaxation in numerical calculations is comparable with
estimates obtained in the simplest spherically symmetric
collapse models (see [31, 37, 38]).

The relaxation is needed to provide the energy removal
from the main halo, but at the same time it leads to the
chaotization of the collected material and largely determines
the density profile unification in the relaxed halos. Never-
theless, in both the hierarchical and spherical halo formation
models, the merger of subhalos (or spherical shells) is not
purely chaotic and is controlled by the initial density and
velocity distributions. During the relaxation, the initial
conditions do not smear out completely and are partially
conserved. As we show below, both halo mass distribution
and their internal structure depend on the initial perturbation
spectrum.

In is well known that initial conditions can dramatically
affect the evolution of dynamical systems. The difference
between the cold and hot dark matter cosmological scenarios
provides an example. In the context of halo formation, the
possible influence of thermal velocities and small-scale initial
perturbations were discussed in [26, 27, 39, 40]. Here, we
significantly improve the description of this effect by using
statistical characteristics of spatial density and velocity
distributions inside a collapsed DM cloud [41]. This
approach allows estimating the background entropy of the
relaxed matter, which is related to the initial small-scale
velocity perturbations, and its dependence on the mass of
halos formed. The effect of factors such as the angular
momentum of collapsing matter and nonlinear destruction
of low-mass subhalos is not considered here. Due to the
random character, these factors can only increase the back-
ground entropy and its deviation from the mean value. Our
calculations yield the minimum level of the background
entropy, which, nevertheless, can change the internal struc-
ture of the emerging halos and significantly suppress the
central DM cusp formation inside them.

The use of the entropy approach in describing relaxed
halos allows the determination of the total entropy (initial
entropy and that acquired during nonlinear relaxation) of
DM particles in the halo. In contrast to the kinetic approach,
our method does not appeal to the halo particle distribution
and does not describe the relaxation history. But it correctly
reproduces any distribution of matter inside a relaxed
spherical halo and distinguishes between the properties of
this distribution that are due to the initial conditions and
those that are related to the relaxation process itself. Such a
calculation is possible due to the property of entropy as the
most stable characteristic of matter, changing only during
irreversible processes.

For both spherical and hierarchical halo formation
models, it is possible to estimate the entropy growth during
matter relaxation [42]. For the spherical collapse, this
estimate can be done analytically (see [28]). The hierarchical
relaxation process is more complicated and is not described
analytically, and we therefore use the results of numerical
calculations to estimate the entropy growth there.

In the observed gravitationally bound objects, the spatial
distributions of DM, baryons, and luminous matter are
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different. In the DM-dominated Universe, it is reasonable to
regard the DM halo formation problem as the first approx-
imation to a more complicated problem of the formation of
gravitationally bound systems. Here, we consider only the
DM dynamics in the CSM framework, ignoring the effect of
dark baryons and luminous matter. Nevertheless, in some
cases where the effect of the baryon component on the
internal structure of a galaxy can be significant (see, e.g.,
[43]), this issue requires further studies.

3. Dark matter halo

We assume DM to consist of nonrelativistic massive particles
that interact with each other and other particles only
gravitationally. This matter is called `dark' because it is
invisibleÐ it has a nonbaryonic nature and does not interact
with light. 1 However, DM can be studied using dynamical
methods, because it is clumped and produces spatial gradients
of the gravitational potential that influence the motion of
visible bodies (galaxies, stars, gas), the state of baryons (hot
gas), and light ray deflection (gravitational lensing).

The mean DM density in the Universe is five times higher
than the density of cosmological baryons, which is why
nonrelativistic dark particles control the process of gravita-
tional clustering and of the evolution of the inhomogeneous
part of the gravitational potential of the Universe. The
density contrast of a weakly inhomogeneous initial spatial
DM distribution increases with time. Because this matter is
cold, the pressure gradients there are small and cannot
prevent the development of gravitational instability.

In regions with enhanced density, the Friedman expan-
sion rate slows down, and at some instant the DM expansion
stops and turns into collapse. During dynamical contraction
and subsequent oscillations of matter flows, processes of
violent collisionless gravitational relaxation occur: particles
move in a variable gravitational potential localized in space,
such that some particles (� 10%) are expelled from the
system and carry away the excess positive energy. The
remaining energy of the clump is redistributed inside the
system, and a gravitationally bound DM object called a halo
is formed.

The observed halos (galaxies, their groups, and clusters)
are relaxed systems of particles that are gravitationally bound
in all three spatial directions. The upper limits of the halo sizes
and masses are a few Mpc and 1015M�. We recall that the
mass of matter in the Universe in a sphere with a radius
R � 10 Mpc is M10 ' 1:6� 1014M� [see Section 8, formula
(21)]. Here and below in numerical estimates, we assume the
CSM parameters

Om � rm
rc
� 1ÿ OE ' 0:3 ; rc �

3H 2
0

8pG
' 10ÿ29 g cmÿ3 ;

H0 ' 70 km sÿ1 Mpcÿ1 ; �1�

where rm is the cosmological DM density, rc is the critical
density in theUniverse,OE is the cosmological density of dark
energy expressed in units of the critical density, H0 is the
Hubble constant, and G is the gravitational constant.

We consider the simplest equilibrium conditions of self-
gravitating DM systems. The distribution function of non-
relativistic particles in a spherically symmetric halo depends
on the radial distance to the halo center r and moduli of the
radial and transverse particle momenta. In spherical coordi-
nates, the stress±energy tensor of matter takes the diagonal
form

T n
m � r diag �1;ÿs 2

r ;ÿs 2
t ;ÿs 2

t � ; �2�

where r � r�r� is the halo density profile, and sr�r� and st�r�
are the radial and transverse velocity dispersions of particles.
In the Newtonian limit, the identity T n

m ;n � 0 implies the
hydrostatic equilibrium equation for collisionless particles:

ÿ 1

rr 2
d

dr
� r r 2s 2

r � �
2

r
s 2
t �

dF
dr
� GM�r�

r 2
; �3�

where the gravitational potential F, defined up to an additive
constant, and the mass of the systemM, which depends on r,
are related to density as

DF � 1

r 2
d

dr

�
r 2

dF
dr

�
�4pGr ; M�r��4p

�r
0

rr 2 dr : �4�

Inside the halo, DM particles move along different orbits,
from radial to circular ones. Each orbit is characterized by the
energy and angular momentum vector, which are integrals of
motion in a static spherically symmetric field. The density
distribution at the halo center can be conveniently character-
ized by a power-law function,

r / rÿa; �5�

with the exponent (slope) a � const 2 �0; 2:5�. The particle
distribution function depends on the evolutionary history of
the halo. Numerical experiments and observations show that
for most of the spherical halos, the particle velocity distribu-
tion is nearly isotropic, although deviations from isotropy can
sometimes be as high as 20±30% (see, for example, [44]).

Large-mass halos do not have enough time to form in the
Universe. For example, systems collapsed in one or two
dimensions, which are called walls and filaments, are typical
nonlinear elements of the large-scale structure of the Uni-
verse. On average in the Universe, the density contrast on
scales exceeding several dozen Megaparsecs remains smaller
than unity (jdr=rj < 1), and we can consider only regions
with an increased or decreased (in comparison with the mean
cosmological) density of matter.

4. Entropy of particles in the halo

We consider an isotropic distribution of DM particles with
sr � st � s in more detail. The halo equilibrium is deter-
mined by the balance of the effective pressure gradient of
nonrelativistic matter,

p � nT � rs 2 ; �6�

and the gravitation produced by the total massM �M�r� [see
(3)],

1

r
dp

dr
� ÿGM�r�

r 2
; �7�

1 Matter can be weakly visible if its particles weakly interact with light, for

example, if they annihilate to emit photons in the regions with high DM

density in galactic centers.
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where radial functions n � r=m and T are the density and
effective temperature of particles with the mass m � const. By
virtue of the equivalence principle, m cannot be determined
from gravitational equations because particles are moving
along geodesics irrespective of their masses. The measurable
variables are the density r and the particle velocity dispersion s.

From the hydrostatic equilibrium equation, it is possible
to find the radial matter density profile in the halo using the
known velocity dispersion distribution s�r�; vice versa, using
the density distribution, we can reconstruct the velocity
dispersion law. For the adiabatic density distribution,
s / n1=3, where the coefficient of proportionality depends
on the entropy distribution. In analogy with an ideal gas, we
introduce the entropy functionE � E�r� of the virialized halo
as [2, 41]

E � s 2

�
mp

r

�2=3

/ T

n 2=3
� p

n 5=3
; �8�

where mp is the mass of a proton to which the halo particle
mass m is normalized.

The function E�r� is the measure of the total entropy of
halo particles acquired during the full halo formation
history.2 It mainly includes the background entropy deter-
mined by the initial small-scale flows and matter inhomo-
geneities in the protohalo, and the acquired entropy gener-
ated during collisionless and hierarchical relaxation of matter
at the nonlinear stage of the halo formation.

5. Isothermal sphere

Modeling the internal structure of observed halos frequently
involves the isothermal sphere approximation, where the
velocity dispersion can be assumed constant and indepen-
dent of the radius:

s�r� � s0 � const ; K0 � 4pG
s 2
0

� 4pGm
T
� const : �9�

This approximation is in good agreement with observational
data in a restricted range of scales (Fig. 1).

After multiplying Eqn (7) by r 2 and differentiating with
respect to r, we obtain the equation for the density profile in
an isothermal sphere:

1

rr 2
d

dr

�
r 2 dr
r dr

�
� ÿK0 : �10�

This nonlinear equation contains an attractorÐa particular
solution that is an attracting separatrix for dynamical
trajectories (10). The general solution has the form

r�r� �
r0

1� r 2=�2r 20 �
; r < r0 �

����������
3

K0r0

s
;

2

K0r 2
; r > r0 �attractor� ;

8>>>><>>>>: �11�

where the parameter r0 determines the central density of the
halo core and r0 is the characteristic size of the core.
Irrespective of the value of r0, the density profile and mass
of the halo at r > r0 are determined only by the velocity
dispersion of particles:

M � 8pr
K0
' 7� 1012

�
s

300 km sÿ1

�2�
r

200 kpc

�
M� :

�12�

For the characteristic values of s and r, we obtain the typical
mass of nonlinear dark matter halos in the observed
UniverseÐ that of galaxy groups. We recall that the total
mass of the Local Group, which includes the Milky Way and
the Andromeda Nebula, is 2� 1012 M�.

We have derived Eqns (3) and (7) for DM by assuming its
dominance; however, these equations can be used to describe
hydrostatic equilibrium of any matter (DM, stars, gas) in the
gravitational field of the total mass M�r�. For this, the
corresponding p and r should be substituted in the left-hand
side of Eqns (3) and (7). For example, we can rewrite the halo
mass in terms of the effective gas temperature Tgas in the
equilibrium:

M � 2Tgas r

Gmgas
' 7� 1012

�
Tgas

1 keV

��
r

200 kpc

�
M� ; �13�

where mgas ' mp � 1 GeV is the molecular weight of the gas.
Such a hot gas, which has been present in galaxy clusters for
several billion years, is observed by X-ray telescopes, which
allows reconstructing the gravitational potential distribution
and estimating the total mass of clusters (see, e.g., [46]).

We return to solution (11). The core density r ' r0 does
not relate to the gravity of matter: it depends only on the
initial cosmological conditions that determined the halo
formation history. The size of the core is determined by the
product of the particle velocity and the dynamical time of the
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Figure 1. Rotation curves for 2155 galaxies (from [45]). The curves, which

are divided into several groups in accordance with the galaxy luminosities,

are characterized by the absolute stellar magnitude in the I-filter (shown to

the right). Ropt is the `optical' radius of galaxies, inside which 83% of the

integral emission flux is contained.

2 We stress that E is a function of entropy and not the entropy itself. Here,

we do not consider general issues of the applicability of the notion of

entropy to collisionless particles, by defining the function E�r� only for

stationary equilibrium systems with isotropic particle velocity distribu-

tions. We recall that in definition (8), s 2 � �v 2, where v is the one-

dimensional peculiar velocity of dark matter particles at a point r (the

bar means averaging over the velocity space).
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central density:

r0 ' s0
2
���������
Gr0

p :

Here, r0 is the radius at which the matter self-gravity becomes
significant. At r > r0, the dark matter gravity restructures the
inner halo such that the rotation velocities of particles cease to
depend on the radius:

vrot�r > r0� �
���������
GM

r

r
�

���
2
p

s0 � const : �14�

Such velocity distributions are realized in many gravita-
tionally bound cosmological objects. For example, flat
rotation curves are observed in spiral galaxies (Fig. 2):
circular velocities of stars and gas first increase as the radius
increases and then become constant or change very slowly.
The DMmass increasingly contributes at large distances and
maintains the flat part of the rotation curve over about ten
dynamical scales.

Dwarf galaxies with low surface brightness (Fig. 3)
provide another example. There, DM dominates starting
from small radii, and a linear increase in the circular rotation
velocity is observed, suggesting a small variation of the DM
density in the central core [see (18)]. We see that the initial
increase of rotation curves also corresponds to isothermal
sphere (11):

vrot�r < r0� �
���������
GM

r

r
� s0r

r0
: �15�

The fact that the inner circular velocities are smaller than the
particle velocities in the halo (vrot < s0) suggests that the halo
particles freely, by inertia, move over the region r � r0 with a
constant velocity and do not feel gravity.

To within the observational accuracy, isothermal sphere
distribution (11) can be approximated by the simple formula

r ' r0
1� x 2

; x � r

r0
: �16�

The flat part of the circular velocity, corresponding to the
linear mass increase M / r [see (14)], is observed within a
finite dynamic range. The density distribution in such a
system can be conveniently described by the profile

r ' r0
�1� x 2��r� rs� ; �17�

where rs � const is a characteristic cut-off parameter. In the
central part at r < rs, the profile is close to that of the
isothermal sphere in (16); but at large distances, the density
decreases / rÿ3 and circular velocities slowly decrease. The
circular velocity reaches a maximum in the region with the
local density slope exponent is a ' 2.

6. Internal halo structure

The radial dependence of the circular velocity is related to the
density distribution inside the halo. Figure 3 demonstrates
rotation curves of dwarf galaxies that can be approximated
well by phenomenological profile (17) with rs � r0, which is
referred to as the Burkert approximation [49]:

r / 1

�1� x 2��r� r0� : �18�

Similar examples of galactic cores with slowly changing
density are typical for small galaxies. So far they have not
been reproduced in numerical calculations of structure
formation.

The nonlinear relaxation of a contracting cloud leads to a
diverging central density in the forming halo. Analyticmodels
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Figure 2. The rotation curve of galaxy NGC 6503 (data from [47]). The

dark matter halo contribution is shown by the dashed-dotted line.
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of the collapse [28, 29] consider the gravitational contraction
of a spherical cloud at rest with a smooth density distribution.
After the relaxation, a singular halo density profile is formed
with the slope exponent a � 1:6ÿ2:0. This result, which is
also confirmed by numerical calculations [50±52], is closely
related to the choice of the initial state of the contracting
mass, namely, to the absence of random small-scale velocities
and an almost spherically symmetric density distribution.
This example very well illustrates the transformation of the
kinetic energy of the contracting cloud into thermal energy of
the halo during violent relaxation.

More realistic models of the collapse with subsequent DM
relaxation appear in numerical modeling of the evolution of a
system of gravitationally interacting N bodies (N � 1010).
Here, random initial particle velocities, the anisotropy of the
contraction, and the successive merger of the main halo and
its satellites are taken into account. The mean density profile
of halos formed in these calculations is described by the NFW
approximation [3±5], which depends on a single parameter rs
and has the form

r / 1

r �r� rs�2
: �19�

At r < rs, the dependence of the mean density profile on r
tends asymptotically to a cusp-like power law with the slope
a � 1.

The NFW profile obtained in numerical N-body models
well describes the density distribution in galaxy clusters
(Fig. 4, 5). It should be remembered, however, that this
profile is obtained by averaging density distributions of
many halos, and deviations of individual profiles from the
mean one can exceed 20% (Fig. 6).We also note that technical
limitations restrict the dynamical range of model scales, and
the properties of halos with low and moderate masses are not
properly reproduced in the calculations. Numerical con-
straints also restrict the size of the central region resolved in
numerical models.

In numerical models, theDMhalo central density tends to
infinity, but the mass remains finite and tidal forces are
insignificant. Such an internal structure was called the halo
central cusp. Thus, singular cusps are formed in numerical
models, but these structures are not observed in the Universe.

Figure 7 demonstrates the rapid density increase in a DM
halo that appears in numerical models. The comparison with
observed galactic profiles is shown in Fig. 8. The question of
whether DM cusps exist in reality is important not only for
understanding galaxy formation; it also can be connected
with the physics of DM particles. For example, one of the
methods to search for possible DM particle annihilation
assumes that central cusps do exist in galactic centers.

To summarize, the comparison of the observed galaxies
with numerical models leads to the following conclusions.

(1) Numerical models reproduce the formation of massive
objects, and the density profile of galaxy clusters is in good
agreement with calculations.

(2) Burkert profile (18) is mainly observed in low- and
moderate-mass galaxies dominated byDM. The formation of
such galaxies is related to the initial perturbations of
comparatively moderate scales. In the central regions of
more massive spiral galaxies, the DM and baryon densities
are comparable and it is difficult to separate them.

(3) These issues are closely related to the number count of
our Galaxy satellites. Until recently, the number of the
observed satellites was about two times less than predicted
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Figure 4.Darkmatter mass distribution in galaxy clusters according to the

data in [6].
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Figure 6. The density profiles of three halos with masses 1012ÿ1013
obtained in numerical models [53]. The solid curve in the center shows
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by numerical models [44]. However, many very faint satellites
have been discovered recently, and their number even exceeds
the prediction of numerical models (see [56±60]). This shows
that the properties of low-mass objects need to be studied
further.

7. What is needed to form cusps

Do singular cusps that appear in numerical experiments
actually form in Nature? To answer this question, it is
necessary to understand the structure of cusps and what
their formation conditions should be.

As we discerned from the isothermal sphere example, DM
particles freely intersect the core region r < r0 and do not stay
there. This conclusion is valid for muchmore numerous halos
with a small central mass (a < 1), because the gravitational
force tends to zero at small radii:

GM�r�
r 2

/ r 1ÿa ! 0 as r! 0 : �20�
Conversely, more massive cusps (a > 1) gravitationally
influence DM particles and keep them inside the halo.
Clearly, velocities of the kept particles must be sufficiently
low for the particles to remain in the cusp region. Therefore,

to form a cusp, it is necessary to collect many cold particles in
its center. At least two questions arise.
� Where can cold particles in the perturbation field be

found?
� How can cold particles be transported to the central

part of the halo without being heated?
Because the fraction of energy removed during halo

formation does not exceed 10±15% and the degree of matter
contraction during relaxation is finite, both these questions
should be first of all addressed by numerical programs for
N-body calculations: where is the `cooler' ofDMparticles and
why is their `warming up' by small-scale cosmological
motions of matter not taken into account in calculations?

We know that in the absence of small-scale perturbations,
cusps are formed in models of quasispherical collapse (see
Section 6). In these analytic calculations, all particles are
initially focused toward the center (by the chosen initial
conditions), and a significant fraction of the particles, by
crossing the center, cools due to violent relaxation and
remains inside the cusp. But in real cosmological conditions,
DM particles are `defocused' by small-scale perturbations
and hence do not pass through the center. In addition, the fall
of DM clumps and their merging `stir up' the central region
and hamper effective particle cooling.

Of course, the quantitative characteristics of these
mutually opposite processes must be calculated and checked
numerically; however, modern numerical modeling is not
perfect and needs to be improved.

First of all, it is required to control DMmotions in a wide
range of scales, from large cosmological scales on which the
initial particle distributions are given, to very small ones,
which allows the inner regions of the forming halos to be
resolved. Inmodern numericalmodels, themass resolution, as
a rule, does not exceed 103M�, which is insufficient to describe
the structure of DM cores. Due to the restricted resolution in
numerical models, the initial particle distributions have no
small-scale perturbations, i.e., there is an effective cut-off of
the perturbation spectrum at short wavelengths. The con-
secutive resolution of selected volumes by the addition of `new
points' inside them at the late stage of the evolution (the so-
called adaptive method) does not help either, because this
procedure does not add necessary information on the initial
small-scale field of cosmological perturbations.

A more sophisticated method is sometimes used that
involves consecutive recalculation of the model upon adding
new particles in the future dense halo regions. This procedure
enables small-scale perturbations to be included in the
calculation in restricted volumes. But such a recalculation
complicates the problem and strongly increases the computa-
tion time.

The problem of cusps has not yet been solved. Perhaps this
example shows a limitation of the CSM, in which DM
particles are considered to be cold. In the CSM framework,
we cannot resolve the contradiction between observational
data and the results of numerical calculations. The point is
that cusps emerge during relaxation of the initially cold
matter, in which large-scale particle flows self-intersect to
form caustics, from which a cusp is later formed. But the real
DM can be initially warm with small random particle
velocities. In that case, caustics smear out, and cores with a
smoother density distribution are formed in halo centers
instead of cusps.

WarmDM can be regarded as an additional parameter of
the cosmological model. The mass of warmDMparticles that
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is required to solve the problem of cusps must be not large
(� 10 keV), which allows the particles to preserve the residual
thermal velocities associated with the hot phase of evolution
in the early universe. Another possibility of the initial `heating
up' of DM particles can be related to the presence of excess
power in the perturbation spectrum at small wavelengths. We
recall in this connection that the spectrum is fairly well
determined on scales above several Mpc from observations
of the cosmic microwave background and large-scale galaxy
distribution. At the same time, at small scales, the spectrum of
initial perturbations can deviate from a power law, which can
in turn affect the structure of small galaxies.

These assumptions, however, go beyond the CSM frame-
work. Our approach is different. We believe that there are
currently no strong grounds to complicate the fundamental
model, and the problem can have a simpler solution, which
does not require modification of the CSM. The influence of
small-scale velocity and density perturbations on the internal
halo structure can be studied analytically using entropy
function (8). The use of entropy instead of density is
motivated by the fact that for most particles, the entropy
increases during the halo formation and relaxation and is an
integral characteristic of the entire halo formation history.
Evaporation of particles during relaxation decreases the
entropy, but this effect is rather small.

By definition, DM particles are initially cold, i.e., their
entropy is zero. On the other hand, there are random small-
scale flows and matter clumps, which are tidally destructed
and scattered when approaching each other inside collapsing
protohalos to form folds and intersections, thus heating DM
particles and chaoticizing their velocities before the violent
relaxation begins. Therefore, during the first contraction, the
small-scale velocity perturbations in the protohalo are
transformed into chaotic motions of DM particles. This
process can be described in terms of coarse-grained entropy,
in analogy with the description of the ideal gas [41].

8. Ensemble of protohalos

To introduce the entropy characteristic of particles in a
protohalo, the notion of an ensemble is needed. It can be
introduced as a subsample of the field of linear perturbations
embracing all spatially bounded regions that collapse by the
time corresponding to the current redshift z. A schematic
comparison with an ideal gas is shown in Fig. 9.

A protohalo is characterized by the mass MR first
collapsing at the redshift z, which is called the instant of
halo formation. The mass MR corresponds to the linear
comoving size R:

MR � 4p
3

rmR
3 : �21�

A sphere with the radius R � 10 Mpc comprises the typical
galaxy cluster massM10 ' 1:6� 1014M� (see Section 3).

To single out a protohalo from the common density field,
it is necessary that the protohalo have an initial threshold
mass excess in the sphere of radius R which provides the total
negative binding energy of this region and ensures its collapse
by the given time instant (see Appendix A):

nR � dR
sR

5n � dc�z�
sR

: �22�

The function dc�z�, which can be calculated analytically, is
controlled numerically. In the CSM, dc � �g�z� dc�z� �

const'1:67, where �g�z� is the growth factor of linear density
perturbations � �g�0� � 1�. The initial ensemble of protohalos
of interest here, with initial masses

Mh 5MR ; �23�

includes only those space points x for which the mean matter
density inside a sphere of the radius R around the given point
increases the threshold value in (22), where d�x� �
r�x�=rm ÿ 1 is the linear density contrast relative to the
mean density in the Universe rm; the smoothed density
contrast dR with the filter of radius R is

dR � dR�x� �
�
d�x 0�WR

ÿjxÿ x 0j�dx 0 ; �24�

whereWR�r� is the `window' function

WR�r� � 3

4pR 3

1 ; r4R ;
0 ; r > R :

�

Clearly, function (24) contains no information on perturba-
tions on scales smaller than R.

The variance of the smoothed density linear contrast sR,
linearly approximated to the present moment z � 0, is related
to the power spectrum of inhomogeneities P�k� by the
integral relation (see Appendix A)

s 2
R � hd 2

Ri �
�1
0

P�k�W 2�kR� k 2 dk ; �25�

where W�y� � 3yÿ3�sin yÿ y cos y� is the Fourier transform
of the window function (y � kR). It is known from observa-
tions that s11 ' 0:8 for the radius R � 11 Mpc, comprising
the galaxy cluster mass M11 ' 2� 1014M�. In astronomy, it
is equivalent to the historically established normalization to
`sigma eight', where the index `eight' corresponds to the
physical radius R � 8=0:7Mpc ' 11 Mpc.

We use the obtained ensembles to describe the mean
`thermodynamic' characteristics of DM in protohalos. The
total entropy of a virialized halo integrates the joint effect of
all nonequilibrium processes that occurred during the entire
halo formation time, including both the background particle
entropy related to the initial cosmological perturbations and
the acquired entropy generated during the violent relaxation
and hierarchical clustering of matter. The cosmological part

Perturbations:
size of perturbation,
peculiar velocity,
time of collapse

Collapsing cloudIdeal gas

Particles:
distances between particles,
particle velocity,
dynamical time

a b

Figure 9.Motion of particles in (a) an ideal gas and (b) aDMprotohalo [2].

The entropy of particles in the region of size r is determined on the

dynamical time scale coincident with the collapse time: r=v ' Hÿ1.
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can be calculated analytically, and to estimate the nonlinear
component, we use numerical results.

9. From density profile to entropy

First of all, it should be understood how the entropy is
distributed inside an equilibrium halo. To simplify calcula-
tions, we restrict ourselves by considering the power-law
approximation of the central halo density profile (5):

r�r� / rÿa ; �26�
M�r� � 4p

�r
0

r�x� x 2 dx / r 3ÿa

with the slope exponent a 2 �0; 2:5�. In numerical calcula-
tions of the halo formation, profiles with a01 emerge, while
observations typically show that a < 1 (Fig. 10). In the first
case, we are dealing with a cusp (14a < 2:5) and in the
second case, with a core (04a < 1).

The physical difference between the cusp and the core
follows from the behavior of the effective pressure, which can
be determined from Eqn (7):

p�r� � c1 � c2 r
2�1ÿa� ; �27�

where c1 and c2 are integration constants. The critical slope is
a � 1: in a core, the pressure is finite, while in a cusp it
diverges at the center.

From Eqn (8), we obtain the entropy mass function

E�M� / c1 M
b1 � c2 M

b2 /M b ; �28�
b1 �

5a
3�3ÿ a� ; b2 �

6ÿ a
3�3ÿ a� ;

where the parameter b � d�lnE �=d�lnM � lies in the range
between b1 and b2 and its local value depends on the current
mass of the halo. At a � ac � 1, the interval of possible values
of b contracts to the point

b1 � b2 � bc �
5

6
:

We have passed from the radius r to the comoving massM in
the sphere of radius r because this mass is conserved during
both linear perturbations and the halo relaxation.

As stressed above, the entropymass function accumulates
the action of irreversible processes during DM evolution and
determines the equilibrium halo density profile. In the

considered range of a, we have b1;2 > 0, and hence E�M�!0
as M! 0 (Fig. 11). But in the cusp center, the entropy of
particles is very small,

b >
5

6
: Mÿ5=6E�M� ! 0 as M! 0 ;

while in the core center it is much higher, which makes the
cusp formation impossible,

b <
5

6
: Mÿ5=6E�M� ! 1 as M! 0 :

For the critical value b � 5=6, it follows from (8) and (28)
that

M / s 4 : �29�

This formula reproduces the well-known empirical Faber±
Jackson [62] and Tully±Fisher [63] relations, which relate the
observed velocity dispersion of stars or gas to the mass
(luminosity) in elliptical galaxies or spherical subsystems of
spiral galaxies.

Figure 12 illustrates the difference between the cusp and
the core of an equilibrium halo from the standpoint of the
entropy distribution. It follows that the formation of the
central cusp or core depends on the total entropy of matter
acquired before the formation of the halo, during and after its
formation.

We can now quantitatively answer the question as to how
the initially cold DM particles of the CSM acquire a nonzero
temperature.

The halo formation process can be divided into several
consecutive stages.
� Initial DM motions are potential and are correlated,

relative velocities of close particles are small, and the DM
velocity field is smooth. Random deviations from the mean
velocity determined by the initial perturbations spectrum
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Figure 10.Distribution of the power-law exponent a in the central part of

galaxies with a low surface brightness (see [61]).

r

rÿa
r E

M

Mb

a b

Figure 11. Profiles of (a) the density and (b) the entropy in a DM halo [2].
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Figure 12. The entropy mass function of an equilibrium halo. Curve 1

shows the cusp, curve 2 shows the core, and the dashed curve corresponds

to bc � 5=6.
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increase with increasing the scale to saturate at relatively large
scales (� 40 Mpc) (see Fig. 14 in Section 10).
� During contraction of a protohalo, particles approach

each other and mix at small scales, and the initial phase of
the small-scale part of the random velocity is lost: DM
particles heat up (the background entropy mass function Eb

arises).3

� The chaotization of the regular contraction rate and
transformation of the kinetic energy of the contraction into
thermal energy occur somewhat later during violent relaxa-
tion and merger of clumps (the entropy Eg is generated).
� The resulting density profile of equilibrium halos is

obtained by adding the initial entropy Eb and the acquired
entropy Eg.

In Sections 10 and 11, we obtain the initial mean entropy
profile hEbi using the corresponding dispersion of linear
velocity perturbations [see Section 11, formula (49)]. This
representation assumes an almost adiabatic contraction of
matter and gives the lower limit of the mean function Eb�M�
at smallM.

10. Initial cosmological perturbations

The field of scalar cosmological perturbations is character-
ized by three gauge-invariant variables: the space vector of the
shift of a material point from the unperturbed position

S � S�x� ; �30�

the total velocity of matter

V � V�z; x� ; �31�

and the comoving density perturbation

dm � r�z; x�
r�z� ÿ 1 � �g�z� d�x� : �32�

The dependence of the mean density on the redshift has the
form r�z� � rm�1� z�3, where the DM density is given by
(see Section 3)

rm �
3OmH

2
0

8pG
' 3� 10ÿ30 g cmÿ3 :

The mean particle shift in the Universe is zero, and its
dispersion is determined by the integral of the power
spectrum of density perturbations:

sS �
���������
hS2i

q
�
��1

0

P�k� dk
�1=2

' 14 Mpc : �33�

A sphere with the radius R � sS contains the mass of a rich
galaxy cluster

MS � 4p
3

rm s3S ' 4� 1014M� :

Relations between variables are determined by the linear
perturbation theory (see [1] for more details):

s �z; x� � �1� z�ÿ1�x� �gS� ; �34�
V � _s � H�s ÿ �g 0zS� ; d�x� � ÿdivS ; �35�
v � VÿHs � ÿH�g 0zS ;

sv �
���������
hv 2i

p
' 200

�����������
10

1� z

r
km sÿ1 ;

�36�

where s �z; x� and x are the Eulerian and Lagrangian
coordinates of the medium, v � vpec and sv are the peculiar
velocity and its variance, and �g 0z is the derivative with respect
to the redshift z. The growth factor �g � �g�z� is normalized to
unity at zero redshift (�g�0� � 1), and at z > 1,

�g ' 1:3

1� z
:

The Hubble function and the relation between the redshift
and the peculiar velocity of matter at z > 1 have the form

H ' 0:5�1� z�3=2H0 ; �37�
v ' 0:5H0

�����������
1� z
p

�gS ' 45�����������
1� z
p

�
S

Mpc

�
km sÿ1 :

To characterize small-scale motions of matter in a
protohalo, we introduce the vector of the relative shift of
medium points separated by a distance r [see (30)]:

s � s�r; x� � S�x� r� ÿ S�x����
2
p

sS
: �38�

The vector s describes the field of the normalized peculiar
velocity of matter with the current radius vector r referenced
to the point x. We are interested in the mean relative velocity
and its variance during averaging over different ensembles (or
points x) in different regions of the Universe.

The modulus of the radius vector r � jrj is fixed in the
interval of linear scales corresponding to inner regions of a
gravitationally bound halo of size R:

r < R : �39�

At R < sS, these scales relate to the short-wavelength part of
the spectrum P�k� (to the right of its maximum in Fig. 13),

ksS 4 1 : P�k� / kÿ3 ln2�ksS� :
Hence, we find the estimate for sr [see (25)]

s 2
r �

�1
0

P�k�W 2�kr� k 2 dk / ln3
�
2sS
r

�
: �40�

Taking the power spectrum normalization s10 ' 1 into
account, we can approximately calculate

19sR � ln3=2
�
2sS
R

�
at R9 10 Mpc :

At R > 10 Mpc, a more accurate estimate for sR < 1 should
be used, taking the change in the spectral slope P�k� at scales
of rich galaxy clusters into account.

3 Coarse-grained entropy can be defined as the fraction of the phase space

volume per particle:

Eb /
�

DN
DxDv

�ÿ2=3
' s 2

Dv

n 2=3
;

where DN is the number of particles in the volume Dx � Dx1Dx2Dx3,
including the oppositely directed particle flows, Dvi is the relative

particle flow velocity on the scale Dxi (Dv � Dv1Dv2Dv3), and sDv is the
dispersion of relative particle flow velocities inside the volume Dx. The
coarse-grained entropy does not decrease during relaxation of particle

flows and is transformed into the real entropy mass function of the

virialized system.
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Averaging over the entire Universe, we obtain the mean
relative velocity and its variance:

hsi � 0 ; �41�
s 2
s � hs 2i � sÿ2S

�1
0

P�k�
�
1ÿ sin kr

kr

�
dk : �42�

The random part of the velocity ss � ss�r� monotonically
increases with increasing the scale (Fig. 14). At r < sS, its
growth is of a quasi-power form with a smoothly decreasing
slope exponent, starting from unity:

ss ' rsr���
6
p

sS
:

The growth in the function ss decreases at r0sS and saturates
at r4 sS: ss ! 1. At r � sS, ss ' 1=2.

The correlation radius of function (42), at which
s 2
s �rs� � 1=2, is rs � 36 Mpc. We note that this is the mean

correlation radius of the relative velocity of matter. The
variance of vector (38) is anisotropic (different for the
longitudinal and transverse components) and depends on
the location of particles relative to the halo center r � re:

ci j � hsi sji � s 2
jj ei ej � s 2

? pi j ; �43�

s 2
s � c ii � s 2

jj � 2s 2
? ; �44�

where the tensor pi j � di j ÿ ei ej is the projector on the plane
perpendicular to the vector e,

s 2
jj � sÿ2S

�1
0

P�k�
�
1� 2W�kr�

3
ÿ sin kr

kr

�
dk ;

s 2
? �

1

3
sÿ2S

�1
0

P�k��1ÿW�kr��dk :

The correlation radii of the longitudinal and transverse
variance are 20 Mpc (s 2

jj ' 1=6) and 49 Mpc (s 2
? ' 1=6).

Averaging over the ensemble of protohalos (see Appen-
dix B) with a density contrast nR [see (22)], we obtain the
conditional expectations of small-scale velocities of matter in
a protohalo:

hsj nRi � c nR ; �45�
s 2
s j n � hs 2jnRi ÿ hs jnRi2 � s 2

s ÿ c 2 ; �46�
where the cross-correlation coefficient has the form [see (39)]

c � hsnRi � ÿ r

3
���
2
p

sS sR

�1
0

P�k�W�kR�W�kr� k 2 dk

' ÿ r sR
3
���
2
p

sS
:

Function (45) determines the universal velocity profile of a
collapsing protohalo with themassMR. Conditional variance
(46) describes dispersions of random deviations of the
velocity from the mean value inside the protohalo:

s 2
s j n�r� � s 2

s ÿ
1

18

�
rsR
sS

�2

: �47�

11. A solution to the problem of galactic cusps

The suppression factor of peculiar motions of DM in a
protohalo relative to the motions of matter in the Universe
as a whole,

f �rjR� �
s 2
s j n
s 2
s

' 1ÿ 1

18

�
rsR
sssS

�2

;

is shown in Fig. 15 for the galactic mass 1:3� 1012M�
(R � 2 Mpc). For galaxies and groups of galaxies, the cross-
correlation inside the protohalo is insignificant:

s 2
s j n�r� '

r 2

6s 2
S

�
s 2
r ÿ

1

3
s 2
R

�
' s 2

s ; �48�

and the variance of small-scale velocities of DM has the
universal form, which is independent of the protohalo mass
[see (36), (37)],

sv � svss j n ' svss ;

however, the value of the variance depends on the halo
formation instant z.

By assuming that the coarse-grained entropy E�M� does
not change in the protohalo contraction (see footnote 3 in
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Figure 13. The power spectrum P�k� in the CSM, s10 � 1.
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Section 9), we obtain the mean profile of the background
entropymass function (8) in parametric representation [2, 41]:

hEbi � s 2
v

3

�
mp

r�z�
�2=3

/ s 2
s �r� ; M �Mr / r 3 : �49�

Hence, we calculate the power-law slope exponent bb
depending on the index n of the central halo mass
M � 10nM� <MR <MS ' 4� 1014M�:

bb �
d�lnhEbi�
d�lnM� �

2

3
ÿ 1

ln�2sS=r� '
2

3
ÿ 1:3

16ÿ n
: �50�

The Table lists numerical values of bb for different n. We
see that in the halos of galaxies of groups of galaxies, the
background entropy hampers the central cusp formation,
because

bb < 0:6 <
5

6
: �51�

AsR increases in the regionR > sS and the inner radius r < R
increases proportionally (i.e., for large halos with
MR 5 4� 1014M�), 4 the cross-correlation hsnRi cannot be
neglected anymore [see (47)], and small-scale motions of DM
in the protohalo are suppressed. Therefore, the effect of the
background entropy of DM inside rich galaxy clusters
decreases.

Thus, DM cores are formed in the central region of halos
of galaxies and galaxy groups. Following astronomical
tradition, these DM cores can be appropriately called a
spherical subsystem or `bulge' of DM (in analogy with the
baryonic bulge). By assuming that a � 1 in the region with
maximum luminosity [see (29)], the Faber±Jackson relation
must be valid for bulges, which is actually observed in
elliptical galaxies. In disk and spiral galaxies, the bulge
occupies a relatively small part of the halo, although its
luminosity in the Ha line can be significant, which apparently
explains the Tully±Fisher relation.

In large spiral galaxies, the DM bulge is deformed due to
baryonic inflow; 5 however, its size is still quite large. For

example, the bulge of our Galaxy occupies several kilo-
parsecs. As r increases, it transforms into a DM distribution
with r / rÿ2 and an almost flat rotation curve, which in turn
extends up to 10 kpc and, possibly, even further beyond the
disk edge; further DM distribution can be probed by the
motion of dwarf satellites.

On the other hand, numerical modeling shows that in
gravitationally bound galaxy groups, the central bulge could
be formed only in compact groups. There is a large class of
smoothed galaxy groups that are only partially relaxed; such
is the Local Group of galaxies. Its mass � 2� 1012M� is
mainly due to the masses of two large spiral galaxies (the
Milky Way and Andromeda Nebula) and also includes a
small addition from masses of several dozen dwarf galaxies.

When comparing theoretical predictions with observa-
tions, a wide dispersion in the background entropy distribu-
tion (and the corresponding inner density profiles) of relaxed
halos, which is actually observed in galaxies (see Fig. 10) and
follows from the CSM theory, should be taken into account.
Indeed, for the initial Gaussian velocity perturbations, the
probability distribution of the background entropy has the
form

dp� fb� � exp�ÿfb=2����������
2pfb
p dfb ; �52�

where

fb � Eb

hEbi '
s 2

s 2
s

:

We see that the halo background entropy has a wide
distribution and its variances around mean value (49) are
large:

h fbi � 1 ; h f 2b i � 3h fbi � 3 :

These large values

var Eb > hEbi2

imply significant deviations from the mean power-law slope
exponents of the central density profiles in different galaxy
halos, which is confirmed by observations.

The problem of galactic rotation curves is tightly con-
nected with the inner structure of equilibrium halos, and we
discuss it in Section 12.

12. Galactic rotation curves

In Section 5, we considered flat rotation curves of stellar and
gas disks observed in many galaxies, which suggest an
isothermal DM distribution inside halos in the rage of radii
and masses910. The corresponding power-law exponents of
the density and entropy profiles in such systems [r > r0; see
(11) and (24)] are

a ' 2 ; b ' 4

3
:

As noted in Section 6, similar distributions are generated in
analytic models of the spherically symmetric or quasisphe-
rical collapse of gravitating dust matter with a smooth initial
density distribution, in which background small-scale pertur-
bations are definitely absent. During nonlinear contraction of

4 We note that the radius of influence of dark matter r cannot be

considered small, taking the cooling baryon flows and massive cD-

galaxies in the cluster centers into account. For a similar reason, it makes

no sense to consider central DM masses lower than that of black holes in

galaxy centers. We should bear in mind in this connection that the

characteristic scales of DM distributions are much larger than the sizes

of central baryon condensations.
5 It should be noted that during a slow baryonic inflow, the DM cusp (if it

exists) would not be destroyed, but only enhanced. In this sense, it is

asymptotically stable. The question is: what is the DM density in the halo

center? This density, in particular, determines the possible flux of DM

annihilation products (photons, positrons, antiprotons, etc.). Additional

studies are needed to answer this question. Dwarf galaxies with low

surface brightness appear to be ideal objects for studies of the central

DMdistribution (see Fig. 3), in which star formation is suppressed and the

gas sustained in rotational equilibrium does not fall onto the halo center.

Studies of spiral galaxies have not provided evidence of the existence of

central cusps, either. Weak gravitational lensing plays an increasingly

important role in reconstructing the DM surface density.

Table.The power-law exponent of the background entropy function bb for
the central halo masses M � 10nM� <MR < 4� 1014M�.

n 12 10 8 6 4

bb 0.34 0.45 0.50 0.53 0.56
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such a cloud, caustics (self-intersections) and multi-flow
motions of matter arise in its central region, inducing a
violent, collisionless relaxation. As a result of the gravita-
tional redistribution of energy between spherical shells of
matter, power-law density and entropy profiles are formed in
the central parts of the halo, with the exponents

1:6 < ag < 2 ; 1 < bg < 1:3 : �53�

It follows from (53) that the violent relaxation leads to the
entropy distribution implying the formation of a cusp.
However, these exponents are related to rather large radii.
In the central halo, generated entropy (53) cannot compete
with the background one and turns out to be negligibly small
(see the Table). Therefore, the background entropy effect
constrains the central density and hinders the formation of
cusp-like halo profiles.

The same conclusion is valid for the numerical experi-
ment modeling of the most complex stages of halo formation
that cannot be treated analytically. Violent relaxation, in
which radial trajectories play the dominant role, is not the
only and, possibly, the main relaxation process of collision-
less systems that decoupled from the Friedman flow during
cosmological expansion. An important role here is played by
anisotropic collapse and the effects of merger of clumps with
different masses that were formed before the central massive
part and simultaneously with it. All these processes, which
are actually observed in nonlinearly relaxing gravitationally
bound systems at high redshifts, are called hierarchical
clustering. They include the tidal binary (and also triple,
etc.) interaction of clumps of matter captured in the common
gravitational field and their scattering and merging into
more massive objects with the subsequent repetition of the
entire cycle.

The development of numerical modeling techniques for a
large number of gravitationally interacting bodies has led to
the notion of the universal halo density NFW profile, which
appears after averaging the density profiles in several hundred
clumps of different masses and sizes formed during the
merger. The initial particle distribution in the N-body
problem is taken to be close to cosmological conditions, but
because the numberN is finite, the dynamical range of model
scales is restricted. As noted in Section 6, the NFW profile
asymptotically approaches a cusp-like power law with the
exponents

ag � 1 ; bg �
5

6
:

In numerical modeling of the N-body problem, the
background entropy of small-scale perturbations is appar-
ently underestimated due to the restricted spatial resolution
of this method.Hopefully, as the power of numerical methods
increases, the background entropy effects can be properly
taken into account.

Already much evidence has appeared showing that with
increasing N, the exponent a decreases below unity; however,
these are single examples and no statistics can be applied. Due
to the small-scale cut-off of the model power spectrum, the
initial entropy effect is suppressed in comparison with the
analytic estimates shown in the Table.

Of course, the background entropy effect on the internal
halo structure and the formation of the central core with finite
pressure and DM density should be confirmed by numerical
experiment. Nevertheless, today we can already verify the

CSM predictions by measuring velocities of gas and stars in
galaxies and galaxy clusters.

Figure 3 demonstrates galactic rotation curves that
cannot be described by formula (19) but are well approxi-
mated by a smoother profile in (18). Such examples are typical
for galaxies (see, e.g., [64]). In the central region with r < rs,
the fit constructed using the observational points is similar to
the isothermal sphere approximation [see (16) and (17)]; but
at large radii, the density decrease is inversely proportional to
r 3 and circular velocities slowly decrease. The circular
velocity reaches a maximum at the point of the local density
profile with the exponent a � 2.

SimulatedNFWprofiles meet with another problem: they
do not reproduce flat galactic rotation curves in the observed
range of scales. Nevertheless, numerical profiles provide a
good approximation of the mass distribution in galaxy
clusters (see Fig. 4, 5).

13. Effect of the background entropy

To understand the physical meaning and variety of the
observed rotation curves, the initial background entropy of
DM in nonlinear halos should be taken into account.

To clarify the physics of this effect, we consider the
simplest model of the joint entropy mass function in the form

E�M� �
������������������
E 2
b � E 2

g

q
; fb � Eb

E
; �54�

where the parameter fb 2 �0; 1� expresses the relative con-
tribution of the background entropy at a fixed inner halo
radius corresponding to the circular velocity maximum or the
local density profile slope a � 2. The functions Eb ; g�M� have
a power-law form with the corresponding slope exponents in
the ranges

bb 2
�
1

3
;
2

3

�
; bg 2

�
5

6
;
4

3

�
: �55�

We now can calculate the rotation curves of particles in
equilibrium DM halos analytically and compare them with
observations and numerical model calculations. The results
are presented in Fig. 16. The rotation velocities vrot�v�r� as
functions of the inner radius r are obtained for models of
hierarchical (bg � 5=6, Fig. 16a) and violent (bg � 4=3,
Fig. 16b) relaxations for two limit values of fb, fb 5 1 and

0

bb � 0.67

bb � 0.57

bb � 0.33 bb � 0.33

bb � 0.57

bb � 0.67

0
1

0
1

1

0.4 0.8 0

r=rmax

v=
v m

a
x

0.4 0.8

a b

Figure 16. Normalized rotation curves v�r� for models of (a) hierarchical

(bg � 5=6) and (b) violent (bg � 4=3) relaxation at fb 5 1 (the dashed

curve) and fb ' 1 (the solid curve) (see [41]). The NFW and Burkert

approximations are respectively shown by X's and the dashed line.
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fb � 1, and three values of the background entropy indices.
Velocities and radii are normalized to the corresponding
maximum values of the velocity and the radius rÿ2 at which
it is attained: vmax � v�rÿ2�5 v�r�. We see from this figure
that for halos with bb < 0:5 and any parameters bg and fb in
the chosen intervals, the induced rotation curves fully cover
the range between the NFW and Burkert approximations.
For fb 5 1, the curves shift to the NFW region, while as fb
increases, they become similar to the Burkert profiles.

It follows that the observed rotation curves are success-
fully reproduced by simple models (54) with the correspond-
ing fitting parameters fb and bb. Distributions of the
background (52) and generated (55) entropies in the halo
allow explaining the required diversity of the observed
galactic rotation curves. As the exponent bb increases, the
rotation curves concentrate closer to the NFW profiles.

The examples considered here prove the following.
� The background entropy prevents the formation of

central DM cusps in halos in the mass range �108ÿ1014�M�.
For heavier and lighter halos, the background entropy effect is
attenuated.
� Taking the effect of the background entropy on the

density distribution inside a halo into account allows
reproducing the rotation curves in a wide range of scales and
can solve the problem of DM cusps in the CSM framework.

To conclude, we note that the models considered here are
based on simple assumptions of the DM particle distribution
in the halo and neglect the contribution of baryonic matter.
The full problem of the evolution of galactic density profiles,
including DM and baryons and accounting for the effect of
different dissipative processes on the angular momentum
transfer from the central parts of galaxies, is undoubtedly
very complicated and requires further studies, both analytic
and numerical.

14. Conclusion

The entropy method of description of virialized DM systems
considered here allows an analytic treatment of these complex
nonlinear structures. It enables connecting the inner DM
density profiles with characteristics of both the initial small-
scale field of density perturbations and the nonlinear large-
scale relaxation of gravitationally contracted matter. We
conclude that cosmological random motions of matter
`warm up' DM particles in the collapsing protohalos. We
have shown that taking this effect into account
� leads to suppression of cusp-like density profiles in the

forming halo and to the formation of DM cores in galaxies;
� allows explaining the diversity of galactic rotation

curves, both observed and obtained in numerical simulations;
� helps to solve the problem of the inner structure of

equilibrium DM halos in the CSM framework.
The obtained analytic results should be confirmed by

numerical N-body experiments, which can be done in the
future with improved spatial resolution of the central halo
parts.
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discussions.
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15. Appendices

Appendix A.
Correlation functions of the initial perturbations
Fourier harmonics of the linear density perturbation field are
d-correlated:

d�x� � �2p�ÿ3=2
�
dk exp �ikx� dk ;

hdkd �k 0 i � 2p2P�k� d �3��kÿ k 0� ;

where the averaging h. . .i is done over all realizations of the
randomGaussian field, d �3��k� is the three-dimensional Dirac
d-function, and P � P�k� is the power spectrum.

Using this decomposition, we can construct any correla-
tors of the cosmological perturbation field, for example


d�x� r� d�x�� � �1
0

P�k� sin kr
kr

k 2 dk ;



S�x� r� d�x�� � ÿ r

3

�1
0

P�k�W�kr� k 2 dk ;



Sj�x� r�Sk�x�

� � ejek

�1
0

P�k�
�
sin kr

kr
ÿ 2

3
W�kr�

�
dk

� 1

3
pjk

�1
0

P�k�W�kr� dk ;

where e � ej � rj=r is the unit vector in the direction r, pjk is
the projection tensor [see (43)], d � ÿdivS, and S is the shift
vector of matter elements [see (30)±(37)],

S � Sj � i�2p�ÿ3=2
�

kj
k 2

dk exp �ikx� dk :

We can represent smoothed fields similarly, for example,

dR � �2p�ÿ3=2
�
dk W�kR� exp �ikx� dk ;



S�x� r� dR�x�

� � ÿ r

3

�1
0

P�k�W�kR�W�kr� k 2 dk :

Appendix B.
Conditional probability distribution
To obtain the conditional probability p�sjnR� of s for a given
value of nR, we consider the Gaussian distribution of two
variables xA � �s; nR�with the indexA ranging over the values
i;R :

p�s; nR� � exp �ÿK 2=2�
�2p�2 ����

C
p ; K 2 � c ABxAxB ;

where c AB is the inverse matrix to the matrix [see (43), (45)]

cAB � hxAxBi � ci j c

c 1

� �
;

C � det �cAB� � �s 2
jj s

4
? ; �s 2

jj � s 2
jj ÿ c 2 :

After simple transformations, we obtain

K 2 � �K 2 � n 2R ; �K 2 � �c i j �si �sj ; �s � sÿ c nR ;

16 A G Doroshkevich, V N Lukash, E V Mikheeva Physics ±Uspekhi 55 (1)



where �c i j is the matrix inverse to

�ci j � h�si �sj j nRi � �s 2
jj ei ej � s 2

? pi j :

Hence, we find the conditional probability distribution of the
vector s and the variance of velocities inside a halo with the
density contrast nR:

p�sjnR� � p�s; nR�
p�nR� �

exp �ÿ�K 2=2�
�2p�3=2 �sjjs 2

?
;

s 2
s j n � h�s 2jnRi � s 2

s ÿ c 2 :
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