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Nonclassical random walks
and the phenomenology of fluctuations
of securities returns in the stock market

P V Vidov, M Yu Romanovsky

1. Introduction. Experimental facts observed
in the fluctuations of securities returns
The logarithmic return of shares and stock indices, S�Dt�,
measured over a time interval Dt is defined as

S�Dt� � ln
Y�t� Dt�

Y�t� ; �1�

where Y�t� is the price of a share or the value of an index at
time t. It was the subject of systematic study already at the
time of L Bachelier [1]. Several facts have been established by
experimental studies of share return in international financial
markets.

First, for shares of the largest U.S. companies on the time
interval from 1994 to 1995, the cumulative distribution
function of probability of a fluctuation greater than x, and
also smaller than ÿx, is well described by a power-law
function of the form [2]

F�x� � xÿ3 ; S�Dt� > x ;

ÿxÿ3 ; S�Dt� < ÿx :
�

�2�

Similar results were obtained for the shares of German [3],
Norwegian [4], French, Japanese, Swiss, and British [5]
companies, as well as stock indices [6].

Russian stocks (`blue chips') exhibit similar behavior (2).
Figure 1 plots the cumulative distribution of returns for
positive (black symbols) and negative (white symbols)
fluctuations in Sberbank shares. The straight line in Fig. 1
plots the law xÿ3. The ordinate is the cumulative distribution
function, while the abscissa is the return normalized to the
appropriate experimentally calculated root-mean-square
return. We obtained similar curves for shares of other
Russian companies, too. Figure 2 plots the distribution
function of fluctuations of the Russian RTS stock index. It
is clearly seen that all the plots of cumulative distributions
resemble one another. At the same time, return curves for
larger Dt lie somewhat higher than return curves for lower Dt
(see also paper [5]).
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Figure 1. Cumulative distributions of normalized returns (see text) of
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tionsÐ light squares, one-minute negative fluctuationsÐ shaded squares;

one-hour positive fluctuationsÐ light triangles, one-hour negative fluc-

tuationsÐ shaded triangles; daily positive fluctuationsÐ light circles,

daily negative fluctuationsÐ shaded circles. Bold straight line shows the

dependence xÿ3. One-minute, one-hour and daily data were obtained on

trading days 10.01.2009±10.02.2009, 01.09.2008±30.09.2009, 23.01.2006±

30.09.2009 (MMVB stock exchange).

10ÿ1 100 101

10ÿ3

10ÿ2

10ÿ1

100

Normalized return

C
u
m
u
la
ti
ve

d
is
tr
ib
u
ti
o
n

o
f
re
tu
rn

fo
r
R
T
S
st
o
ck

in
d
ex

Monthly (ÿ)
Monthly (+)

Daily (+)
Daily (ÿ)

Figure 2. Cumulative distributions of normalized returns (see text) for the

RTS stock index at various Dt: daily positive fluctuationsÐ light circles,

daily negative fluctuationsÐ shaded circles; monthly positive fluctua-

tionsÐ light stars, monthly negative fluctuationsÐ shaded stars. Bold

straight line shows the dependence xÿ3. Daily data were obtained on

trading days 09.01.1995±27.06.2007 (RTS stock exchange), monthly data

Ð on trading days 09.01.1995±20.10.2010.

July 2011 Conferences and symposia 749



Second, the distribution Q�x� of the number of shares
traded in one transaction (one tick) definitely falls within the
LeÂ vy range, i.e., the asymptotic (`tail') part of the distribution
is well described by a xÿz curve, where 0 < z < 2 and we are
dealing with the cumulative distribution function (see paper
[7] and the discussion in Refs [8, 9]). The parameters
1:45 < z < 1:63 were obtained using a number of statistical
methods applied to the same sample of shares of major U.S.
market caps (see also Ref. [10]), z � 1:58 for the shares of the
85 largest companies trading on the London Stock Exchange
(LSE) in 2001±2002, and z � 1:53 for the shares of 13 highest
market caps included on the CAC 40 (Paris stock market)
index.

For Russian blue chips we have obtained indices in the
range 1:6 < z < 1:7, depending on the particular security.
Figure 3 plots the cumulative distributions of the trading
volume in one tick for Sberbank shares on 21.11.2007.

Obviously, these correlations are valid for shares only.
The situation with index returns is somewhat more compli-
cated. The returns of the indices can naturally depend on the
volume of trading in shares included in the index. However, it
would be difficult to verify this assumption experimentally.

Finally, it is well known that the process S�t� is delta-
correlated in time:

B�Dt� � 
S�t�S�t� Dt�� � d�Dt� ; �3�

for all shares [11]. This statement was tested for Russian blue
chips for various values of Dt, including the smallest interval
available to us, namely 1 min. The following result was
obtained in all cases: the value of the correlation function (3)
tends to zero at the first nonzero measurement point Dt. A
similar correlation function for the indices takes the form
� exp �ÿt=tcorr� [6], where the correlation time for the S&P
500 index (one of the most popular indices of the U.S. stock
market) is about 4 min [6], and for the Russian RTS index it is
0.85 min [12]. Therefore, the behavior of share and index
returns resembles a random process with independent
increments.

2. Brownian motion and Gaussian random walk
Random walk is an attractive visually convincing model of a
random process with independent increments. Formally, the

problem of a random walk is posed as follows. Find the
probability density that a particle, after N jumps from the
starting point (for this point we can choose, without loss of
generality, the point of origin of the coordinates) in space of
some dimensionality G, will find itself at a distance in the
range from R to R� DR. Each ith jump can be made in an
interval of length (in the model G-dimensional space) from ri
to ri � Dri with probability t�ri�. All jumps are independent
random variables.

The method of solving this problem is well known
(Chandrasekhar's scheme [13]). Let us assume that

R �
XN
i�1

ri : �4�

Given that the probability density function t�ri� possesses
moments of all orders, we have

W1�R� ! 1�����������������
2pNhr 2i

p exp

�
ÿ R 2

2Nhr 2i
�
: �5�

Putting now Nhr 2i � Dt (with D being the diffusion coeffi-
cient), we obtain the standard solution for the classical one-
dimensional diffusion of a Brownian particle, in which its
mean square displacement (variance) from the starting point
is proportional to t 1=2.

The most important requirement in the Chandrasekhar
scheme [13] is the existence of all moments of the jump law,
even though only the second moment appears in expression
(5). It seems likely that the jump law which is the `slowest' in
falling off to infinity and has all-orders finite moments is the
Subbotin distribution [14]: p�x� � exp �ÿx a�, a > 0 (in fact,
only slightly greater than 0).

3. The LeÂ vy walk
We shall analyze the one-dimensional random walk with the
law of the elementary jump t�ri�, which allows normalization
even though it does not have all finite moments. The simplest
approximation is provided by the power law which assumes
boundedness and smoothness for small jumps (at the zero
point):

t�ri� � C1

�z 2 � r 2i � b
: �6�

Here, C1 is a constant determined by the normalization
condition, C1 � 2G�b�z 2bÿ1=p 1=2G�bÿ 1=2�, where G�b� is
Euler's gamma function, b > 1=2, and z is a constant
interpretable as the characteristic length of the jump. Law
(6) is therefore scaleless only for big jumps with r4 z; in this
case, it is reducible to a Pareto type law [15]: t�ri� � C1=r

2b
i .

The distribution function for the law of the jump (6) reduces
to the LeÂ vy function

W1�R� � 1

p

�1
0

cos �KR�

� exp

�
ÿN�Kz�2bÿ1 G�3=2ÿ b�

22bÿ1G�b� 1=2�
�
dK : �7�

In principle, there is no need to demand that law (6) be
identical for all jumpsÐ the values of z can all be different
�zi�; in this case, the quantityNz 2bÿ1 in formula (7) should be
replaced with the expression

P
i z

2bÿ1
i .

The distribution law of LeÂ vy random walk is character-
ized by a slowly decaying asymptotics, i.e., by a significant
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Figure 3. Cumulative distributions of the trading volume in one tick for

Sberbank shares on 21.11.2007. The straight line traces the `tail' curve xÿz,
where z � 1:7.
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number of large fluctuations. Indeed, the asymptotics of
function (7) is

W1�R!1� �
G�2b� sin ��p=2��2bÿ 1��

pr 2b ; r � R

R0
;

R0 � z

2

�
N

G�3=2ÿ b�
G�b� 1=2�

�1=�2bÿ1�
;

�8�

i.e., the asymptotics of the LeÂ vy distribution falls within the
range from 1=r to 1=r 3. The LeÂ vy distribution has one very
interesting property. By dividing asymptotics (8) by the
asymptotics of the jump law (6), we obtain

W1�R!1�
t�r!1� �

Nr 2b

R 2b : �9�

This expression means that large fluctuations may occur
as a result of a single jump (R � r at N � 1).

4. Truncated LeÂ vy walk
The main difference between the truncated LeÂ vy random
walk [16, 17] and the Gaussian random walk lies in the thick
tails, i.e., a great number of large fluctuations R. The law of
the jump for truncated LeÂ vy distribution is the same law (6),
where now b > 3=2 (we continue to consider one-dimensional
random walk). Under these conditions, the law has at least a
second moment. For small fluctuations, up to R � 10z, these
distributions are well approximated by a corresponding
Gaussian function:

W G
1 �R� �

�����������������
bÿ 3=2

pNz 2

r
exp

�
ÿ bÿ 3=2

Nz 2
R 2

�
: �10�

This fact is an expression of the central limit theorem
(CLT) for such random processes [18]: the Gaussian function
describes fluctuations up to the magnitudes of �N lnN �1=2
greater than the characteristic average value z [19]. Some-
times, the result is referred to as the Chebyshev theorem; it
holds true for any b5 2 [20].

To determine the behavior of truncatedLeÂ vy distributions
in the range of large fluctuations R5 �N lnN �1=2z, we need
to find the exact form, so far unknown, of the asymptotics of
the distribution function. It can be shown exactly that the
asymptotic behavior of the density distribution of truncated
LeÂ vy walk can be described for any b by the law (Fig. 4)

W1�R� ÿ!
R!1

2 bz 2bÿ1N
p�2bÿ 3�R 2b : �11�

Furthermore, distribution function (11) describes not only an
infinitely divisible process [21], but also a stable one. Large R
fluctuations after a single jump (9) are possible for truncated
distributions only at b � 2, unlike fluctuations described by
the LeÂ vy function, which are possible for any 1=2 < b < 3=2.

Let us trace now how the root-mean-square deviation
changes with time. We obtain

hR 2i � Nz 2

2bÿ 3
: �12�

The law of truncated LeÂ vy walk [asymptotics (10), (11)]
can be normalized to the mean square of R (12). In this case,
all the Gaussian asymptotes (for small R) for every b become
identical. At the same time, the asymptotes (11) change to

� Nÿ1=2. Figure 5 plots the cumulative distribution function
of truncated LeÂ vy walk at b � 2. The difference among the
curves for different values of N is clearly seen. Cumulative
distributions behave similarly for all values of b.

5. Comparison with experimental data
The form of the distribution of the truncated LeÂ vy walk
obtained as a result of implementing the scheme with the law
of single jump (6) corresponds, therefore, at b � 2 to
expression (1); however, in this case there are differences for
various values of NÐsomething we do not observe in real
situations (see Introduction). To eliminate this discrepancy,
the walk scheme needs to be corrected. First we ask a
question: What in the experiment corresponds to a single
transactionÐ to the so-called tick. Now we need to answer
the following question: Is a tick a single jump in the random
walk scheme?

At b � 2, the variance simply equals N 1=2z. Experimen-
tally,N � t, where t is the frequency of fixing the values of the
return. Hence, it should be possible to determine the
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minimum time t that corresponds to the least possible interval
between instants of fixing the return, i.e., the interval between
two consecutive ticks. On the one hand, this interval is a
random quantity. Experimentally, it should not be difficult to
find its mean value. On the other hand, in terms of the model
this mean value should correspond to the average return of a
tick, i.e., to the value of z (see Section 4). It is possible to plot
mean returns for different time intervals t. Theoretically, by
virtue of formula (12) this curve should exhibit the form
� t 1=2. The plot of this function should definitely start from
the level of tick return. We can experimentally compare the
theoretical minimal time interval, dictated by the point of
intersection of the curve of the root-mean-square returns with
the level of the root-mean-square tick return (Fig. 6), with the
average time interval between two consecutive ticks. The
difference between the theoretically predicted minimum time
interval and the experimentally obtained average time
between two ticks for Gazprom shares is large compared
with the difference for the stocks of other companies on the
Russian marketÐ33%. The minimum difference between
these values is observed for the shares of SberbankÐonly
3%.

It is nearly certain that a tick is a single jump in the
random walk scheme. The first obvious possibility of
modifying the model boils down to an attempt of applying
the random walk scheme with continuous time (Continuous
Time RandomWalk, CTRW) [22]. Indeed, the time intervals
between two successive ticks can vary in a wide range. The
distribution of these intervals for the U.S. stock market is
known [23], with appropriate distribution function falling off
with a decrease in Dt as �Dt� 4:4. Presumably, no new results
can be obtained by taking into account the time interval
between transactions due to the presence of mathematical
expectation of the time interval between ticks.

Another possibility of modification of the truncated LeÂ vy
random walk scheme is the use of the power-law correlation
of standard deviation of z and the average volume of one
transaction. Our modification is limited to the assumption
that each standard deviation of z in the walk scheme [see the

law of jump (6)] is a random variable zi proportional to the
volume of the ith transaction (ith tick). We are returning to
the second experimentally identified property described in the
Introduction. We actually utilize the quite familiar, widely
used stock exchange rule: `the volume of trading drives the
price' [24, 25].

This modification signifies that we are introducing the
dependence of the probability distribution function of single
fluctuations ti�ri� on another random variable zi. In this case,
the model again resembles the CTRWmodel. The problem of
direct application of CTRW scheme lies in the fact that the
final distribution function for R will depend on the set of
random variables fzig. For example, the distribution function
of truncated LeÂ vy randomwalks at b � 2 is found in the form

Wb�2; zi�R� �
1

2p

�1
ÿ1

dK exp �iKR�
YN
i�1

exp �ÿKzi��1� Kzi� :
�13�

Since all variables fzig have the distribution function � xÿd

for large zi, where d � 2:5ÿ2:7 �d � zÿ 1�, formula (13) can
be averaged over each zi. This result will nevertheless be
wrong since the final expression for function (13) averaged in
this manner will disagree with the experimentally observed
data, namely it will not be proportional to Rÿ4 for large R.

It seems that using the simple CTRW scheme is possible,
at least for asymptotic values of function (13), because for
large R we have

Wb�2; zi�R� �
4
P

z 3i
pR 4

; �14�

and the set of random variables fzig only returns a single
random variable:

P
z 3i . Unfortunately, the distribution

function of the probability density of this variable on the
tails assumes the form � xÿ2=3ÿd=3. There is no mathematical
expectation for this function, which is necessary for the
application of the CTRW scheme [22]. In fact, the variables
fzig are included explicitly in expression (13) in various
combinations:

P
z 2i ,
P

z 3i , etc. Each of these combinations
is in itself a random variable. Because the asymptotic
distribution function is a function of the sum of cubed zi, we
can conclude that the sum converges to the LeÂ vy distribution
(see Ref. [13]). Only this condition ensures the stability ofP

z 3i as new terms are added to the sum.
Consequently, the CTRWmethod must be generalized to

the case of the absence of the conditional mean [of the random
variable

P
z 3i in formula (14)] (see Ref. [26]). As in the case of

the LeÂ vy distribution (7), expression (13) can be examined for
dependence onN, i.e., on renormalization. If the quantityR in
formula (13), or the corresponding asymptotic cumulative
distribution

Fb�2; zi�R� '
4
P

z 3i
3pR 3

�15�

is renormalized to the standard deviation �P z 2i �1=2, as we do
in all experiments, the result is the scaling dependence of
expression (15) in the form Nÿ1=2 for

P
z 3i � N [see formula

(11) and Fig. 5a). At the same time, the dependence of
P

z 3i
on N looks different because the distribution function of the
random variable

P
z 3i converges to the LeÂ vy distribution (see

above). The end result for the LeÂ vy distribution function isP
z 3i � N3=�dÿ1�, and the final observed dependence of

distribution (15) on N after renormalization of the actual
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profitability R to the experimentally obtained standard
deviation takes on the form

F renorm
b�2; zi

�
R�����������P
z 2i

p �
� N 3=�dÿ1�ÿ3=2 : �16�

If d � 2:5ÿ2:7, we obtain dependences (16) in the range from
N 0:5 to N 0:27 (Fig. 5b). It is seen that the standard
experimental renormalization provides a weak dependence
of all return distribution functions on the number of jumps
(ticks)N. Notice that such dependences (16) as a function ofN
are similar to the experimental results [6] and to our results,
too, obtained for the Russian stock market, where we
observed weak dependences on N: the returns increase as N
increases, in contrast to what we observe in Fig. 5a for the
simple scheme of truncated LeÂ vy random walks.

Notice that the established dependence on N occurs only
for the profitability of the stock. The possible dependence of
the index returns on the volume of trading in shares listed in
the index may have a different form (from the law xÿz). If this
law does not fall within the LeÂ vy range 0 < z < 2 and z is
greater than 2 (by only a little), then the cumulative
distribution of the index returns on long time intervals
(16 days as in Ref. [6], positive monthly returns of the RTS
index in Fig. 2: the last two points) can converge to Gaussian
one (see formula (16) for d � 3ÿ4). These distributions will
look similar to those shown in Fig. 5a for largeN, not like the
same curves in Fig. 5b.

6. Conclusion
The introduction of the law of jump of (6) type allows one to
consider in a unified analytical manner both the ordinary and
the truncated LeÂ vy walks. The truncated LeÂ vy walk asympto-
tically manifested the same properties of stability and
scalability as the ordinary random walk. Analytical asymp-
totes were obtained for the truncated random walk and
scaling laws were established. It turned out that the
asymptotic truncated LeÂ vy walk possesses characteristic
scaleless distribution � Rÿ2b, which is also typical of the
asymptotes of the `pure' randomLeÂ vy walk but, in contrast to
the latter, decays faster with increasing R. Therefore, the
truncated LeÂ vy walk, together with the pure random walk,
covers the entire class of Pareto distributions [15].

We can assume that the law � 1=x 3 for the cumulative
distribution function of share and index fluctuations is
universal. Such a distribution can be obtained by using the
scheme of random walks (jumps) with the law of single jump
(6) only at b � 2. This means that the law of jumps at such a
value of b, namely

ti�r� � 4z 3i

p�z 2i � r 2�2 ; �17�

is also universal. Here, the value of zi represents some
characteristic return used for normalization. This result can
be considered as proof of the existence of amicroscopic law of
return fluctuations on the stock market. Therefore, the prices
of all shares (indices act essentially as baskets of shares and
their behavior is similar) perform `jumps' for different
`distances' at constant probabilities. The microscopic law
(17) explains the phenomenology of the law � 1=x 3 [2].

Apparently, the existence of strict laws of a single jump
(16) is possible for two reasons. First, the probability
distributions of fluctuations of returns should have a second

moment, i.e., have variance. In the final analysis, this
requirement is a reflection of the limited amount of money
available. Second, the distribution function must have the
same asymptotics as the law of the jump, i.e., a nonzero
probability of large fluctuations resulting from a single jump
must exist. All LeÂ vy functions meet the second requirement
but not the first. Only distribution function (12) at b � 2
satisfies both conditions.

A simple definition of the zi variable as a characteristic
length of a jump cannot provide an exact explanation for the
dependence of the normalized distribution functions and
cumulative distributions on N. A modification of the
random walk scheme is provided through the introduction
of the dependence of fzig on the number of shares traded in
one transaction (tick), because the correspondence of one tick
to one jump is an experimentally verified fact (see also
Ref. [12]). In this case, the distribution function of the
quantity

P
z 3i converges to the LeÂ vy function with the LeÂ vy

index �bÿ 1�=3. The final dependence of the cumulative
distribution functions on the number of ticks (jumps) falls
into the range from N 0:5 to N 0:27. Russian stocks exhibit
weaker dependence than shares from the USA and shares
traded in the LSE and the Paris Stock Exchange.We conclude
that the presented final random walk scheme looks like the
CTRW scheme lacking the conditional expectation (for the
quantity

P
z 3i ).

This work was partially supported (M.Yu.R.) by RFBR
grant 10-07-00202.
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