
Abstract. The well-known Bose±Einstein and Fermi±Dirac
quantum distributions can be considered as stationary solu-
tions of kinetic equations for the mean occupation numbers in
an ideal gas of an arbitrary finite number of identical particles.

1. Introduction

In recent years, with experimental advances in the deep
cooling of dilute gases [1±3] and with the achievement of
Bose±Einstein condensation [4, 5], it has become a necessity
to apply quantum statistics to ensembles of a relatively small
(of order 1000±1,000,000) number of particles, when the
thermodynamic limit cannot be justifiably used and when, in
addition, the discrete structure of energy levels should be
taken into account [6±31].

The average number of particles in a state of energy Ek in
an ideal gas being in contact with a thermostat is given by

nk � 1

exp ��Ek ÿ m�=T � � 1
; �1�

where T is the temperature (in energy units), and m is the
chemical potential defined by the conditionX

k

nk � N : �2�

Here,N is the total number of particles in the system, and the
� (ÿ) sign refers to the Fermi (Bose) statistics. As is known,
this distribution is asymptotically exact for a canonical
ensemble in the thermodynamic (N!1) limit (see, for

example, Refs [32, 33]). For systems with a finite number of
particles, this distribution is approximate and corresponds to
the grand canonical ensemble model, in which the conserva-
tion of the number of particles according to condition (2) is
obeyed on the average.

In the present note we point out that distribution (1) is a
stationary solution of the kinetic equations for the average
occupations in an ideal gas consisting of an arbitrary finite
number of particles. In so doing, wemake no use of the general
kinetic equation for the density matrix and restrict ourselves
to only the kinetic (or balance) equations for average
occupations. Notice that while kinetic equations for density
matrix with due account of the interparticle interaction have
been repeatedly discussed for application to quantum
statistics [35±42], their analysis for finite systems in the
canonical, let alone microcanonical, ensembles remain an
intriguing open question. This article, of course, is not
intended to solve the problem but rather to discuss some
methodological aspects. As well as illustrating the general
point that the equilibrium distribution is a stationary solution
of the kinetic equations (see, for example, paper [34] and
references therein), we will reveal the correspondence between
the way these distributions are approximated (specifically, by
the grand canonical or microcanonical ensembles) and what
form the corresponding kinetic equations take.

2. Kinetic equation for average occupations
in the grand canonical ensemble

As is known, the establishment of thermodynamic equili-
brium in a system does not depend on exactly how particles
interact with the thermostat, nor on how strong this
interaction is. Note that we will consider the gas to be ideal
and its constituent particles as mutually noninteracting.

The interaction operator between an ideal gas of identical
particles and a thermostat will be here presented as the sum of
interaction operators for each particle, with one-particle
operators being considered identical.

We will limit the discussion to k! k� 1 transitions
between the neighboring states of a single particle due to its
interaction with a thermostat of temperature T. Denoting the
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probabilities of such transitions by wk; k�1 and wk; kÿ1, the
detailed balance principle can be expressed as

exp

�
ÿ Ek

T

�
wk; kÿ1 � exp

�
ÿ Ekÿ1

T

�
wkÿ1; k : �3�

The transition probabilities per unit time between the multi-
particle states

j . . . nkÿ1; nk; nk�1; . . .i ! j . . . nkÿ1 � 1; nk ÿ 1; nk�1; . . .i

can be written as follows using the wave function symmetry of
a system of identical particles:

Wk; kÿ1 � wk; kÿ1nk�1� nkÿ1� ; �4�

where the upper (lower) sign refers to the Fermi±Dirac (Bose±
Einstein) statistics.

Denoting the number of particles in state k by nk, the
probability that this number in a time Dt will increase by one
is given by

�Wkÿ1; k �Wk�1; k�Dt : �5�

Similarly, the probability that the number of particles in state
k will decrease in a time Dt by one is

�Wk; kÿ1 �Wk; k�1�Dt : �6�

Therefore, the average quantum mechanical change in the
number of atoms in this state in a time Dt is

Dnk � ÿ�Wk; kÿ1 �Wk; k�1�Dt� �Wkÿ1; k �Wk�1; k�Dt :
�7�

As a result, the time derivative is

_nk � lim
Dt!0

Dnk
Dt
� ÿ�Wk; kÿ1�Wk; k�1���Wkÿ1; k �Wk�1; k� :

�8�

Using formula (4), we obtain

_nk � ÿwk; kÿ1 nk�1� nkÿ1� ÿ wk; k�1 nk�1� nk�1�
� wk�1; k nk�1�1� nk� � wkÿ1; k nkÿ1�1� nk� : �9�

This equation for the rate of change in the number of particles
in k state is valid under the assumption that the initial state of
the system was one with definite (integer) occupation
numbers. We will assume further on that the right-hand side
of Eqn (9) can be independently (statistically) averaged over
the occupation numbers of different states, allowing equa-
tion (9) to be considered as kinetic equations for the average
occupation numbers.

Summing the left-hand and right-hand sides of Eqn (9),
one readily obtains the law of conservation of the average
number of particles:X

k

_nk � 0 : �10�

This means that equations (9) correspond to the grand
canonical ensemble model.

By using the relationship

1� 1

nk
� � exp

�
Ek ÿ m

T

�
; �11�

which follows from Eqn (1), it is readily shown that
distributions (1) represent a stationary solution of equations
(9). That this is indeed the case is easily seen by substituting
Eqn (1) into the right-hand side of Eqn (9). The inverse
statement also appears to be substantive: kinetic equations
can be represented in the form (9) if their stationary solutions
are identical to distributions (1).

Kinetic equations (9) should be modified if there are
degenerate energy levels in the system. Assuming the level
Ek to be gk-fold degenerate and summing the left-hand and
right-hand sides of the equations referring to the same energy
value, we arrive at

_nk � 1

gk

�ÿ wk; kÿ1 nk�1� nkÿ1� ÿ wk; k�1 nk�1� nk�1�

� wk�1; k nk�1�1� nk� � wkÿ1; k nkÿ1�1� nk�
�
: �9a�

Now k subscript numerates energy levels, but nk, as before,
denotes the occupation of one state of a given level. Equation
(2) for the chemical potential in this case becomesX

k

gk nk � N : �2a�

The results so obtained can be assessed for their accuracy
by comparing what three different approaches Ð the grand
canonical ensemble approximation (corresponding to the
stationary solution of the kinetic equation), the thermody-
namic limit approximation, and the exact recurrence method
[30]Ðpredict for average occupation numbers in the Bose±
Einstein condensate of an ideal gas of 1000 bosons in an
isotropic harmonic trap (see Table 1).

Here, temperature is expressed in units of critical
temperature Tc as obtained in the thermodynamics limit. It
will be recalled that for an isotropic harmonic trap
Ek � �3=2� k� �ho, where o is the natural frequency of the
harmonic trap, gk��k� 1��k� 2�=2, and Tc �
�ho�N=1:202�1=3. The last column of the table gives the
average occupation numbers of a Bose±Einstein condensate
in the thermodynamic limit: n0 tl�N�1ÿT 3=T 3

c �.

Table 1.Ground state occupation in an isotropic harmonic trap calculated
using a grand canonical ensemble (n0), the exact recurrencemethod (n0 rec),
and the thermodynamic limit (n0 tl) for 1000 Bose particles.

T=Tc n0 n0 rec n0 tl

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

996.8
982.2
950.8
896.8
814.4
697.4
540.5
338.1
93.8
5.95
2.21
1.25
0.82

996.8
982.2
950.7
896.6
813.8
696.5
538.7
334.5
80.3
5.81
2.21
1.26
0.83

999
992
973
936
875
784
657
488
27.1
0
0
0
0
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3. Doppler cooling

Awell-knownmethod of cooling a gas is by irradiating it with
monochromatic light which is red-shifted relative to an
atomic resonance transition Ð a method which is commonly
referred to as Doppler cooling [1±3]. Let us demonstrate that
the application of Doppler cooling is equivalent to immersing
the gas into a fixed-temperature thermostat.

Consider the model of a one-dimensional harmonic trap.
The probability of light absorption per unit time by an

atom with the quantum vibrational number k changing by
unity can be written out as

wk; k�1 � ak; k�1
�o0 � oÿ oL�2 � G 2=4

: �12�

Here, the � (ÿ) sign corresponds to k being increased
(decreased) by unity, the constants ak; k�1 � ak�1; k are
proportional to the laser field intensity, G is the radiative
width of the excited electronic state of the atom, and o is the
natural frequency of the harmonic trap. It will be further
assumed that the return to the ground electronic state does
not, on average, change the vibrational quantum number. If
D � o0 ÿ oL > 0, i.e., the laser frequency is shifted to the red
side of the resonance frequency, then absorption events that
decrease the quantum number have a higher probability than
transitions increasing it, with the consequence that the
absorption of light will result in lowering the atomic
vibrational energyÐwhich is cooling.

Using Eqn (12) for the probability, we obtain

wk�1; k
wk; k�1

� �D� o�2 � G 2=4

�Dÿ o�2 � G 2=4
: �13�

For o5D, one finds

wk�1; k
wk; k�1

� �D� o�2 � G 2=4

�Dÿ o�2 � G 2=4
� D 2 � G 2=4� 2Do

D 2 � G 2=4ÿ 2Do

�1� 4Do
D 2� G 2=4

� exp

�
4Do

D 2� G 2=4

�
� exp

�
�ho
Teff

�
; �14�

where

Teff � �h
D 2 � G 2=4

4D
: �15�

Relation (14) expresses detailed balance at temperature Teff.
The minimum value of temperature is obtained for mismatch
D � G=2 and equals Tmin � �hG=4, the equilibration process
itself being described by equations (9). It can be said that by
exposing the system to lower frequency radiation than the
resonance-produced radiation, we place it into a thermostat
at a temperature given by Eqn (15). It is this thermostat which
realizes the so-called optical molasses technique [2]. It should
be noted that, unlike the standard experimental setup, the
Doppler cooling of a trapped gas does not, in principle,
require the use of colliding beams.

4. A grand microcanonical ensemble

Next, we will show that an isolated system of an arbitrary
finite number of particles also allows distributions (1) to be
obtained as stationary solutions of the corresponding kinetic
equations. To make things more tractable, only the Bose±

Einstein statistics will be considered. The proof for the
Fermi±Dirac statistics is similar.

The relaxation of an isolated system to thermodynamic
equilibrium occurs via the interaction between the particles.
Importantly, this interaction can be of any arbitrary nature
provided only that, as a result of a sequence of transitions, any
pair of the system's states is connected by the interaction. In
what follows, the interparticle interaction is assumed to be
weak and its effect on quantum states changing and energy
levels negligible.

Because it is necessary to ensure energy conservation law
for interparticle interactions in an isolated system, we will
consider a special model of a one-dimensional harmonic trap,
whose feature of equidistant energy levels allows for satisfy-
ing this requirement in a simple and clear way. The
interparticle interaction operator can also be taken in the
harmonic approximation as a nondiagonal quadratic form in
particle coordinates. To first order in perturbation theory,
such interaction describes transitions in which one particle
moves to the upper (lower) neighboring level, whereas
another particle moves to the lower (upper) neighboring
level. To this model should, of course, be added the
transverse relaxation of the states being considered. Assum-
ing the matrix elements of the nondiagonal quadratic form to
be all equal to each other and choosing an appropriate time
scale, the system of kinetic equations for this process
simplifies to

_nk � ÿnk�nkÿ1 � 1� k
X

p�1; p 6�k; p 6�k�1; p 6�kÿ1
npÿ1�np � 1�

� pÿ nk�nk�1�1��k�1�
X

p�0; p 6�k; p 6�k�1; p 6�kÿ1
np�1�np� 1�

� � p� 1� � nk�1�nk � 1��k� 1�
X

p�1; p 6�k; p 6�k�1; p 6�k�2
npÿ1

� �np � 1� p� nkÿ1�nk � 1� k
X

p�0; p 6�k; p 6�kÿ1; p 6�kÿ2
np�1

� �np � 1�� p� 1� : �16�
The above set of equations ensures the laws of conserva-

tion of the average number of particles and of the average
energy, thus satisfying requirements for the grand canonical
ensemble. To check the law of conservation of the average
number of particles, namelyX

s

_ns � 0 ; �17�

note that corresponding to each term of the type
ÿnk�nk�1 � 1� np�npÿ1 � 1� in the equation for _nk is a similar
term but with the sign `�' in the equation for _npÿ1. The sumP

s _ns is therefore zero.
The law of conservation of average energy can be

expressed in the formX
s

s _ns � 0 �18�

and can be verified as follows. The combination

�k� 1� nk�nk�1 � 1� pnp�npÿ1 � 1� �19�

appears only in the four terms of this sum: with _nk multiplied
by ÿk; with _nk�1 multiplied by (k� 1); with _np multiplied by
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ÿp, and with _npÿ1 multiplied by pÿ 1. Summing these factors
yields zero, thus proving the validity of Eqn (18).

Let us show that, similarly to the case of a grand canonical
ensemble, equations (16) have as their stationary solution the
Bose±Einstein distribution

nk � 1

exp ��kÿ m�=T � ÿ 1
: �20�

Here, the temperature T and the chemical potential m are in
units of �ho, with o the natural frequency of the harmonic
trap. It is assumed that the chemical potential is reckoned
from the ground state energy.

Introducing notations

~wk; kÿ1 � k
X

p�1; p 6�k; p 6�k�1; p 6�kÿ1
npÿ1�np � 1� p ;

~wk; k�1 � �k� 1�
X

p�0; p 6�k; p6�k�1; p 6�kÿ1
np�1�np � 1�� p� 1�;

�21�
~wk�1; k � �k� 1�

X
p�1; p 6�k; p6�k�1; p 6�k�2

npÿ1�np � 1� p ;

~wkÿ1; k � k
X

p�0; p 6�k; p 6�kÿ1; p 6�kÿ2
np�1�np � 1�� p� 1� ;

equations (16) take the following form, similar to Eqn (9):

_nk � ÿnk�nkÿ1 � 1� ~wk; kÿ1 ÿ nk�nk�1 � 1� ~wk; k�1

� nk�1�nk � 1� ~wk�1; k � nkÿ1�nk � 1� ~wkÿ1; k :
�22�

It is easy to show using Eqns (20) and (21) that the
coefficients ~wk; kÿ1 and ~wkÿ1; k are related in the same way as
wk; kÿ1 and wkÿ1; k in Eqn (9):

~wkÿ1; k � ~wk; kÿ1 exp
�
ÿ 1

T

�
: �23�

This is sufficient to argue that, as shown in Section 3,
distribution (20) is a stationary solution to kinetic equations
(16). For a degenerate system, kinetic equations (16) can be
modified similarly to equations (9a).

To illustrate the application of the Bose±Einstein distribu-
tion to an isolated system of a finite number of particles, let us
consider a system of a million bosons in an isotropic
harmonic trap and determine how its chemical potential and
the occupation of the ground state (i.e., of the Bose±Einstein
condensate) depend on temperature. Equation (2a) in this
case takes the formX

k�0; 1; 2; ...

�1=2��k� 1��k� 2�
exp ��kÿ m�=T � ÿ 1

� N : �24�

Table 2 lists the results obtained from Eqn (24) by an easy-to-
use solution technique. The last column of the table gives the
average energy value per degree of freedom, calculated as

e � 1

2
� 1

3N

X
k�0; 1; 2; ...

�1=2� k�k� 1��k� 2�
exp ��kÿ m�=T � ÿ 1

: �25�

Comparing the first and last columns of the table can, for
a specified initial energy, determine the steady state tempera-
ture to which the isolated system relaxes.

5. Conclusion

The above analysis shows that the Fermi±Dirac and Bose±
Einstein distributions for an ideal gas of an arbitrary finite
number of particles can be interpreted as the stationary
solutions of the proposed kinetic equations.

It is to be noted again that our kinetic equations are of an
approximate nature, because their derivation involves aver-
aging over the occupation numbers of different states. This
approximation corresponds to the grand canonical and grand
microcanonical ensemble models. At the same time, compar-
ison with exact results for a canonical ensemble of even a
relatively small (1000) number of Bose particles shows (see
Table 1) that the obtained stationary solutions are quire
accurate for noticeable departures from the thermodynamic
limit approximation.

By solving kinetic equations (9) or (21) with arbitrary
initial equations, it is possible to demonstrate the evolution of
how thermodynamic equilibrium is established and, in
particular, how, in the case of a Bose gas, the Bose±Einstein
condensate forms. A still better picture of the process can be
achieved with the aid of statistical test methods (Monte Carlo
simulation) using transition probabilities of type (4) without
averaging over occupation numbers.
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