
Abstract. Exact similarity relations resulting from the neutron
kinetic equation are presented. A number of eigenvalue problem
solutions are obtained. Analytical solutions for the stationary
and nonstationary formulations of theMilne problem are given.

1. Introduction

The 1938 discovery of uranium nuclei fission by neutrons
(OHahn and F Strassmann [1], LMeitner andORFrisch [2])
has been followed by intense international research on the
physics of atomic nucleus fission and the properties of
neutrons interacting with matter.

TheManhattan Project in theUSA and the Soviet Atomic
project in the USSR made the neutron one of the most active
subjects of investigation, both experimentally and theoreti-
cally.

The establishment in 1946 of Design Bureau No. 11
(KB-11 in Russ. abbr.), later renamed as the Russian Federal
Nuclear CenterÐAll-Russian Research Institute of Experi-
mental Physics (RFNC±VNIIEF) for such studies was quite
soon followed by setting up and launching experimental

facilities for measuring neutron interaction cross sections
with both fissionable and nonfissionable nuclei. The research
team led by A N Protopopov at the Neutron Physics
Measurement Laboratory pioneered the field.

In 1949, a facility named FKBN (Russ. abbr. for Fast
Neutrons Physical Reactor) was designed and put into
operation for determining the critical parameters of fissile
material assemblies, including those with various types of
neutron reflectors. To carry out this task on this test bench, a
special laboratory was established with G N Flerov, a future
academician, as its head (and with Yu S Zamyatnin,
D P Shirshov, A A Berezin, and some others among its first
staff).

Soon afterwards, valuable experimental data were
obtained that allowed the validation of theoretical computa-
tional work on the choice of designs and on the justification of
the characteristics of the first and subsequent USSR-built
nuclear and thermonuclear weapons. Modified over time,
these facilities and test benches are still in operation at
RFNC±VNIIEF as a source of important experimental
information necessary for maintaining the reliability and
safety of the country's nuclear arsenal under the provisions
of the 1996 Comprehensive Nuclear Test-Ban Treaty
(CNTBT).

Theoretical and computational work on neutron trans-
port in various, including layered, systems relied heavily on
the contribution of prominent theoretical physicists and
mathematicians assigned to the Soviet Atomic project, with
special mention being due toNADmitriev, who started in the
project as a staff member in Ya B Zel'dovich's department.

Of immense importance was the theoretical work on
neutron kinetics by a group led by I E Tamm, Corresponding
Member of the USSR Academy of Sciences at that time. The
group was assigned to KB-11 in 1950 in the context of
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developing the first Soviet thermonuclear bomb (RDS-6S)
successfully tested on 12 August 1953.

Comprising I E Tamm' group were the following: Andrey
Sakharov, Candidate of Sciences in Physics andMathematics
(a degree equivalent to Ph.D. in many respects); S Z Belen'ky,
Doctor of Sciences in Physics and Mathematics;
Yu A Romanov, researcher; N N Bogoliubov, Academician
of the Academy of Sciences of the Ukrainian SSR;
I Ya Pomeranchuk, Doctor of Sciences in Physics and
Mathematics, and V N Klimov and D V Shirkov, both
researchers. The last two, later joined by D N Zubarev and
still later, in 1951, byYuATserkovnikov andVSVladimirov,
worked under the immediate direction of N N Bogoliubov,
the founder of the RFNC±VNIIEF scientific school of
mathematics.

The key research priorities of the N N Bogoliubov group
were, among others: to develop maximum efficiency numer-
ical methods for calculating the critical parameters of multi-
layered symmetric nuclear systems; to set up the calculation
of energy release from such systems; to determine the
probability of an incomplete explosion, and to settle the
issue of neutrons slowing down. The then available methods
of solving the Peierls integral equation proved unsuitable for
multilayered systems. Listed below are the numerical meth-
ods that were developed and put into practice by the
Bogoliubov group for solving (by hand) neutron transport
equations:

Ð method of characteristics (V S Vladimirov, 1951),
Ð factorization method (V S Vladimirov, 1953),
Ð spherical harmonics method (V S Vladimirov,

E V Malinovskaya),
Ð approaches to treating the problems of neutron

propagation and slowing down (V N Klimov, D V Shirkov,
V S Vladimirov, I A Zhernak, A A Bunatyan), and

Ð approaches to treating energy release problems for
multilayered spherical systems (V S Vladimirov, E V Mali-
novskaya).

NNBogoliubov was among those who initiated the use of
computers for solving Soviet Atomic project-related pro-
blems, in particular, that of neutron transport in layered
systems. Preceding the launch of the first KB-11 computer
(named Strela, Russian for `Arrow'), the Bogoliubov group
performed the computer programming of those computa-
tional algorithms that had worked well when used manually.

Yu A Romanov in 1951 used the exact solutions of the
single-velocity kinetic equation to develop an improved
method for solving diffusion problems that allowed a
sufficiently accurate theoretical estimation to be made of the
critical masses of systems involving different fissile materials.

Following the first successful field tests was the stage of
producing nuclear and thermonuclear weapons with
improved (and added) physical characteristics. Paralleling
this work was computational theoretical research, in parti-
cular on the neutron transport theory, which was greatly
contributed to by V G Zagrafov, V G Morozov, and other
theoretical physicists.

This paper presents some theoretical results from neutron
kinetics studies overlapping with or relevant to the main
activities of RFNC±VNIIEF.

The theory of neutron transport is fundamentally based
on kinetic equations which describe how spatial and energy
distributions of particles vary with time in various systems.
Although a wide variety of numerical methods have been
developed for numerically solving the kinetic equation for

neutrons, their analytical counterparts still retain their topical
interest. Of particular importance in this context are the exact
analytical solutions of the kinetic equation. Although obtain-
able, of course, only in relatively rare cases and under certain
simplifying assumptions, such solutions enable a detailed
insight into the general behavior of neutron kinetics pro-
cesses, as well as allowing the verification of themathematical
techniques used. Therefore, it is exact relations and analytic
solutions that will be our main concern below.

2. The structure of the kinetic equation

Let us introduce the neutron distribution functionc�t; r;V� in
the phase space of vectors r, V in such a way that
c�t; r;V� dr dV is the number of neutrons with velocity V (to
within dV) in the neighborhood of point r inside volume dr at
time t.

In the linear transport theoryÐand this is the one we will
consider belowÐthe distribution function obeys an integro-
differential equation which, neglecting the delayed neutrons
(the reason being that we are concerned with fast pulsed
systems in this paper), has the form

qc�t; r;V�
qt

�
�
V

q
qr

�
c�t; r;V� � z�t; r;V�c�t; r;V�

�
�
�V 0�

G�t; r;V 0V�c�t; r;V 0� dV 0 : �1�

Here, z�t; r;V� dt is the probability of a neutron traveling with
velocity V and interacting with a nucleus in time interval dt,
and G�t; r;V 0;V� dt dV is the probability of a neutron
traveling with velocity V 0 and interacting with matter in
time interval dt, producing in the process a neutron with
velocity V in the interval from V to V� dV.

In the general case, the right-hand side of Eqn (1) should
be supplemented by the source term q�t; r;V�:
q�t; r;V� dt dr dV is the number of neutrons with a velocity
between V and dV emitted by independent sources in time
interval dt in volume element dr around a point with radius
vector r.

Possible interaction channels between neutrons and nuclei
in a material are characterized by the following elementary
(microscopic) interaction cross sections: sc, sf, ss, and sin,
respectively, for neutron capture, nuclear fission, and elastic
and inelastic scatterings, all summing up to the total cross
section s � sc � sf � ss � sin. Therefore, one obtains

G � Gs � Gf � Gin ; �2�

z � zs � zf � zin � zc ; �3�

with subscripts having the same meaning as for the cross
sections.

Expressions for the terms in Eqns (2) and (3) contain the
relevant macroscopic cross sections, for example,
asi � nnuclssi, where nnucl is the number of particles per unit
volume, and ssi is the elementary cross section of neutron
elastic scattering on the i-kind nucleus.

When considered for practical application, the complexity
of equation (1) prevents it from being solved exactly for the
necessary boundary and initial equations. Still, some general
conclusions can be reached even without knowing the explicit
form of the functions z�t; r;V� and G�t; r;V;V 0�.
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3. Some consequences of the exact kinetic
equation invariance under similarity
transformations

Because the density of nuclei nnucl�r� is proportional to the
density of the substance r�r�, it follows that

G � r; z � r :

Let us first consider the case where both the density of
nuclei and the composition of the substance are uniform. Let
us make the following changes of variables in the kinetic
equation (1):

t! t 0 � r
r 0

t ; �4�

r! r 0 � r
r 0

r : �5�

When transformed to the new variables, Eqn (1) retains its
form in terms of the primed function c 0�t 0; r 0;V�. This means
that kinetic equation (1) is invariant under transformations
(4) and (5), which we will call similarity transformations.

In what follows, we explore critical active systemsÐ that
is, ones containing fissionable substances. In such systems,
qc=qt � 0, and Eqn (1) becomes stationary.

Suppose we have an arbitrarily shaped homogeneous
critical body of characteristic size R � R� (hereinafter all
critical parameters are asterisked). The problem under
consideration involves, along with Eqn (5), the partial
similarity transformation

R 0� �
r�R�
r 0�

: �6�

The volume of any body can be written out in the form
VT � CTR

3, where the constant CT is determined by the
geometric form of the body, and by choosing R as a
characteristic size. Then, the mass m of the body is CTrR 3,
and relation (6) yields the constancy of the product of the
critical mass m� and the square of the density:

m�r 2
� � const ; �7�

which holds for arbitrarily shaped similar bodies.
As long ago as 1943 or even earlier, American scientists

derived relation (7) for the special case of a homogeneous
active sphere using a solution of the neutron diffusion
equation (see Ref. [3]).

Now let us consider the general case of density arbitrarily
dependent on the coordinates, r�r� � �rj�n �, where
�r � � r�r� dr=� dr is the average density of an active system
arbitrary in composition and geometry, n � r=R is a
dimensionless coordinate, and j�n � is a profile function
normalized as follows:

�
j�n � dn=�dn � 1.

It is straightforward to show that the kinetic equation is
now invariant under the transformations

t! t 0 � �r
�r 0

t ; r! r 0 � �r
�r 0

r ; �8�

and that the similarity condition

R 0��r
0
� � R��r�

holds true for profile critical systems with similar density
profiles.

This exact relation between the critical sizes and the
averaged densities is in correspondence with the following
theorem which is cited but not proved in Ref. [4]: ``If, in any
critical system, all its components are uniformly decreased
(increased) in density then, to make the system again critical,
all its linear sizes should be increased (decreased) in the same
proportion.''

Notice that for the class of geometrically similar systems
considered here, the following formula is valid:

m��r 2
� � const:

4. Similarity theory within the framework
of single-velocity neutron kinetics and the general
solution of the eigenvalue problem

The single±velocity approximation is fully justified for fast
neutron systems, when a construction from fissile materials
does not contain moderators for fission spectrum neutrons.
Intermediate or thermal neutron systems are not amenable to
the single-velocity theory.

In the single-velocity approximation all neutrons have the
same velocityV. Wewill also simplify things by assuming that
the indicatrix of neutron elastic scattering on nuclei is
isotropic and that inelastic processes are absent.

Accordingly, the kinetic equation for the distribution
function in the phase space of the vectors r, X � V=V is
written in the form

1

V

qc�t; r;X�
qt

�
�
X

q
qr

�
c�t; r;X��ac�t; r;X�� b

4p
n�t; r�:
�9�

The right-hand side of equation (9) contains the neutron
density

n�t; r� �
�
c�t; r;X 0� dX 0 :

In the general case of a multicomponent medium, when
the spatial dependences of a�r� and b�r� parameters are
determined not only by the function r�r� but also by the way
in which the concentration mi�r� of the i-kind nuclei depends
on coordinates, we have

b�r� � nnucl�r�
X
i

mi�r��ssi � ni sfi� ; �10�

a�r� � nnucl�r�
X
i

mi�r��ssi � sfi � sci� ; �11�

where

nnucl�r� � NAr�r�P
i mi�r�Ai

is the density of nuclei, Ai is the mass number of the i-kind
nucleus, mi is the average number of secondary neutrons
emitted in a single fission event of a nucleus of the i-kind,
and NA is the Avogadro constant.

The quantity h � b=a is called the activity of the medium.
For inert, neutron-multiplying, and neutron-absorbing
media, h � 1, h > 1, h < 1, respectively.

The kinetic equation should be supplemented by the
initial and boundary conditions

c�t � 0; r;X� � c0�r;X� ;
cjS � 0 ; if �XNS� < 0 ;
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where NS is the unit normal to the surface of the system,
pointing to the vacuum. Our assumed boundary conditionÐ
that there is no flux of neutrons from the vacuum to the
substanceÐ restricts the systems to be considered to the class
of simply connected objects with everywhere nonconcave
outer surfaces.

4.1 Elements of the similarity theory of nonstationary
homogeneous systems
We will follow Ref. [5] by considering the parameters a and b
to be constant and by introducing new dimensionless
arguments

z � br � har ; t � haVt :

Then, instead of equation (9), we obtain for the distribution
function in the phase space of the vectors z,X:�

q
qt
�
�
X

q
qz

��
c�t; z;X� � 1

h
c�t; z;X�

� 1

4p

�
dX 0c�t; z;X 0� ; �12�

with the corresponding initial and boundary conditions

c�t � 0; z;X� � c0�z;X� ;
c
��
S � 0 pri �XNS� < 0 ;

where the vectorNS is normal to the surface of the system in z
space and points to vacuum.

Similarity theorem. The product of the exponential
exp �t=h� and the neutron distribution function in the phase
space of the vectors z,X is independent of the nuclear physical
properties of the material of the system and is determined
only by the boundary and initial conditions.

Proof. We seek the solution of equation (12) in the form

c�t; z;X� � f �t; z;X� exp
�
ÿ t
h

�
: �13�

This, when substituted into Eqn (12), yields the integro-
differential equation�

q
qt
�
�
X

q
qz

��
f �t; z;X� � 1

4p

�
dX 0 f �t; z;X 0� �14�

with the initial and boundary conditions

f �t � 0; z;X� � c0�z;X� ; �15�
f
��
S � 0 at �XNS� < 0 : �16�

Because neither kinetic equation (14) nor the conditions
(15), (16) contain the parameters h and a, the solution
f �t; z;X� is independent of the nuclear physical properties of
the medium. This had to be proven.

It should be noted that on going over to the usual
coordinates t and r, equation (14) yields the kinetic equation
for the function f �t; r;X�:�

1

V

q
qt
�
�
X

q
qr

��
f �t; r;X� � b

4p

�
dX 0f �t; r;X 0� ;

which is invariant under the similarity transformations

t! t 0 � b
b 0

t ;

r! r 0 � b
b 0

r :

Based on the boundary condition-dictated similarity
criterion for two systems of the same geometry type, viz.

b2R2 � b1R1 ; �17�

an exact relation between the functions c2�t; r;X� and
c1�t; r;X� was obtained [5].

4.2 General solution of the eigenvalue problem
It is well known (see, for example, monograph [6]) that, in the
case of two finite-size systems, the general solution of the
kinetic equation (9) for neutrons is the following super-
position

c�t; r;X� �
X
m

am exp �lmt�cm�r;X� ; �18�

which contains the eigenvalues l � l0 > l1 > l2 . . . and their
corresponding eigenfunctions cm. For t4 t0 � 1=l0, the
distribution function (18) takes the form

c�t; r;X� � exp �lt�c�r;X� ; �19�

where l � l0 is the principal eigenvalue (PEV);
c�r;X� � c0�r;X� is the principal eigenfunction (PEF).

The distribution function in the form (19), where the
solution distinctly contains a temporal part and a spatial
part, will be called equilibrium in what follows.

In the case of Eqn (19), the following stationary kinetic
equation is valid:�

X
q
qr

�
c�r;X� �

�
a� l

V

�
c�r;X� � b

4p

�
dX 0c�r;X 0� ;

�20�

which in z space transforms to�
X

q
qz

�
c�z;X� � Ec�z;X� � 1

4p

�
dX 0c�z;X 0� ; �21�

with E � �a� l=V �=b being the new principal eigenvalue.
Apart from the quantity E, equation (21) contains no other
parameters, and the corresponding boundary condition
involves the characteristic size of the system.

From systems with the characteristic size R and with the
same type of geometry, let us single out those with the same
product bR. In a z space, such systems all have not only the
same geometric form but also the same characteristic size
Z � bR. Upon going over to dimensionless variables,
similarity condition (17) for systems in r space reduces to the
equality of characteristic sizes:

Z2 � Z1 :

In the case of a fixed-geometry object, for eachZ there will be
its own and besides single number E. Thus, a universal
function E � E�bR� exists, whose explicit form is determined
by the geometric form of the object.
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Using the relation between E and l, we obtain the
dependence of PEV on the characteristics of the system:

l � bV
�
E�bR� ÿ 1

h

�
� aV

�
hE�bR� ÿ 1

�
:

For the optical depth of the object, p � aR, tending to
zero, the neutron escape from the medium can be neglected,
and l! l1 � �bÿ a�V � �hÿ 1� aV, where l1 is a known
quantity for the case of an infinite homogeneous medium.
Thus, one has

lim
aR!1

E�haR� � lim
bR!1

E�bR� � 1 :

Also, for any critical system l � 0 and

E�b�R�� �
1

h
:

At E � 0, kinetic equation (21) degenerates into the
following:�

X
q
qz

�
c�z;X� � 1

4p

�
dX 0c�z;X 0� :

For systems with arbitrary h in a degenerate state,
l � ÿaV. If the optical thickness of a system is less than for
the degenerate case, then the function E�bR� is negative.

From the general solution of a PEV problem, it is an easy
matter to obtain similarity formulas. For example, using the
condition E�b 0R 0� � E�b 00R 00�, we have for similar systems
with sizes R 0, R 00 � �b 0=b 00�R 0:

l 00 �
�
h 00

h 0

�
1� l 0

a 0V 0

�
ÿ 1

�
a 00V 00 :

The above formulas were obtained for the PEV l � l0. In
Ref. [7] it is shown that the m-th eigenvalue is given by

lm � bV
�
Em�bR� ÿ 1

h

�
:

It should be emphasized that the eigenvalue (EV)
formulas presented above have the same accuracy as their
underlying single-velocity kinetic equation. The formulas give
visual insight into what quantities determine EVs and how.

General formulas for l allow testing both the analytical
solutions of the EV problem and their numerical counterparts
obtained by various mathematical methods. Expressions for
EV may also prove useful in constructing interpolation
relations and in extrapolating known data to the as-yet-
unexplored range of variability of physical parameters.

4.3 Similarity formulas for systems
with coordinate-dependent parameters a and b
Let us consider the general case [see formulas (10), (11)] in
which the spatial variation of a and b parameters is
determined not only by the function r�r� but also by the
concentrations of various nuclear species, mi � mi�r�.

We introduce the dimensionless variable n � r=R and
write down formulas (10), (11) in the form a � �aA�n �,
b � �bB�n �, where �a and �b are the volume-averaged quanti-
ties, and the profile functions are normalized as follows:�

dnA�n ��
dn

�
�
dnB�n ��

dn
� 1 :

Kinetic equation (20) then becomes�
X

q
qn

�
c�n ;X� �

�
A�n � � l

�aV

�
�aRc�n ;X�

�
�bRB�n �

4p

�
dX 0c�n ;X 0� :

Once this equation is solved for an arbitrary initial system `1',
passage to any similar system `2' does not change the PEF,
namely

c2

�
r

R2
;X

�
� c1

�
r

R1
;X

�
;

provided the conditions�
A2�n � � l2

�a2V

�
�a2R2 �

�
A1�n � � l1

�a1V

�
�a1R1 ; �22�

�b2R2B2�n � � �b1R1B1�n � �23�
are satisfied.

Integrating expressions (22) and (23) over the dimension-
less volume, we arrive at�

1� l2
�a2V

�
�a2R2 �

�
1� l1

�a1V

�
�a1R1 ; �24�

�b2R2 � �b1R1 ; �25�

leading to the following expression for the PEV:

l2 � �a2V
�

�a1 �b2
�a2 �b1

�
1� l1

�a1V

�
ÿ 1

�
:

The profile functions A2�n� and B2�n � are found, using
expressions (24), (25), to be

A2�n � � 1� �a1 �b2
�a2 �b1

�
A1�n � ÿ 1

�
; �26�

B2�n � � B1�n � : �27�

The functions A1�n � and B1�n � corresponding to the initial
system can be piecewise continuous and have any number of
points of discontinuity (or jumps).

It should be emphasized that, in the class of new similar
systems being considered, the parameter b2 � �b2B2 at a fixed
characteristic sizeR2 is fully determined by formulas (25) and
(27). If we choose a2 � �a2A2, only the profile function A2

should satisfy condition (26), whereas �a2 can be chosen
arbitrarily.

In the special case of critical systems (l2 � l1 � 0), the
following equalities are valid:

�a�2R�2 � �a�1R�1 ;

�b�2R�2 � �b�1R�1 :

The formulas above can be applied to layered systems, as
illustrated in Ref. [8] by specific examples.

4.4 Particular solutions of the principal eigenvalue
problem as applied to profile systems
We will abandon the single-velocity approximation for a
moment and will rely on the results of Section 2 instead.
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Based on the exact equation (1), let us consider finite-size
inhomogeneous systems in which only the density of sub-
stance r�r� � �ru�r� (where �r is the average density of
substance, and u�r� is the profile function, with � dr u �r��1)
depends on coordinates (importantly, in the same manner in
all the systems).

Let us solve the problem on the PEF c�r;V� and the PEV
l. Setting c�t; r;V� � exp �lt�c�r;V� in the kinetic equation
(1) yields

lc�r;V� �
�
V

q
qr

�
c�r;V� � z�r;V�c�r;V�

�
�
�V 0�

G�r;V 0;V�c�r;V 0� dV 0 : �28�

Because Eqn (28) must be invariant under the coordinate
transformation r! r 0 � �rr=�r 0, the following equality holds:

l0 � �r 0

�r
l : �29�

The invariant of transformation (8) is the product of the
average density �r of substance and the characteristic sizeR of
the system. Therefore, the solution of the PEV problem in the
case discussed has the form

l � �rF � �rR� : �30�
The dimensional function F � �rR� is determined by the
geometry of the object.

4.5 Features of underlying kinetic processes
in homogeneous systems with ultimately high
optical thicknesses
We start by asking ourselves what types of physically
meaningful solutions can be obtained based on the two-
constant (a and b) inhomogeneous kinetic equation written
in r space:

qc�t; r;X�
qt

� V

�
X

q
qr

�
c�t; r;X� � aVc�t; r;X�

� bV
4p

n�t; r� � q�t; r;X� : �31�

Integrating equation (31) over the angle X and then over the
volume of the system yields

qn�t; r�
qt

� Hj�t; r� � aVn�t; r��bVn�t; r� �
�
dXq�t; r;X� ;

dN

dt
� l�t�N�t� �Q�t� ; �32�

l�t� � �hÿ 1� aVÿW�t� ;

W�t� � P�t�
N�t� �

�
j�t; r� dS�
n�t; r� dr ;

where j�t; r� � V
�
Xc�t; r;X� dX is the vector neutron flux,

Q�t� is the number of neutrons emitted by the outer source per
unit time, N�t� is the total number of neutrons in the system,
P�t� � � j�t; r� dS is the neutron escape rate to vacuum, and
W�t� is the probability per unit time for a neutron to escape
from the system.

Let the characteristic size of the object under considera-
tion be R. The escape probability is inversely proportional to
the surface-to-volume ratio of the system, i.e., W � 1=R
(W � 1=bR � 1=hp in a z space).

Let us consider equation (32). If we suppose that the outer
source of neutrons is constant, Q�t� � Q0, and pass to the
limit p � aR!1, then the neutron escape from the system
can be neglected, and

l�t� ! l1 � �hÿ 1� aV :
Thus, the equation for the function N�t� reduces to

dN�t�
dt
� l1N�t� �Q0 �33�

with the initial condition N�t � 0� � N0.
Equation (33) has different types of solutions depending

on the sign of l1:
(1) l1 � 0 (inert medium with h � 1). In this case, the

total number of neutrons increases linearly with time:

N�t� � N0 �Q0t ;

in the presence of a source (Q0 6� 0) or remains constant,
N�t� � N0, otherwise.

(2) l1 > 0 (above-critical system with h > 1). The total
number of neutrons in such a system increases exponentially
with time:

N�t� �
�
N0 � Q0

l1

�
exp �l1t� ÿ Q0

l1

�
�
N0 � Q0

l1

ÿ
1ÿ exp �ÿl1t�

��
exp �l1t� : �34�

For t4 1=l1, solution (34) changes over to exponential
behavior:

N�t� �
�
N0 � Q0

l1

�
exp �l1t� ;

independent of whether a source of neutrons is present or not.
(3) l1 < 0 (subcritical system with h < 1). In this case, the

total number of neutrons is given by expression (34) with
l1 � ÿjl1j. If a sourceQ0 operates, then after a lapse of time
t4 1=jl1j the total number of neutrons ceases to change
further, and we arrive at the stationary solution

N � Q0

jl1j :

If equation (33) is homogeneous (Q0 � 0), the total
number of neutrons N�t� decreases exponentially with time:

N�t� � N0 exp �ÿjl1jt� :

Similarity limit theorem. If the condition p � aR!1
holds, then the equilibrium spatial distribution of neutrons
c�z;X� inside a homogeneous system in the phase space of the
vectors z � har, X is independent of the nuclear physical
properties of the materials the system is made of.

Reference [9] offers two proofs of this theorem, one of
which follows.

Let us omit the source term q in equation (31) (which does
not lose the generality of the argument). After the solution has
acquired the equilibrium form, the distribution function and
the neutron density become

c�t; z;X� � C exp
��hÿ 1� aVt�c�z;X� ; �35�

n�t; z� � C exp
��hÿ 1� aVt� n�z� : �36�
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Substituting Eqns (35) and (36) into Eqn (31) yields the
equation for the function c�z;X�:�

1�X
q
qz

�
c�z;X� � n�z�

4p
: �37�

Neither kinetic equation (37) nor the boundary condition
(no neutron flux from outside, see above) contain the
characteristics of the medium, which proves the theorem.

Some remarks are in order here.
The theorem just proved is valid for any class of arbitrary

simply connected systems bounded everywhere by noncon-
cave surfaces.

In vacuum outside a system with arbitrary optical
thickness, the following kinetic equation holds:�

X
q
qr

�
cex�r;X� �

l
V

cex�r;X� � 0 :

Here, the second term on the left-hand side is, for l > 0,
responsible for l-absorption of neutrons, so that the neutron
density in vacuum is a decreasing function. But, if l < 0, a l
source of neutrons emerges.

When p!1, in a vacuum we have�
X

q
qz

�
cex�z;X� �

hÿ 1

h
cex�z;X� � 0 :

5. The Milne problem
in neutron transport theory

Milne's neutron-kinetics problem, so named after the scientist
who had earlier addressed a similar problem in astrophysics,
has gained recognition in the context of atomic bomb creation
efforts in the middle of the last century. At the time, the
researchers assigned to the U.S. and USSR atomic projects
were faced with a number of totally new and complex science
and technology problems, one of which was Milne's problem
concerning the exact solution of the neutron transport
equation for various types of semiinfinite media with a plane
boundary between them.What made this problem pressing at
the time was a lack of knowledge about the neutron kinetics
effects present in the atomic devices under development.
Computer technology was then unavailable, and the existing
elementary diffusion theory could not provide reliable
estimates for the critical masses of the fissile materials, let
alone the spatial distributions of neutrons in even the simplest
systems. The use of the exact analytical solutions to the
transport equation for such systems could add greatly to the
reliability of computational and theoretical studies into the
choice of atomic weapon design. Therefore, the Milne
problem was the focus of much theoretical research globally
during the creation of early nuclear weaponsÐwith the result
that the sought-for solutions of the stationary kinetic
equations were obtained and the issue was closed, even
though in the case of neutron-multiplying media the formal
stationary solutions proved to be physically inconsistent. A
multiplying medium is an above-critical system which
requires the solution of a nonstationary kinetic equation in
order to describe neutron kinetics.

The following sections present, together with stationary
solutions, explicit solutions to the nonstationary Milne
problem. The authors of appropriate studies showed that, in
the case of an above-critical system, the general physical

solution they found for the Milne nonstationary problem
leads, in the region asymptotically distant from the boundary,
to the neutron density varying linearly with coordinate,
n�x� � x� x0, in the active and the most active media in the
one-region and two-region problems, respectively. Our
literature survey failed to uncover this result.

It should be noted that neutron transport is far from being
the only physical phenomenon that can be described by the
linearized Boltzmann equation. Among the others are the
propagation of radiation in stellar atmospheres, the transport
of particles in gas discharges, and the passage of X-rays
through scattering media, and so forth. Interestingly, some
of the fundamental problems that arose in neutron transport
theory had been considered and partly solved by astrophysi-
cists (Schwarzschild, Milne, Hopf, and some others) even
before the discovery of the neutron (see monographs [6, 10]
and references cited therein).

5.1 Stationary Milne problem
Let us first consider the stationary one-regionMilne problem,
for which we specify that the semiinfinite space to the right of
the plane boundary is filled by a homogeneous substance and
that the semispace to the left is empty (a vacuum).

The task at hand is, in the case of a plane case, to solve the
stationary kinetic equation

m
qc� y; m�

qy
� c� y; m� � h

2
n� y� �38�

with the boundary condition

c�0; m� � 0 for m > 0 ; �39�

where m is the cosine of the angle between the abscissa and the
neutron flight direction toward the point of observation,
y � ax is a dimensionless coordinate, and n� y� �� 1
ÿ1 c� y; m� dm is the neutron density. For an absorbing
(h < 1) and a multiplying (h > 1) medium, the constant-rate
flux of neutrons is assumed to come from infinity.

We first reproduce several known results on inert media
(h � b=a � 1).

In their joint paper [11], Placzek and Seidel applied the
Wiener±Hopf method to obtain the angular distribution of
neutrons at the boundary, c�0; m�, and the Laplace image
F0�s� of the function n� y�:

c�0; m� �
���
3
p

2
�1ÿ m� tÿ

�
ÿ 1

m

�
�

���
3
p

2
�1ÿ m�

� exp

�
ÿ m
p

� p=2

0

ln
�
sin2 u=�1ÿu cot u��

1ÿ �1ÿ m 2� sin2 u du

�
; m < 0 : �40�

F0�s� �
���
3
p �s� 1� tÿ�s�

s 2
: �41�

For s > 0, one obtains

ln tÿ�s� � s

p

� p=2

0

ln
�
sin2 u=�1ÿ u cot u��
sin2 u� s 2 cos2 u

du :

The solution of theMilne problem for the neutron density
can be presented as the superposition n� y� � nas� y� � e� y�,
where nas� y� is the asymptotic part of the solution, and e� y� is
a relatively small correction which rapidly decreases with
increasing y.
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From the Laurent series expansion of F0�s� at s � 0, viz.

F0�s� �
���
3
p

tÿ�0�
s 2

�
���
3
p �

tÿ�0� � t 0ÿ�0�
�

s
� . . . ;

the authors of Ref. [11] concluded that the asymptotic part of
the function n� y� is a linear function of y, so that

nas� y� � 3� y� y0� ; �42�

where y0 is a constant equal to

y0 � 1� t 0ÿ�0�
tÿ�0� �

1

p

� p=2

0

�
3

sin2 x
ÿ 1

1ÿ x cot x

�
dx � 0:7104 :

In his work [12], Placzek reduced distribution (40) to a
more computation-friendly form and tabulated the function
j� m� � c�0;ÿm�= ���

3
p

in the interval 04m4 1 with a step
Dm � 0:01.

An exact formula for the neutron density in an inert semi-
infinite medium, one which includes an asymptotic part and a
correction, was given in C Mark's work. His paper [13]
reports on how to choose a contour for the inverse Laplace
transform of the function F0�s� [41] and derives the desired
expression:

nM� y�

�3

�
y� y0 ÿ 1

4

�1
0

exp �ÿy=m� dmÿ
c�0;ÿm���1ÿm artanh m�2�p2m 2=4

��� :
�43�

It is known from the work of LeCaine [14] that the
stationary Milne problem for absorbing (h < 1) and multi-
plying (h > 1) media was first solved by Mark and Adler.
These results were not published, however.

Yu A Romanov was another who was able to solve the
Milne problem for arbitrary h. Some of his results are as
follows [15].

For h < 1, the asymptotic neutron density varies expo-
nentially with the dimensionless coordinate y:

nas� y� �
����������������������
2�1ÿ k 2�
k 2 ÿ 1� h

s
sinh k� y� y0� ;

where the coefficient k is obtained from the transcendental
equation

h
artanh k

k
� 1 ; �44�

and where y0 � y0�h� is a constant which can be approxi-
mated to good accuracy by the formula

y0�h� � 0:71

h
:

For a neutron-multiplying medium (h > 1), the transcen-
dental equation (44) has two purely imaginary roots, and the
asymptotic solution takes the form

nas� y� � A sin k� y� y0� ; �45�

with A being the normalization constant, and k the absolute
value of the root of equation (44).

Solution (45) produces regions with a negative neutron
density and is therefore unphysical.

Alongwith theone-regionMilneproblem,YuARomanov
[15] succeeded in solving the stationary problem of twomedia,
i.e., determining the neutron field in two semiinfinite media
which are uniformly filledwith different substances andhave a
plane interface. Mathematically, the problem is set up as
follows: solve in the y � ax space the system of equations

m
qc1� y; m�

qy
� c1� y; m� �

h1
2

n1� y� for y < 0 ;

m
qc2� y; m�

qy
� c2� y; m� �

h2
2

n2� y� for y > 0 ;

�46�

subject to the boundary condition c2�0�; m� � c1�0ÿ; m�.
If we assume for definiteness that the neutron flux is

directed frommedium 1 tomedium 2, then the particle density
n� y� in the case of absorbing media (h1 < 1, h2 < 1) is given
by

n1� y� � exp �ÿk1y� � A exp �k1y� � e1� y�
� n1as� y� � e1� y� ; y < 0 ; �47�

n2� y� � B exp �ÿk2y� � e2� y� � n2as� y� � e2� y� ; y > 0 ;

where n1as� y� and n2as� y� are the asymptotic densities, and
the functions e1� y� and e2� y� are nonzero only near the
interface.

Notice that, for h1 > 1 and h2 > 1, the parameters k1 and
k2 are purely imaginary, and solutions (47) are periodic.

The constants A and B are found from the boundary
conditions for the asymptotic densities:

(1) the continuity of logarithmic derivatives at points y1
and y2 yields

n 01as� y1�
n1as� y1� �

n 02as� y2�
n2as� y2� ; and

(2) density jumps at points y1 and y2 give

n1as� y1�
g�h1� �

n2as� y2�
g�h2� ;

where

g�h� �
�������������������������������
2k 2�1ÿ k 2�

3h�k 2 ÿ 1� h�

s
; k � k�h�

[see equation (44)].
The positions of points y1 and y2 are determined

numerically from the formulas

y1 � f �k1; k1� ÿ f �k2; k1� ;
y2 � f �k1; k2� ÿ f �k2; k2� ;

cosh sf �k; s� �
���������������������������
h�s��k 2 ÿ s 2�
h�s� ÿ h�k�

s �1
0

mj�k; m�
1ÿ s 2m 2

dm : �48�

The function j�k; m� entering into equality (48) satisfies the
integral equation�1

0

m0j�k; m0�
m0 � m

dm0 �
h

2j�k; m��1ÿ k 2m 2� :

In the two-media problem, the asymptotic densities
undergo a discontinuity at the interface, with neutron density
being always greater in the medium where h is larger. The
function n�y� is continuous and has an infinite derivative at
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the interface. Figure 1 illustrates qualitatively the variation of
neutron density with the coordinate for the case h1 < 1,
h2 < 1.

Alternatively, as shown by Case and Zweifel [10], the one-
and two-region problems can be solved by expanding the
characteristic transport equation in terms of the singular
eigenfunctions. These authors have determined neutron
density as a function of both the coordinate and the angular
variable m, and have considered the nonstationary Milne
problem.

5.2 Nonstationary Milne problem
Let us consider first the nonstationary one-region Milne
problem whose solution can be obtained using the kinetic
equation

1

V

qc�t; x; m�
qt

� m
qc�t; x; m�

qx
� ac�t; x; m� � ha

2
n�t; x� :

We will make use of the similarity limit theorem which
was proven in Section 3 for the general case of arbitrary
homogeneous systems with infinite optical thicknesses, the
systems whose boundary surfaces nowhere concave. Accord-
ing to this theorem, the solution of the nonstationary one-
region problem in z � hax space has, in our case, the form

n�t; z� � C1 exp
��hÿ 1� aVt�n�z� ; �49�

and its spatial part n�z� is independent of the nuclear physical
properties of the medium, i.e., is independent of h.

The stationary solution of Refs [11, 13] for an inert (h � 1)
medium is a special case of solution (49). Therefore, the
required function n�z� is obtained by simply replacing y � ax
with z � hax in expression (43) for nM� y�. The function nM�z�
represents the dependence of the neutron density on coordi-
nate z in a medium with an arbitrary value of parameter h.

Section 3 demonstrated the validity of the stationary
solutions of the h � 1 source-free problem and of the h < 1
problem with a source (a constant-rate neutron flux at an
infinitely distant point). The h < 1 source-free case admits the
nonstationary solution (49). For an above-critical (h > 1)
system, the unique physically meaningful solution of the
Milne problem is

n�t; z� � C exp
��hÿ 1� aVt� nM�z� ; �50�

with the asymptotic part increasing linearly with z:
nas�z� � z� z0, where z0 � 0:7104.

The distance x0 from the surface of the medium at which
the asymptotic neutron flux vanishes is referred to as the
extrapolation length.

In his fascinating theoretical paper [16] of 1946, R Feyn-
man addressed the question of how the extrapolation length
x0 depends on the properties of the medium. Based on the
solutions of the Milne problem known at the time, he arrived
at the following result

x0 � 0:7104g�h�
ha

:

The function g�h� in this formula becomes unity at h � 1.
With the then available solution of the corresponding
stationary Milne problem at his disposal, it was Feynman's
belief that the dependence g�h� exists for h > 1 Ð the reason
why it was computed and tabulated.

Today, with the availability of the physically meaningful
solution (50), it can be argued that g�h5 1� � 1. The
qualitative dependences n�x� and nas�x� for substances with
h5 1 are illustrated in Fig. 2.

It should be noted that the above-described solutions of
the stationary and nonstationary Milne problems and the
results presented in Section 3 from the similarity theory of
nonstationary uniform systems were used to verify one of the
mathematical techniques developed for the numerical solu-
tion of the transport equation (see Refs [17, 18]).

The problem in which at least one of the semiinfinite
media is neutron-multiplying is worth discussing here in some
detail as one of the most interesting two-region nonstationary
Milne problems.

The formulation of this version of the Milne problem is
given in Ref. [19], where it is also shown that for the highest-
activity h > 1 medium the asymptotic part of the solution is a
linear function of z increasing away from the boundary. The
complete solution of this problemwas found by P S Bondarev
in awork currently due for publication.Given below are some
intermediate calculations and the final result of Bondarev's
analysis.

The system of equations to be solved consists of two
integro-differential equations:

1

V

qc1�t; x; m�
qt

� m
qc1�t; x; m�

qx
� a1c1�t; x; m�

� b1
2

n1�t; x� ; x < 0 ;
�51�

1

V

qc2�t; x; m�
qt

� m
qc2�t; x; m�

qx
� a2c2�t; x; m�

� b2
2

n2�t; x� ; x > 0 :

h1 < h2

n�y�

1 2

j

y

h1 < h2

n�y�

1 2

j

y

Figure 1. Schematic behavior of the function n� y� near the interface for a
stationary problem of two media with two absorbers (left: neutron flux is

directed from medium 1 to medium 2; right: from 2 to 1).

n�x�

nas�x�

x

x0 � 0.71=ha

Figure 2. Behavior of n�x� and nas�x� functions near the interface.
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If at least one of the two semiinfinite media being
considered behaves as neutron-multiplying, then the distribu-
tion function varies exponentially in time:

c�t; x; m� � exp �lt�c�x; m� : �52�

The parameter l is determined by that material for which the
difference of the Peierls parameters bÿ a is largest. We will
specify that b1 ÿ a1 is larger than b2 ÿ a2.

Substituting distribution function (52) into the system of
equations (51) and making the replacements

x � z1
a1 � �l=V � �

z1
b1

�53�

and

x � z2
a2 � �l=V � �

z2
a2 ÿ a1 � b1

�54�

in, respectively, the first and the second equations of the
system, we obtain

m
qc1�z1; m�

qz1
� c1�z1; m� �

H1

2
n1�z1� ;

m
qc2�z2; m�

qz2
� c2�z2; m� �

H2

2
n2�z2� ;

�55�

where

H1 � 1;

H2 � b2
a2 ÿ a1 � b1

; �56�

and z1 and z2 in system (55) are new dimensionless variables,
which we will hereafter denote simply as z. For any
parameters a1, b1, a2, b2, the value of H2 is always less than
unity provided at least one of the two media is active (l > 0).

Thus, the nonstationary problem for twomedia is reduced
to a stationary one with the parameters H1 � 1, H2 < 1,
which can be solved, for example, by the Wiener±Hopf
method.

TheMilne problem under consideration has the following
explicit form in a z space:

n1�z� � ÿz� z0 ÿ e1�z� ; z < 0 ; �57�

n2�z� � A exp �ÿK2z� � e2�z� ; z > 0 ; �58�

where

e1�z� �
���������������
1ÿH2

p

2
���
3
p

�1
0

exp �z=m�
x� m�

dm��1ÿ m artanh m�2 � p 2m 2=4
� ;

e2�z� �
���������������
1ÿH2

p

2
���
3
p

�1
0

x� m� exp �ÿz=m� dm��1ÿ h2 m artanh m�2 � h 2
2 p

2m 2=4
� ;

A �
���������������
1ÿH2

3

r
2�1ÿ K 2

2 �
H2�1� K 2

2 ��H2 ÿ 1� K 2
2 �

x�K2� ;

x� m� � �1� K2m� exp
�
m
p

� p=2

0

� ln
ÿ
1=�1� K 2

2 cot
2 x� �1ÿH2x cot x�=�1ÿ x cot x��
m 2 sin2 x� cos2 x

dx

�
;

z0 � 1

K2
� z01 ÿ z02 ;

z01 � 1

p

� p=2

0

�
3

sin2 x
ÿ 1

x cot x

�
dx � 0:7104 ;

z02 � 1

p

� p=2

0

�
3� K 2

2 cot
2 x

sin2 x� K 2
2 cos

2 x
ÿ 1� �1ÿH2� cot2 x

1ÿH2x cot x

�
dx ;

and K2 � K2�H2� [see Eqn (44)]. Reverting the replacements
made earlier in Eqns (53) and (54) readily yields the function
n�x�.

Notice that the solutions obtained in z space for any fixed
value of the parameter H2 holds for any infinite set of
functions for which

b2
a2 ÿ a1 � b1

� h2
1� �h1 ÿ 1� a1=a2 � H2 < 1 :

Figure 3 shows the dependence of the neutron density n
(57), (58) on the dimensionless coordinate z for some values of
the parameter H2. As H2 ! 1 (infinite homogeneous med-
ium, h1 ! h2, a1 ! a2), the solution eventually becomes
constant.

6. Conclusions

The invariance property of the kinetic equation under
similarity transformations provides general insight into
neutron kinetics processes in various media and systems and
has been used to confirm some old results and to obtain new
ones. For the sake of brevity, only those results valid in the
one-velocity approximation are listed below.

(1) A similarity theory was developed for nonstationary
homogeneous systems of arbitrary geometric shape. It was
shown that, for systems consisting of different substances, a
nonstationary problem reduces to a problem with one
substance, which allows the verification of mathematical
methods developed for the numerical solution of the nonsta-
tionary kinetic equation. Also, similarity formulas expressing
exact relations between neutron distribution functions in
geometrically similar nonstationary systems were obtained.

(2) For homogeneous systems of arbitrary geometry and
composition, the general solution of the eigenvalue problem
was found, which shows vividly how eigenvalues depend on
the properties of the medium.

0
0

1

2

3

4

ÿ2 ÿ1 1 2
z

n�z�
H2 � 0.7

H2 � 0.9

H2 � 0.99

H2 � 0.5

Figure 3. Plots of the neutron density n�z� for several values ofH2.
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(3) Similarity formulas were obtained for systems inwhich
macroscopic cross sections for the neutron±nucleus interac-
tions are coordinate dependent.

(4) The similarity limit theorem valid for homogeneous
systems was proven, which implies that, in the case of an
exponential time dependence of the distribution function
c�t; z;X� � exp �lt�c�z;X� of neutrons in the phase space
of the vectors z � har, X � V=V, this function ceases to
depend on the nuclear physical properties of the substance
as the optical depth p � aR tends to infinity. This theorem is
directly relevant to the Milne problem in the neutron
transport theory.

(5) It was shown that, along with the known solutions of
the stationary one-region Milne problem, there also exist
solutions to its nonstationary versions. Moreover, instead of
the formal mathematical solution to the stationary Milne
problem which existed earlierÐand which was unphysical
for neutron-multiplying systemsÐan exact nonstationary
solution was obtained. Based on the body of exact analytical
solutions, a number of mathematical techniques were
verified.

(6) The complete physical solution was found for the
nonstationary two-region Milne problem, in which at least
one of the semiinfinite media multiplies neutrons.
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