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Abstract. Fine features in the Fermi surface geometry, such as
nearly cylindrical or nearly paraboloidal strips or local flatten-
ings, are examined as regards their effect on the electronic,
mainly galvanomagnetic, properties of metals. It is shown that
under certain conditions, these features may significantly
change the way a conventional normal metal or a layered
structure with metallic conductivity responds to high-fre-
quency external disturbances. All of the effects considered
appear to be very sensitive to the disturbance propagation
direction and/or to that of the external magnetic field. Experi-
mental possibilities of observing the described effects are dis-
cussed.

1. Introduction

Understanding the behavior of conduction electrons in
conventional metals and other substances with a metallic
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type conductivity (including low-dimensional conductors) is
very important because, among other things, the conduction
electrons give rise to superconductivity and magnetism. Being
an interacting many-particle system, conduction electrons are
also exposed to crystalline fields, which crucially affect their
behavior. The effects of these crystalline fields on electrons
are summarized in the concept of the Fermi surface (FS),
which is one of the most meaningful concepts in condensed
matter physics providing excellent insight into the nature of
the main physical properties of metals.

Active studies aimed at reconstructing the geometry of
FSs of conventional metals started in the 1950s. These studies
were based on experimental data concerning various phe-
nomena responsive to the structure of electronic spectra in
metals, combined with electron band structure computations.
As a result of these efforts, the main geometric characteristics
of conventional metal FSs, such as their connectivities,
locations of open orbits, sizes, and arrangements of sheets,
were studied rather well by the mid-1970s [1-5]. Further
development of computational methods for electron struc-
ture calculations resulted in the impressive mapping of FSs of
metals. Later, studies of FS geometries were revived due to
the emergence of new conducting materials with remarkable
properties such as high-temperature superconductivity. These
materials include organic conductors belonging to the family
of tetrathiafulvalene salts, dichalcogenides of transition
metals, and graphite and its intercalates. As a whole, the
above materials are characterized by the metallic type
conductivity in the normal (nonsuperconducting) state and
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by the quasi-two-dimensional (Q2D) spectra of charge
carriers. Significant effort has been and still is applied to the
study of electron characteristics of these Q2D metals,
including the geometries of their FSs [6-8]. Another extre-
mely interesting group of novel materials are high-tempera-
ture superconducting cuprates. In addition to their transition
temperatures, anomalies in the normal state transport
properties of cuprates [9] are often referred to as one of the
most formidable challenges in condensed matter physics [10].
In the first two decades of intensive research on cuprate (in
particular, doped cuprate) properties, no truly convincing
evidence of the existence of fermionic quasiparticles around
coherent FSs was obtained. The failure to unambiguously
observe such quasiparticles led to the theoretical search for
novel strongly correlated electronic ground states appropri-
ate for describing the unusual transport properties of doped
cuprates, and this search continues up to the present. But in
2003, evidence of FS existence was revealed from the analysis
of angle-dependent magnetoresistance data for overdoped
Tl,Ba,CuOg,, [11]. Another important advancement in
cuprate fermiology was made by observation of quantum
oscillations in the magnetoresistance of underdoped
YBa,;Cu30g4,, [12]. This breakthrough was quickly followed
by reports of similar oscillations observed in other cuprates,
namely, underdoped YBa,CusOg [13, 14], overdoped
Tl,Ba,CuOg,, [15, 16], and the electron-doped compound
Nd,_,Ce,CuOy [17]. Recently, de Haas—van Alphen oscilla-
tions were observed in overdoped Tl;Ba,CuQOg ., [10]. Unlike
early observations of quantum oscillations in low-quality
cuprate samples [18, 19], these recent experiments show a
high signal-to-noise level, which provides better opportunities
for interpretation of the experimental data. Another method
successfully used to study the electronic characteristics of
cuprates is angle-resolved photoemission spectroscopy [20].
Currently available experimental data give grounds to believe
that charge carriers in doped cuprates in the normal
(nonsuperconducting) state behave as fermionic quasiparti-
cles associated with FSs. As the doping is reduced towards the
insulating phase, these FSs reveal the tendency to break up
into pieces, whose projections on the relevant planes in the
quasimomenta space look like arcs. Also, it was suggested
in [21] that cuprate FSs break apart at temperatures just
above the critical temperature when these materials are in a
special ‘pseudogap’ phase, which differs from the normal
metallic-like or insulator state. Recent recognition of some
layered iron-based compounds as high-temperature super-
conductors [22-24] spurred intensive research of their trans-
port and magnetic properties, including intensive efforts
aimed at reconstruction of FSs [25-30] using both experi-
ments and electron band structure computations. This
research continues up to the present.

Despite the very impressive achievements in FS mapping,
comparatively little attention has been paid to fine features in
their geometry related to some local characteristics of their
curvature. These are points of flattening and nearly cylind-
rical strips, where the FS curvature vanishes. Also, points and
lines can exist where the curvature is discontinuous, e.g., kink
lines or conic points. These features can be easily missed in the
electron structure calculations, including those that involve
advanced computational methods.

When a FS incorporates points and/or lines of anomalous
curvature, this leads to an enhancement/reduction in the
contributions from the neighborhoods of these points/lines
to the electron density of states (DOS) on the FS. Usually,

these contributions are small compared to the main term in
the DOS, which originates from the remaining major part of
the FS. Therefore, they cannot produce noticeable changes in
the response of the metal to an external perturbation, when all
segments of the FS contribute to the response functions
essentially equally. But at high frequencies of the external
disturbance, the response is determined by ‘efficient’ charge
carriers associated with small ‘effective’ segments of the FS.
For instance, various kinds of magnetic oscillations, which
are rightfully considered an important tool in experimental
studies of the electronic properties of conductors with
metallic-like conductivity [5], are formed by the response of
charge carriers belonging to narrow strips or even vicinities of
certain points on the FS. This last statement refers to
commensurability oscillations (Pippard geometric reso-
nances) that may appear when the conduction electrons are
exposed to both uniform magnetic and nonuniform electric
fields. The contribution to the DOS from ‘efficient’ charge
carriers associated with the vicinities of the points and lines of
zero curvature located at such segments can have the same, or
even greater, magnitude as the contribution of the whole
‘effective’ segment. In other words, when the curvature
vanishes at some part on an ‘effective’ segment of the FS, it
can make a sensible change in the number of efficient
electrons and, in consequence, in the response of the metal
to the disturbance.

Some possible manifestations of local anomalies in the
FS curvature were theoretically analyzed in earlier works
[31-41]. An extraordinary attenuation rate for sound waves
propagating in metals whose FSs incorporate flat or cylin-
drical segments was first predicted as early as 1973 [31].
Later, the effect of local flattenings and nearly cylindrical
strips on the FSs on the frequency and angular dependences
of sound attenuation and velocity shift were studied in more
detail in [32]. Also, it was shown that such anomalies in the
FS local geometry can give rise to noticeable changes in the
conductivity and surface impedance of a metal under the
anomalous skin effect [33—40]. A manifestation of a kink line,
where the FS curvature has a discontinuity, was briefly
discussed in [41].

The zero-curvature lines discussed above either indicate
positions of nearly cylindrical strips on the FSs or are
inflection lines separating concave parts of the FS from its
convex segments. The presence of inflection lines can cause
changes in the topology of the effective segments on the FS for
some particular directions of propagation of the external
disturbance [34]. As a result, noticeable changes in the
response of a metal to the disturbance should occur. Some
of the above fine features in the FS geometries are represented
in Fig. 1.

The effects of FS curvature anomalies on the observables
in metals and other metallic-like conductors were mostly
studied in some particular cases, and only the simplest
models for the FSs were used. The present work contains the
principal results of advanced theoretical studies of possible
manifestations of the FS local geometric structure in the
experiments. The analysis is based on phenomenological
models for the local shapes of the FSs. We do believe that
adoption of phenomenological models is justified so far as
these models are based on reasonable assumptions. Actually,
phenomenological models were used to develop the theory of
well-known effects, such as the de Haas—van Alphen effect.
The suggested approach to fermiology does not contradict the
standard approach based on electron band structure calcula-
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Figure 1. (a) Schematic plots of a FS with a complex profile including
nearly cylindrical strips and kink lines and (b) profiles of the cross sections
of an ellipsoid-like FS flattened at the points (+p»,0,0).

tions. On the contrary, it supplements the latter. Such
supplementing analysis aims to bring new insight into the
nature and origin of the considered physical effects. Also, our
intention is to show the usefulness of these effects in further
studies of FS geometries.

2. Basic concepts and equations

2.1 The effect of the Fermi surface curvature
on the electron response of a metal
In studies of magnetotransport properties, a metal can be
viewed as a Fermi sea of conduction electrons. These
electrons interact with the ions of the crystalline lattice and
with each other. The interactions can give rise to some radical
changes in the ground state of the electron system and in the
properties of charge-carrying states, and these changes can
result in the metal transition from the normal to the super-
conducting state, the metal-insulator transition, and/or
structural changes in the lattice. Putting aside these and
other phase transitions, we can consider conduction elec-
trons of a normal nonsuperconducting metal as a system of
quasiparticles described by the Fermi—Dirac statistics and
obeying the Pauli principle.

An equilibrium state of conduction electrons is described
by the Fermi distribution function

16y = (o [F50] 1) (1

where Eis the quasiparticle energy, { is the chemical potential,
k is Boltzmann’s constant, and 7 is the temperature. In the
low-temperature limit 7 = 0, conduction electrons fill all
available states whose energies do not exceed the Fermi
energy Er = ((0). These states are densely packed in the
interior of a certain surface in the quasimomentum space,
which is called the Fermi surface. At 7= 0, all quasiparticle
states inside the FS are filled, whereas all states outside the FS
are empty if the electron system is free from external
disturbances and the interactions between quasiparticles are
neglected.

It is especially easy to illustrate the concept of the Fermi
surface using a model of an isotropic metal. Within this
model, the crystalline potential is assumed to be uniformly
spread over the region occupied by the metal. Then the FS
takes a spherical shape. The radius pg of the Fermi sphere is

determined by the relation

2V 4rn
N=—"——p} 2
(2nh)* 3 Pe @

where N/V is the quasiparticle density in the volume V
occupied by the metal.

The most essential characteristic of the FS local geometry
is its Gaussian curvature

1

Ko =+ wrm]

(3)

where R »(p) are the principal radii of curvature.

At a certain point on the Fermi surface, its curvature is
expressed in terms of the components of the velocity of
electrons and their partial derivatives [40]. Any point on the
FS where its curvature is finite can be specified as an elliptic, a
hyperbolic, or a parabolic point depending on the curvature
sign. At the elliptic points, we have K(p) >0, at the
hyperbolic points, K(p) < 0, and at the parabolic points, the
Gaussian curvature of the surface becomes zero.

Points of zero curvature on a smooth surface are arranged
into inflection lines, which separate ‘hyperbolic’ segments of
the surface from its ‘elliptic’ segments. Such lines exist on the
FSs of most metals. Some examples of inflection lines on
surfaces that appear to be segments of the FSs of real metals
are shown in the Fig. 2. Also, a zero-curvature line can belong
to a segment of the FS where its Gaussian curvature form
remains nonnegative. In such cases, the shape of the FS near
the zero-curvature line is close to cylindrical.

The influence of zero-curvature lines on the FS of
observables in metals originates from the enhancement of
the electron density of states in the vicinities of such lines. The
DOS on the Fermi surface is determined by the formula
2V J d4
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Figure 2. (a) Examples of zero-curvature lines on FSs of metals. (b) The
surface element of a FS. The principal curvature radii of the shown
element are R; and R»; nis a normal vector to the surface.
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Here, the integration is performed over the FS, dA4 is the
surface area element, and v is the magnitude of the electron
velocity. We can transform the integral over the FS to the
integral over the angles that determine the direction of the
electron velocity vector v (that is, the direction of the normal
to the surface). The surface element is shown in Fig. 2. The
corresponding element of the surface area dA is
|R1R>| d6f; d6,. Choosing polar coordinates 0, ¢, for which
df, = df and d6, = sin O d¢, we have

dA—|R1R2sin0d0d(pE%, (5)

where K(0, ¢) is the curvature of the FS. We can then write
4 J dQ
) ) [KO.9)]

(6)

It follows from this expression that contributions to the
electron DOS from those parts of the FS that correspond to
the vicinities of zero-curvature lines (K(0,¢) =0) exceed
contributions from the remaining FS segments. In other
words, when the curvature of the FS vanishes at some point
(or line), the number of electrons associated with the vicinity
of this point (or line) increases.

The occurrence of zero-curvature lines on a FS can affect
high-frequency phenomena in metals. This happens when
such lines intersect effective segments on the surface or belong
to these segments. In the vicinity of a zero-curvature point,
the FS is close in shape to a cylinder (if one of the principal
curvature radii tends to infinity) or to a plane (so-called points
of flattening, where both principal curvature radii tend to
infinity). Therefore, when a zero-curvature line is located on
an effective segment of the FS or even intersects it, the number
of effective electrons increases. In turn, this brings changes to
the observable properties for certain directions of propaga-
tion of the external perturbation.

The dependence of the attenuation rate of a sound wave
on the direction of its propagation through a metal with a
nearly planar and/or cylindrical FS was first predicted in
Ref. [31]. The effect of zero-curvature lines and points on the
frequency and angular dependences of the dispersion and
attenuation of ultrasound, conductivity, and surface impe-
dance of a metal under the anomalous skin effect was
theoretically analyzed in Refs [31-38] using very simple
models of the FS shape near the points/lines of zero
curvature. Some results in Refs [31-38] were confirmed in
experiments on the propagation of ultrasound waves in
metals (see, e.g., Refs [36, 37, 39)).

Along with the points and lines of zero curvature, points
and lines can exist where the curvature of the surface reveals
discontinuities or diverges. A very simple illustration of such a
case is a kink line on a piecewise smooth surface. If a FS has
kink lines, the effective segments can be missed for appro-
priate directions of propagation of electromagnetic or sound
waves, which causes anomalies in the high-frequency
response of the metal. It is shown in Refs [41, 42] that under
these conditions, electromagnetic waves of a special kind can
appear in metals.

In the last two decades, various quasi-two-dimensional
(Q2D) materials with metallic-type conductivity have been
synthesized. Galvanomagnetic phenomena and quantum
oscillatory effects in these materials were intensely studied
(see, e.g., Refs [6-8, 43, 44]). A common feature of Q2D

Figure 3. Schematic plots of FSs shaped as corrugated cylinders (a) with a
cosine warping corresponding to energy—momentum relation (7) and
(b) with complex profiles.

metals is their layered structure with a pronounced aniso-
tropy of the electrical conductivity. In such materials, the
electron energy only weakly depends on the quasimomentum
projection p = pn onto the normal n to the layer planes. A
simple model of a Q2D Fermi surface originates from the
energy—momentum relation of the form

0) = 2~ 2weos (224, ™)

_2H1L

where p, is the quasimomentum projection onto the layer
plane and m, is the effective mass corresponding to the
motion of quasiparticles in this plane. The parameter w in
expression (7) is the interlayer transfer integral, whose value
determines how much the FS is warped. When w tends to
zero, the FS becomes perfectly cylindrical. However, there are
grounds to believe that FSs of some realistic Q2D conductors
have more complex geometries than those described by
Eqn (7). For instance, such a conclusion follows from
experiments on magnetic quantum oscillations in the over-
doped cuprate TIBa;CuOg,,, [10] and in the layered perovs-
kite oxide SrpRuQyq [45, 46]. It may be conjecture that FSs of
some Q2D conductors can have various profiles, including
cross sections with maximum/minimum external areas where
the curvature becomes zero or discontinuous, as shown in
Fig. 3.

2.2 Main equations of the Fermi-liquid theory

Studies of the effects arising due to electron—electron
interactions within the general many-body quantum field
theory approach started in the early 1960s in the work of
Luttinger [47], and have continued through the next four
decades. Nevertheless, one of the oldest methods for dealing
with electron—electron interactions, namely the Landau
Fermi liquid (FL) theory [4, 48, 49], is still useful. It is
important to realize that the phenomenological FL theory
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and the microscopic many-body perturbation theory (and,
when applicable, the exact density functional theory) by
definition lead to the same observable quantities such as the
response to an external field, while both the zeroth approx-
imation and its renormalization depend on the approach
chosen. A discussion of this effect applied to the dielectric
response of metals can be found, e.g., in [50]. Recognizing the
value of the many-body perturbation theory, we nevertheless
emphasize that the FL theory has provided important insights
in areas such as high-frequency collective modes in metals
[51-57] and oscillations of various thermodynamic observa-
bles in quantizing magnetic fields [58—60].

An advantage of this phenomenological theory is that it
enables describing the effects of quasiparticle interactions in
such a way that the interpretation of the results is rather
transparent, as compared to field theory methods. It is known
that the many-body approach gives general but cumbersome
results, and it usually takes great calculational efforts and/or
significant simplifications to extract suitable expressions for
comparison with experimental data. More importantly, the
adopted simplifications may lead to omission of some
qualitative effects of electron—electron interactions.

Within the phenomenological Landau FL theory, single
quasiparticle energies are renormalized, and the renormali-
zation is determined by the distribution of excited quasi-
particles. Accordingly, the energy of a ‘bare’ (noninteract-
ing) quasiparticle Eo(p) moving in the effective crystal
potential is replaced by the renormalized energy defined by

the relation [49]
) + ZF p,s;p’,s
p’,s’

Es(p,r,1) s')p(p',s',r, 1), (8)

We note that Ey(p) is here the energy spectrum in the absence
of any excited quasiparticles (that is, at equilibrium and at
zero temperature), whereas p(p’,s’,r, ) represents the non-
equilibrium part of the electron distribution function, which
may depend on both the quasiparticle position r and time ¢.
Also, s and s’ are quasiparticle spins (o is the spin quantum
number), and F (p,s; p’,s’) is the FL kernel (Landau correla-
tion function), which describes additional renormalization of
the quasiparticle spectrum due to interaction with other
excited quasiparticles. With spin—orbit interactions, the
Landau correlation function can be written as

F(p,s;p’,s") = o(p,p') + 4y (p.p')(ss'). 9)
As follows from Eqn (8), the quasiparticle velocity v = Vp E
differs from the bare velocity vo = V, Ej.

The gradient of E in the coordinate space describes the
average force exerted by the ambient quasiparticles on a given
electron. It can be regarded as a ‘diffusion’ force, which tends
to push the quasiparticle toward regions of minimum energy.
The “diffusion’ force has to be included in the net force acting
on an electron. When both an electric field E and a magnetic
field B are applied to the electron system, we can write

dp _

e Og
2 =W xBl+eE— > Fpsip's') =,

p’.s’

(10)

where the third term represents the ‘diffusion’ force. To
analyze the conduction electron response to an external
disturbance, we must use a transport equation for the
nonequilibrium distribution function. Here, we restrict

our consideration to the linearized transport equation
for the nonequilibrium distribution function g(p,r,?) =
Tr, (p(p,r,8,1)). Accordingly, the transport equation takes
the form suggested in Ref. [61]:

Og  0g° e ofp

TR *z[VPXB]a—+ﬁ

pE=1g,  (11)

where I[g] is the collision integral. Again, the distribution
function g describes a deviation of the system of quasiparti-
cles from the equilibrium ground state, and the function g° is
defined by the relation

ZFp7sp s’)

pp/ s/

ge(pvrv t) =8 l’,l',l (p/,l', t)' (12)

This function corresponds to a deviation from the ‘local
equilibrium’ state (see Ref. [49]), which is described by
Fermi distribution function (1) where E is the ‘renormalized’
energy determined by Eqn (8).

Exact expressions for the functions ¢(p,p’) and y/(p,p’)
are of course unknown. The model of an extremely short-
range (contact) Coulomb interaction between quasiparticles
is often used when applying the many-body theoretical
approach to study the effects of electron—electron interac-
tions (see, e.g., Ref. [62]). Within the phenomenological FL
theory, this model results in the approximation of the
functions ¢(p,p’) and y(p,p’) by constants ¢, and y,. Such
an approximation allows obtaining the Stoner renormaliza-
tion of the paramagnetic susceptibility and a suitable
approximation for the electron compressibility [4, 49]. But it
misses other FL effects, such as the renormalization of
cyclotron masses of the conduction electrons.

The phenomenological theory of an electronic liquid is
based on the assumption that weakly excited states of the
electronic system of a normal metal are single-particle states.
Beyond the semiclassical approximation, it suggests the
existence of a single-particle Hamiltonian H, with a set of
quantum numbers v and energies E,. Weakly excited states
have energies close to the Fermi energy { and are represented
by a single-particle density matrix, which is the sum of an
equilibrium part f (f,,v =f,0,,, where f, is the Fermi
distribution function for the energy E,) and a small non-
equilibrium correction p. The density matrix p satisfies the
equation

.. Op
h-t=[H
ih == [H,pl,

(13)
where the Hamiltonian H includes the term H, and correc-
tions describing interactions of quasiparticles with external
disturbances (e.g., electromagnetic fields), their scattering on
the defects of the crystalline lattice, and the interactions of
quasiparticles. For a disturbance harmonic in time
(~ exp (—iwt)), the matrix elements p,,, satisfy the transport
equation

. 1 1

—i0pyy+ o By = Ev) poyrt o (o =)Wy = L [p], - (14)
where I [p] is the quantum collision integral and the operator
W* describes the interaction of a quasiparticle with the
disturbance and the interactions between the quasiparticles,
which cause the deviation from the equilibrium state.
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In the framework of the FL theory, W* is a linear
functional of p:

Wow =W+ F) oy,

Vi, V2

(15)

where W,, represents the interactions with the perturbing
fields and the integral term describes the interactions between
quasiparticles. For disturbances whose frequencies are small
compared to (/i and wavelengths are greater than the
electron wavelength on the FS (such as electromagnetic fields
or ultrasound waves), matrix elements of the FL kernel F,”
can be computed assuming that the electron system remains
in the ground state.

To study the electromagnetic response of electrons, we
can write the operator W as

1

Wi = [ar (eno00) - iAW), (16)

where @(r) and A(r) are the scalar and vector potentials of the
alternating electromagnetic field and en(r) and j(r) are the
operators of the charge and current density of electrons.
When we are dealing with perturbations of a different kind
(e.g., originating from a sound wave propagating through a
metal), the form of W,,, changes accordingly.

Transport equation (14) can be converted into a form
more convenient for further calculations and for comparison
with the semiclassical transport equation. To transform the
equation, we introduce the operator of effective current
density j*(r) that determines the form of the correction p
to the equilibrium electronic density matrix in a weak static
magnetic field b(r) = rot A(r):

4 _ L A-S

ph, = jdr o (1 A(T).

¢ E E, (17)

where the matrix elements j,(r) are defined by the relations

[63]

V[Vz *

j\Tv’( Jn w’ Jntz(r) . (18)

Juzt
R E

Vi, L2

In the semiclassical limit, this expression turns into the well-
known relation between ‘bare’ (vo) and renormalized (v)
velocities of a quasiparticle suggested by Pines and Noziers
[49]. Then we can separate the contribution p, from the
nonequilibrium part of the density matrix:

(19)

When the disturbance arises due to an external electro-
magnetic field, the matrix elements g,,- are determined by the
equation

_ A
Py = Pyt + 8w -

S —he

1 .
_(EV’ - Ev)gv\’ E E ,

—iw ! "
8y +1h

x Jdr o (1) Eul(r) = Llg],

e __ § : ViV
&y = 8w — E E FW/ 8vivy
v!

viva

where

iw

E,(r) = = A, (r) — V@, ()

is the amplitude of the electric field. This result is the quantum
analog of semiclassical transport equation (11), and it can be
converted into the latter in the semiclassical limit.

2.3 Symmetry of the crystalline lattice

and approximations of the FL kernel

Expressions for the Landau correlation functions ¢(p,p’)
and y(p,p’) beyond the limit of the short-range interactions
between the quasiparticles strongly depend of the crystalline
lattice symmetries. Using a simple isotropic model of a metal
with a spherical FS allows easily concluding that these
functions depend only on the angle between the quasimo-
menta p and p’ corresponding to a pair of quasiparticles on
the FS. Accordingly, the correlation functions can be
expanded in series in spherical harmonics [64]:

(2nh)?

o(p.p") =" U N ST 4Y5,(0.9) YL, (07, 0,
pF J=0 |m| < j
2nh

Y(p,p’) = > Z Z B Y (0, 9) Y (0", @),
P J=0|ml < j 1)

where vg is the Fermi velocity and the vectors p and p’ are
represented using their spherical coordinates: p = (pg, 0, @).
Dimensionless coefficients A; and B; describe the effects of
electron—electron correlatlons Assumlng that all coefficients
A;, B; with j > 0 vanish, we reduce expressions (21) to the
approximations corresponding to the limit of short-range
interactions. Usually, the FL coefficients become smaller as j
increases, and the terms with j < 2 must be kept in the
expansions for the correlation functions to satisfactorily
describe the main correlation effects in the electronic
characteristics of metals.

Considering practical metals with nonspherical FSs, we
can decompose the FL functions with respect to basis
functions determined by the crystal symmetry, such as
Allen’s FS harmonics [65]:

ZZ@o,pp

j=1 m=

Zzlp (p.p") Rim(0, ®) _]n](e P').

j=1 m=

Rin(0,®) R;, (0, @),

\im

(22)

Here, dis the order of the point symmetry group of the lattice,
the index j labels irreducible representations of the group, dj
is the dimension of the jth irreducible representation, and
{Rim(0,®)} is a basis of the jth irreducible representation
including d; functions.

Keeping various Q2D metals in mind, it is interesting to
consider suitable approximations for the correlation func-
tions for an axially symmetric FS. In this case, the functions
¢o(p,p’) and y(p,p’) do not vary with identical changes in
directions of the projections p, and p/ of the quasimomenta p
and p’ onto the plane p. = 0 (assuming that the z axis of the
chosen coordinate system is directed along the FS symmetry
axis). These functions actually depend only on the cosine of
the angle 0 between the vectors p, and p| and on the
longitudinal components of the quasimomenta p. and p..

On these grounds, we can separate the even and odd parts
of the FL functions of cos 0. Then the function ¢(p, p’) can be
presented in the form [66]

(pJ_p,L) Py (p27 pzl7 cos 0) ’ (23)

(p,p") = @o( p-, p’,cos0) +
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where ¢, and ¢, are even functions of cos(. Due to the
invariance of the FS under the replacement p — —p and
p’ — —p’, the functions ¢, and ¢, should not change under
a simultaneous change of the signs of p. and p.’. Using this,
we can split the functions ¢, and ¢, into the parts that are
even and odd in p., p.’, and rewrite Eqn (23) as

(P, P') = Qoo +P-Plpor + (PP ) (@10 +P:-Ploy) . (24)
The function Y(p,p’) can be presented similarly. In
Eqn (24), the functions ¢gy, @¢;, @19, and ¢, are even in
all their arguments, p., p.’, and cos 0. Each term in Eqn (24)
corresponds to a particular part in the expansion of the FL
functions in spherical harmonics, which is appropriate for
an isotropic metal. Comparing Eqns (24) and (21), we see
that the function ¢y, matches the part of expansion (21)
that includes all terms with even values of both j and m.
The product p.ple, represents the sum of all terms in
Eqn (21) with odd values of j and even values of m. The
third term in Eqn (24) corresponds to that part of expansion
(21) containing terms with odd values of both indices.
Finally, the terms in Eqn (21) labeled with even j and odd
m are matched with the expression (p,p|)p-ple,,. Again,
the main FL effects in the response of a metal to an external
disturbance can be adequately analyzed while keeping the
terms with j < 2 in expansion (21). Omission of all terms
with j > 2 from this expansion agrees with the assumption
that the functions ¢g), ®g, @9, and ¢, are constants.
Therefore, we can adopt approximation (24) assuming ¢,
®o1> P19- and @, to be material constants for an arbitrary
axially symmetric FS.

3. Local features of the Fermi surface curvature
and the linear response of a metal
to a high-frequency electromagnetic disturbance

3.1 Anomalous skin effect
It is well known that electromagnetic waves incident on a
metal surface cannot penetrate deeply inside. Actually, the
field inside the metal vanishes at distances of the order of ¢
from the surface. This effect is called the skin effect, and the
characteristic depth 0 is called the skin depth. The suppres-
sion of the electromagnetic field inside the metal originates
from the response of conduction electrons, and it occurs when
the frequency w of the incident wave is smaller than the
electron plasma frequency wy,. The latter is the characteristic
frequency for the response of the electrons to an external
disturbance. When @ > w,, the electrons are too slow to
respond, and the electromagnetic field penetrates into the
metal without decay. At moderately high frequencies
17! <o <w, (v is the scattering time for conduction
electrons) and low temperatures, é can become smaller than
the electron mean free path /. When the condition § </ is
satisfied, the effect is referred to as the anomalous skin effect.
Under the anomalous skin effect, the response of a metal to an
incident electromagnetic wave is determined by the electrons
moving in the skin layer nearly parallel to the surface of the
metal sample. These ‘efficient’ electrons are associated with
‘effective segments’ on the FS. The remaining electrons stay in
the skin layer only very briefly, which prevents them from
responding to the electromagnetic field.

A theory of the anomalous skin effect in metals was first
proposed more than five decades ago by Pippard [67], Reuter,

and Zondheimer [68], and Dingle [69] using an isotropic
model for a metal. The theory was further developed to
make it applicable to realistic metals with anisotropic FSs
[70-78]. It became clear that the response of conduction
electrons to an external electromagnetic field under the
anomalous skin effect depends on the FS geometry and
especially on its Gaussian curvature. Some effects of the FS
geometry on the metal response under the anomalous skin
effect were analyzed in [4, 70, 71, 75], adopting some
simplified models for the FS. Here, we perform a general
analysis whose results are independent of particularities in
energy—momentum relations and can be applied to a broad
class of metals.

We consider a metal filling the half-space z < 0. A plane
electromagnetic wave is incident on the metal surface at a
right angle. To analyze the response of the metal to the wave,
we calculate the surface impedance

E,(0)

T i de 25)

Zup

where o, f = x, y, and E,(z) and jg(z) are the components of
the electric field E and the electric current density j.

Due to the high density of conduction electrons in good
metals, the skin depth § can be very small. Assuming the
electron density to be of the order of 10°* m—3 and the mean
free path /~ 1073 m (a clean metal), we estimate the skin
depth at the disturbance frequency w ~ 10°s~'asd ~ 10~ m.
Therefore, at high frequencies w, the skin effect in good
metals becomes extremely anomalous, with J//~
1072—1073 or even smaller. Under these conditions, elec-
trons must move nearly parallel to the metal surface to remain
in the skin layer for a sufficiently long time. The effect of the
surface roughness on such electrons is rather small. As shown
in [79], electron reflection from the metal surface under the
extremely anomalous skin effect can be treated as nearly
specular, because the corrections originating from the diffuse
scattering have the order /I Therefore, we can limit our
analysis to the case of specular reflection of electrons from the
surface. Then the surface impedance tensor has the form

8iw [* [4nive =
Zaﬂ:?L ( —qzl) ﬁdq,
o,

(26)

where q is the wave vector of the incident wave (q = (0,0, q)),
o is the electron conductivity tensor, and I,5 = 0,p.

We split each sheet of the FS into segments such that a
one-to-one correspondence is established between the quasi-
momentum p and the electron velocity v over each segment.
The segments may coincide with the FS sheets. Also, it can
happen that some sheets include several segments. This
depends on the FS shape. In calculating the conductivity, we
integrate over each segment using spherical coordinates in the
velocity space, which include the velocity magnitude at the jth
segment v; and the spherical angles 0 and ¢. Therefore, the
surface area element is d4; =sin0d0de/|K;(0,¢)|, where
K;(0, ) is the Gaussian curvature of the jth FS segment.
Adding the contributions from all these segments, we obtain

ie?
(2, ) =—ZJd¢
]

4m3hiq 7

« J nyng sin 0 do
|K.i(97 90)‘ [(w+1/7)/(qv;) — cosb] ’

(27)
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where n, 3 = vj, p/v;, and the limits in the integrals over 6 and
¢ are determined by the shape of the segments. The leading
contribution to the surface impedance under the anomalous
skin effect comes from the region of large ¢, where w/qv < 1.
To calculate the corresponding asymptotic expressions for
the conductivity components, we expand the integrand in
Eqn (27) in powers of w/quv. Then we can write the well-
known result for the leading term in the expansion of the
conductivity component oy (®, q):

e? J cos? @
00(q) =— do
o(4) 4713773(12[: ‘K,(n/Z,qo)}

The same asymptotic form can be obtained for a,,, and we
therefore omit the indices here and in the following expres-
sions for simplicity. Summation over / ranges all segments of
the FS containing effective strips that correspond to § = /2
(v, = 0), and the curvature K;(n/2, ¢) is supposed to take a
finite and nonzero value at any point of any effective strip.
For a spherical FS, py is equal to the Fermi momentum pg. In
realistic metals, the two are not equal, but have the same order
of magnitude. We can then calculate the next term in the
expansion of conductivity in powers of the small parameter
u = w/qug. For a FS whose curvature is everywhere finite and
nonzero, we arrive at the result [73]

2
. (28
47th3qp0 ( )

o1(0,4) = oo(g) 2 = ion(q) * u, (29)

qvo Vo

where the velocity vy has the order of the Fermi velocity vg.
When the curvature vanishes at an effective line, the
asymptotic form of the conductivity changes. First, we
assume that the curvature vanishes when a whole effective
line passes through one of the assigned segments of the FS.
The effective line is determined by the condition v, = 0.
Therefore, the curvature K(6, ¢) in the vicinity of this line
can be approximated by the expression
K(0,9) = W(0,¢)(cos0) " (30)
In this expression, the function W(0, ¢) is everywhere finite
and nonzero and the exponent f§ takes negative values, and

therefore the curvature vanishes at 6 = n/2. In the close
vicinity of this line, the FS is nearly cylindrical in shape. The
closer ff is to —1, the closer the effective strip on the FSisto a
cylinder. The contribution to the conductivity from the nearly
cylindrical segment on the FS has the form

aa(®,q) = noo(q) (%)ﬁ {1 —itan <?>} : (31)

where v, is the maximum speed of a conduction electron
on the effective line. Comparing Eqn (32) with the
definition of p} in (28), we see that the dimensionless
factor #n is determined by the relative number of ‘effective’
electrons concentrated in the nearly cylindrical effective
segment.

The contribution to the conductivity from the ‘anom-
alous’ effective strip strongly depends on the relative
number of effective electrons concentrated there. This is
illustrated by Fig. 4. In this figure, we display plots of
lo(w,q)/o0(q)| = |1 + oa(w,q)/00(q)| versus w/qv. When
the parameter n takes values of the order of or greater
than 0.1 (the number of effective electrons associated with
the anomalous sections on the FS is comparable to the total
number of effective electrons), the term o,(w,q) can
dominate over g¢(g) and determine the conductivity value
at large ¢. This occurs when the shape parameter f takes
values not too close to zero, and the curvature anomaly on
the effective line is well pronounced. When either # or f§ or
both are very small, the conductivity in the leading
approximation is described by Eqn (28), just as for a metal
whose FS curvature is everywhere nonzero. Nevertheless, in
such cases, the term o,(w, ¢) remains important because it
gives the first correction to the leading term in the
expression for the conductivity.

Also, the anomalous contribution to the conductivity can
appear when the FS is flattened at some points belonging to
an effective segment. To avoid lengthy calculations, we
illustrate the effect of such points on the conductivity using
a simple expression representing the energy—momentum

lo /a0l a

5+

0.01 0.05 0.10
w/qu

|a /a0l b

5+

ff

0.10
o/qu

0.01 0.05

Figure 4. The conductivity component g, (®, ¢) including the contribution from a zero-curvature segment on the FS at large ¢ (w/qv < 1): (a) the curves
are plotted at n = 0.2 and f = —0.8, —0.7, —0.6, —0.4, and —0.2 from top down. (b) The curves are plotted at f = —0.6 and n = 0.2, 0.1, 0.05, 0.03, 0.01

from top down.




August 2011

Local geometry of the Fermi surface and its effect on the electronic characteristics of normal metals 771

relation near the point of flattening My (py, 0, 0),

2 2\ k
E(p) _ i ]ﬁ +ﬁ py +p:
2m1 12 ny p22 ’

where p; and p, have the dimension of momentum. When
k =1, this expression corresponds to an ellipsoidal FS, and
m; and m, are the eigenvalues of the effective mass tensor.
The curvature of the FS associated with energy—-momentum
relation (33) is given by [60]

ko (p}+ph\F!
71’1/121)4 p22

K(p) =
1 k(2k — 1) (P} +p2\*"
X [—(v}z +v2) +0? ( ) (p} 21) > } . (34)
m : n P;
For k > 1, the curvatures of both principal cross sections of
the FS vanish at the points (£p;,0,0), indicating local
flattening of the FS.
The ‘anomalous’ contribution to the conductivity origi-
nating from the flattened segments of the FS has a form
similar to that in Eqn (31), namely,

51(®,4) = Hoo(a) (M“’/zo))ﬁ i (T)] 69

with the shape parameter f = —1 + 1/(2k — 1), where p is a
small dimensionless factor proportional to the relative
number of conduction electrons associated with the flattened
part of the FS. Due to the smallness of p, term (35) can be
significant only when f <0 (k > 1). Otherwise, it can be
neglected.

We now proceed with the calculations of the surface
impedance given by expression (26). Under the anomalous
skin effect conditions, the impedance can be represented as an
expansion in inverse powers of the anomaly parameter
(¢ » 1). Representing the conductivity as the sum of terms
(28) and (29), we can calculate the first two terms of this
expansion:

(33)

8iw [ 1
Z=R-iH=-""¢| dt ———
' 2 L 1=i3(1 +it/¢)

Zo[, . 2 .
~2 1 —iVv3-Z(1 3
é[ i3 35(+1f)},
where 6 = (¢21i° Je2piw)'"? is the skin depth,
Zo_ 8 V0

_Smw o _w (o)
3v/3 c?’ wd ~ \wy

is the anomaly parameter, and

3/2
o — () e
h c

is the frequency. Keeping in mind that vy ~ vg and pg ~ pg,
we can roughly estimate the characteristic frequency wy. In
good metals, wy ~ 10'2—10'3 s~!. This is significantly smaller
than the plasma frequency w,, which is of the order of
1015 —10' s~! in good metals. As could be expected, the
inequality o < wy (£ > 1) agrees with the general require-
ment for frequencies w < w, and can be satisfied for
w~100—10" 571,

(37)

An expression like (36) was first obtained by Dingle [69]
within the isotropic model of metals. It was subsequently
generalized to be applied to realistic metals, assuming that
their FSs do not include zero-curvature segments [74]. For
such FSs, the frequency dependence of the surface impedance
has the same character as for a Fermi sphere. The main
approximation of the surface impedance is proportional to
/3, and the first correction to it is proportional to w*/3.

We can expect that in realistic metals, either # or § or both
take small values (a zero-curvature segment on the effective
part of the FS is small and/or the curvature anomaly is only
moderately pronounced). In this case, the anomalous con-
tribution to the conductivity of form (31) and/or (35) is the
first correction to the leading approximation and determines
the first correction to the approximation for the surface
impedance [80]:

o\ 206+)/3
AZ = AR —iAH ~ —Zyy(p) <—>
Wo

o [0 ),

where 7(f) is a small dimensionless parameter of the order of
n or u. We can use the result in (38) to describe the
contribution to the surface impedance from a narrow or
weakly developed, nearly cylindrical strip and also from a
point of flattening located on the effective segment of the FS.
The correction to the leading approximation of the surface
impedance is now proportional to w?+1/3 as shown in
Fig. 5. The obtained asymptotic expression indicates that a
curvature anomaly on an effective line changes the frequency
dependence of the surface impedance. This follows from the
above relation between the curvature of the FS and the
number of effective electrons.

(38)

3.2 Cyclotron resonance in metals

in a normal magnetic field

It is well known that a periodic motion of conduction
electrons in a magnetic field can cause a resonance with the
electric field of an incident electromagnetic wave. This
resonance occurs when the cyclotron frequency of electrons
coincides with the frequency of the electromagnetic field.
There are two geometries providing the resonance features in
the surface impedance to be displayed. First, strong reso-
nance arises when the magnetic field is directed nearly parallel
to the surface of a metal [81]. Conduction electrons spiral
around the magnetic field and at each revolution some of
them return to the skin layer, where they gain energy from the
electromagnetic wave. Another possibility of a resonance
appears when the magnetic field is perpendicular to the
surface. In this case, some conduction electrons remain
within the skin layer for a long time, absorbing the energy.
As a rule, the cyclotron resonance in a normal magnetic field
is not manifested in good metals. The standard explanation is
that the skin layer in metals is very thin at high frequencies.
Therefore, the percentage of conduction electrons moving
within the skin layer parallel to the metal surface is too small
to provide a distinguishable resonance feature at w = Q
(where Q is the cyclotron frequency of conduction electrons)
in either the surface impedance of the metal or the absorbed
power. This scenario was supported with thorough calcula-
tions carried out assuming the FS of a metal to be a smooth
surface of a nonzero curvature (see, e.g., Refs [82, 83]).
Nevertheless, cyclotron resonance in a normal magnetic
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Figure 5. Frequency dependences of the real (AR) and imaginary (AH) parts of the first correction to the leading term in the surface impedance expansion
in inverse powers of the anomaly parameter. The curves are plotted at 5 = 0.01, f = —0.9; n = 0.02, f = —0.8 (dashed lines) and n = 0.1, f = —0.5;
n=0.1, p = —0.4 (dashed-dotted lines). Solid lines represent the real and imaginary parts of the first correction to the leading approximation for the
impedance of a metal whose FS does not include nearly cylindrical or flattened segments.

field was observed in a polycrystalline sample of potassium
[84] and in monocrystalline samples of cadmium and zinc [85,
86] forty years ago. During the next two decades, no detailed
theory was suggested to explain these old experiments. Then a
qualitative explanation of the experiments on potassium was
offered, based on the assumption that the FS of this metal
includes some cylindrical segments [87].

This assumption agrees with the results concerning the FS
shape of potassium that follow from the charge density wave
theory [88, 89] and with the experimental results reported in
Refs [90, 91]. Another attempt to explain the resonance in
potassium was undertaken in Ref. [92], assuming that the FS
of potassium has inflection lines where its curvature vanishes.
This is a realistic assumption, because even a slightly distorted
Fermi sphere has small lumps arranged at the segments
closest to the Brillouin zone boundaries. Zero-curvature
lines separate these lumps from the main body of the FS [93].

Here, we further develop the approach suggested in [92,
93], and we show that the cyclotron resonance in the normal
magnetic field can appear in metals when their FSs have some
special local geometric characteristics, such as local flatten-
ings and/or nearly cylindrical segments, which induce changes
in the frequency dependences of the surface impedance
considered in the previous section. As before, we consider a
semi-infinite metal that fills the half-space z < 0. We assume
that the external magnetic field B is directed perpendicularly
to the surface of the metal. The response of the conduction
electrons to an electromagnetic disturbance with a frequency
o and wave vector q (the latter being parallel to the z axis) can
be expressed in terms of the electron conductivity compo-
nents. For a metal with a closed single-sheet FS, we can write
the expression [73]

2i62 2n
Ouf = —= dy | dp.
/ (2nh)3z,.:,[o l//J r

X ‘ cot mL(P:)Ua(Pm lﬁ)vn/;(pz) exp (71}’11//)
J—ood w+i/t—rQ(p:) — qu-[p-, ¥ + 3Y(e)] (39)

where m (p.) is the cyclotron mass and the angular variable
Y = Qt is related to the time ¢ of electron motion along the

cyclotron path. For a metal with a complex multisheet FS (for
example, cadmium or zinc), integration with respect to p. in
Eqn (39) is carried out within the limits determined by the
form of each sheet, and extra summation is to be carried out
over all sheets of the FS.

To analyze the cyclotron resonance, we need an appro-
priate asymptotic expression for the conductivity compo-
nents at large ¢, when the parameter u takes values that are
small compared to unity. At u < 1, the correction dy(¢) is
nearly proportional to ¢, and we can use the approximation
Y (e) =~ —ieQ/qu.(p-, ). To proceed, we expand the last
term in the denominator in Eqn (39) in a series in oy, and
keep the first two terms:

aU:(P:a‘p)/a‘//
v-(pz, )

= qu-(p-,y) —ied(p-, ).

We then change variables in Eqn (39) and pass to integration
in the velocity space. As before, we split the FS into segments
such that a one-to-one correspondence between v and p holds
over each segment.

The leading terms in the expansions of the conductivity
components in powers of the small parameter « are indepen-
dent of the magnetic field and keep the same form as in its
absence. For instance, the leading approximation for the
component oy, is described by expression (28). Also, in a
metal with the FS whose curvature is everywhere finite and
nonzero, the next terms in the expansions of the conductivity
components appear to be of the order of g (g)u [93].

We now proceed with the analysis of the effect of the FS
local geometry on the electron conductivity near the cyclo-
tron resonance. First, we assume that the FS curvature
vanishes at a whole effective line. We suppose that the
curvature anomaly is attributed to the curvature radius
directed perpendicularly to the effective line. This means
that the FS includes a nearly cylindrical segment whose
curvature can be approximated by Eqn (30). As a result, a
special term emerges in the asymptotic expression for the
conductivity at large ¢. To avoid tedious calculations, we use
the model of an axially symmetric FS in computing this term.

qu=(p= b + 8P (€)) = qu-(p-, ) — ieQ

(40)
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Assuming that the magnetic field is directed along the
symmetry axis, neither the velocity magnitude nor the FS
curvature depend on the angle ¢. Under these conditions, the
conductivity tensor is diagonalized in circular components
o+(w,q) = o (w,q)+ i0,c(w, q). Using approximation (30)
for the curvature [the factor W(6, ¢) now reduces to W(6)],
we obtain the following contribution to the conductivity from
the nearly cylindrical strip on the FS:

b = a1 —itan (5 ) ()

Here, y. = 1 FQ/w+i/wt and 5 is a dimensionless para-
meter whose value is determined by the relative number of the
conduction electrons concentrated at the nearly cylindrical
effective cross section. The term ¢ (w, ¢) can dominate if the
parameter y takes values of the order of unity. Otherwise, this
term corresponds to the first correction to the leading
approximation for the conductivity.

We remark that Eqn (41) gives a general expression for the
contribution to the transverse conductivity originating from a
nearly cylindrical effective strip at any axially symmetric FS,
which is not associated with a particular form of the energy—
momentum relation near the effective line. As shown above
[see Eqn (35)], local flattenings of the FS also cause the
occurrence of an ‘anomalous’ contribution to the electron
conductivity at large ¢. In the presence of an external
magnetic field, the conduction electrons associated with
locally flat segments of the FS can give rise to resonance
features in the surface impedance of a metal sample and its
derivative with respect to the field magnitude [93]. Assuming
that the relevant segment of the FS is shaped like a lens
flattened near its vertices, as is determined by energy—
momentum relation (33), we can express the correction
g,(w, q) in the first approximation as

(41)

oa(w,q,B) = 6,(w,q,0)
%) . i i B
) I (e L N S

w w w

where a,(w, g,0) is defined in (35).

The analysis in Refs [83, 93] revealed no qualitative
difference between the expressions for the leading terms of
the surface impedance computed for the axially symmetric
FSs and those not having that symmetry, if B is directed along
a high-order symmetry axis of the Fermi surface, such that the
transverse conductivity is diagonalized in circular compo-
nents. This gives grounds to expect the model of an axially
symmetric FS to reflect the main features in the electronic
response of a metal whose FS includes nearly cylindrical
strips. We use this model, and we have

8iw J o0 dg

Zj: = — — . A A -
c? ) 4dmiwoy/c? — g?

(43)

We consider the case where some effective cross sections
of the FS are zero-curvature lines: this can be the single
central nearly cylindrical cross section; otherwise, the
effective cross sections are combined in pairs, which are
arranged symmetrically with respect to the plane p. = 0. The
contribution of the nearly cylindrical cross sections to the
surface impedance depends on the relative number of the
effective electrons associated with them. When a considerable
part of the conduction electrons is concentrated in the nearly

cylindrical effective segments of the FS (7 ~ 1), the anom-
alous contribution to the conductivity o, can be given by the
leading term in the expansion of the conductivity in powers of
u, and it strongly contributes to the surface impedance. In this
case, the leading term of the impedance is

IRNEESY) .
Zi = Zol(B) (w70> x P63

(44)
This expression shows a very peculiar dependence of the
surface impedance on the magnetic field. Near the cyclotron
frequency, the real (R) and imaginary (H) parts of the
component Z_ rapidly increase. The increase in R(B) is no
smaller in order than R(0) at the same frequency. In strong
magnetic fields (v < Q;, the value of R(B) increases propor-
tionally to (Q/w)_ﬁ/(ﬁur ). When the parameter f takes values
close to zero, R(B) almost levels off in the presence of strong
magnetic fields, whereas in the limit § — —1, R(B) ~ /Q/w.
No experimental observations of such impedance behavior
have been reported to date. The reason is that we can hardly
expect the parameter # to take values of the order of unity in
real metals. We must rather expect that the relative number of
electrons associated with the nearly cylindrical cross section is
small, # < 1. Then the first correction to the surface
impedance is described by the expression

® 2(p+1)/3
AZ. = —Zon(p) (—) L. (43)

o

This correction describes resonance features at the
cyclotron frequency in both real and imaginary parts of the
impedance component Z_ (Fig. 6a). The shape of the peak in
the real part of the impedance resembles that recorded in
potassium [84]. The peak height depends on the value of #.
For 1 ~ 1072, wt ~ 10, and & ~ 10%, the resonance ampli-
tude in Re Z is approximately 1072 of the leading term, which
agrees with the experiments in Ref. [84], as well as with
experiments on organic metals [94, 95]. Even better agree-
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Figure 6. Magnetic field dependences of the real part of the surface
impedance near the cyclotron resonance. (a) The curves are plotted
assuming that the FS has the axial symmetry and the magnetic field is
directed along the symmetry axis for wt = 10, &3 = 104, § = —0.8, —0.7,
—0.6, —0.4 (from top down) and n = 0.01. (b) The curves represent the
experimental result reported for the real part of surface impedance in
potassium [84] (dotted line) compared to the theory proposed in Ref. [92].
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ment with the experimental result reported in Ref. [84] can be
achieved under the assumption that the efficient electrons in
potassium are associated with the vicinities of inflection lines
separating the main, nearly spherical body of the FS from
bulbs located near the boundaries of the Brillouin zone [93].
Within the nearly free electron approximation appropriate
for alkali metals, the FS is flattened near the inflection lines.
Due to the polycrystallinity of the potassium sample used in
the experiments, the FS flattening points are quite widely
distributed and fall on the cyclotron orbits of the efficient
electrons over a rather broad interval of the magnetic field
orientations. Using Eqn (42), it can be shown that these small
flattened pieces on an effective strip of the FS can yield an
additional term to the expression for the surface impedance
[92], similarly to the case where one of the effective strips on
the FS is nearly cylindrical. The emergence of this contribu-
tion is caused by the increase in the number of efficient
electrons associated with the effective strip due to the
presence of flattened segments of the FS included there.
Both the height and shape of the resonance feature can be
brought into good quantitative agreement with the experi-
mental result, as is demonstrated in Fig. 6b.

The extent to which locally flat regions of the FS can affect
the surface impedance is determined by the relative number of
the conduction electrons associated with locally flat regions
and the FS shape in the vicinity of flattening points. We
analyze these effects using energy—momentum relation (33). It
is worth mentioning that electron lenses similar to the FS
corresponding to this relation are incorporated in the FSs of
cadmium and zinc, and the cyclotron resonance in a normal
magnetic field was observed in both metals. When the
parameter k in Eqn (33), which characterizes the shape of
the lens near its vertices, considerably differs from unity and 5
is not too small, the resonance contribution to the surface
impedance can be significant, which leads to the appearance
of noticeable resonance-type features in the frequency/field
dependences of those features. When &k > 3/2, the resonance
peak can be observed in the impedance itself, while for a less
pronounced flattening of the FS (1 < k < 3/2), the resonance
singularity is manifested only in the field and frequency
dependences of the impedance derivative with respect to the
magnetic field amplitude.

The derivative of the real part of the contribution to the
surface impedance from locally flat neighborhoods of the lens
vertices has the form [93]

dRrR_

g = 4k Yi(zy), (46)
where a(k) is a dimensionless coefficient and the function
Yi(z,.) describes the shape of the resonance curve. The top
panels in Fig. 7 display the field dependence of the function
Yi(x,) for several values of the parameter k. A comparison
with the recordings of dR/dB obtained for cadmium and
zinc and reported in Refs [85, 86], which are shown in the
bottom panels, indicates that the shape of the resonance lines
is in fairly good agreement with the experimental results.
Variations of the amplitude and shape of the resonance lines
with decreasing k resemble the variations of the experimental
resonance lines upon an increase in the angle @ between the
magnetic field and the [1120] axis of the crystalline lattice of
these metals. The latter lies in the plane perpendicular to the
symmetry axis of the electron lens included in the FSs of
cadmium and zinc. The above similarity occurs because as
the magnetic field deviates from the [1120] axis, the effective
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Figure 7. (a, b) Plots of the function Yi(y,) vs the magnetic field for
(a) moderate and (b) strong flattening of the FS near the vertices of a lens
determined by Eqn (33). Curves are plotted assuming that 4(x/2,0) = 0,
ot = 10for k = 1.2and 1.4 (fig. a, dashed line and solid lines, respectively)
and k= 1.6 and 2.0 (fig. b, dashed line and solid line, respectively).
(c, d) Resonance features in the magnetic field dependences of dR/dB for
(¢) cadmium and (d) zinc observed in the experiments in [85, 86]. The
magnetic field is directed along the [1120] axis coinciding with the
symmetry axis of the electron lens located in the third Brillouin zone
(fig. c, curve 1) and tilted to that axis at the angle @ = 8° (curve 2). The
recording of curve 2 is amplified as 10:1 with respect to that of curve /.

cross section of the electron lens no longer passes through
the flattening points at the vertices of the lens, but still
remains quite close to them for small deviation angles. It can
therefore be assumed that if the angle @ does not exceed a
certain critical value @, characterizing the size of the
flattened region on the FS, then the parameter k decreases
with increasing @, but remains greater than unity. The value
k =1 corresponds to angles @ > @), when the cyclotron
orbit of effective electrons no longer passes through locally
flat regions on the FS.

Our analysis thus shows that the local geometry of the FS
can give rise to cyclotron resonance in the normal magnetic
field in good metals. A simple explanation of the effect is
that the contributions from flattened or nearly cylindrical
segments of the FS to the electron DOS can be significantly
greater than those from the rest of the surface. Therefore, the
number of effective electrons moving inside the skin layer
increases, which provides favorable conditions for the
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resonance to occur. Because inflection lines as well as points
of flattening exist on the FSs of most metals, we can expect
cyclotron resonance in a normal magnetic field to be
manifested there for suitable magnetic field directions.
There is experimental evidence that ‘necks’ connecting
quasispherical pieces of the FS of copper include nearly
cylindrical belts [S]. When the magnetic field is directed along
the axis of a neck (for instance, along the [111] direction in the
quasimomentum space), the extremal cross section of the
neck can be expected to run along the nearly cylindrical strip
where the FS curvature vanishes. It is also likely that the FS of
gold has the same geometric features, because it closely
resembles that of copper. As was already mentioned, the
cyclotron resonance in the normal field was observed in
organic metals of the o-BEDT-TTF,MHg(SCN), group
and some other layered conductors. Hence, the cyclotron
resonance in a normal magnetic field may occur in conven-
tional metals and Q2D conductors, and the nature and origin
of this effect in both kinds of materials are identical.

3.3 Fermi-liquid and Fermi surface geometry effects
in the propagation of low-frequency electromagnetic waves
through thin metal films
As discussed above, electromagnetic waves incident on the
surface of a metal cannot penetrate inside the metal deeper
than a thin surface layer (skin layer). This happens due to
the damping effect of conduction electrons absorbing the
wave energy via the dissipationless Landau damping
mechanism [4]. A strong magnetic field B = (0,0, B) applied
to the metal restricts the motion of electrons in the x, y plane,
creating ‘transparency windows.” These windows are regions
in the ¢, w plane where the Landau damping cannot appear.
As a result, in the presence of an external magnetic field,
various weakly attenuated electromagnetic waves, such as
helicoidal, cyclotron, and magnetohydrodynamic waves, can
propagate in the electron liquid of a metal [51, 96].
Fermi-liquid correlations of conduction electrons induce
changes in the wave spectra. Also, new collective modes can
appear in metals due to FL interactions between the electrons.
These modes solely occur owing to the FL interactions, and
are absent in a gas of charge carriers. One such mode is the FLL

cyclotron wave first predicted by Silin [64] and observed in
alkali metals [53]. In a metal with a nearly spherical FS, this
mode is a transverse circularly polarized wave propagating
along the external magnetic field whose dispersion in the
collisionless limit (1 — oo) has the form [97]

w 81

R T
Wy +35(x( )

(47)
where R = vy/Q, vy is the maximum value of the electron
velocity component along the magnetic field (for the spherical
FS, vy equals the Fermi velocity vr), and the dimensionless
parameter o characterizes the FL interactions of conduction
electrons. The difference between the frequency wo = w(0)
and the cyclotron frequency is determined by the value of the
FL parameter o, wy = Q(1 4+ o). Depending on whether o
takes a positive/negative value, wy is greater/less than Q. In
what follows, we assume for definiteness that o« < 0. When
¢qR < 1, the dispersion curve of this FL cyclotron wave is
situated in the transparency window whose boundary is given
by the relation w = Q — qvy, which corresponds to the
Doppler-shifted cyclotron resonance for the conduction
electrons. This is shown in Fig. 8a. But the dispersion curve
meets the boundary of the transparency region at ¢ = ¢, ~
5|«|/3R [97], and at this value of ¢ it terminates [98].
Therefore, for reasonably weak FL interactions (|o ~ 0.1),
the FL cyclotron wave can appear only at gR < 1, and its
frequency remains close to the cyclotron frequency for the
whole spectrum [99]. Similar conclusions were made using
some other models to mimic the FS shape, such as an
ellipsoid, a nearly ellipsoidal surface, and a lens made out of
two spherical segments [100, 101].

Itis clear that the leading contribution to the formation of
a weakly attenuated collective mode near the boundary of the
transparency region comes from those electrons that move
with the greatest possible speed along the magnetic field B.
The greater the relative number of such electrons is, the more
favorable conditions develop for the wave to emerge and to
exist at comparatively low frequencies t~! < w < Q. The
relative number of such ‘efficient’ electrons is determined by
the FS shape, and the best conditions are reached when the FS
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Figure 8. (a) Dispersion of the transverse FL cyclotron wave traveling along the external magnetic field for spherical (dashed-dotted line) and
paraboloidal (solid line) FSs. The curves are plotted using Eqns (47) and (48) with &« = —0.2. (b) A schematic plot of the dispersion of the transverse FL
mode in a metal whose FS includes nearly paraboloidal segments. The low-frequency (o < Q) branch is shown along with the cyclotron wave. For both
panels, the straight line corresponds to the Doppler-shifted cyclotron resonance.
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includes a lens made out of two paraboloidal cups. This
model was used in some previous works to study transverse
collective modes occurring in a gas of charge carriers near the
Doppler-shifted cyclotron resonance, which are known as
dopplerons [102—104].

It was shown in [66] that for negative values of the FL
parameter o, the dispersion of the transverse FL wave
propagating along the magnetic field is (t — o0)

w 1
1 2 |(¢R)?
qR+ 1/ (¢R)" + |o|

This result shows that for a paraboloidal FS, there are no
bounds on the frequency of the FL cyclotron wave in the
collisionless limit (Fig. 8a). The only restriction on the wave
frequency is due to the increase in the wave attenuation due to
electron scattering. Taking the electron scattering into
account, we can prove that the wave is weakly attenuated up
to a magnitude of the wave vector of the order of
Q(1 — 1/|«|Q7)/vo. This value can be significantly greater
than the value gy, for a spherical FS. Therefore, the frequency
of FL cyclotron waves for negative o« can be much smaller
than Q (remaining greater than 1/7). Comparing the disper-
sion curves of the transverse FL cyclotron wave for spherical
and paraboloidal FSs, we see that the FS geometry strongly
affects the wave dispersion, and it can provide a weak
attenuation of this mode at moderately low frequencies
o < Q. We next consider favorable conditions for the
occurrence of these low-frequency modes in practical metals.
We restrict our consideration to the case of an axially
symmetric FS whose symmetry axis is parallel to the magnetic
field. The response of the electron liquid of the metal to an
electromagnetic disturbance can then be expressed in terms of
the electron conductivity circular components. Using the
main equations of the FL theory and suitable approxima-
tions for FL kernel (24), we can derive the following
expressions for the conductivity components [66, 83]:

~ 2ie24(0)
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where p is the maximum value of the longitudinal component
of the electron quasimomentum and A(x) is the FS cross-
sectional area. The dimensionless factors o; » in Eqn (49) are
given by

x12 = - ; (52)

and f , are related to the FL parameters ¢, and ¢,;.

Presently, we are interested in the transverse waves
propagating along the magnetic field. The corresponding
dispersion equation has the form

c?q* — 4niwos(w,q) = 0. (53)
For the electron FL, this equation for ‘-’ polarization has
solutions corresponding to helicoidal waves and the trans-
verse FL waves traveling along the magnetic field. When the
relevant charge carriers are holes, the ‘+’ polarization is to be
chosen in Eqn (53).

In considering FL waves, we can simplify dispersion
equation (53) by omitting the first term. Also, we can neglect
corrections of the order of ¢>¢* /w? (y, is the electron plasma
frequency) in the expression for the conductivity. Then the FL
parameter o drops out from the dispersion equation, and
that equation becomes

A(M) =

(54)
[£%)

where 4(u) = (u/02)[ @5 — (/]

Assuming the mass m, to be the same over the whole FS,
we expand the integrals @, in powers of u~!. Keeping terms
of the order of =2, we obtain the dispersion relation for the
cyclotron mode at small ¢ (u > 1):

= (8)]
L\e/) ]’
where b2 is a dimensionless positive constant of the order of
unity. For an isotropic electron liquid, % = 8/35 and
expression (55) coincides with expression (47) where o = f>.
We next analyze the possibilities of the low-frequency
(7' < w < Q) transverse FL mode emerging in realistic
metals where the cyclotron mass depends on p.. Such waves
can appear near the Doppler-shifted cyclotron resonance.
Assuming oy < 0 and @ <€ Q, we can describe the relevant
boundary of the transparency region by the following
equations, applicable for small w:

= Q1 +5) {1 (55)

cg dA4
Q(p)(1 =
(1 3 i) =0 (56)
dQ cqg dA Q(p-)eq >4
1 ————=0.
i () ol = 7

It follows from these equations that the attenuation at the
boundary for w < Q is carried out by electrons belonging
to neighborhoods of particular cross sections on the FS
where extrema of dA/dp. are reached. These can be
neighborhoods of limit points or inflection lines, as shown
in Fig. 9.

In general, to study various effects in the response of the
electron liquid of metal near the Doppler-shifted cyclotron
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resonance, we must take contributions from all segments of
the FS into account; therefore, the expressions for conductiv-
ity components (49) are to be correspondingly generalized.
However, in the considered case, it is possible to separate that
particular segment of the FS where electrons producing the
low-frequency FL wave belong. The contribution from the
rest of the FS is small, and we can omit it, as is shown in
Ref. [66].

In the analysis in what follows, we can therefore use
dispersion equation (54) with the integrals (Dni calculated for
the appropriate segment of the FS. It follows from this
equation that the dispersion curve of the cyclotron wave
does not intersect the boundary of the transparency region if
the function A(u) diverges there. A similar analysis was
carried out in the theory of dopplerons [104]. It was proved
that when the appropriate component of the conductivity [a
®y(u) integral] tends to infinity at the Doppler-shifted
cyclotron resonance, the doppleron propagates without
damping in a broad frequency range.

In what follows, we assume for definiteness that the
extrema of dA4/dp. are reached at the inflection lines
p- = £p*. In the vicinities of these lines, we can use the
approximation

1 d’a

- *(x:': x*)s ’
X=X (58)

N+ — (xFx") £
dx|._ ..

where x* = p./p* and the parameter s > 3 characterizes the
FS shape near the inflection lines at x = +x*. The greater the
value of s is, the closer the FS near p, = £p* is to a paraboloid
(see Fig. 9). When s = 2, the FS has a spherical/ellipsoidal
shape.

The dependences of the derivative da/dx on x near x = x*
are presented in Fig. 10a. We can see that the greater the shape
parameter s is, the broader nearly paraboloidal strips are in
the vicinities of the FS inflection lines. Consequently, the
greater number of conduction electrons is associated with the
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nearly paraboloidal parts of the FS. This creates more
favorable conditions for the wave to occur. A similar analysis
can be carried out in the case where d4/dp. reaches its
extremal values at the vertices of the FS. Again, to provide
the emergence of the transverse low-frequency FL mode, the
FS near p, = £po must be nearly paraboloidal in shape.

Using asymptotic expression (58), we can calculate the
leading term of the function 4(u). This term diverges at the
boundary of the transparency region if s> 3. The low-
frequency solutions of the dispersion equation in the
collisionless limit are plotted in Fig. 10b. All dispersion
curves are located between the boundary of the transpar-
ency window and the line corresponding to the limit s — oo
(a paraboloidal FS). The greater the value of s is, the closer
the dispersion curve is to this line. We see that the low-
frequency (o < Q) transverse FL wave can appear in a metal
exposed to a strong (Qt > 1) magnetic field. This can
happen when the FS is close to a paraboloid near those
cross sections where dA4/dp. reaches its maxima/minima.
Therefore, the possibility of this wave propagating in a metal
is provided by the local geometry of the FS near its inflection
lines or vertices.

When Q depends on p. and o increases, electrons
associated with various cross sections of the FS participate
in the formation of the wave. To ensure the divergence of the
function 4(u) near the Doppler-shifted cyclotron resonance,
we have to require not only that narrow strips near lines of
inflection or vicinities of limiting points be nearly paraboloi-
dal but also that large segments of the FS be nearly so. This
condition is too stringent for FSs of real metals. We can
therefore expect that the dispersion curve of the low-
frequency transverse FL wave intersects the boundary of the
transparency region at rather small w, as shown in the right
panel of Fig. 8.

To clarify possible manifestations of the considered FL
wave in experiments, we calculate the contributions of these
waves to the transmission coefficient of a metal film. We
assume that the film occupies the region 0 <z < L in the
presence of an applied magnetic field directed along the
normal to the interfaces. An incident electromagnetic wave
with the electric and magnetic components E(z, 7) and b(z, ¢)
propagates along the normal to the film. We also assume that
the symmetry axis of the FS is parallel to the magnetic field
(z axis) and the interfaces reflect the conduction electrons in a
similar manner. The Maxwell equations inside the metal then
reduce to decoupled equations for circular components of the
electric field E, (z) exp (—iwt). Expanding the incident elec-
tric field E4(z) and current density ji(z) inside the film in
Fourier series, we arrive at the equations for the Fourier
transforms

52%2 + ., -+ ic n
74112160 En +Jn - q:ﬂ [(71) bi(L) - bi(o)] )

(59)

where b (z) are the magnitudes of the magnetic component of
the incident field and g, = mn/L. Due to the high density of
conduction electrons in good metals, the skin effect has a
strongly anomalous character over the whole frequency range
of the low-frequency FL mode |m|t™! < w < Q. We can
therefore disregard the effects originating from the diffuse
scattering of conduction electrons from the surfaces of the
film as long as the film thickness is not too small. As is
estimated in Ref. [105], L must take values of the order of
100 um or greater for the effects of the surface roughness on

the transmission of the electromagnetic waves through the
film to be negligible. For thinner metal films, the surface
roughness can bring noticeable changes to the transmission.
A detailed consideration of this case is given in Ref. [105] and
in book [40]. Here, we assume the film surfaces to be
sufficiently smooth, such that we can treat the electron
reflection from the metal film surfaces as nearly specular.
Substituting the expressions for j* in Eqn (59) yields

w
E; = F o Fe(o,qn) [(=1)"bs(L) = b2 (0)] (60)
where we introduce the notation
4mtio !
Fe(w,q) = (q}% T2 Gni) : (61)

To obtain the expression for the transmission coeffi-
cient, which is determined by the ratio of the amplitudes of
the transmitted field (E;) at z = L and the incident field (£;)
at z =0, we use the Maxwell boundary conditions, which
gives

+

T, = | B

E (62)
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Assuming that the transmission is small (7+ < 1), we obtain
the asymptotic expression [106]
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Keeping the ‘—’ polarization and using the Poisson summa-
tion formula, we obtain

T== grc sign (¢) cosec (Lg) F-(w, q) dq, (65)

—00

where sign (q) = |g|/q is the sign function. An important
contribution to integral (65) comes from the poles of the
function F_(w, ¢), which are the roots of dispersion equation
(53) for the relevant polarization. The contribution from the
considered low-frequency mode to the transmission coeffi-
cient is equal to the residue at the appropriate pole of the
integrand in (65). Size oscillations of the transmission caused
by the low-frequency FL mode are shown in Fig. 11. For
B =5T and s = 3 [s is the shape parameter in Eqn (58)], the
oscillations take peak values ~ 1078 —107°.

The values of that order can be measured in experiments
on the transmission of electromagnetic waves through thin
metal films. However, the oscillation magnitudes can reach
significantly greater values when the shape parameter
increases. As can be seen from Fig. 11, T can reach values of
the order of 10~° when s = 5. Under the considered condi-
tions, the transmission coefficient also contains a contribu-
tion 7' from electrons corresponding to the vicinities of those
cross sections of the FS where the longitudinal component of
their velocity vanishes. This contribution always exists under
the anomalous skin effect. The explicit expression for 7" is
given in Ref. [106]. In strong magnetic fields (B ~ 5 T) and for
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Figure 11. (a) Size oscillations in the transmission coefficient for a transverse electromagnetic wave traveling through a metal film and originating from the
low-frequency FL mode. The curves are plotted at oy = —0.2, s = 3, Qt ~ 50, ¢ = 103, L// = 0.01 (dashed-dotted line); 0.025 (solid line), and 0.05
(dashed line). (b) The dependence of the transmission on the FS shape near the inflection line. The curves are plotted for s = 3 (dashed line), 4 (solid line),
and 5 (dashed-dotted line), L// = 0.025. The other parameters coincide with those used to plot the curves in Fig. a.

moderately thin films (Lw& > wy), the term T exceeds 7. This
creates favorable conditions for the observation of size
oscillations arising due to the FL mode. Also, the transmis-
sion includes the term originating from branch points of the
function F_(w,q) in the ¢, » complex plane. These points
cause the Gantmakher—Kaner size oscillations of the trans-
mission coefficient [107]. But for LQ > vy, these oscillations
are weak and can be disregarded. Under these conditions, the
contribution from the FL mode to the transmission coeffi-
cient dominates, determining the shape and size of the
oscillations.

It is known that most of the FSs of practical metals have
inflection lines, and hence there are grounds to expect the low-
frequency FL modes to appear in some metals for suitable
directions of the applied magnetic fields. Especially promising
are metals such as cadmium, tungsten, and molybdenum,
where collective excitations near the Doppler-shifted cyclo-
tron resonance (dopplerons) can occur. Another kind of
interesting material is quasi-two-dimensional conductors.
Assuming that the magnetic field is applied along the
symmetry axis of the FS described by Eqn (7), it can be seen
that the maximum longitudinal velocity of charge carriers is
reached at the inflection lines where d*4/dp? = 0. We can
therefore expect low-frequency FL modes to appear in some
of these materials [108].

4. Local geometry of the Fermi surface
and magnetoacoustic response of a metal

4.1 Magnetoacoustic oscillations in metals

with a nearly cylindrical Fermi surface

When an acoustic wave travels through a metal, the crystal-
line lattice is deformed periodically. These deformations give
rise to an alternating electric field, which accompanies the
wave. Conduction electrons are exposed to this electric field,
and their response contributes to the metal elastic properties.
Moreover, the periodic deformation of the lattice causes
changes in the conduction electron spectra, which can be
described by so-called deformation potentials. Usually,
taking these deformation-induced terms into account in the

energy—momentum relations for the conduction electrons
does not qualitatively change the magnetoacoustic response,
and we therefore omit them for brevity. When the mean free
path of conduction electrons / is greater than the sound
wavelength Z, the electron response to the wave is determined
by those electrons whose motion is consistent with the
propagating perturbation. These electrons can strongly
absorb the energy of the electric field. The efficient electrons
are concentrated at small segments of the FS, and hence local
anomalies of the FS curvature at such effective segments can
noticeably affect the acoustic response of a metal. The
influence of locally flattened or nearly cylindrical segments
of the FS on the attenuation rate and the velocity shift of
ultrasonic waves propagating in a metal has been analyzed
before (see, e.g., Refs [1, 2, 4, 109]). Some results of this
theoretical analysis were confirmed in experiments concern-
ing the attenuation of ultrasonic waves in metals [36, 37].
Especially interesting effects are known to occur in the
magtenoacoustic response of a metal in the case where the
external magnetic field is moderately strong, such that the
inequalities @t > 1 and gR> 1 (2R is the characteristic
diameter of the cyclotron orbit) are simultaneously satisfied.
Under these conditions, both sound velocity and attenuation
oscillate as the magnetic field magnitude varies when the
magnetic field Bis directed perpendicularly to the wave vector
q of the sound wave. These magnetoacoustic oscillations,
which are also known as geometric resonances, are generated
as a result of periodic reproduction of the most favorable
conditions for the ‘resonance’ absorption of the acoustic wave
energy by electrons moving along the wave front. The
oscillations appear due to the commensurability of the
cyclotron orbits of electrons with the wavelength of the
sound wave. Their period is determined by the extremal
diameter 2R of the cyclotron orbit. The geometric oscilla-
tions exist in both low-frequency (wt < 1) and high-
frequency (wt > 1) ranges. The main contribution to the
oscillating corrections to the sound attenuation and velocity
shift originates from the vicinities of so-called stationary
points on the cyclotron orbits of the extremal diameter,
where an electron moves in parallel to the wave front. This
leads to a conjecture that the local geometry of the FS near
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these stationary points can strongly affect the geometric
oscillations.

In what follows, we consider a longitudinal sound wave
traveling along the y axis of the chosen coordinate system
(q = (0, 4,0)), whereas the magnetic field is directed along the
z axis. We assume that the elastic displacement of the lattice
u(r, 1) is proportional to exp (igy — iwt). The force exerted by
conduction electrons on the lattice is given by [40, 109]

qu = 161 (yoc
where Eqw =E,, + (iw/c)[uy, x B], and E 4, and ug, are the
amplitudes of the electric field accompanying the wave and of
the lattice displacement.

The amplitude E,, satisfies the Maxwell equations.
Correspondingly, it can be expressed in terms of the total

density of the current j,, induced by the passage of an
acoustic wave. The components of j,, are

N
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The electron transport coefficients A and ¢ are

sl SR

o= [, 3 A )

where 7,(p, ¢) is the Fourier transform in the expansion with
respect to the azimuthal angle specifying the position of an
electron on the cyclotron orbit:

2n s Y
() =5z, o0 [ = [ wtoey o] 0

Here, v, (p, {) is the component of the electron velocity, N is
the electron concentration, and g is the electron DOS on the
FS. The Fourier transforms of the electron velocity compo-
nents in the expansion in the angle y are determined by
relations similar to (70). For a multisheet FS, the integration
with respect to p, in Eqns (69) and (69) must be supplemented
with summation over all sheets of the FS. We can obtain the
expression for the electroacoustic coefficient y, by replacing
n_.(p:,—q) by ev”,(p:,—q) in Eqn (68). To obtain the
expression for 7,, we have to replace n,(p., q) by ev?(p:, q).
In the case of a multisheet FS, the term d,,iNe/q in Eqn (67) is
to be replaced by

Sy
q le]

k

where the summation is over all FS segments and the ¢, are
the charges of the charge carriers (electrons/holes) associated
with these segments.

To determine the wave vector of the acoustic wave
propagating in a metal, we have to solve the equation for the
amplitude of elastic displacement of the lattice together with
the Maxwell equations. For small amplitudes of acoustic
waves, the wave vector is given by

q:%JrAq, (71)

where s is the speed of sound. The increment Ag, which
emerges as a result of interaction with electrons, is

Ag = iq* A+v(?—€cq2/4ﬁ{»)
208 * — c?q?/4niw

where 0 = 0.y + afx /o,y and p,, is the mass density of the
metal.

In the case where ¢R > 1, the leading contribution to the
integral over ¥ in (70) comes from the neighborhoods of
stationary points on the cyclotron orbits. Accordingly,
estimating the integrals by the stationary phase method, we
can obtain the asymptotic expressions

(72)

1 . LT
nar(p-,£q) = —€xXp |::|:1qR(p3) +in 5]

feos|gR(p) 5| Vpo) = sin [ar(p) - [ Wi |

where 2R(p.) is the diameter of the cyclotron orbit of
electrons in the direction of propagation of the acoustic
wave. The form of the functions V(p.) and W(p.) is
determined by the energy—-momentum relation for electrons
in the vicinities of stationary points.

To analyze the effect of a nearly cylindrical cross section
of the FS on geometric oscillations, we suppose that the metal
FS includes a double-convex lens axially symmetric with
respect to the z axis and that the electron energy momentum
relation has the form

) _ <p,3 +pf) L <p_2)A
2m1 p12 ZWZQ 22 ’
where p; and p, are quantities having the dimensions of
momentum and characterizing the diameter and thickness of
the lens. For k = 1, the lens is ellipsoidal. If £ > 1, there is a
zero-curvature line coinciding with the central cross section of
the lens by a plane perpendicular to its axis (Fig. 12). In the

vicinity of this cross section, the shape of the lens surface is
close to cylindrical, especially for k > 1.

(74)

Figure 12. (a) The segment of a FS described by energy-momentum
relation (74). For k > 1, the surface cross section by the plane p. =0isa
zero-curvature line. Points A(p;,0,0) and B(—p;,0,0) correspond to the
stationary points on the cyclotron orbit. When the external magnetic field
(directed along the z’ axis) is tilted to the symmetry axis of the lens (z axis),
the geometric oscillation amplitude decreases. (b) The segment of a FS
associated with energy-momentum relation (33) for k > 1. The lens is
flattened at the points 4(p;,0,0) and B(—p;,0,0), which correspond to the
stationary points.
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The functions V(p,) and W(p.) for electrons of the lens
have the form

V(p.) = 1

Wipd) = nqRef(p-/p2) 7)

where f(x) = V1 — x2k,
If the lens is ellipsoidal in shape (k = 1), it can be proved
that the second term in Eqn (72) for the dynamic correction

Agq is smaller than the first one, which allows approximately
writing

ig?
20,

m*

Aq = — (/11 + /12) = Aql + AL]Z . (76)

This approximation remains valid for the moderately
manifested curvature anomaly at the lens edge, where the
value of the shape parameter k is not too large and (qRex )~ 1/2k
remains small at gRex > 1. The smooth (A;) and oscillating
(A7) terms in Eqn (76) have the form [110]

Q—d coth [Qlf(l —iwr)] ,

N, in (2gRex — 7/4k) [ . , !
AzzﬂbUg sin (24 1/21/5/ ){smh {l(l—mﬁ:)}} ,
(qRex) Qe
(77)
where
2./mini; Jl UO2 dr
Uy=——"—, = )
P12 o Sf(1)

and b and d are dimensionless constants of the order of unity.
For k=1, m; = my = m, and p; = p, = pr, Eqns (76) and
(77) give the well-known result for a spherical FS.

When the shape of the lens in the vicinity of its central
cross section is very close to cylindrical (k > 1), the parameter
(chx)_l/Zk can no longer be regarded as small. In this case,
the relation between the first and second terms in (76) depends
on the relative number of charge carriers associated with the
lens. When the contributions from all parts of the FS are
taken into account, the smooth components of the transport
coefficients A4 and o, are proportional to the total concentra-
tion Ny of the charge carriers (for wt < 1), whereas their
oscillating components are proportional to the concentration
N of electrons/holes associated with the lens. The lens
contribution determines the leading terms of the asymptotic
expressions for the coefficients y and 7 in the region ¢R > 1;
therefore, they are also proportional to N. When the major
part of conduction electrons/holes in the considered metal is
associated with the lens (N/Ny ~ 1), the enhancement of
geometric oscillations of transport coefficients makes the
second term in (76) as significant as the first. For N/Ny < 1,
the second term in Eqn (76) remains much smaller than the
first one.

The enhancement of geometric resonances in the magne-
toacoustic response of a metal arising due to the FS geometry
was analyzed in Ref. [111]. The model of the FS used in that
work satisfies both conditions k& > 1 and N/Ny ~ 1. This
model can be applied to layered conductors with a quasi-two-
dimensional energy spectrum of charge carriers. In such
compounds, the enhancement of geometric oscillations of
electroacoustic coefficients leads to the resonance effect
predicted in Ref. [111].

In conventional 3D metals, the relative number of
conduction electrons associated with the nearly cylindrical
FS segments is most probably small (N/Ny < 1). But the
enhancement of geometric oscillations of the electroacoustic
coefficient A due to local features of the FS geometry can lead
to noticeable changes in the geometric oscillations of the
dynamic correction Ag. Oscillations formed by the response
of electrons belonging to nearly cylindrical FS se%ments are
greater in amplitude by a factor of (v/qRe) Yk than
geometric resonances formed by electrons from other parts
of the FS. For k > 1, the oscillation enhancement becomes
significant.

The enhancement of geometric oscillations considered
above can be manifested only for certain directions of the
magnetic field with respect to the symmetry axes of the crystal
lattice. Like many other effects associated with local
anomalies in the shape of the FS, this effect must strongly
depend on the direction of the applied magnetic field. This is
illustrated in Fig. 12a. When the magnetic field is tilted to the
symmetry axis of the lens shown in the figure, the effective
cross section slips away from the line of zero curvature that
runs along the lens rim. This results in a decrease in the
geometric resonances.

4.2 Local flattening of the Fermi surface

and magnetoacoustic oscillations in metals

An increase in the number of electrons participating in the
absorption of acoustic energy under the conditions of the
Pippard geometric resonance can occur due to the local
flattening of the FS at those points corresponding to the
stationary points of a cyclotron orbit. Here, we analyze the
effect of local flattening of the FS on the geometric
oscillations of sound velocity and attenuation.

We assume that the Fermi surface includes a segment
shaped like a biconvex lens, whose symmetry axis is the
x axis of the chosen coordinate system. We write the
dispersion relation for the electrons associated with the
lens in form (33). If the parameter k characterizing the
shape of the lens takes values greater than unity, then the
Gaussian curvature of the surface vanishes at the points
(£p1,0,0), which coincide with the vertices of the lens as
shown in Fig. 12b. The vertices are points where the
surface of the lens is flattened. As before, we assume that
B is parallel to the z axis and a sound wave propagates
along the y axis of the coordinate system fixed in the lens;
then the expression for the wave vector of the sound wave
can be written in form (71). For longitudinal sound, the
dynamic correction Ag is described by Eqn (72), where
the relevant transport coefficients are given by Eqns (68)
and (69).

At gR > 1, the neighborhoods of stationary points on the
cyclotron orbits make the leading contribution to the
integrals over ¥ in the expressions for ny,.(p., £q). Corre-
spondingly, the asymptotic expressions for these quantities
have form (73).

For small values of p., corresponding to the lens rim, the
leading term in the asymptotic expansion of V(p.) in inverse
powers of ¢gR at k = 2 can be approximated as [112]

I(1/4) ymm, [ 2 1/4003 T
4 ms \ gRex 8’

where I'(x) is the gamma function, m§{* =m,(0), and
Rex = R(0). For sufficiently large values of p., the approx-

Vip-) = (78)
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can be used. The asymptotic expressions for W(p.) can be
obtained from Eqns (78) and (79) by replacing the cosine by
the sine of the same argument.

Correspondingly, in the calculation of the dynamic
correction to the wave vector of the sound wave arising
as a result of the interaction with the electrons of the lens,
the range of integration over p. in expressions (68) and (69)
must be divided into regions with small and large values of
p-. For frequencies that are not too high (wt < 1), the first
term in Eqn (76) gives the smooth part of the contribution
of the lens electrons to the attenuation and the velocity
shift of the ultrasonic wave. The magnetoacoustic oscilla-
tions are described by the second term Ag,, which can be

represented as
1 —iwr]\ !
80
]) o

where b has the order of unity and 7y, has the order of
the sound attenuation rate in the absence of the magnetic
field.

The amplitude of oscillations described by expression (80)
is of the same order as the above oscillating contribution to
the wave vector of the ultrasound wave arising due to the
interaction with conduction electrons. This is a direct
consequence of the increase in the number of effective
electrons originating from the flattening of the electron lens
in the neighborhoods of its vertices. In a metal whose FS does
not include locally flat segments, the oscillating correction to
the sound absorption coefficient is small compared to the
smooth part.

Equation (80) was derived for k=2. For k > 2, the
amplification of the oscillations is even more pronounced.
However, as shown in [112], even a very well-pronounced
flattening of the FS cannot result in predomination of Ag,
over Agq,. Both terms always have the same magnitude.
It is worthwhile to note that the effect of the FS
flattening on the geometric resonances in the ultrasound
attenuation and velocity can be stronger than the effect of
nearly cylindrical strips. The reason is that the increase in
the number of electrons associated with the close vicinities
of flattening points exceeds their increase in the vicinity of
a point belonging to a nearly cylindrical cross section
where only one of the principal curvature radii tends to
infinity.

(79)

Aqy = iy, Ugb cos (2qRex + g) (sinh {n

4.3 Acoustic cyclotron resonance

and giant high-frequency magnetoacoustic oscillations

in metals with a locally flattened Fermi surface

The enhancement of magnetoacoustic oscillations due to the
local flattening of the FS can also exhibit itself in the high-
frequency range (wt > 1). At high frequencies, magnetoa-
coustic oscillations can be superimposed over the acoustic
cyclotron resonance. Keeping in mind that the largest
contribution to the integrals over p. in expressions (68) and
(69) originates from the range of small p., we can replace all
smooth functions of p. in the integrands by their values at
p- = 0. For ¢R > 1, the leading contribution to the asympto-
tic expression for A associated with the electrons of the lens

has the form [113]

ig wu

A== " UiW(w). 81
w(qRex)l/k 0 ( ) ( )
The frequency-dependent factor W(w) in Eqn (81) is
1
W(w) = J Y(w,x)dx, (82)
-1

where

1 —iwt i
O } + cos <2qR + ﬂ)

(am[s5]) )

In the high-frequency range wt > 1, the function Y(w, x)
diverges at frequencies w equal to the multiple cyclotron
frequency Q. These divergences appear due to the acoustic
cyclotron resonance, predicted and analyzed by Kaner [114,
115]. The second term in Eqn (83) also includes the factor
cos (2¢R + m/2k) describing geometric oscillations.

The asymptotic expression for the dynamic correction Ag
near the cyclotron resonance depends on the ratio of the
parameters 2gR.x and (wr)k/ 2. Under the considered condi-
tions, both parameters are large compared to unity. We
suppose that 2gR.x > (wr)k/ 2. Under conditions of the
acoustic cyclotron resonance in normal metals, gRex ~
vp/s ~ 103 (vp is the Fermi velocity for the electrons
associated with the lens). For Qt ~ 102, the above inequality
can be satisfied when the lens is moderately flattened (k < 2).
When 2¢gRex > (wr)k/ 2, the dynamic correction Ag near the
acoustic cyclotron resonance remains small compared to the
leading approximation for the ultrasound wave vector w/s.

The resonance contribution to the correction Ag from the
electrons associated with the neighborhood of the central
cross section of lens (33) is given by

Y(w,x) = —in g{coth |:TC

(83)

1 qRex 1
(qRex)l/k r/1—0/rQx —ijot
bcos (2qRex + mr + n/4k)
V1= 0/rQx —ijot (qRex)l/Zk 7

Aqr =70

x |1+

(84)

where b is a dimensionless constant.

For k = 1, the result for the attenuation rate determined
by Eqn (84) coincides with the corresponding result in
Ref. [114], which is obtained assuming that the FS of a
metal has a finite and nonzero curvature everywhere. When
k =1, the magnitude of the resonance feature in the
attenuation rate is of the order of y,/wt/r. In this case, the
magnitude of the geometric oscillations is smaller than the
magnitude of the resonance feature associated with the
cyclotron resonance by the factor \/@t/qRex.

When k > 1, the effective strip on the FS passes through
the flattened segments near the vertices of the lens, leading to
the amplification of the acoustic cyclotron resonance. The
magnetic field dependence of the ultrasound attenuation rate
near the cyclotron resonance is shown in Fig. 13. Due to the
FS local flattening, the resonance contribution to the
ultrasonic attenuation coefficient increases (qRex)U“l)/ k_fold
over the case of an ellipsoidal FS. This amplification arises



August 2011

Local geometry of the Fermi surface and its effect on the electronic characteristics of normal metals 789

Im Ag/7,
Im Ag/7,

—_
(=]
1

0 | | | 1 | |
08 09 10 11 1.2 0.8 09 10 1.1 1.2
U)/st w/Qex

Figure 13. Attenuation of longitudinal ultrasound waves versus @/Qc in
the vicinity of the acoustic cyclotron resonance. The curves are plotted
assuming that the magnetoacoustic response is mostly determined by the
electrons associated with the vicinities of flattened vertices of a lens
described by Eqn (33) at gRex = 100, wt = 10. The shape parameter k
takes the values (a) 1.25, 1.5, and 1.75 for the curves from bottom up, and
(b)k=4.

due to the increase in the number of electrons participating in
the resonance absorption of the energy of an ultrasound
wave. This increase in the number of efficient electrons also
leads to the amplification of geometric oscillations. The
corresponding term in Eqn (84) is (qRex)(k71>/ 2 times larger
than a similar term in the expression for Ag; in a simple metal.
When the flattening of the FS becomes stronger, the
magnitude of the geometric oscillations increases faster than
the magnitude of the peak corresponding to the acoustic
cyclotron resonance.

We can use expression (84) to describe the resonance part
of the dynamic correction Ag only for moderate flattening of
the electron lens and moderately large wt. When the
flattening of the lens near its vertices is strong, the quantity
(wr)k/ 2 exceeds the parameter 2¢Rex. Under the conditions of
acoustic cyclotron resonance in typical metals, the inequality
2gRex < (wr)k/2 can be satisfied for k > 3. In this case, the
magnetic field dependence of the function W(w) near the
cyclotron resonance (w & rQe) critically changes in such a
way that W(w)/(qRex)"* reaches values of the order of unity
at the oscillation peaks. Then the second term in Eqn (72)
becomes significant, and the effects originating from the
coupling of the sound wave to the electromagnetic cyclotron
wave can appear.

The effects originating from the coupling of electromag-
netic and ultrasound waves are well known. In particular, it
has been shown that an ultrasound wave propagating
perpendicularly to an external magnetic field can couple to
shortwave cyclotron waves (see Refs [51, 96, 115]). In our
geometry, longitudinal ultrasound waves couple to cyclotron
waves whose dispersion relation is determined by the
equation ¢, = 0. The dispersion of such a mode near the
frequency rQ can be written in the form [113]

1

wl:rQex 1+Wf2(q) ) (85)

where the function f(g) includes an oscillating factor
cos [qRex + /2 + m/4k]. This cyclotron mode can appear in

ametal under the condition 2qRex < (cm:)k/ 2 The shape of the
dispersion curve of the considered cyclotron wave depends on
the local geometry of the FS. Longitudinal cyclotron waves
similar to the mode described by Eqn (85) can occur in a metal
with a spherical FS under the condition gR.x < wt. Their
dispersion relation has the form (see Ref. [96])

1
—r(1+—).
! r(+2qR)

The difference between Eqns (85) and (86) describing the
dispersion of the longitudinal cyclotron waves is completely
caused by the local flattening of the considered FS.

For a very strong flattening of the vicinities of the vertices
of an electron lens (2¢Rex < (CO‘E)k/ 2), we can write the
expression for the resonance contribution to the dynamic
correction Ag; as

(86)

qRx  2(q) 2)

Ag, =
I =T, (gRex)* 01 — 0 —i/t’

(87)

where ) is the frequency of the longitudinal cyclotron wave
described by Eqn (85). The frequency w; corresponds to the
resonance rather than the cyclotron frequency Q.. The shift
of the peak of the acoustic cyclotron resonance caused by the
coupling of ultrasound to the cyclotron wave was already
predicted for the spherical and ellipsoidal FSs [96]. When the
effective segments of the FS are locally flat, this shift is more
pronounced and more available for experimental observa-
tions. The factor f2(g) in Eqn (85) describes geometric
oscillations superimposed on the peak corresponding to the
acoustic cyclotron resonance. The amplitude of the geometric
oscillations sharply increases near the resonance. In order of
magnitude, it is determined by the height of the resonance
peak. Therefore, geometric oscillations of the ultrasonic
attenuation in metals with strongly flattened FSs can become
giant near the acoustic cyclotron resonance. Figure 13b
illustrates this conclusion.

Speaking of possible effects of the FS local geometry on
the magnetoacoustic response of conduction electrons, it is
worthwhile to briefly discuss an anomaly in the sound
velocity shift experimentally observed in studying the trans-
port properties of a two-dimensional electron gas (2DEG) in
GaAs/AlGaAs heterostructures in a strong magnetic field
corresponding to the half-filling of the lowest Landau level
(v=1/2) [116, 117]. In these experiments, the electron
density was modulated along a chosen direction by an
inhomogeneous static electric field, and the velocity shift
and attenuation of the surface acoustic wave traveling over
the system were recorded. The response revealed some
unusual features. It was extremely anisotropic with respect
to the mutual arrangement of the wave vector of the surface
acoustic wave q and the electron density modulation wave
vector g. At q|| g, the response was similar to that repeatedly
observed in the unmodulated quantum Hall system near
v=1/2 [118]. But at q L g, the minimum in the sound
velocity at v = 1/2 was replaced by a maximum whose height
increased as the magnitude of the modulating field increased.

As was first proposed by Halperin, Lee, and Read [119],
the state of a quantum Hall system near half-filling of the
lowest Landau level can be described by introducing new
fermionic quasiparticles (so-called composite fermions),
which are electrons decorated by attached quantum flux
tubes. Near v = 1/2, the composite fermions experience the
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Figure 14. (a) The velocity shift of a surface acoustic wave traveling in the GaAs/AlGaAs heterostructure above the modulated 2DEG in the quantum
Hall state near v = 2, as observed in experiment [116]. (b) Effective magnetic field dependences of the speed of a surface acoustic wave traveling above the
modulated 2DEG in the quantum Hall state near v = 1/2. Curves /-3 correspond to the deformed composite fermion FS (the assumed distortion
increases from 3 to /) and exhibit maxima at v = 1/2. Curve 4 is plotted assuming that the FS is undeformed by the modulating potential. The curves are
plottedat N =0.7 x 10 m=2,t=2x 1075, =9 x 10°m~!,2?/2 =32 x 1074, and 6,, = 0.6 x 10* m s~

reduced effective magnetic field Besr = B — 4nficN /e, which
becomes zero at half filling. They form a Fermi sea. The
corresponding 2D Fermi surface is a circle with the radius

_ 2\1/2
pE = (4nNR=) /7.

Due to the piezoelectric properties of GaAs, a surface
acoustic wave traveling over the surface of a heterostructure
containing a 2DEG is influenced by the electron system.
Assuming that the wave propagates along the x axis of the
chosen coordinate system, we can write [120, 121]

E_ii_fﬁ(lgm)l,
Om

S q 2
where o is the piezoelectric coupling constant, 6, = ¢s/2m,
and ¢ is the effective dielectric constant of the background.
The electron conductivity component o, can be expressed
in terms of the composite fermion conductivity components
a[f/fg [119].

The electron density modulations induced by the electro-
static field affect the composite fermion system in two ways:
through the changes in the effective magnetic field and
through the direct effect of the modulating potential. The
modulations of Beyg play a crucial role in the modulated
2DEG response to the acoustic wave with a long wave-
length, satisfying the condition ¢/ <1, where / is the
composite fermion mean free path [122, 123]. However, the
experiments reported in Refs [116, 117] were carried out using
acoustic waves with rather short wavelengths (¢/ > 1). In this
‘nonlocal’ regime, the direct effect of the electrostatic
potential dominates [124].

The modulating potential deforms the originally circular
composite fermion FS in the same way as crystalline fields
shape the FSs of ordinary metals. But unlike the crystalline
fields, the modulating electrostatic field in the considered case

(83)

acts along a single direction indicated by its wave vector g. As
shown in Ref. [124], small locally flat segments emerge on the
distorted FS. These segments are located such that their
contributions dominate in the 2DEG response to the
acoustic wave when the wave propagates at a right angle to
the modulating field (q L g). The specific FS geometry in
these segments can be responsible for the appearance of the
peak in the sound velocity shift observed in experiments, as is
illustrated in Fig. 14. At the same time, when the sound wave
travels along the modulating field (q| g), the flattened
segments of the FS only slightly contribute to the response,
and the peak in the velocity shift disappears, being replaced
by a dip typical for the unmodulated 2DEG response to the
sound wave. These conclusions agree with experimental
results.

5. Effect of the Fermi surface geometry
on magnetic quantum oscillations

5.1 De Haas—van Alphen oscillations

in quasi-two-dimensional conductors

Magnetic quantum oscillations are well known as a powerful
tool repeatedly used in studies of the electronic properties of
various conventional metals [5]. The theory of quantum
oscillatory phenomena, such as de Haas—van Alphen oscilla-
tions in magnetization and Shubnikov—de Haas oscillations
in the magnetoresistivity of conventional three-dimensional
metals, was developed by Lifshitz and Kosevich (LK) in their
well-known work [125]. This theory was successfully used to
extract valuable information concerning electron band-
structure parameters from experimentally measured mag-
netic quantum oscillations. In the last two decades, magnetic
quantum oscillations have frequently been used as a tool to



August 2011

Local geometry of the Fermi surface and its effect on the electronic characteristics of normal metals 791

study the electron characteristics of various Q2D conductors
with metallic-like conductivity [6-8, 10, 12-19]. A theory of
magnetic oscillations in Q2D materials was proposed in
several studies (see, e.g., Refs [43, 44, 126-128]). Significant
progress is already being made in developing the theory, but
some significant points are still not taken into account. One
such point is the effect of the FS curvature on the amplitude
and shape of the oscillations. The FSs of Q2D metals are
known to include systems of weakly rippled cylinders.
Accordingly, the current theory adopts the tight-binding
approximation to describe the energy—-momentum relation
for the charge carriers.

Neglecting the anisotropies of the charge-carrier energy
spectrum in the conducting layer planes for simplicity, we can
write the energy—momentum relation in the form

2
p -d
E(p) = ﬁ — 2wE”< - ) , (89)
where
_d o np.d
E”(h >—;encos7, (90)
with ¢, = —E,/2w. It follows from this expression that

E|(p-d/h) is an even periodic function of p. whose period
equals 2m/i/d. Omitting all terms with n > 1 and setting
E, = 2w, we can reduce our energy—momentum relation (89)
to simple from (7). Introducing this expression opens up the
possibilities to describe Q2D FSs of various profiles (see
Fig. 3) and to analyze the influence of their fine geometric
features on de Haas—van Alphen oscillations. These studies
lead to some nontrivial results that cannot be obtained within
the simple approximation in (7).

To analyze de Haas—van Alphen oscillations, we start
from the standard expression for the longitudinal magnetiza-
tion

M) (B,T,0) = M.(B, T,C):—(aQ>TV, (91)

OB

where the magnetization depends on the temperature 7 and
the chemical potential of charge carriers {. The chemical
potential itself is a function of the magnetic field and
temperature, and oscillates in strong magnetic fields [5]. The
expression for the thermodynamic potential Q can be written
standardly

Q(B,T,{)=-T) In <1 + exp Ck;TE) , (92)

where the summation ranges over all possible states of
quasiparticles. When a strong magnetic field is applied, the
quasiparticles have the Landau energy spectrum of the
form

E, +(p-) =hQ (n + %) + ohwy — 2wE| <p;1d> , (93)

where Q is the cyclotron frequency, wy = B, f is the Bohr
magneton, the quantum number # labels Landau levels, and ¢
is the spin quantum number. Using the Poisson summation
formula, the expression for the thermodynamic potential can
be represented as the sum of a monotonic term Qy and an

oscillating correction AQ:
i ES (—1)'J°° I(E,)dE
4n2h12;g rJo 1+exp[(Es—{)/kT]

, (94)

where / is the magnetic length and the function I(E,) is given
by

72

I(Err) =2i Jexp {ir % A(Eo‘a pz)] dpz, (95)
0

where A(E;,, p.) is the cross-sectional area.

Until this point, we have followed the LK theory in
deriving the expression for AQ. As a result, we arrived at
Eqns (94) and (95), which are valid for conventional 3D
metals and for Q2D and perfectly 2D conductors. Diversities
in the expressions for AQ appear in the course of calculations
of the function I(E;). These calculations yield different results
for different FS geometries. In deriving the standard LK
formula, it is assumed that the FS curvature is nonzero at the
effective cross sections with the extremal areas and I(E,, p-) is
approximated using the stationary phase method. For 2D
metals, the calculation of I(E,) is trivial because the FS is a
cylinder and the cross-sectional area 4 is independent of p..
Obviously, the FS curvature is then everywhere zero.
Correspondingly, we arrive at the following result for the
oscillating part of the longitudinal magnetization for a 2D
conductor [126]:

AM| = —2Np w%i Y R(r)sin (2m~ g) :

=1 mr

(96)

Here, F = cA/2nlie, N is the density of charge carriers, and
R(r) = Rr(r)Rs(r)Rp(r), where Ry(r) and Rg(r) describe the
effects of temperature and spin splitting. Also, the scattering
of electrons deteriorates magnetic quantum oscillations
because it causes energy-level broadening. The simplest way
to account for the effects of electron scattering on the
oscillation amplitudes is to introduce an extra damping
factor Rp(r) (Dingle factor). The usual approximation for
that factor is Rp(r) = exp (—2nr/Q1) [S]. In further calcula-
tions, we adopt this simple form for Rp(r), because more
sophisticated expressions are irrelevant to the main point of
our subject.

We can expect the effect of the FS curvature on the
magnetization oscillations to appear when the FS warping is
distinct (w > /iQ2). To analyze these effects, we return to our
generalized energy—momentum relation (89). The curvature
of the corresponding FS near its cross sections with mini-
mum/maximum areas is given by

2

k=L &4 (97)

2np? dp?

For definiteness, we assume that the FS curvature vanishes at
the effective cross section at p. = +p*. Then d°4/ dp? must
vanish at p. = £p*. Accordingly, we set da/dx|,_,. =0 in
approximation (58) for the cross-sectional area and use this
expression in what follows. The very essence of the model is
that at s > 2, it describes an axially symmetric FS whose
curvature vanishes at p. = £p*. Approximation (58) is
necessarily applicable to each nearly cylindrical strip on any
such FS. Otherwise, the strip has a nonzero curvature. We
therefore see that the chosen model gives the general
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Figure 15. De Haas—van Alphen oscillations described by Eqn (98) for (a) s = 8 and (b) s = 2. Calculations are carried out for 7= Tp = 0.5K, By = 10T,

F/By =300, and My = 2NfQ/wy.

expression for the cross-sectional area of any nearly cylind-
rical segment of an axially symmetric FS. Using this
approximation, we can derive the following expression for
the contribution to the oscillating part of M| from a nearly
cylindrical cross section:

A\ & (1) R(r) . Fex
AM| = —2NEB <1}7) Zl %sm {m ?i%} :

(98)

where p =1+ 1/s. In the limit s — oo, the dimensionless
factor ¢ tends to 0.5 and Eqn (98) passes into expression (96)
describing magnetization oscillations in 2D conductors times
1/2. This extra factor appears because Eqn (98) describes the
contribution from a single nearly cylindrical cross section of
the FS. When the shape parameter for both effective cross
sections tends to infinity, their contributions to the magneti-
zation oscillations become identical and, putting them
together, we arrive at expression (96).

Oscillations in magnetization described by expression (98)
vary in magnitude, shape, and phase, depending on the value
of the shape parameter s that determines the local geometry of
the FS near the effective cross section. This is illustrated in
Fig. 15. As is shown in this figure, in the case of close
proximity of the FS near p, = p* to a cylinder, the oscilla-
tions are sawtoothed and resemble those occuring in 2D
metals [127] or originating from cylindrical segments of FSs
in conventional 3D metals [129]. When the FS curvature has a
nonzero value at p, = p* (s = 2), the oscillations are similar
to those in conventional metals. The present result (98) shows
that the oscillation shape and phase can be determined not by
the value of w itself but by the form of the function E|(p.d/#)
specifying the FS profile [128]. The sawtoothed magnetiza-
tion oscillations can occur at w ~ #Q, when the FS curvature
vanishes at an effective cross section. To simplify the
interpretation of this point, we can imagine a FS shaped like
a step-like cylinder [130]. The curvature of such a FS is
everywhere zero, and oscillations from both kinds of cross
sections (with minimum and maximum cross-sectional areas)
should be similar to those in 2D metals. Nevertheless, the
difference in the cross-sectional areas (the FS crimping) can
be well pronounced, and a beat effect can be manifested.
Obviously, this effect is absent when w < 7Q and the FS
warping is negligible.

Also, it may happen that the FS curvature vanishes at
some effective cross sections and remains nonzero at the
others. Then the contributions from zero-curvature cross
sections (s > 2) would exceed those originating from the
ordinary cross sections (s = 2). This follows from expression
(98), where the factor &(hQ/w)"* ~ (B/F)'* (B/F < 1) is
included. Depending on the value of the shape parameter s,
this factor takes values between (B/F)l/2 (s=2) and 1
(s — 00). Therefore, when there is a close proximity of the
FS to a perfect cylinder at some extremal cross sections, the
contributions from these cross sections are dominant, and
they determine the shape and amplitude of the magnetization
oscillations as a whole.

The effect of the FS curvature on the quantum
oscillations in the magnetization is expected to be very
sensitive to the geometry of the experiments. The reason is
that the effective FS cross sections (with the minimum/
maximum cross-sectional areas) run along zero-curvature
lines (if any of these exist) only at certain directions of the
magnetic field. When the magnetic field is tilted to that
direction by an angle 6, the extremal cross section slips from
the nearly cylindrical strip on the FS containing a zero-
curvature line. This results in a decrease in the oscillations
amplitude. The phase of the oscillations also changes. These
angular dependences of the oscillation amplitudes and
phases radically differ in origin from the effect first
described by Yamaji [131].

The Yamaji effect occurs due to the coincidence of the FS
extremal areas Ay, and Ap, at certain inclination angles of
the magnetic field with respect to the FS symmetry axis. At
such angles, all the cross sections on the FS have the same
area, and hence the amplitude of the de Haas—van Alphen
oscillations increases. The Yamaji effect originates from the
periodicity of the p.-dependent contribution to the charge-
carrier energy spectrum, and it is not related to the presence/
absence of zero-curvature lines on the relevant FS. Also, there
is a crucial difference in the manifestations of the two effects.
The angular dependence originating from the effects of the FS
curvature reveals itself at very small values of 0, whereas the
first maximum due to the Yamaji effect usually appears at
0 ~ 10° or even greater. To further clarify the difference
between the two effects, we analyze the angular dependence
of de Haas—van Alphen oscillation amplitudes, assuming that
the FS curvature vanishes at the extremal cross section p. = 0
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when the magnetic field is directed along the FS symmetry
axis.

We suppose that the magnetic field is inclined to the FS
symmetry axis by an angle 0 within the xz plane, and we use
the coordinate system whose z’ axis is directed along the
magnetic field. We use the energy—-momentum relation given
by Eqns (89) and (90) and rewrite them in terms of new
coordinates p!, py, p! (p; = pxcos0+ p.sin0; p! = p.cos 0—
Py sin6). Then we can present the FS cross-sectional area in
the form

AM| = —2NB w%i CY G [2’”; (©)

+ @,A(e)} Y,(0),
r=1

(99)

nr

where @,(0) and Y, (0) describe the angular dependence of the
magnetization. Both functions depend on the angle 0 via their
dependences on the cross-sectional area

A
A(pl,cos) = ——+ AA(p!,cosb),

cos 0 (100)

where A = np{ is the cross-sectional area of the unwarped FS
(w — 0) in the case where the cutting plane is perpendicular to
the FS symmetry axis and A4(p/, cos 0) is given by

AA(p! cos0) = 4mm wie cos np:d cos 0
Pz - 1 £ n i

x Jo (inOd tan 6> .

The first term in this expansion coincides with the corre-
sponding result in [131]. It was obtained assuming the simple
cosine warping of the FS.

Requiring that (d°4/dp?), _, =0 and keeping only the
first two terms in expansion (101), we obtain ¢, = 1 and
€, = —1/4. To describe FSs possessing closer proximity to a
perfect cylinder near a certain extremal cross section, we must
keep more terms in expansion (101). For instance, setting
e =1,6=-2/5¢=1/15and ¢, =0 (n > 3), we ensure
that both d*4/dp? and d*4/dp? vanish at p. = 0, which
corresponds to s=6. Similarly, at ¢ =1, ¢ =-1/2,
e3=1/7, ¢4 =—-1/56, and ¢, =0 (n > 4), we obtain s = 8§,
and so on. Substituting these numbers in the general
expression (100) for AA(p.,cos0), we can finally calculate
the functions F(0), Y,(0), and @,(0) that describe the desired
angular dependences of the oscillation amplitudes.

Here, we carry out the calculations assuming that
w/hQ = 0.5 and pod/h = 4n and keeping only the first term
in the sum over r in the expression for AM|. The resulting
curves are presented in Fig. 16. The solid line in this figure is
associated with the energy spectrum of form (7). The
corresponding FS has a cosine warping and a nonzero
curvature at the extremal cross sections. The high peak at
0 = 0.185 (10.6°) corresponds to the first Yamaji maximum.
The position of this peak is in agreement with the equation
(pod/h) tan 0 = 3m/4 (see [131]). Two preceding zeros origi-
nate from the beats. The remaining curves represent FSs
whose curvature vanishes at their maximum cross sections at
0 = 0. We see that the closer the FS shape is to that of a
perfect cylinder in the vicinities of these cross sections (the
greater the value of s), the greater the oscillation amplitude
near 6 = 0. At s = 6, the Yamaji maximum is approximately
two times higher than the maximum at # = 0, whereas at
s = 2, the ratio of the heights takes a value close to 4. We can
expect that at very close proximity of the FS to a cylinder

(101)

1.00

Y(0)

0.75

0.25

0, rad

Figure 16. Angular dependences of the magnetization oscillations ampli-
tudes. The curves are plotted assuming that w/fiw = 0.5 and pod/hi = 4n.
The shape parameter s takes the values s = 2 (solid line), s = 4 (dashed
line), and s = 6 (dashed-dotted line).

near the extremal cross section (s~ 10), the amplitude
maximum at 6 = 0 would exceed the Yamayji peak.

The angular dependence of the magnetization oscilla-
tion amplitude resembling that in Fig. 16 was reported to
be observed in experiments on the Q2D organic metal
a-(BETS), TIHg(SeCN), [132]. In these experiments, a high
peak in the amplitude was observed when the magnetic field
was directed along the axis of the corrugated cylinder, which
is part of the FS. When the field was tilted to this axis by an
angle 0, the amplitude was rapidly reduced and reached
approximately half the initial value at 6 ~ 5°. A further
increase in the angle 6 resulted in small variations in the
amplitude until another peak was reached at 6 ~ 18°.
Identifying this second peak with the first Yamaji max-
imum, we can conjecture that the higher peak at § = 0 arises
due to the presence of the FS extremal cross sections of zero
curvature. The relation between the heights of the peaks
reported in [132] gives grounds to expect that the nearly
cylindrical segments of the a-(BETS), TIHg(SeCN), Fermi
surface (where the FS curvature vanishes) are very close to
perfect cylinders. Recently, magnetic quantum oscillations
were observed in several doped cuprates [10, 12-16], and the
results confirm the existence of Q2D segments in the FSs of
these materials. It can be expected that the present theoretical
analysis will be useful in further explorations of the FS
geometries in cuprates.

5.2 Local flattening of the Fermi surface and quantum

oscillations in the magnetoacoustic response of a metal

The effect of the local flattening of the FS on the amplitudes
of the magnetic quantum oscillations has not been thoroughly
analyzed to date. But we can expect this effect to be revealed
when magnetic quantum oscillations are modulated by
commensurability oscillations (geometric resonances). Fol-
lowing Ref. [133], we consider the effect of FS flattening on
the quantum oscillations of the velocity of ultrasound waves
traveling in a metal perpendicularly to the external magnetic
field. We adopt the same model for the FS as that
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corresponding to energy—-momentum relation (33), such that
the flattening points at the lens vertices are situated on the
cross section with the maximum area. As before, the wave
vector of the sound wave is given by (71), where the correction
Aq determines the velocity shift As and the attenuation rate I'.
This correction is the sum of two terms. The first term, Ag,
describes geometric oscillations in the ultrasonic attenuation
rate and the velocity shift. Such oscillations are very well
known in conventional metals (see Ref. [5]) as well as in two-
dimensional electron systems [6, 8]. The effect is controlled by
classical magnetotransport mechanisms.

The other term, Ag», originates from the quantization of
the orbital motion of electrons in strong magnetic fields, and
describes quantum oscillations in the velocity shift. Assuming
that the cyclotron quantum 7/Q is smdll compared to the
chemical potential of electrons { (y~ (hQ/C)1 2 < 1), w

obtain
Aq, 1 N?
Lo p(—g)n(g)4, 102
=3 g ) (102)

where g is the electron DOS at the FS in the absence of the
magnetic field, n(q) = ny(0,q),n(0,q) is determined by
Eqn (70) with r =0, p, =0, and the function 4 gives the
contribution of the electron lens to the quantum oscillations
of the electron DOS:

1 o0

Sy (?/l;)r R{r)os <2TCVBFex 3 %) ‘

4 r=1

(103)

At very strong magnetic fields such that the characteristic
diameter of the cyclotron orbit 2R., is smaller than the
wavelength of sound (¢Rex < 1), we can go to the limit
¢ — 0 in expression (70), which yields n.,(p:, £q)|,_o = 6,0
The semiclassical correction Ag; then becomes independent
of the magnetic field, and magnetic oscillations are fully
described by Eqn (102). These are ordinary quantum
oscillations originating from the electron DOS oscillations.

In moderately strong but still quantizing magnetic fields
(qRex > 1), magnetic oscillations reveal a more complex
structure. In this case, both Ag; and Ag; are to be included
in consideration, and this leads to the result [133]

A A A 1 N2
Ag _Aq Ag

- -2 vi(qo), 104
g 9 g Apns? g dg.) (104
where we introduce the function
a*(k) T
Yi(q, =—— |V 2¢Rex + —
(g, ®) (qRex)l/k [ (0) + W(w) cos( q +2k)
+2cos? (qReX + 4k> } = Yi(q,0) + Yia(q,w). (105)

Two oscillating terms are included in expression (105) for
Yi(q,w). The first, Yy, originates from the semiclassical
dynamical correction Ag; and represents commensurability
oscillations. The second term, Yj,, gives quantum oscillations
superimposed on the geometric oscillations. The superposi-
tion of these two kinds of magnetic oscillations was studied
for two-dimensional electron systems [134, 135]. Here, we
showed that the same effect occurs in conventional 3D metals.

It follows from (105) that when the FS is flattened in the
neighborhoods of the points corresponding to stationary
points at the cyclotron orbit, the magnetic oscillations are

noticeably amplified. In particular, when an ultrasound wave
travels across the external magnetic field, the magnitude of
quantum oscillations in the velocity shift As/s is usually small
compared to that of DOS oscillations due to the small factor
(qRex)fl, as shown in the top panels of Fig. 17. But when the
FS includes locally flattened segments, the modulated
quantum oscillations can reach the same order of magnitude
as the DOS oscillations (Fig. 17c, d). Therefore, the increase
in the number of effective electrons originating from the FS
local flattening is too small to directly change the DOS
oscillations. Nevertheless, it can have an effect on quantum
oscillations in the observables by means of amplification of
geometric oscillations modulating the latter. Unlike the direct
effect of nearly cylindrical segments [128], the effect of points
of flattening on the FS occurs due to the amplification of
commensurability oscillations modulating DOS quantum
oscillations. The effect could be observed in experiments for
some particular directions of the magnetic field if the external
disturbance propagates across the field. When revealed, this
effect could be helpful in discovering the locations of flattened
segments on the FSs.

5.3 Quantum oscillations of elastic constants

and softening of the phonon modes in metals

As is known and as we have discussed, the effect of
conduction electrons on the crystalline lattice arises due to a
self-consistent electric field that appears under deformation.
Lattice deformation also gives rise to an additional inhomo-
geneous magnetic field b(r). Usually, the effect of the field
b(r) is small, and it can be omitted from consideration.
However, in the presence of a quantizing external magnetic
field B and at low temperatures (0 <1, where
0 = 2’k T/hQ), the field b(r) must be included in the
consideration aiming at establishing the magnetic field
dependences of the elastic constants [58-60, 136, 137]. The
emergence of the electric and magnetic fields accompanying
lattice deformation leads to a redistribution of the electron
density N. The local change in the electron density dN(r) is

_ ON ON o ol
8N(r)_76—¢cd§()+@b()ffNC(c ()+aBb())
(106)
The magnetic field b(r) satisfies the equation
[V xb(r)] =4n[V x M(r)] =0, (107)

where M is the magnetization vector, { is the chemical
potential of the charge carriers, and &(r) is the potential of
the electric field arising due to the deformation. The quantity
N¢ included in Eqn (106) is closely related to the electron
density of states (DOS) on the FS N;. The difference between
the two originates from correlations in the electron system. In
the framework of the phenomenological FL theory, the
renormalized DOS N/ has the form (see Ref. [40])

fomfo L
E, —E, ny,(—q) nyn(q) ) (108)

q=0

Ny =—

v, v/

where n,/,(q) is the Fourier transform of the electron density
operator. The renormalized electron density operator
n},(—q) is related to the ‘bare’ operator n,,(—q) as

+Z f‘l _2‘1 F\u\z

Vi, V2 "

nvv/( q) - nVV/ "1"2 (_q) ) (109)
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Figure 17. (a) Magnetic oscillations in the electron DOS and the response function Yy (g, w) associated with the electron lens. The curves are plotted for
(b) ellipsoidal and (c, d) flattened lenses. In plotting the curves, it was assumed that y = 10, k7/{ = 2 x 1073, and wt = 0.1.

where F)))? are matrix elements of the FL kernel. Relations
(106) and (107) must be supplemented by the condition of
electrical neutrality of the system.

The set of these simultaneous equations was first pre-
sented in [58]. We use these equations to eliminate b(r) and to
express the potential @(r) in terms of the lattice displacement
vector. As a result, we arrive at the expression for the electron
force F(r) acting on the lattice under its displacement by a
vector u(r):

F(r) = Jobo[bo¥ (Vu(r))] + 4 [bo x [V(Va(r)) x bo]| . (110)

Here, by is the unit vector directed along B. The result in (110)
proves that the constants Ay and A; represent electron
contributions to the elastic constants corresponding to the
deformation of the lattice along the external magnetic field
(4) and across this field (1). In the chosen geometry, these
constants equal the electron terms in the compression elastic
moduli ¢33 and ¢;; = ¢ (in the Voigt notation). Based on
these equations, we can derive expressions for the elastic
constants [58, 59]

N?
g = — 111
A0 sz ( )
4y,
A=A 1 +—>— 112
0( +1—4n;{)’ (112)

where y =0M./0B + (0M./3()(0(/0B) is the longitu-
dinal part of the magnetic susceptibility and y, =
(0M./3()(0¢/0B). As follows from Eqn (111), 4y coincides

with the compression modulus of the electron liquid. The
structure of 4 is more complicated. In addition to the electron
compression contribution, 4 also contains a contribution of a
different origin. This extra term appears due to the inhomo-
geneous magnetic field b(r) produced by the lattice deforma-
tion. This field arises due to the change in the magnetization
of electrons caused by the deformation. Hence, the appear-
ance of the second term in (112) signifies a magnetostriction
effect.

A strong magnetic field applied to a metal gives rise to
quantum oscillations in the electron DOS, which in turn
causes quantum oscillations in observables, including the
magnetic susceptibility y;. At low temperatures, the magni-
tude of quantum oscillations increases so much that the
oscillating term can dominate at the peaks of the oscilla-
tions. It was shown before (within the simple model of an
isotropic electron liquid) that under such conditions, both N/
and 1 —4my can go to zero near the oscillations peaks,
producing magnetic instability of the metal and softening of
some acoustic modes [58, 129, 136]. This is illustrated in
Fig. 18a. Here, the magnetic fields B{ and B} label thresholds
of the magnetic instability region, and the differential
magnetic susceptibility diverges at these points. Singularities
in the longitudinal susceptibility | appear significantly closer
to the field By, indicating the position of the oscillation peak.
At the same time, the structural instability thresholds B; and
B, are located respectively farther from By than B{ and B).
However, in conventional 3D metals, these effects could be
revealed in experiments only at extremely low temperatures of
the order of 10 mK or lower. The stringent temperature
requirements explain why the softening of the phonon
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Figure 18. (a) Schematic plot of the magnetic field dependence of 4ny (dashed lines) and ¢|1/ ¢{y (solid lines) near a peak of quantum oscillations at
B = By (T =0). The range of magnetic fields corresponding to the structural (B; < B < B,) and/or magnetic (B] < B < Bj) instability is hatched.
(b, ¢) Magnetic field dependences of the elastic constant ¢;; near the diamagnetic phase transition. (b) The curves are plotted for 6 = 1, the shape
parameter s takes the values 16, 8, 4 from left to right; (c) s =8, 0 = | takes the values 1, 2, 3 from left to right. For all curves, N = 10>’ m~3,

72=10%, and By = 10 T.

modes at peaks of quantum oscillations has not yet been
observed.

But these requirements can be noticeably moderated if the
FS of a metal includes nearly cylindrical strips. This can
influence anomalies of the elastic moduli and create much
more favorable conditions for their observation in metals. To
illustrate this statement, we consider a metal whose FS is
axially symmetric in the vicinity of an extremal cross section
atp = p* with the area A.,. We assume the magnetic field B to
be directed along the symmetry axis and adopt the approx-
imation given by Eqn (58) (assuming that da/dx =0 at
x = x*) for the cross-sectional area around the extremal
cross section.

Assuming that the cyclotron quantum 7Q is small
compared to { (y > 1) and using model (58), we arrive at the
following expression for the contribution from the nearly
cylindrical cross section to the electron DOS oscillations:

00 r
"y (=1 ) Fy m
A:y;/sz 7 R(r) cos <2m > 5 )

r=1

Equation (113) agrees with the result obtained for a strictly
cylindrical FS (see, e.g., Ref. [5]). We arrive at the correspond-
ing result in the limit s — oco. Actual values of the shape
parameter s could be discovered in experiments where the FS
local geometry is revealed. In the isotropic model, s = 2 and
the oscillating function 4 takes the well-known form (103).

Oscillations described by Eqns (113) and (103) differ in
phase as well as amplitude. The amplitude of usual
oscillations given by Eqn (103) is of the order of y~10~1/2,
while Eqn (113) gives a magnitude of the order of
y=2/sU=9)/5 " Therefore, the amplitude of oscillations
related to the extremal zero-curvature section is approxi-
mately (y~'0'2)=9/5 times greater than that of the usual
quantum oscillations. As a result, the contribution from an
extremal zero-curvature section can be considerably (more
than tenfold) greater than contributions from other extremal
sections, and the function 4 can reach values around unity at
oscillation peaks, even at 0 ~ 1. On these grounds, we
conclude that the most favorable conditions for observation
of softening of elastic moduli at peaks of quantum oscillations
occur in metals whose FSs include nearly cylindrical seg-
ments. We consider such FSs in what follows.

(113)

Assuming y < 1, we replace the matrix elements included
in the FL kernel with their semiclassical analogs ¢(p,p’) and
Y (p,p’), which depend on quasimomenta p and p’ of
interacting conduction electrons. For axially symmetric FSs,
the FL functions can be approximated by Eqn (24). These
approximations lead to the following expressions for the
corrections to the elastic constants [60, 128]:

N? 4
W 114
T T T U+ W= dngy A e
N? 4
N G I 115
S (v Y "

where y, is related to the Landau diamagnetic susceptibility
[which is equal to —(1/3)y,] and the constant W originates
from the FL interactions. Hence, the elastic constants ¢;; and
¢y appear to be affected by magnetostriction. At low
temperatures (6 < 1), the denominator in Eqn (114) can
vanish at the peaks of quantum oscillations. This indicates
that the longitudinal magnetic susceptibility y diverges. The
diamagnetic instability occurring at 1 —4my = 0 results in
the structural instability of the metal.

As regards the elastic constant cs3, it can also be reduced
at the peaks of low-temperature quantum oscillations, but
this effect is not related to the magnetic instability. The
expression for ¢33 in (115) does not include the contribution
due to magnetostriction. The possible softening of ¢33 is a
direct consequence of the behavior of the electron DOS
under strong magnetic fields at low temperatures [138]. We
have to remark here that the interactions between electrons
significantly influence all the above effects. The value of the
constant W that accumulates the effects of electron—electron
interactions in the framework of the FL theory can
significantly influence the temperature range where both
magnetic and lattice instabilities occur. With the function 4
describing quantum oscillations given by Eqn (113), the
amplitude of oscillations can become comparable to unity
at moderately low temperatures if the FS shape reveals a fair
proximity to a cylinder near the extremal cross section. For
example, at s = 6, iQ/{ ~ 10°, and B ~ 10 T, the condition
y~2/591=9/5 1 can be satisfied at temperatures of the order
of 1 K.
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To proceed with the analysis of the experimental feasi-
bility of the effect, we numerically evaluate the decrease in the
elastic constant ¢y, using result (114). The results are shown in
Fig. 18b, c. We see that the shape of the effective strip on the
FS that is close enough to a cylinder gives rise to the structural
instability near oscillation peaks at 6 ~ 1. Also, it is
demonstrated that the effect is washed out as the temperature
increases. Electronic contributions to the velocity of ultra-
sound waves propagating in metals are simply related to the
elastic constants. It follows from the present results that the
longitudinal sound velocity can depend on the propagation
direction. Near the structural instability, the velocity of sound
propagating perpendicularly to the magnetic field B can be
noticeably reduced compared to the velocity of sound
propagating along B. Again, we can expect this effect to
appear in metals whose FSs include nearly cylindrical
segments.

To summarize, it was demonstrated that structural
instabilities can occur near the magnetic instabilities at the
peaks of quantum oscillations. These magnetic instabilities
have been analyzed in some studies (see, e.g., Refs [129, 137]).
This effect can appear even in an isotropic metal. But it can be
significantly strengthened when the immediate vicinities of
some extremal cross sections of the FS are nearly cylindrical
in shape, such that the FS curvature vanishes at these cross
sections. The present analysis was carried out assuming the
axial symmetry of the FS. The obtained results can be applied
to practical metals, where the magnetic field is directed along
a higher-order symmetry axis of the crystalline lattice. We can
also expect phonon mode softening to occur in Q2D layered
conductors, as was shown in Ref. [128].

6. Conclusion

The principal point that we tried to clarify here is that the fine
characteristics of the FS shape can significantly affect the
electron properties of conventional 3D metals and other
materials such as Q2D layered conductors. The effect of the
local geometric features of FSs (nearly cylindrical and/or
nearly paraboloidal segments, flattened regions, and others)
can be manifested under certain conditions, when the
conduction electron response to an external disturbance is
mostly determined by a small segment of the FS. This is the
case with the anomalous skin effect and magnetic quantum
oscillations of thermodynamic variables. In both cases, the
response of a metal to an external disturbance is mainly
formed by the charge carriers associated with narrow strips
on the FS. When the FS curvature vanishes at these ‘effective’
strips, the frequency dependences of the surface impedance of
a metal can noticeably change and the magnetic quantum
oscillations can be enhanced. Local flattenings of the FS can
significantly affect the commensurability magnetoacoustic
oscillations described in Section 4. Observable effects arising
due to the FS curvature anomalies at certain points can occur
in truly low-dimensional conductors, such as the two-
dimensional electron gas created in GaAs/AlGaAs super-
structures, if the electron density is periodically modulated by
applying an additional static electric field [116, 117].

The entire analysis presented in this review is based on the
phenomenological models of the FS geometry over the
relevant segments. The reason for the preference given to
these models over the results of electron band structure
computations is that even advanced computational methods
cannot guarantee that such fine features as flattening points

or narrow, nearly cylindrical strips are not missed in the
process of FS reconstruction. In this paper, we concentrate on
the analysis of possible experimental manifestations of such
features. For instance, it was shown in Section 5 that the
angular dependences of the magnitudes of magnetic quantum
oscillations in Q2D metals predicted by Yamaji[131] radically
differ from the angular dependences of similar characteristics
that can appear due to the presence of nearly cylindrical strips
on the relevant FSs. Phenomenological models remain
extremely useful in these analyses because they allow
relatively easily clarifying the nature and origin of various
phenomena and identifying those that arise due to the FS
local geometry.
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discussions. Also, the author is sincerely grateful to all the
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