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Econophysics and the fractal analysis
of financial time series*

M M Dubovikov, N V Starchenko

1. Introduction
The term `econophysics' was coined in 1995 by H Eugene
Stanley as a common name for research in which methods
of statistical physics were applied to analyzing the behavior
of financial markets. Such research efforts were stimulated
most of all by the revolution in computer technologies,
which by that time had led to the creation of huge readily
accessible arrays of financial data which had been painstak-
ingly accumulated from the middle of 1980s. Later on, the
term began to be used in a wider context, indicating that a
paper on economics or another social science had been
written by a physicist. Since 2002, such publications have
begun to appear regularly in all the major general physical
journals, such as Reviews of Modern Physics, Physical
Review E, Physical Review Letters, and some others. At
this time, a course on econophysics is being taught in the
West in the most prestigious universities, and a section
dedicated to it has grown to become an integral part of
major annual international and national conferences on
social sciences [e.g., ESHIA (Economic Science with
Heterogeneous Interacting Agents), AKSOE (Arbeitskreis
Physik Sozio-�Okonomischer Systeme), and others]. The first
All-Russia Congress of Econophysics was convened in June
2009 in Moscow.

The first econophysics work whose popularity far trans-
cended the bounds of any one field of science was the
publication by Mantegna and Stanley in Nature [1]. In
essence, this work developed the rather old idea of Benoit
Mandelbrot concerning the L�evy flight [2] so as to make it to
agree with new empirical data.

This article is devoted to the development in the same field
of another ofMandelbrot's seminal ideas, which was also first
advanced in paper [2] in the study of financial time series.
Subsequently, this idea has been successfully applied in a
number of very different fields of physics [3].

Ever since the 1950s, experts have been quite familiar with
the proposition that movements of prices of most financial
tools over various time and price scales look very similar. An
observer cannot identify from the shape of the charts if the
data describe weekly, daily, or hourly fluctuations [3]. In
today's language, the indicated self-similarity signifies that
financial time series are fractals [4]. The main characteristic of
such structures is, as we know, the fractal dimensionD. In the
case of chaotic time series, this indicator defines the Hurst
index H (D � 2ÿH), which is a measure of persistence in a

time series (the ability to sustain a certain trend). However, an
impossibly large representative scale is required for a reliable
calculation of D (as well asH), which excludes any chance of
using D as an indicator defining the local dynamics of a time
series.

In this paper we introduce new fractal parameters: the
dimension of minimum covers and the related index of
fractality. It has been rigorously proved in the principal
order in d (here, d is the minimum scale of partitioning the
time series) that for d! 0 the dimension of the minimum
cover is identical toD. By the example of financial time series,
it has been proved that the amount of data contained in the
minimum scale required for determining the introduced
indicators with an acceptable accuracy is less by two orders
of magnitude than the corresponding scale for the determina-
tion of the Hurst index H. This makes it possible to consider
the index of fractality as a local indicator of stability of the
time series. An empirical justification of the concept of
stability on the financial market has been proposed, based
on the index of fractality. An effect of enhancement of large-
scale fluctuations and suppression of small-scale oscillations
has been revealed; it was used to build an indicator of strong
fluctuations in the global financial market.

2. Fractal structures
1. Objects for which the methods of classical analysis proved
totally unsuitable (such as the Cantor set, the Weierstrass
function, and the Peano curve) were found inmathematics for
the first time at the end of the 19th century. All of them were
built using very simple rules of iterative procedure, and all
possessed scalable self-similarity (consisted of parts similar to
the whole). By the beginning of the 20th century, the number
of such objects became sufficiently large, and to analyze them,
Felix Hausdorff offered in 1919 his definition of the
dimension of a compact set in an arbitrary metric space [5].
Hausdorff noticed that if these sets are covered by spheres
with a radius d, the minimum number N�d� of such spheres
will grow with diminishing d by the power-law dependence

N�d� �
�
1

d

�D

: �1�

Notice that the power exponent D is typically calculable
exactly. This was the exponent that Hausdorff called
`dimension'.1 If we now take the logarithms of both sides of
this expression and rewrite them in the form of an equality for
D, we obtain the exact definition of the Hausdorff dimension:

D � lim
d!0

�
lnN�d�
ln�1=d�

�
: �2�

For sets that are familiar in classical calculus (e.g., smooth
curves or surfaces), the exponent D coincides with the
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which possesses the following property: m� p� � 1 for p < dH, and
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that dH 4D.
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topological dimension DT equal to the minimum number of
coordinates necessary to describe such sets (e.g., one
coordinate is sufficient to describe the line, two coordinates
to describe the surface, and three coordinates to describe the
body 2). It was found that for the nonclassical sets mentioned
above, the Hausdorff dimension (typically a fractional
quantity) is always greater than the topological dimension
DT. The last property was later used byMandelbrot for one of
the possible definitions of the fractal, which states that a
fractal is a set where D > DT [3].

It should be noted that if the original set is immersed in an
Euclidean space, then other approximations of the set cover
by simple shapes (e.g., cells) of size d can be used instead of
covering this set by spheres. In addition, new fractal
dimensions (cellular, internal, etc.) appear, along with the
original spherical dimension D; they usually coincide as
limiting values for d! 0. However, the rates of convergence
to this limit may vary considerably for these dimensions.

Consider, for instance, the Sierpi�nski carpet, which is
constructed as follows. Take a unit square, and in the first
step divide it into nine equal squares, of which the middle one
is thrown out (Fig. 1a). In the next step, this procedure is
repeated with all remaining squares, and so forth. In the limit,
the set obtained by an iterative procedure is known as the
Sierpi�nski carpet (it can be shown thatDT � 1 for this object).
Notice that in constructing model fractals, a set consisting of
N�d� elementary simplexes of linear size d usually emerges in
the nth iteration step. Mandelbrot called this set the pre-
fractal of the nth generation. This set for the Sierpi�nski carpet
consists of N�d� � 8n cells with a side length d � �1=3�n. If
now we use pre-fractals in definition (2) instead of covering

set by spheres, the dimension D can be calculated in a
straightforward manner. Indeed, passing to the limit n!1
in our case, we obtain from formula (2):

D � lim
d!0

�
ln 8n

ln 3n

�
� lim

n!1

�
n ln 8

n ln 3

�
� ln 8

ln 3
�� 1:89� :

The result will not change if spheres are chosen instead of
cells. However, the characteristics of the algorithms of direct
calculation of these two dimensions are very different. In
order to show this, we construct for each dimension the plot
of the function N�d� at d � �1=3�n on a double logarithmic
scale (Fig. 1b). On this scale, all power-law functions are
linear, and the exponent D is defined as the slope of the
regression line corresponding to the plot. For cellular covers
(pre-fractals), all points of the plot of the functionN�d� lie on
one straight line. This means that the function N�d� rapidly
reaches the asymptotic power mode (1), which allows us to get
the value of D already in the first iteration step. If we use
spheres instead of cells for calculating D, the corresponding
plot becomes closer to power law (1) only asymptotically as
d! 0. A more profound analysis reveals that the above
property of N�d� for pre-fractals of the Sierpi�nski carpet
emerges due to the fact that cellular cover is in a sense a
minimal cover in each iteration step. Therefore, it is precisely
the minimality of the covers which is the reason why the
appropriate function determined by the covers and being used
to calculate the dimension D grows rapidly and reaches the
power-law asymptotic mode. As will be shown in Section 3,
this principle allows straightforward generalization to the
case of chaotic time series.

2. Objects with a nontrivial Hausdorff dimension were for
a long time regarded only as a figment of the sophisticated
mathematical intellect. These days, largely through the efforts
of Benoit Mandelbrot, we know that fractals are all around
us. Some fractals are continually changing, like moving
clouds or flickering flame, while others preserve the structure
created in the process of evolution, as happened with coast-
lines, trees, or our vascular systems. The real range of scales in
which fractal structures are observed stretches from inter-
molecular distances in polymers to distances between clusters
of galaxies in the Universe.

We need to point to the main features of natural fractals
that distinguish them from model ones. First, natural
fractals are never strictly symmetrical. Self-similarity holds
for them only on average. Second, calculations of the
dimensions of natural fractals inevitably exclude scales
that are smaller than a certain minimum scale d0 of the
structure. This means that power law (1) manifests itself as
an `intermediate asymptotics' (as d! 0, the scale consid-
ered is much smaller than a certain characteristic scale but
greater than the minimum scale d0). Third, for natural
fractals there is no system of pre-fractals. Therefore, the
system of approximations by simplexes, required for the
construction of the function N�d� when d! 0, is in the
general case fairly arbitrary. Consequently, the computation
of the dimension D as the slope of the regression line N�d�
on the double logarithmic scale needs a large amount of
data, since the function N�d� usually converges to the power
law (1) very slowly.

We will show, nevertheless, in Section 3 that for comput-
ing the dimensions of fractal time series it is possible to
construct a sequence of minimal covers similar to the
sequence of pre-fractals of a Sierpi�nski carpet.

2 This approach can be generalized (e.g., for an arbitrary compact set) in at

least two ways [7]. The first approach is based on the fact that any two

closed disjoint subsets of the original set of dimension n� 1 can be split

with a partition of dimension n. The dimension is introduced here by

induction. The second method is based on the fact that the minimum

multiplicity of the cover of a set of dimension n by closed sets with an

arbitrarily small diameter equals n� 1. Multiplicity is understood here to

equal the maximum number of the cover elements having nonempty

intersections.
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Figure 1. Pre-fractals of four generations for the Sierpi�nski carpet (a), and
the function N�d� in double logarithmic scale (b) for cellular (solid line)

and Hausdorff (dashed curve) dimensions.

July 2011 Conferences and symposia 755



3. The dimension of the minimum cover.
The index of fractality
1.Chaotic time series form themost important class of natural
fractals. Such series with an extremely irregular behavior are
found in the observations of various natural, social, and
technological processes. Some of these processes are tradi-
tional (geophysical, economic, medical), and some were
discovered fairly recently (daily variations in crime level or
in traffic accidents in an administrative region, fluctuations in
the number of hits of certain sites on the Internet, etc.). Such
series of data are usually generated by complex nonlinear
systems of various natures. However, all of them behave in
essentially the same characteristic manner within a certain
range of scales. The easiest method of studying the fractal
structure of these series is based on calculating the cellular
dimensionDc. To findDc, one divides the plane, on which the
diagram of the time series is defined, into cells of size d. Then,
for different d we plot the function N�d� which is equal to the
number of cells of size d that contain at least one point on the
diagram. The dimension Dc is found from the slope of the
regression line N�d� on the double logarithmic scale. It is
readily shown thatDc � D. The fractal dimension for chaotic
series happens to be especially important because this
indicator is closely related to the Hurst exponent (index) H
which is usually calculated using the normalized amplitude
range and, aswe know, is an indicator of persistence (ability to
sustain trends) of a time series. Notice that if H > 0:5, the
series is persistent (it is likely that the movement of the series
in a certain direction on an interval will initiate movement in
the same direction on the next interval). IfH < 0:5, the series
is antipersistent (it is likely that the movement of the series in a
certain direction on an interval will initiate movement in the
opposite direction on the next interval). Finally, if H � 0:5,
the series has zero persistence (the motion of the series on any
interval is independent of its motion on the previous interval).

More than ten different algorithms for the calculation of
this indicator were created later owing to its importance [8±
11]. It seems that the simplest method for calculating the
exponent H is based on the formula
j f �t� d� ÿ f �t�j� � dH as d! 0 ; �3�
where angle brackets denote averaging over the time interval,
and f �t� is the value assumed by the time series at the instant
of time t. The exponent H is found from the corresponding
regression line. It is easy to show that for Gaussian random
processes H � 2ÿD. Virtually all experts agree that this
relation has a wider range of applicability, since it has been
confirmed for all the observed chaotic time series in all those
cases in which both indicators are accurately determinable.
Also, all difficulties associated with the computation of
dimension D are transferred to the algorithms for the
calculation of the exponent H. Thus, any reliable determina-
tion of H requires a representative scale of several thousand
data sets. As a rule, a time series changes the parameters of its
behavior on such a long scale many times, which greatly
devalues the analysis of time series with the aid of the Hurst
exponent H. As we saw for the dimension D, this difficulty
stems from the fact that the convergence of the corresponding
function to power law (3) for d! 0 unfolds extremely slowly.
To overcome this obstacle, it is possible to follow the analogy
of how this is done in the case of the Sierpi�nski carpet and to
determine the sequence of approximations of a series, which
consists of minimal covers for any fixed d. Indeed, if we
multiply both sides of formula (1) by d 2, the definition of the

dimension can be rewritten as a power law for the approxima-
tion area S�d�:

S�d� � d 2ÿD for d! 0 : �4�

Notice that, in contrast to formula (1), this form does not
require that the simplexes of which each individual approx-
imation consists be identical. It would be sufficient for them
to have one and the same geometric factor d. It is this
circumstance that allows us to use approximations which are
minimal covers.

2. Indeed, let a function y � f �t� having not more than a
finite number of points of discontinuity of the first kind be
defined on a segment �a, b�: it is natural to consider precisely
such functions as model ones, e.g., for financial time series.
We introduce a uniform partition of the segment,
om � �a � t0 < t1 < . . . < tm � b�, where ti ÿ tiÿ1 � d �
�bÿ a�=m, (i � 1; 2; . . . ;m). We cover the graph of this
function with rectangles in such a way that this cover is the
minimum area in the class of covers by rectangles with base d
(Fig. 2). Then the height of the rectangle on the segment
�tiÿ1; ti� equals the amplitude Ai�d� which is the difference
between the maximum and minimum values of function f �t�
on this segment. We now introduce a quantity

Vf �d� �
Xm
iÿ1

Ai�d� : �5�

The total areaSm�d� of theminimumcover can then bewritten
as Sm�d� � Vf �d� d. Consequently, formula (4) implies that

Vf �d� � dÿm for d! 0 ; �6�

where m � Dm ÿ 1. We call the dimensionDm the dimension of
the minimal covers. To appreciate the differences between Dm

and other dimensions, especially the cellular dimension Dc,
we construct the cellular partition of the plane of the graph of
the function f �t� as shown in Fig. 2. Let Ni�d� be the number
of cells that cover the plot of f�t� on the segment �tiÿ1; ti�. It is
seen from the figure that

0 < Ni�d� d2 ÿ Ai�d� d < 2d2 : �7�

Divide this inequality by d and sum up over i, taking into
account Eqn (5). As a result, we have

0 < N�d� dÿ Vf �d� < 2�bÿ a� ; �8�

10

f�t�
8

6

4

2

0

a b
t

tiÿ1 ti

Figure 2. The minimal (shaded rectangle) and cellular (light rectangle)

covers of the function f �t� on the interval �tiÿ1; ti� of length d.
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where N�d� �PNi�d� is the total number of cells of size d
that cover the plot of function f �t� on the segment �a; b�.
Passing to the limit d! 0 and taking formula (6) into
account, we obtain

N�d� d � Vf �d� � dÿm � d 1ÿDm : �9�

On the other hand, it follows according to formula (4) that

N�d� d � Sc�d� dÿ1 � d 1ÿDc : �10�

Hence, Dc � Dm. Note, however, that despite this equality,
the minimal and cellular covers for real fractal functions may
provide different convergences of the quantity S�d� to the
asymptotic mode (4), and this difference may be quite large.
Next, since Dc � Dm � D, m � Dm ÿ 1 and since DT � 1 for
the one-dimensional function, we have m � DÿDT. In this
case, therefore, the index m can naturally be called the index of
fractality. In what follows, we will analyze financial time
series and regard this index as the main fractal indicator.

4. Financial time series. Problems of identification
and prediction
1. The most popular representatives of fractal time functions
are financial time series (first and foremost, series of stock
prices and currency rates). There is reliable numerical
evidence of the fractal structure of such series [12, 13].
Theoretically, fractality is usually linked to the fact that
investors with different investment horizons (from several

hours to several years) must be active in the market for
sustaining its stability. This is the factor that produces
scaling invariance (absence of a singled out scale) of price
series over the corresponding time interval [14, 15].

As an example, a database was investigated which
included price series for shares of thirty companies included
in the Dow Jones Industrial Index (DJII) from 1970 to 2002.
Each series contained about eight thousand records. Each
record corresponded to a running day of trading and included
four values: the lowest and highest prices, and the opening
and closing prices. In the literature, financial series are usually
represented using the Japanese candles chart. A fragment of
such a series for the Coca-Cola Co. is displayed in Fig. 3a. To
simplify the analysis, only the last 212 � 4096 records for each
company were considered. To compute the variation index m,
the sequence of m nested divisions om for m � 2n

(n � 0; 1; 2; . . . ; 12) were used. Each division consisted of 2n

intervals containing 212ÿn trading days. For each divisionom,
the value of Vf�d� was calculated by formula (6). Here, Ai�d�
equals the difference between the highest and lowest prices
over the interval �tiÿ1; ti� (thus, if d � d0, Ai�d� equals the
difference between the highest and lowest prices over one
day). A typical example of the behavior ofVf�d� on the double
logarithmic scale for the Microsoft company is illustrated in
Fig. 4. We see that the data lie with amazing precision on a
straight line, except for the last two points, which deviate
from the linear mode and exhibit a `break'. To find the value
of m from these data should exclude the last two points and
determine the regression line. At the confidence level
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Figure 3. (a) Typical Japanese-candles financial series in the interval of 32 days (the graph of Coca-Cola share prices was used). Each of the rectangles

(known as the candle body) with two vertical bars above and below (known as candle shadows) symbolizes price fluctuations during one day of trading.

The top point of the upper shadow indicates the highest day price, and the bottom of the lower shadow is the lowest day price. The upper and lower

boundaries of the candle body show the opening price and closing price on the trading day. The white (black) color of the candle body indicates that the

closing price was above (below) the opening price. (b) The result of calculation ofVf�d� on the double logarithmic scale for the presented time series. The

relation y � ax� bwas calculated by themethod of least squares; here m � ÿa. (c) The result of calculations of hjC�t� d� ÿ C�t�ji for the same series, and

the corresponding function y � ax� b, forH � a.
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a � 0:95, we have in the above example m � 0:472� 0:008
and R 2 � 0:999. Here, R 2 is the determination index for
the regression line. A comparison of this algorithm of
computation of D (D � m� 1) and, correspondingly, H
(H � 2ÿD � 1ÿ m) with standard algorithms for comput-
ing these indices shows that the results are consistent with
acceptable accuracy. However, the values of Vf�d� on double
logarithmic scale fall appreciably more accurately onto a
straight line (except for the last two points) than those values
corresponding to other algorithms, which also allows us to
determine the characteristic scale on which the break of the
linear mode occurs.

Now we need to point out that for each of the 30
companies the plot of Vf�d� on the double logarithmic scale
fits the straight line, almost as accurately, on all shorter
representative intervals too, down to 32 days, and sometimes
even down to 16 days. Note that on intervals shorter than
500 days the break on the linear part of the plot, as a rule,
disappears.

A typical example of the behavior of the functionVf�d� on
a segment of financial time series 32 days long (Fig. 3a) is
given in Fig. 3b. If a � 0:95, we obtain m � 0:571� 0:071,
R 2 � 0:992. For comparison, Fig. 3c displays an example of
the behavior of hjC�t� d� ÿ C�t�ji on the same segment (we
use here 32� 1 � 33 close pricesC�t� and averaging is carried
out in nonintersecting intervals d � 2n in length, where n � 0,
1, 2, 3, 4, 5). In this case, H � 0:229� 0:405, R 2

H � 0:382. It
immediately becomes evident that the calculation of the index
H over this interval is simply meaningless.

The conclusion is that the fact that the quantity Vf�d�
rapidly reaches the asymptotic power-law mode makes it
possible to reliably calculate the index of fractality m over
short intervals, as well. Further analysis showed that the
power law for the function Vf�d� fits the results with
remarkable precision in the range of scales from several
minutes to several years. It was understood that this property
helps achieve significant progress in solving the two main
problems of time series analysis: identification and predic-
tion.

2. The problem of identification usually consists in
determining the state of the system (the macrostate of the
time series) on the basis of the observed values of the series in
some local range. Specialists identify three types of local
states for financial time series: trend (movement directed
upward or downward), flat (relatively stable state), and
random walk (intermediate state between trend and flat). In

order to correlate the value of mwith the states of the financial
time series, we introduce a function m�t� as such value of m that
can still be calculated at an acceptable accuracy on a minimal
interval tm foregoing time t. If the argument t is continuous,
we could choose for such an interval an arbitrarily small one.
However, since in practical cases the time series always has a
minimum scale (in our case, it spans one day), tm is of finite
length (in our case, we take tm � 32 days). Such a function
m�t� was constructed for each of the companies in the Dow
Jones index.

Figure 5 shows a typical fragment of the price series of one
of these companies together with the function m�t� calculated
for this fragment. Suffice it to throw a quick glance at Fig. 5 to
understand that the index m has a direct bearing on the states
of the time series. Indeed, m�t� > 0:5 in the interval between
the 1st and the 39th days, where prices are relatively stable
(flat). Further, simultaneously with the unfolding of the trend
state in the price chart, m�t� drops sharply to values below 0.5,
and finally, after the 56th day when the prices are in an
intermediate state between trend and flat, m�t� returns to a
value of m � 0:5. The original series thus becomes more stable
as m increases. Also, if m > 0:5, the flat state is observed, and if
m < 0:5, the trend state is observed. Finally, if m � 0:5, then
the series resides in the random walk state, which is
intermediate between the trend and a flat states. Such a
correlation between the value of m and the behavior
characteristics of the original time series was observed for all
investigated series. A theoretical basis for this correlation can
be found, for instance, in paper [16]. We will show below how
the function m�t� can be used to justify the classical theory of
finance.

3. The basic model of financial time series is the random
walk model. 3 Rethinking this model led to the concept of the
effective market (Effective Market Hypothesis, EMH) on
which the price fully reflects all available information. For
such a market to exist, it is sufficient to assume that it has a
large number of fully informed, rational agents with uniform
preferences, which instantly adjust the prices and bring them
into equilibrium. It is natural that the basic model of such a
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Figure 5. Daily prices of Exxon Mobil Corporation shares (Japanese

candles, right-hand scale) and plot of the function m�t� (solid curve, left-

hand scale).

3 The first random walk model [17] was constructed by Luis Bachelier in

1900 (five years before Albert Einstein proposed his model of Brownian

motion), who used it for describing the behavior of stock prices on the

Paris Stock Exchange. Many of the results linked to this model, which

were later obtained by other authors (Chapman±Kolmogorov equation,

martingale theory, Black±Scholes equation), were already implied in

Bachelier's paper.
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market is the random walk model. It should be noted that all
the main results of the classical theory of finance [portfolio
theory, CAPM (Capital Asset PricingModel), Black±Scholes
model, etc.] have been obtained within the framework of
precisely this approach. At present the ``the concept of
effective market continues to play a dominant role both in
financial theory and in financial business'' [20].

However, by the beginning of the 1960s some empirical
studies showed that large fluctuations of yield series occur
much more often than could be expected on the basis of the
normal distribution (the problem of `fat tails'), plus these
large changes usually followed one another (effect of
volatility clusterization). Mandelbrot [2] was one of the first
to severely criticize the above concept. Indeed, if we calculate
the value of the exponentH (H � 1ÿ m in our case) for some
share, then in all likelihood (see the beginning of this section),
this value will differ from H � 0:5, which corresponds to the
random walk model.

The reader will recall that two postulates lie at the base of
this model. First, the price increments 4 in any time interval
have a normal (Gaussian) distribution; this follows from the
central limit theorem and is obtained as a result of summation
of a sufficiently large number of independent random
variables with finite variance. Second, these increments are
statistically independent in disjoint intervals. It was the
rejection of the first postulate, while maintaining the second
one, that ledMandelbrot to consider a random process which
he called the L�evy flight [2]. The rejection of the second
postulate, while maintaining the first, led him to introducing
the concept of generalized Brownian motion (Fractional
Brownian Motion) [21].

The behavior of a time series for which H 6� 0:5 can be
described using any of these processes. For the ideological
base, people typically use the concept of fractal market
(Fractal Market Hypothesis, FMH), which is usually con-
sidered as an alternative to EMH. This concept assumes that
the market comprises a wide range of agents with different
investment horizons and, therefore, with different prefer-
ences. These horizons vary from one minute for intraday
traders to several years for banks and corporations. The
stable equilibrium in this market is the regime for which the
mean yield is independent of scale, except for a multiplication
by the appropriate scale coefficient [2]. Since this coefficient
has an undefined power exponent, we are actually dealing
with a whole class of regimes, each of which is determined by
its specific value of the index H. Consequently, the value of
H � 0:5 is fully equivalent to any other value (0 < H < 1).
Similar arguments caused serious doubts about the reality of
equilibrium on the stock market (see, e.g., Refs [20±24]) and,
hence, about the validity of the modern theory of finance.

Investigation of the function m�t� using the initial basis
(see the beginning of the section), as well as of Russian
(included in the MMVB index) and American (included in
the DJII index) companies, together with the corresponding
indices for the last ten years, makes it possible to clearly show
that the valueH � 0:5 is a distinguished one.

Figure 6 displays typical probability distributions of the
values of index m for a time series of one of the shares included
in the DJII index on the intervals of different lengths (from 8
to 256 days). All distributions are asymmetric. This means

that the average value of the index of fractality for this stock
differs from m � 0:5 in appropriate intervals. However, all
these distributions have the principal mode precisely at this
value of m.

To a first approximation, the following general pattern is
observed in all series. The function m�t� performs quasiper-
iodic oscillations around the position m � 0:5 between the
values of m < 0:5 and m > 0:5. The mode of the time series is
continuously changing, from the trend state via the random
walk to flat and then back. For each series, the states with
relatively stable values of m (see Fig. 5) emerge time and again,
then disappear. Among these states, the mode m � 0:5
occupies an obviously privileged position. For each time
series, it is the longest in all intervals containing 8 or more
points.

It should be emphasized that the agent-oriented inter-
pretation of the price fluctuations may vary greatly on
different scales. Thus, for example, agents' intraday behavior
is apparently very close to rational behavior on a small scale
when more than 50% of transactions are concluded (on U.S.
markets) by trading robots. Unlike this, an essential role on
scales from several days to several months is played by the
social psychology, which always involves an irrational
element. Incidentally, the unchanging nature of these fluctua-
tions is reproduced on all scales, beginning with the shortest.
This last remark points to a conjecture that some common
mechanism of retardation, accompanying most decision-
making processes, constitutes the nature of such fluctua-
tions. But the principal state is, nevertheless, the random
walk, which remains to act as the main attraction regime on
all scales.

4. Generally, the prediction problem seeks to determine
certain qualitative or quantitative parameters of the future
behavior of a time series on the basis of the entire array of
historical data. The most interesting in this situation is the
problem of determining the earliest precursors of the critical
behavior of a time series. We shall consider one approach to
solving this problem. Starting with Eqn (5), we introduce the
average amplitude L�d� using the formula

A�d� � hAi�d�i � mÿ1Vf �d� : �11�4 Various modifications of the Bachelier model [18, 19] typically operate

with logarithms of price increments instead of increments themselves. This

difference is not significant for us in this context.
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Multiplying Eqn (5) bymÿ1 � d and substituting into Eqn (6),
we obtain

A�d� � dHm for d! 0 ; �12�

where Hm � 1ÿ m. Comparing Hm with Fig. 5, we obtain a
visual confirmation that this index is a measure of persistence
for a series (see item 3 of this section) and a direct general-
ization of theHurst exponentH to small intervals. In item 3 of
this section we have seen that the index m essentially imposes a
certain method of functional integration of the time series,
and that it is then clear that the series corresponding to the
random walk acquires the maximum weight. It then becomes
possible to build a number of distributions, including
conditional ones, over m. It is becoming clear that the effect
of enhancement of large-scale fluctuations, and at the same
time a certain weakening of small-scale ones, plays a special
role here. This effect manifests itself because, first, the power
law for the function A�d� (as well as for the function Vf�d�)
holds in an immense range of scales: from several minutes to
several years. Second, the power-law function possesses an
important property: the slower it decays (in comparison with
a function with a different power exponent) for d! 0, the
faster it grows for d!1. This fact implies that a change in
the regime of the system caused by an abrupt drop in m
(increase in the index Hm) leads to a further suppression of
small-scale fluctuations and at the same time to intensifica-
tion of large-scale fluctuations in the series. This means that
an abrupt drop in small-scale fluctuations at present may,
under certain conditions, be a precursor to strong large-scale
fluctuations in the future. Testing over the entire database
mentioned above has demonstrated that this effect manifests
itself at a probability of about 70±80%. Note that this
percentage grows even higher in those cases in which the
impact of external factors can be reduced to a minimum.

Figure 7 plots the indicator (dashed curve) which was
constructed on the basis of this effect in the INTRAST
Management Company in 2007. The solid curve represents
the initial series, namely, the aggregated index including the
stock indices of both developed and developing countries

(one from each country).5 This approach excludes the factor
of mutual influences exerted by stock markets of different
countries against each other and produced by intercountry
flows of capital on the global financial market. Figure 7 gives
evidence that twice after 2001 the indicator revealed an abrupt
drop in small-scale fluctuations. The first time it happened
was inDecember 2004, and it was followed by steep growth of
all indices half a year later; the growth lasted for about two
years. The second time it happened was in April 2008 after
whichÐalso about half a year laterÐ the crisis triggered a
sharp drop in all indices. Moreover, we see from this figure
that a new signal is being actively formed now (08.11.2010),
which is a precursor of intense fluctuations of the stock
market in the mid-term (from six months to one year).6

Even though the indicator says nothing about the direction
of this strong movement, the information received may prove
to be sufficient, e.g., for building a successful asset manage-
ment strategy on the stock market.

To complete this section, several words are in order about
the effect of intensification of large-scale fluctuations as the
small-scale ones decrease. In essence, this effect signifies that
the trends in complex systems (natural, social, technological),
which form very slowly and imperceptibly but show more-
than-average implacability, often grow globally with time and
dictate the main vector of evolution of such systems. Note
that the well-known calmness effect (i.e., suppression of the
high-frequency noise component) which usually precedes
natural disasters (e.g., earthquakes) is a particular manifesta-
tion of this effect. Therefore, in their evolution, many global
trends do resemble the mustard seed (of the Gospel parable):
``...Although it is the smallest of all seeds, when it is fully
grown it is larger than the garden plants and becomes a tree,
and the birds in the sky come and nest in its branches''
(Matthew, 13:32).
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5 USA, Germany, France, Japan, Russia, Brazil, China, Korea.
6 This prediction is in clear contradiction to the general expectation of `a

slow emergence out of recession'.
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5. Conclusion
To recapitulate, new fractal indices have been proposed for a
one-dimensional fractal function f�t�: its dimension Dm and
the related index m. The limiting value of dimension Dm for
d! 0 coincides with the usual fractal dimension D. Numer-
ical calculations carried out for stock price series have shown
that the application of minimal covers leads to rapid
convergence to a power-law asymptotic behavior of the
function Vf�d� with respect to d. This is the reason why the
representative scale required to determine these parameters
with acceptable accuracy contains less data by two orders of
magnitude than, for example, the scale determining the Hurst
exponent H. This makes it possible to treat the index m as a
local characteristic and to introduce the function m�t�which is
an indicator of local stability of the time series: the greater m,
the more stable the series. It has been shown, using a very rich
empirical data array, that the index of fractality, in essence,
defines a natural way of integrating over all possible price
trajectories (starting from the shortest). It turns out that
trajectories corresponding to random walk have the greatest
weight. This fact can well be regarded as a justification for the
modern theory of finance. Finally, an early precursor of
strong fluctuations in stock markets was built, based on the
effect of enhancement of large-scale fluctuations accompa-
nied with suppression of small-scale ones.

Benoit Mandelbrot, who should rightly be considered one
of the main predecessors of econophysics, had the notoriety
of `iconoclast, a dynamiter of foundations' and earned
complete rejection by some among the economics commu-
nity. He was one of the most ardent critics of the modern
theory of finance based on the concept of general equilibrium
from its conception, and was seeking an acceptable alter-
native to it until the last days of his life. Econophysics tries to
propose an alternative to the concept of general equilibrium
in a similar manner, but now in the framework of the entire
theory of economics. Nevertheless, it was indeedMandelbrot
who was able to work out a system of concepts which allows,
as we have shown, not only generating an efficient prognosis
but also proposing, after appropriate modifications, what at
the moment appears to be the only empirical justification of
the classical theory of finance.

In conclusion, the authors take this opportunity to express
their profound gratitude to V M Polterovich for unflinching
support, helpful advice, and valuable comments.
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