
Abstract. A number of studies on time as a quantum observable
canonically conjugate to energy, with reference to systems with
continuous and discrete energy spectra, are briefly reviewed in
this minimal-mathematics methodological note. The results of
and prospects for the time analysis of quantum processes using
time as a quantum observable are examined.

1. Introduction

It has been known for a long timeÐsince the work ofWPauli
some 90 years ago [1]Ð that, except in special abstract
systems (as it later turned out), time cannot be represented
by a self-adjoint operator. 1 This is clearly inconsistent with
the common expectation that, depending on the case, timeÐ
similarly to spaceÐcan either play the role of a simple
parameter or be a physical observable which should be
represented by an operator. The available literature on the
problem of time in quantummechanics is quite extensive (see,
for example, Refs [2±50] and references cited therein). The
same situation exists in quantum electrodynamics and in

relativistic quantum field theory (see, for example, Refs [11±
13, 45, 50]).

The first series of studies (after Ref. [1]) on time in
quantum mechanics included, among the most known and
cited, Refs [2±20]. In the second series of work on the time as a
quantum observable [21±50], published starting in the late
1980s but mostly in the 1990s and later, the primary concern
was how the duration of a quantum collision and the
tunneling time can be defined in a self-consistent manner.
However, some studies in this second series ignored the
mathematical theorem proved by Naimark [51], which had
crucially underlain the results of Refs [14±20]. This theorem
states that the nonorthogonal spectral decomposition E�l� of
a Hermitian operator H is the Carleman type (and is unique
for a maximal Hermitian operator), i.e., can be approximated
by a succession of self-adjoint operators 2 whose spectral
decompositions weakly converge to the spectral decomposi-
tion E�l� of the operator H.

It is precisely Naimark's theorem which was used in
Refs [14±20] (more detailed treatments are available in
Refs [22±25, 30±33, 45, 48±50]) to show that physical systems
with a continuous energy spectrum allow time to be
introduced as a quantum-mechanical observable canonically
conjugate to energy. It was shown thereby that the operator
for time in such systems is usually the maximal Hermitian
operator. In Refs [23, 33] (see also Refs [48±50]), it was found
that, for systems with discrete energy spectra, time is also a
quantum-mechanical observable canonically conjugate to
energy and that the time operator is a quasiself-adjoint
operator (more precisely, for systems with more than one
bound state the time operator can be chosen to be practically
self-adjoint to an arbitrary degree of accuracy).
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1 That time cannot be so represented follows precisely from the semi-

boundedness of continuous energy spectra (usually zero-bounded from

below). It is only for an electrically charged particle in an infinitely

extended uniform electric field or for certain special kinds of systems that

a continuous energy spectrum is not bounded but rather extends over the

entire energy axis, from ÿ1 to 1. For such systems, time can be

represented by a self-adjoint operator, as it can for other special abstract

systemswith a continuous energy spectrum bounded from above or below.

2 Reference [51] took from Ref. [52] a Carleman type expression for the

spectral decomposition of unity for a Hermitian operator. Naimark

referred to paper [52] as providing a method for proving that a maximal

(and not only maximal) Hermitian operator H can be approximated by a

succession of bounded self-adjoint operators which are such that the

spectral decompositions of unity for them weakly converge to the spectral

decompositionE�l� of unity forH. This fact was kindly pointed out to the

author by A S Holevo.



Another approach in the literature is to use the positive
operator valued measure (POVM), a concept which can be
traced back to the early versions of the quantum theory of
measurements and is in wide utilization even today (see, in
particular, Refs [26±29, 34±44, 46, 47]). This approach has
been known by and large since about the 1960s in the
quantum theory of measurements, and it was as early as in
Ref. [53] that its simplest version was used as an illustrative
tool to describe free motion. It was stated in Refs [26±29, 34±
44, 46, 47], with reference to Naimark's extension theorem
[54] and using sometimes simplified and abridged arguments,
that a generalized decomposition of unity (or the POV
measure) can be reproduced from any self-adjoint extension
of the time operator into extended Hilbert space (with
negative values of energy E on the left half-axis). In actual
fact, however, this was not done for other than the simplest
cases (for example, free motion of a particle).

Our approach relies on another Naimark's theorem [51]
(see above) and does not involve any extension of the physical
Hilbert space of usual wave functions (wave packets)
followed by an inverse projection onto the preceding space
of wave functions; moreover, it was published in Refs [11±17,
20] (and independently in Refs [18, 19]) prior to works [26±29,
34±44, 46, 47]. Based on Naimark's theorem from Ref. [51]
already published earlier, this approach is much more direct,
simpler, and more generalÐwhile at the same time no less
mathematically rigorousÐthan the POVM approach.

2. Time as a quantum observable
and the general definition for the average time
and duration of a quantum process

For systems with a continuous energy spectrum, we can,
following Refs [14±20], introduce the following simple
operator t̂ for time:

t̂ �
t in the time representation; �1a�
ÿi�h q

qE
in the energy �E� representation; �1b�

8<:
which is canonically conjugate to energy. The operator t̂ is not
self-adjoint but is Hermitian and acts on square-integrable
space±time wave packets and their Fourier transforms in the
respective representations (1a) and (1b), with the point E � 0
excluded (which limits consideration to only moving wave
packets, when nonmoving back tails and zero-flow situations
are excluded). This condition, incidentally, is quite sufficient
for the operator (1) to be, in the terminology of Ref. [55], a
`maximal Hermitian operator' [14 ±20] (see also Refs [24, 25,
31±33, 48±50, 51, 55]). Notice that the exclusion of the point
E � 0 involves no loss of physical generality because neither
zero-velocity states of rest, nor wave packets with non-moving
back tails, nor zero-flow wave packets are observable.

Operator (1b) is defined as acting on the space P of
continuous, differentiable, square-integrable functions f �E �
that satisfy the conditions�1

0

�� f �E ���2 dE <1 ;

�1
0

���� qf �E �qE

����2 dE <1 ;
�2��1

0

�� f �E ���2E 2 dE <1 ;

f �0� � 0 : �3�

The space P is dense in the Hilbert space of L2 functions
defined (only) for all nonnegative E. Most obviously,
operator (1) is HermitianÐ that is, the relation
� f1; t̂ f2� �

ÿ�t̂ f1�; f2� holds true if and only if all square-
integrable f �E � functions, whose space is the definition space
of operator (1), vanish at the point E � 0. The operator t̂ has
no Hermitian extensions because, otherwise, at least one
function f0�E � would be found to satisfy the condition
f0�0� 6� 0, which is inconsistent with Hermiticity. Therefore,
in accordance with Refs [51, 55], t̂ is a maximal Hermitian
operator.

It was for these reasons that Pauli earlier dismissed the
idea of introducing the operator for time (see, for example,
Ref. [1]), thus virtually postponing for nearly fifty years the
study of time as a quantum observable (Naimark's mathema-
tical work [51] was long unknown to those involved, as was
the still earlier (1923) work of Carleman [52]). Still,
J von Neumann argued as long ago as 1932 [56] that it
would be too restrictive to confine quantum mechanics to
self-adjoint operators alone. He gave the following example
[56] to illustrate his point. Consider a particle moving freely in
the half-space x �04 x <1� bounded by a rigid wall along
the x � 0 plane. The x-component of the momentum
operator for such a particle, viz.

p̂x � ÿi�h q
qx

;

is defined as acting in the space of continuous, differentiable,
square-integrable functions f �x� satisfying the conditions�1

0

j f �x�j2 dx <1 ;

�1
0

���� q f �x�qx

����2 dx <1 ;�1
0

j f �x�j2x 2 dx <1 ;

and f �0� � 0. This spaceQ of functions is dense in the Hilbert
space of L2 functions defined (only) on the semiaxis
04 x <1. Therefore, the operator p̂x � ÿi�h q=qx has the
same mathematical properties as t̂ (1) and, hence, is not self-
adjoint but maximal Hermitian. Still, it remains observable
and has an obvious physical meaning. The same properties
apply to the radial momentum operator

p̂r � ÿi�h q
qr
� 1

r
; 0 < r <1 :

Curiously, it was also noticed long ago (see, for example,
Refs [3, 4]) that the time operator (1) for hypothetical
quantum-mechanical systems with continuous energy spec-
tra bounded both from below and above �Emin < E < Emax�will
be a real self-adjoint operator with a discrete time spectrum
quantized in units of t � �h=d, where d � jEmax ÿ Eminj.

The study of time as a quantum-mechanical observable
cannot be complete without properly defining two observed
average characteristics of particle motions and collisions,
namely the time and duration of their occurrence. This, in
turn, raises the question of determining the measure (or
weight function) for averaging over time in accordance with
the averaging procedures and known principles of quantum
mechanics. In the case of one-dimensional unidirectional
motion of a particle, such a measure (or weight function) can
be obtained using the following simple quantity

W�x; t� dt � j�x; t� dt� 1
ÿ1 j�x; t� dt ; �4�
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where the probabilistic interpretation of j�x; t� (precisely in
terms of time) corresponds to the probability flux density of a
particle passing point x at the instant of time t (more precisely,
passing point x within a unit time interval centered at t),
assuming the particle travels in the positive x direction. This
measure is not postulated but rather directly follows from the
well-known probabilistic (spatial) interpretation of the prob-
ability density r�x; t� and the continuity equation

qr�x; t�
qt

� div j�x; t� � 0 �5�

for a particle moving in the field of any Hamiltonian
described by a one-dimensional SchroÈ dinger equation.
Recall that r�x; t� here is the probability of finding a moving
particle in a unit spatial interval centered at x at the instant of
time t. The probability density r�x; t� and the probability flux
density j�x; t� are, as usual, related to the particle's wave
functionC�x; t� by the respective relations r�x; t� � jC�x; t�j2
and j�x; t� � Re �C ��x; t���h=im� qC�x; t�=qx�. Measure (4)
was first introduced and investigated in Refs [20, 22±25,
30±33].

If the flux density j�x; t� changes sign, the quantity
W�x; t� dt is no longer positively defined and acquires the
physical meaning of the probability density only within those
bounded time intervals where the flux density j�x; t� main-
tains its sign. In this case, it is natural to introduce two
measures, distinguishing between the positive and negative
probability fluxes by their signs:

W��x; t� dt � j��x; t� dt� 1
ÿ1 j��x; t� dt

�6�

with j��x; t� � j�x; t�Y��j �, whereY�z� is the Heaviside step
function, which is zero for z < 0, and unity for z > 0 (see
Appendix).

The average value of ht�x�i at the instant of time t, when a
particle passes through the point x (assuming it travels
unidirectionally along the x-axis), and the average value of
ht��x�i at the instant of time t, when the particle passes
through the point x (assuming it travels in the positive or
negative x direction), can be defined as

t�x�� � � 1ÿ1 t j�x; t� dt� 1

ÿ1 j�x; t� dt

�
� 1
0 dE

�
G ��x;E � t̂vG�x;E � � vG ��x;E � t̂G�x;E ��=2� 1

0 dE v
��G�x;E ���2 ;

�7�
where v is the velocity of the particle passage through the
point x, G�x;E � is the Fourier transform of the moving one-
dimensional (1D) wave packet:

C�x; t� �
�1
0

G�x;E � exp
�
ÿ iEt

�h

�
dE

�
�1
0

g�E �j�x;E � exp
�
ÿ iEt

�h

�
dE ; �8�

on changing from the time to the energy representation:



t��x�

� � � 1ÿ1 t j��x; t� dt� 1
ÿ1 j��x; t� dt

: �9�

For the 1D passage of a particle from the point xi to xf > xi,
and for 1D reflection of a particle from region �xi;1� to

region xf 4 xi, the average durations are given respectively by

tT�xi; xf�

� � 
t��xf��ÿ 
t��xi�� ; �10�

tR�xi; xf�

� � 
tÿ�xf��ÿ 
t��xi�� :
3. Energy-time uncertainty relation
for continuous energy spectrum systems

It is easy to see that the operator for time (1) and its
canonically conjugate energy operator

Ê �
E in the energy �E� representation;
i�h

q
qt

in the time �t� representation;

8<: �11�

satisfy the standard commutation relation

�Ê; t̂ � � i�h : �12�

It should be noted that relation (12), in accordance with
the Stone±von Neumann theorem [57], is interpreted as
holding only for a pair of self-adjoint canonically conjugate
to each other operators in both representations, and to date
has not been directly generalized to maximal Hermitian
operators. Nevertheless, the difficulty of directly proving this
generalization was in fact indirectly surmounted by introdu-
cing t̂ using a unique Fourier (Laplace) transform from the
t-axis �ÿ1 < t <1� to the E-semiaxis �0 < E <1�, and in
doing so, exploiting, as done inRefs [18±20, 22, 23, 31±33, 48±
50], the special mathematical properties of maximal sym-
metric operators described in detail in, for example, Ref. [55].

From Eqn (12) and using a simple generalization of
standard transforms for self-adjoint canonically conjugate
quantities (see Refs [16±20, 22, 23, 31±33, 48±50]), one
directly derives the uncertainty relation

DEDt5
�h

2
; �13�

where uncertainties are presented as root-mean-square
deviations Da � �������

Da
p

, with Da � ha 2i ÿ hai2 �a � E; t� and
h. . .i standing for averaging over t with a measure W�x; t� dt
or W��x; t� dt in the t representation or averaging over E
[using the uniqueness of the right-hand sides of Eqns (7) and
(9)] in the E representation. Moreover, relation (13) satisfies
the Dirac correspondence principle because the classical
Poisson brackets fq0; p0g with q0 � t and p0 � ÿE are unity
[58]. Reference [20] also reported, as did Refs [22, 23], that the
differences between the average passage times of wave packets
through a successive pair of points satisfies the Ehrenfest
correspondence principle, which is in fact equivalent to a
generalization of Ehrenfest's theorem [20, 22, 23].

Thus, for quantum-mechanical systems with continuous
energy spectra the mathematical properties (described, in
particular, in Refs [48±50]) of maximal Hermitian operators,
including the operator t̂ in relations (1), are quite sufficient for
these operators to be considered quantum observables: the
unique expansion of unity (also referred to as the spectral
function) for operators t̂ and, incidentally, for t̂ n �n > 1�
ensuresÐdespite the nonorthogonality of such an expansion
and for any analytical functions of timeÐ the equivalence of
whether the average value of the function is calculated in the t
or E representation. In other words, the existence of such an
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expansion is equivalent to the completeness relation for
(formal) eigenfunctions of t̂ n �n5 1� corresponding with
any degree of accuracy to real eigenvalues within the
continuous spectrum; such eigenfunctions belong to the
space of the square-integrable functions of E (2) with type
(3) boundary conditions (see Refs [48±50] for details).

From this point of view, there is no practical (physical)
difference between self-adjoint and maximal Hermitian opera-
tors for systems with continuous energy spectra. It should be
therefore emphasized that the mathematical properties of t̂ n

�n5 1� are quite sufficient for time to be considered a
quantum-mechanical observable (like energy, momentum,
and spatial coordinates) without postulating new physics.

4. Time as an observable and the energy-time
uncertainty principle for discrete spectrum
quantum-mechanical systems

For systems with discrete energy spectra, one naturally
introduces, following Refs [22, 23, 48±50], wave packets in
the form

c�x; t� �
X1
n� 0

gnjn�x� exp
�
ÿi�en ÿ e0� t

�h

�
; �14�

where jn�x� are the orthonormalized bound state wave
functions of the system, satisfying the equation
Ĥjn�x� � enjn�x�, with Ĥ being the system's Hamiltonian,
and where

P1
n jgnj2 � 1; we have here dropped the unim-

portant phase factor exp �ÿie0t=�h� because it is the same for
all terms in the sum over n for describing the evolution of
systems in the purely discrete spectrum range.Without loss of
generality, let the initial instant of time be at t � 0.

Let us first consider systems in which there really exists a
greatest common divisor for the values of energy level
spacings. For such idealized systems, which are exemplified
by the harmonic oscillator, a particle in a rigid box, and the
spherical rotator, wave packet (14) is a periodic function of
time with period (PoincareÂ cycle time) T � 2p�h=D, whereD is
the greatest common divisor for the values of the energy level
spacings in the system.

In the t representation, the energy operator and Hamilto-
nian of the system are self-adjoint operators acting in the
space of periodic functions of time, to which, importantly, the
function tc�t� does not belong. But in the space of periodic
functions of time, the operator t̂ for time should also be a
periodic function of time, even in its own representation. This
situation is totally analogous to that with the azimuthal angle
j canonically conjugate to the angular moment L̂z (see, for
example, Refs [59, 60]). Using then an example and a result
from Ref. [61], we choose, instead of t, the periodic saw-tooth
(Fig. 1) function of t:

t̂ � tÿ T
X1
n�0

Y
�
tÿ �2n� 1� T

2

�

� T
X1
n�0

Y
�
ÿtÿ �2n� 1� T

2

�
: �15�

This choice is quite justifiable physically, because the
periodic function of the operator (15) for time is linear within
each PoincareÂ interval, i.e., time maintains its course and its
usual meaning of the `ordering' parameter of the evolution of
the system.

The commutation relation for self-adjoint energy and time
operators in this case (discrete energies and periodic functions
of time) has the form

�Ê; t̂ � � i�h

�
1ÿ T

X1
n�0

d
ÿ
tÿ �2n� 1�T �� : �16�

Now recall (see, for example, Ref. [61]) the generalized
uncertainty relation

�DA�2�DB�2 5 �h 2
�hN i�2 �17�

for two self-adjoint operators Â and B̂ canonically conjugate
to each other through the commutator

�Â; B̂ � � i�hN̂ ; �18�

where N̂ is a third self-adjoint operator. From this it
straightforwardly follows that

�DE �2�Dt�2 5 �h 2

"
1ÿ T

��c�T=2� g���2� �T=2
ÿT=2

��c�t���2 dt
#
; �19�

where the parameter g, arbitrary between ÿT=2 and �T=2, is
introduced to ensure that the integral over dt from ÿT=2 to
�T=2 on the right-hand side of Eqn (19) is calculated
uniquely using the procedure analogous to that used in
Ref. [59] (see also Ref. [61]).

From relation (19) it follows that whenDE! 0 (i.e., when
jgnj ! dnn 0 ), the right-hand side of Eqn (19) also tends to zero
because jc�t�j2 tends to a constant. In this case, wave packet
times of passage through point x within a single PoincareÂ
cycle are distributed uniformly. When DE4D and

T
��c�T=2� g���2 5 � T=2

ÿT=2

��c�t���2 dt ;
the periodicity condition for Dt5T becomes unimportant,
i.e., relation (19) changes to uncertainty relation (13) typical of
continuous energy spectrum systems.

In principle, the operator (15) for time can also be
expressed in the energy representation.

In the more general case of excited states Ð nuclear,
atomic, or molecularÐ the values of energy level spacings in
discrete spectra have no strictly defined greatest common
divisor and hence no strictly defined PoincareÂ cycle time.
Moreover, in such systems there is no clearly defined
transition from the discrete to the continuous part of the
spectrum. Still, even for these systems it proves possible to
introduce an approximate description of the quasiperiodic

T=2

t̂

ÿT=2

ÿT=2ÿT T=2 T

t

0

Figure 1. Periodic saw-tooth function approximating operator (15) for

time.
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evolution with PoincareÂ quasicycles (with, importantly, any
degree of accuracy within a chosen maximum limit of the
energy level widths, for example, glim). For sufficiently large
time intervals of motion within such systems (say, greater
than �h=glim), neglecting the decay of states conforming to
individual levels, motion within such systems can be con-
sidered periodic to any degree of accuracy. For these systems,
the PoincareÂ cycle time can be chosen (defined) with any
degree of accuracy, with one cycle containing as many
quasicycles as needed to achieve the desired accuracy. Then,
with the same accuracy, quasiself-adjoint operator (15) for
time can be introduced, followed by the determination of all
temporal characteristics.

In the degenerate case, when the sum
P1

n�0 in state (14)
contains only one term �gn ! dnn 0 �, there is no evolution and
the entire PoincareÂ cycle time is formally equal to infinity.

For systems with mixed continuous and discrete energy
spectra, forms (1) and (15) are naturally applied to the former
and the latter, respectively.

5. Temporal analysis of quantum processes
using time as a quantum observable

It should be reiterated that Refs [20, 22±25, 45, 48±50] have, in
fact, settled with all mathematical rigor (Naimark's theorem
[51]) the question of time as a quantum-mechanical obser-
vable (canonically conjugate to energy) for systems with a
continuous energy spectrum. As a matter of fact this work
also received support from an alternative approach [39±41,
43, 44, 46, 47], which is not inconsistent with that of Refs [20,
22±25, 45, 48±50] but relies on a different mathematical
framework (another Naimark's theorem [54] which goes
beyond the physical Hilbert space). For systems with discrete
energy spectra, the question of time as a quantum-mechanical
observable canonically conjugate to energy was settled in
Refs [22, 23, 48±50].

In what follows, only a few important conclusions and
results obtained in the temporal analysis of quantum
processes are cited from the literature.

(1) There is every reason to believe [48±50] that the
energy±time uncertainty relations (13) and (19), derived
from the properties of the operator for time as a quantum
observable, will have a strong attenuating effect on the long-
standing debate (triggered by the discussion in Refs [62±65])
over the interpretation of such relations.

(2) Time domain analysis of various types of motion of
nonrelativistic particles and photons not only revealed an
analogy between the motion of particles and photons [66±68,
see also 32, 33, 45, 48±50], but allowed the introduction of the
maximal Hermitian operator for time in quantum electro-
dynamics as well (at least for the one-dimensional motion of
photons [45, 48±50]).

(3) In principle, two time averaging measures are known
in quantum mechanics. Section 2 introduced an averaging
measure related to the passage of a particle or a photon. The
second measure relates to the dwelling (or sojourning) of
particles or photons in a closed spatial volume as they pass
through it. The latter and its relation to the former are
detailed, in particular, in the reviews [45, 48±50].

(4). The temporal analysis of tunneling processes has
provided the following results:

(a) it is established in Ref. [45] that virtually all of the
previously known special definitions or definition proposals
prove, within Olkhovsky±Recami's (OR) general definition

framework, to be simple special cases [24, 25, 45] of either
average tunneling time or of the root-mean-square fluctua-
tion in the tunneling time distribution (or prove to take the
form of these for special idealized boundary conditions). The
OR approach was considered by some (see, for example,
Ref. [69]) as the most self-consistent approach in the frame-
work of standard quantum mechanics in its Copenhagen
interpretation;

(b) it is established that there is an infinite succession of
multiple internal reflections of evanescent and antievanescent
waves from the entrance and exit walls of the potential barrier
[70];

(c) theHartman (orHartman±Fletcher) `saturation' effect
was discovered and analyzed (see, for example, the reviews
[24, 25, 45]), which comprises the fact that for sufficiently
wide barriers tunneling times are independent of the barrier
width both for complete emerged (tunneled) wave packet
peaks and for the peak of each emerged packet in the process
of all multiple internal reflections. For complete peaks
emerged outward through the barrier rear wall, this effect
was confirmed in tunneling experiments with microwave
photons [71±79]. These phenomena triggered considerable
discussion on relativistic causality, although as has long been
clear the velocity of the wave front, which is well-defined for
short leading edge pulses, cannot exceed the speed of light in
vacuum. No consensus emerged, however, with some point-
ing to the nonlocality of barriers as the reason for the
phenomena in question. This and the later discovery of
superluminal phenomena (in the tunneling of microwaves
and optical waves through optical fiber devices and in the
tunneling of X-shaped optical solitons) will be discussed
elsewhere;

(d) a large momentum spread in a wave packet leads
theoretically to the strong deterioration of the Hartman
effect, which shows up in that the tunneling time additionally
decreases (and occasionally becomes negative) upon increas-
ing the barrier width [80];

(e) if wave packets consist only of evanescent or only of
antievanescent waves, then it is shown inRefs [70, 81, 82] that,
both for nonrelativistic particles and for photons [50],
nonstationary wave packet flows describe oscillations that
arise simultaneously all over the inner space of the barrier. It is
in this way that two factorsÐ the influence of the barrier as a
whole on particle and photon tunneling, and the nonlocal
behavior of tunneling particles and photons within the barrier
(see, for example, Refs [50, 70, 81, 82])Ðmanifest them-
selves. Curiously, mathematical tools exist [such as changing
to virtual (or imaginary) pulses or to Fourier expansion, or an
approach of instantons on the imaginary time axis] with
which such wave packets can be described as traveling in an
unusual metric space [50, 81, 82];

(f) for two identical nonresonating barriers a distance L
apart, an enhanced Hartman effect was reported [83], in
which not only the total tunneling time through the two
barriers turned out to be equal to that through a single barrier
but, furthermore, the total tunneling time was found to be
absolutely independent of the barrier separation L. However,
the presence of resonance between the barriers greatly
complicates the situation [84];

(g) although tunneling under a potential barrier does not
allow for a direct passage to the classical mechanics limit, it is
established that there exist a nonzero probability density and
a nonzero probability flow density for the motion of wave
packets within such barriers and that, furthermore, a direct
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classical limit explicitly exists for the motion under barrier of
the wave packets of superposed evanescent and antievanes-
cent waves: recall a similar motion, in time, of wave packets
described by the superposition of evanescent and antievanes-
cent waves in classical optics and classical acoustics (see, for
example, Refs [48±50, 71±78, 85, 86]).

(5) The following are some results from the time analysis
of nuclear reactions and decay processes:

(a) in the region of isolated resonances strongly distorted
by the nonresonant background, a paradoxical effect was
exposed [87±92], in which the delay time transforms to an
advance time near a resonance, or more precisely, near the
cross section minimum in the region of the distorted
resonance. A more careful analysis [93, 94] later showed,
however, that this paradox results in the center-of-mass
system from false interference which appears in the scatter-
ing amplitude due to the standard transformations from the
laboratory to the center-of-mass frame being used formally,
without taking into account the fact that the center of inertia
moves differently for the mechanism involving direct (fast)
processes (when it remains virtually unshifted by a collision)
and for the mechanism involving processes that pass through
the stage of a long-lived compound nucleus (when the motion
of the decaying compound nucleus itself in precisely the
laboratory frame should be taken into account). Because
transformations of collision amplitudes for different mechan-
isms should be considered separately, taking into account the
spacetime shift due to the motion of the compound nucleus,
no advance time effects occurred for the total collision
amplitude;

(b) there is a research [95] devoted to high-energy nuclear
reactions involving the appearance of temporal resonances
(explosions) that correspond not to the exponential, but to the
resonant-like decay of compound nuclei and feature a certain
delay in the onset of their decay Ð an effect by which a
number of experimental data were explained;

(c) estimates of the age of planets and stars started to be
revised [96, 97] as nuclear chronometry methods became
modified by including the physical processes occurring both
in the interior of the large masses of star material (in
particular, the excitation of the alpha-radioactive nuclei-
chronometers in nucleosynthesis processes and the forma-
tion of the successive pairs of gamma deexcitations and
gamma excitations of the excited states of nuclei-chron-
ometers, with the inclusion of recoil effects) and in the
surface layers of planets (with the inclusion of space
radiation).

6. Conclusion

(1) The possibility has arisen, in principle, of extending the
temporal analysis of quantum processes proceeding in more
complex motions of particles and photons, in particular, in
spiral motions and in motions through two- and three-
dimensional (plane, spherical, and nonspherical) potentials
and barriers, and so forth.

(2) There also exists a fundamentally simple way to
generalize the operator for time to relativistic quantum
mechanics (Klein±Gordon and Dirac equations) by using
appropriate averaging measures. It is also possible, although
not that easy, to construct four-dimensional coordinate±time
operators for other relativistic problems, particularly for
localization problems. The existing work on this issue is
reviewed in Ref. [98].

(3) Of interest would be a temporal analysis of oscillating
wave packets together with the photon fluorescence of excited
states within any quasidiscrete spectrum system (crystal)
whose energy level separations are multiples of a certain
`greatest common divisor' D. A temporal analysis of possible
laser-like phenomena migrating inside crystals would also be
worthwhile.

(4) A promising area seems to be the temporal analysis of
the tunneling of an early inflating universe through a barrier
determined by the quantum gravitation curve in the quasi-
linear approximation, treating the operator for time with the
aid of a Hamiltonian approach (described, in particular, in
Refs [10, 48±50]) and using the operator equation

�H;T � � i�h

and the dual equations

HC � i�h
qC
qt

; TF � ÿi�h qF
qE

;

where F is the Fourier component of the wave function

C �
�1
ÿ1

dE exp

�
ÿ iEt

�h

�
F�E � :

7. Appendix

Formula (9) was first obtained inRefs [24, 25, 30±33], where it
was also justified by representing continuity equation (5) for
time intervals with j � j� and j � jÿ in the respective forms

qr>�x; t�
qt

� ÿ q j��x; t�
qx

and
qr<�x; t�

qt
� ÿ q jÿ�x; t�

qx
�A:1�

(in the same papers relations (A.1) are also considered as the
formal representations of qr>=qt and qr<=qt).

Clearly, in Eqn (9) we can, similarly to transformation (7),
change to averaging over energyE, i.e., to integrals

� 1
0 dE . . .

by using the uniqueness of the Fourier (Laplace) transforma-
tions and expanding the function j��x; t� � j�x; t�Y��j � in
terms of the integral over energy. This requires a lot of tedious
algebra, though.

A similar analysis can be applied to the motion of a
particle in three dimensions (see, for example, Refs [20, 22, 23,
50]).
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