
Abstract. The fundamentals of a new-generation crystallogra-
phy developed by the authors, known as diffuse-dynamical
multiparametric diffractometry (DDMD), are reviewed. Ko-
valchuk and Kohn, in their classic paper ``X-ray standing
wavesÐa new method of studying the structure of crystals''
(Sov. Phys. Usp. 29 426 (1986)) provided theoretical and
experimental justification for applying the method of X-ray
standing waves to perfect crystals. The present paper discusses

the results of extending their work to crystals with defects in
which standing diffuse waves arise in addition to X-ray standing
waves. The effect exerted by defects on the dynamical scatter-
ing pattern then depends on the diffraction conditions, thus
creating a new phenomenon that manifests itself in a widely
diverse diffuse-dynamical picture inherently impossible for
kinematical scattering. By adjusting the diffraction conditions,
this allows modifying the Bragg and diffuse wave fields (from
running to standing), and hence changing the character of the
field interaction with the crystal, with the result that experi-
ments can provide sufficiently many various scattering patterns
for the problem of unique multiparametric diagnosis to be
solved by treating the patterns collectively. Theoretical and
experimental fundamentals of DDMD and the results of its
practical application are discussed.

1. Introduction

Diffuse-dynamical multiparametric diffractometry (DDMD)
developed in [1±8] dramatically broadens the potential of
crystallography. Classic crystallography created early in the
last century is based on either kinematical (single scattering
approximation) or more general and rigorous dynamical
diffraction theories (taking multiple scattering into account)
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in crystals with an ideally periodic (without defects) structure,
and therefore characterizes only this ideal structure and
cannot be used for the diagnostics of defects [9±15]. How-
ever, as recently became obvious, the composite of the
required properties of new materials being developed is
mainly determined not by the initial structure of their
periodic gratings but by the deviations from their periodicity
inevitably produced by modern technologies, i.e., by various
types of defects, in particular, the artificial nanosize super-
structure. This last can be investigated only based on crystal-
lography that accounts for the diffuse scattering caused by
these deviations from the periodic structure of crystal lattices.

The theoretical foundations of such crystallography
involving diffuse scattering were first developed in the
framework of kinematical methods [15] and then dynamical
ones (the authors of this review and colleagues [16±64]). We
note that only diffuse-dynamical crystallography was capable
of solving the problem of uniquemultiparametric diagnostics,
for example, for a large number of characteristics of defects of
several types simultaneously present in crystals or the
structural parameters of multilayer defect systems selectively
present for each layer without its destruction. This proved
possible due to the diversity of diffraction patterns in
dynamical (multiple) Bragg and diffuse scattering discovered
in [1]. It is important that this diversity, which only has to be
used in order to increase the information content of
diagnostics in the studies of multiparametric systems, proved
to be individual for each type of defect in crystals. This
additionally increased the information potential of diagnos-
tics based on combining X-ray diffraction measurements for
one sample obtained under various conditions of dynamical
diffraction as independent mutually supplementing experi-
mental data, and allowed uniquely solving multiparametric
inverse problems of simultaneously reproducing the para-
meters of several types of defects in crystals or numerous
characteristics of artificial superstructures and superlattices
of nanosystems by several scattering patterns.

The idea of solving this multiparametric problem for
systems with a complex defect structure by simultaneously
processing the necessary set of experimental diffractometry
data obtained under different dynamical diffraction condi-
tions was stimulated and substantiated by the discovery of the
diversity of the influence of defects on the dynamical
scattering pattern (its dependence not only on the type of
defects but also on diffraction conditions). This idea was used
for the development of new principles providing new
functional possibilities for diagnostics in the DDMD frame-
work.

2. Comparative analysis
of the influence of defects and diffraction
conditions on kinematical
and dynamical scattering patterns

2.1 Kinematical scattering
The radiation scattering potential of an imperfect crystal,
unlike that of a perfect crystal, is nonperiodic and depends on
random variables characterizing the distribution of defects in
the crystal. Such a nonperiodic potential in the Krivoglaz
theory [15] is written as a sum of two terms. The first is a
potential averaged over random variables for fixed para-
meters of the crystal, which becomes periodic when the
distribution of defects is random (homogeneous). The

periodicity parameter differs from that in a perfect crystal.
The second term is a fluctuation part describing the deviation
from this new periodicity. The periodic part, unlike the
potential model for a perfect crystal, depends on statistical
characteristics of defects (mainly due to the Krivoglaz±
Debye±Waller factor, which Krivoglaz called the static
Debye±Waller factor) and describes Bragg scattering that is
directly produced by the corresponding part of the potential
of a real crystal. The dependences of the Bragg scattering
intensity on other parameters characterizing diffraction
conditions remain the same as in a perfect crystal and are
described by a separate factor.

The part of the real crystal potential corresponding to the
introduced fluctuation term directly forms diffuse scattering.
The scattering intensity distribution in the reciprocal lattice
space, which Krivoglaz expressed in terms of defect char-
acteristics by using his method of fluctuation waves, proved
to be themost informative for the diagnostics of defects by the
character of their resulting influence on the total kinematical
scattering pattern (the sum of its Bragg and diffuse compo-
nents). This influence for any fixed reflex is independent of the
parameters determining the diffraction conditions, both for
the total integrated intensity of the reflex and for the intensity
distribution at each point in the reciprocal lattice space. The
latter is explained by the fact that the appearance of defects
always results in a decrease in the Bragg scattering component
and an increase in the diffuse component, while the resulting
influence of defects on the total intensity is determined by the
ratio of the contributions of these components.

The analysis shows that this relation in the kinematical
theory is independent of the diffraction conditions because
the dependences of both components on these conditions are
identical (such as in a perfect crystal, for each of the
components, both integrated ones and those deviating from
the lattice site at any point in the reciprocal lattice space) and
do not affect their ratio. It is important in this case that the
dependences of Bragg and diffuse scattering on the wave
vectors and defect characteristics, on the one hand, and on the
diffraction conditions, on the other hand, are factored and do
not affect each other. The diffuse scattering distribution in the
reciprocal lattice space is the direct single-valued Fourier
transform of the fields of atomic displacement from crystal
defects. The half-width or the integrated width of Bragg
distributions is independent of defects and is determined
only by the crystal size and shape (shape function), while the
dependence of the Bragg intensity on defect characteristics is
determined only by the individual Krivoglaz±Debye±Waller
factor, which for fixed reflections is independent, like the
crystal shape function, of diffraction conditions.

2.2 Dynamical scattering
It follows from [16±20] that in the case of dynamical
diffraction, due to multiple scattering, both the Bragg and
diffuse intensity components are determined by both parts of
the potential. As a result, the dynamical Bragg scattering is
described not by the average potential, as in the Krivoglaz
theory, but by the effective periodic potential (complex and
nonlocal) additionally renormalized due to rescattering by
the fluctuation part. This effective potential considerably
differs from the potential averaged over the configuration of
defects.

The main difference is the appearance of a unique
structure-sensitive extinction factor due to diffuse scattering
[16]. This new fundamental concept of the dynamical theory
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was first introduced by Molodkin and Tikhonova in [16],
where the physical nature of this factor and its dependences
on the characteristics of defects and diffraction conditions
were established. This factor describes the predicted [16]
attenuation of Bragg and diffuse waves due to their scatter-
ing by deviations from the periodicity of the potential
(initially called the efficient absorption effect). Due to the
effect described by this factor and other dynamical effects,
which are not directly related to multiple scattering by the
effective periodic potential itself and are analogous to
dynamical effects in perfect crystals, the Bragg reflection
intensity is much more sensitive to the characteristics of
defects in dynamical diffraction than in the kinematical case,
which is determined by the Krivoglaz±Debye±Waller factor
alone.

In addition, differences from the kinematical case
appeared in the dependence of the intensity of Bragg
reflections on the diffraction conditions, which now become
different for different scattering vectors (different deviations
from the exact Bragg relation) due to dynamical interference
effects and hence the Bloch character of the dispersion law for
particles scattered in crystals. This dependence `mixes up'
with the dependence on the characteristics of defects, such
that the dependences on diffraction conditions and character-
istics of defects of Bragg reflection intensities are no longer
factored, mainly due to the appearance of the above-
mentioned extinction factor caused by diffuse scattering.

The main dynamical feature of diffuse scattering proved
to be the strong dependence of its intensity distribution in the
reciprocal-lattice space on diffraction conditions. Here, the
dependences on the characteristics of defects are considerably
more complicated than in the kinematical case due tomultiple
scattering and `mix up' with dependences on the parameters
determining diffraction conditions, which are in turn depen-
dent on scattering vectors.

As shown in [16±20], multiple rescattering of diffuse waves
by the periodic part of the potential transforms them into
Bloch wave fields, for which the effects of anomalous
transmission and extinction of diffuse scattering were pre-
dicted [21±23] and confirmed both theoretically [67±69] and
experimentally [44]. These effects change the diffuse scattering
pattern at a fixed defect structure due to a change in the
diffraction parameters only, and this effect is much stronger
than the one due to a change in the characteristics of defects
themselves, as shown in Figs 1 and 2.

Figure 1 shows that three-dimensional images demon-
strating the diffuse scattering intensity distribution in the
reciprocal lattice space for a silicon crystal containing small
spherical clusters drastically change upon increasing the
effective thickness of the crystal. In this instance (Fig. 1c), in
contrast to the Borrmann effect in perfect crystals, two ridges
appear instead of one. One of these ridges, caused by the
anomalous transmission of the Bragg component, corre-
sponds to the exact Bragg position of the diffracted beam
(analyzer). In addition, the high peak caused by the combined
action of these effects appears at the intersection of these
ridges.We note that the peak in Fig. 1c is 40 times higher than
each of the peaks in Fig. 1a.

Multiple scattering effects in the dynamical case depend
on the diffraction vector, i.e., on the position of the
observation point in the reciprocal lattice space with respect
to a reciprocal lattice site and, thus, somewhat mask the
influence of defects, which should be determined in diagnos-
tics by using the corresponding formulas of the dynamical

theory. The dependences of the reflectivity and absorptivity
of a crystal for Bragg and diffuse components are identical in
the kinematical theory and are independent of deviations
from the exact Bragg relation or the deviation of the
observation point in the reciprocal lattice space from the
relevant reciprocal lattice site. In turn, scattered intensity
distributions in the reciprocal lattice space are determined by
the shape function, i.e., by the shape and size of the crystal
and the distribution of the Fourier components of the
displacement fields of atoms from defects in the reciprocal
lattice space.

All these distributions in the kinematical theory are
independent of diffraction conditions, and therefore the
influence of defects on the kinematical scattering pattern is
also independent of these conditions.

In the dynamical theory, both the refractive index and the
absorption coefficient become dependent on deviations from
a reciprocal lattice site, i.e., on the position of the point under
study in the reciprocal lattice space. Therefore, the reflectivity
and absorptivity of a crystal, which determine the dependence
of the scattering pattern on diffraction conditions, depend on
these deviations. As a result, in the case of dynamical
diffraction, due to dynamical interference effects and hence
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Figure 1.The change in the scattering pattern (three-dimensional images of
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of defects (dislocation loops with different orientations) [23].

July 2011 Multiparametric crystallography using the diversity of multiple scattering patterns for Bragg and diffuse waves 663



the Bloch character of the dispersion law for particles
scattered in crystals, this dependence on diffraction condi-
tions is different for different points in the reciprocal lattice
space, i.e., diffraction conditions affect the scattering pattern
differently in different regions of the reciprocal lattice space.
Because defects of different types make contributions to
different regions of the reciprocal lattice space, it is possible
to control contributions from various types of defects to the
scattering pattern by changing the diffraction conditions
during dynamical scattering. This possibility, which is
principally absent in kinematical scattering, leads to a
change in the sensitivity of the dynamical pattern to various
types of defects [30] under changing diffraction conditions.

Therefore, for kinematical scattering, the intensity dis-
tribution in the reciprocal lattice space is determined by the
corresponding distribution of the Fourier components of the
displacement field caused by defects in the reciprocal space,
and the type of this distribution is independent of diffraction
conditions.

In dynamical diffraction, the scattered intensity distribu-
tion is determined by the competition between distributions
of the Fourier components of the displacement field of atoms
from defects in the reciprocal lattice space and the distribu-
tion of factors in the reciprocal space, which appear only in
dynamical scattering and depend on the diffraction condi-
tions. As a result, in dynamical diffraction, the influence of
defects on the dynamical scattering pattern depends both on
the characteristics of defects and on diffraction conditions.
These dependences are determined in the developed dynami-
cal theory, and can therefore be purposefully changed for
increasing the information content of dynamical diffracto-
metry. We note that paper [23] was the first step, concerning
only diffuse scattering, on the way to explaining the nature of
the diversity of the dynamical scattering pattern as a whole,
which is related to a change in the influence of defects on this
pattern under changing diffraction conditions. The depen-
dences of diffuse scattering patterns on the crystal thickness
(see Fig. 1) are stronger than those on the defect type, shown
in Fig. 2, for reasons that are discussed in detail for the first
time in this review.

We note that the dynamical theory of scattering in
imperfect crystals developed in [16±23] was later improved
and more general methodological approaches expanding the
field of applications were proposed in [24±75]. The results of
these papers confirm the results and conclusions obtained in
[16±23], which are presented in what follows. In addition, we
point out the classic paper by Kato [76] with the title
corresponding to the subject of papers [16±75]. That paper
was devoted to the development of the statistical dynamical
theory of diffraction. However, Kato did not consider
crystals with defects at all, but solved the problem of
statistical averaging over the mosaic structure of crystals.
Unlike the theory developed in [16±75], the Kato theory does
not give any formulas relating the diffraction intensity
distribution in the reciprocal lattice space or the integrated
scattering intensity to the characteristics of specific defects.
As in most papers [70±76], the Kato theory is based on the
solution of the Takagi equations, which are valid only for
continuous displacement fields and are therefore not quite
correct quantitatively in the presence of microscopic defects,
especially of nanosize defects.

The first step toward the explanation of the diversity of
the total dynamical scattering pattern wasmade as far back as
1988 [23], when the principal possibility of controlling the

distribution of the diffuse component of the scattering pattern
in dynamical diffraction by changing the sample thickness
was shown, which cannot be performed in kinematical
scattering in principle.

We note that the diversity of diffuse scattering distribu-
tions that is found differs qualitatively from the known
diversity of the dynamical scattering pattern in perfect
crystals caused by the dependence of the refractive index
and absorption coefficient (and hence of the influence of
diffraction conditions on the scattering intensity determined
by these coefficients) on the position of the observation point
in the reciprocal lattice space. This dependence appears due to
dynamical interference effects and hence to the Bloch
dispersion law for particles scattered in crystals. The
qualitative differences are not limited to a more complicated
manifestation of diffuse scattering multiplicity.

The main difference is that although the diversity in
perfect crystals is caused by multiplicity effects (albeit only
for Bragg scattering), it is not related to a change in the
influence of defects on the scattering pattern under changing
diffraction conditions. Defects and diffuse scattering in
perfect crystals are completely absent. However, in the case
of imperfect crystals, due to a competition between the effects
of the scattering vector on the dependences of the scattering
pattern on the characteristics of defects and diffraction
conditions, as well as the appearance of dynamical factors
(diffuse extinction and interference absorption factors, and so
on) entangling these dependences, the diversity of the diffuse
scattering pattern acquires a new quality that considerably
increases the information content of diagnostics. Namely, the
diversity becomes dependent on variations in the influence of
defects on the dynamical diffuse scattering pattern under
changing diffraction conditions. This variation, which also
depends on the defect type, is directly involved in the
formation of the specific diversity of the observed scattering
patterns.

As mentioned above, this is caused by the combined
influence of two factors depending on the position of the
observation point in the reciprocal lattice space. The first
of them describes the influence of characteristics of defects,
and the second characterizes the influence of diffraction
conditions on the dynamical scattering pattern. As a result,
the scattering pattern diversity is also determined by the
diversity of the influence of defects under different
diffraction conditions, providing an enhanced structural
sensitivity of the scattering pattern with increased informa-
tion content.

The second step that increased the structural sensitivity
caused by the diversity was the prediction [34±37] of the
anomalous increase in the diffuse component contribution
with increasing the crystal thickness. This effect is caused by a
considerable difference (by several orders of magnitude)
between extinctions related to Bragg and diffuse scattering.
As a result, the influence of defects on the total scattering
pattern becomes strongly dependent on diffraction condi-
tions and is the main factor determining the information
content of diagnostics in the case of diversity [1±8]. This is
explained in [1±8] by the dependence of relative contributions
from Bragg and diffuse components to the scattering pattern
on the crystal thickness discovered in [34±37] (and also by the
dependence on other conditions of dynamical diffraction
later discovered in [1±8]).

As we show in Sections 2 and 3, the effects discovered in
[16±23, 34±37] are particular competing mechanisms whose
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result is that the influence of defects on the total scattering
pattern acquires a dependence on the diffraction conditions
(the crystal thickness and other factors). This gives rise to the
diversity of total dynamical scattering patterns in imperfect
crystals, thereby considerably increasing the information
content and improving other functional possibilities for
diagnostics of defects.

In Sections 3±6, we substantiate and analyze the above
results and conclusions in detail and consider their practical
applications.

3. Dynamical scattering theory
for crystals with defects of several types

3.1 Differential reflectivities
3.1.1 General expressions. To find expressions for the
coherent and diffuse components of the differential reflectiv-
ity in the dynamical case, it is necessary first to determine the
initial amplitudes of Bragg and diffuse wave fields induced in
a crystal by a plane harmonic wave

E�r� � E0 exp

�
ÿiKr� ito

c

�

incident from the vacuum, where r is the radius vector, t is
time, o and c are the frequency and the speed of light, and E0

is the incident wave amplitude. These amplitudes can be
found by solving the wave equation

DD�r� � K 2D�r� � rot rot
ÿ
w�r�D�r�� � 0 ; �1�

which can be obtained from the system of Maxwell's
equations. Here, D�r� is the wave induction, K � 2p=l, l is
the radiation wavelength, and w�r� is the crystal susceptibility
times 4p.

Unlike the susceptibility of a perfect crystal, which is a
periodic function of a spatial coordinate that can be expanded
into a Fourier series, the susceptibility of a crystal with defects
is not periodic but can be represented as the Fourier integral

w�r� � vc

�2p�3
�
dq wq exp �ÿiqr�

�
X
G

X
q

wG�q exp
�ÿi�G� q�r� ; �2�

where G is the reciprocal lattice vector times 2p, q is the
momentum imparted during scattering from distortions
produced by defects, and vc is the unit cell volume in the
crystal.

Representing the wave induction D�r�, as the suscepti-
bility, in the form of the Fourier integral

D�r� � vc

�2p�3
�
dqDq exp �ÿiqr�

�
X
G

X
q

DG�q exp
�ÿi�G� q�r� ; �3�

and substituting (2) and (3) in (1), we obtain the infinite
system of equations [53]

�K 2 ÿ k 2�Dk ÿ
X
G

X
q

wG�q k� k�DkÿGÿq � 0 : �4�

Passing to the two-wave case of dynamical diffraction, which
is important for practical applications, and using the
perturbation theory developed in [19, 20, 24], we obtain two
coupled system of equations: one for strong Bragg waves with
the wave vectors K0 and KH � K0 �H (H is the reciprocal
lattice vector),

�ÿ2e0 � w0�D0 � CEwÿHDH

� ÿ
X
q

�dwqDÿq � CdwÿH�qDHÿq� ; �5�

CEwHD0 � �ÿ2eH� w0�DH � ÿ
X
q

�CdwH�qDÿq� dwqDHÿq� ;

and the other for diffuse waves with the wave vectors K0q and
KHq:

�ÿ2e0q � w0�Dq � CEwÿHDH�q � ÿ�dwqD0 � CdwÿH�qDH� ;
CEwHDq � �ÿ2eHq � w0�DH�q � ÿ�CdwH�qD0 � dwqDH� ;

�6�

where excitation errors are defined as

e0 � K0 ÿ K

K
� K 2

0 ÿ K 2

2K 2
; eH � KH ÿ K

K
� K 2

H ÿ K 2

2K 2
;

e0q � K0q ÿ K

K
� K 2

0q ÿ K 2

2K 2
; eHq � KHq ÿ K

K
� K 2

Hq ÿ K 2

2K 2
;

and the fluctuation part of the Fourier component of the
crystal susceptibility is specified by the expression

dwG�q � wG�q ÿ wG exp �ÿLG�d0; q ; �7�

where

d0; q � 1 ; q � 0 ;
0 ; q 6� 0 ;

�

E � exp �ÿLH� is the Krivoglaz±Debye±Waller factor, w0
and w�H are the Fourier components of the crystal
susceptibility, C is the polarization factor (C � 1 for the
s polarization and C � cos 2yB for the p polarization), and
yB is the Bragg angle. Expression (7) for the Fourier
component of the imperfect crystal susceptibility wG�q,
which is represented as a sum of the Fourier components
of the mean susceptibility wG exp �ÿLG�d0; q and the fluctua-
tion part of the susceptibility dwG�q, allows solving inhomo-
geneous systems (5) and (6) by using the modified perturba-
tion theory [19, 20]. When the Krivoglaz±Debye±Waller
factor is E � 1 and hence dw � 0, i.e., in the absence of
defects, the right-hand sides of systems (5) and (6) vanish,
and the systems reduce to the known system for perfect
crystals. In the case of imperfect crystals, substituting the
solutions of the system of equations (6) in (5) and using the
modified perturbation theory, we obtain the master system of
equations for strong Bragg waves:

�ÿ2e0 � w0 � Dw00�D0 � �CEwÿH � Dw0H�DH � 0 ; �8�
�CEwH � DwH0�D0 � �ÿ2eH � w0 � DwHH�DH � 0 ;
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where dispersion corrections to the susceptibility, caused by
defects, are determined by the expressions [25]

Dw00 � ÿ
X
q

�ÿ2e0q � w0�V00�q�
d�q� ;

DwHH � ÿ
X
q

�ÿ2eHq � w0�VHH�q�
d�q� ; �9�

Dw0H � C
X
q

wÿHV0H�q�
d�q� ;

DwH0 � C
X
q

wHVH0�q�
d�q� ;

d�q� � �ÿ2e0q � w0��ÿ2eHq � w0� ÿ C 2E 2wHwÿH : �10�

In the generalized form, we write (9) as

DwGG 0 �
X
q

~fGG 0 �q�VGG 0 �q�
d�q� ; �11�

where

~fGG 0 �q� � �ÿ2eGq � w0� ; G � G 0 ;
EwHÿ2G 0 ; G 6� G 0 ;

�
VGG 0 �q� � C 2dwÿqÿH�2G dwq�Hÿ2G :

Here, dwÿqÿH�2G, dwq�Hÿ2G are the Fourier components of
the fluctuation part of the polarizability. Dispersion correc-
tions (11) are given by Dw00 � DwHH � mds=K, where mds is
the extinction coefficient caused by diffuse scattering (see
Section 6) and DwH0 � Dw0H � 0.

3.1.2 The Bragg geometry. Solving system of equations (8)
with boundary conditions for a plane-parallel crystal plate in
the case of the Bragg diffraction geometry,

DT�r� �
X
d

D d
0 exp �ÿiK d

0 r�
���
z� 0
� E0 exp �ÿiKr� ;

DS�r� �
X
d

D d
H exp �ÿiK d

Hr�
���
z� t
� 0 ; DS�r�

���
z� 0
� ES�r� ;

Kd
0 � K� KDdn ; Kd

H � Kd
0 �H

[where ES�r� � E a
H exp �ÿiK0Hr� is the amplitude of the

diffracted wave in the vacuum, K 0H � Kd
H ÿ KDdn, and t is

the crystal thickness], we obtain the amplitudes of the
transmitted and reflected waves

D d
0 � �ÿ1�dE0

Bd 0

B1 ÿ B2
; D d

H � c �d�D d
0 ; �12�

where

Bd � c �d� exp �ÿiKDdt� ; c �d� � ÿ 2g0Dd � w0 � Dwd
00

CEwÿH � Dwd
0H

;

Dd � 1

2g0
�w0 � Dwd

00� ÿ
l
2L

h
yÿ �ÿ1�d

��������������
y 2 ÿ 1

p i
;

y � ÿ�aÿ a0�
���
b
p

s
; 2a0 � w0 � Dwd

HH �
w0 � Dwd

00

b
;

b � g0
jgHj

; s 2 � �CEwH � Dwd
H0��CEwÿH � Dwd

0H� ;

L � ljgHj
���
b
p

=s is the extinction length, d � 1; 2, g0 and gH are
the respective direction cosines of the incident and diffracted
waves, and a � ÿDy sin 2yB.

Solutions (12) for the amplitudes show that a plane wave
incident on a crystal from the vacuum produces two strong
dynamical wave fields in the crystal, with the amplitudes D 1

0

and D 2
0 , representing weakly and strongly absorbed waves.

This occurs because the maxima of strongly absorbed
standing waves fall on atomic planes, and their absorption,
which is proportional to the susceptibility in the medium,
becomes significant, whereas the maxima of the amplitude of
the second wave field fall in the interplanar region, and these
waves are absorbed much more weakly.

We thus obtain the coherent component of the reflectivity
in the Bragg diffraction geometry in the form [25]

Rcoh�Dy�

� coshxr ÿ cosxi

L� coshxr�
��������������
L2�ÿ 1

p
sinhxrÿ Lÿ cosxi�

���������������
1ÿ L2ÿ

p
sinxi

;

�13�

where

L� �
z 2 � g 2 � ��z 2 ÿ g 2 � k 2 ÿ 1�2 � 4�zgÿ p 2��1=2��1ÿ k 2�2 � 4p 2

�1=2 ;

xr � t

LB
�1ÿ k 2�1=2

� ����������������
a 2 � b 2
p ÿ a

2

�1=2

;

xi � t

LB
�1ÿ k 2�1=2

� ����������������
a 2 � b 2
p � a

2

�1=2

;

a � z 2

1ÿ k 2
ÿ g 2 ÿ 1 ; b � 2gz

�1ÿ k 2�1=2
ÿ 2p

1ÿ k 2
;

LB � l
������������
g0jgHj

p
2pCjwHrj

;

g � ÿ
ÿjw 0ij � mds�Dy�=K

�ÿ
1� jgHj=g0

�
2CjwHrj

���������������jgHj=g0
p ;

k �
���� wHi

wHr

���� ; z � ÿ 2Dy sin 2yB � jw0rj
ÿ
1� jgHj=g0

�
2CjwHrj

���������������jgHj=g0
p ;

wHr and wHi are the real and imaginary parts of the Fourier
component of the susceptibility wH, and w0r and w0i are the real
and imaginary parts of the Fourier component of the
susceptibility w0.

It is easy to verify that if the thick-crystal condition
m0t4 1 is fulfilled (where m0 is the linear photoelectric
absorption coefficient), the condition xr 4 1 holds, which
allows simplifying (13). We then obtain the coherent
component of the differential reflectivity for the Brag
diffraction geometry as

Rcoh�Dy� � L� ÿ
���������������
L2� ÿ 1

q
: �14�

Diffusely scattered waves appear due to the scattering of
strong Bragg waves on fluctuation fields of the statistical
displacements of atoms in a crystal, which are caused by
randomly distributed microscopic defects and also produce a
dynamical wave field in the crystal. In the two-wave case, the
amplitudes of diffusely scattered transmitted Dq and dif-
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fracted DH�q plane waves, which form diffuse Bloch waves,
satisfy the system of inhomogeneous equations (5). These
equations describemultiple scattering of diffuse wavesDq and
DH�q on the periodic part of the crystal potential and single
scattering of strong Bragg waves with amplitudes D0 and DH

to diffuse waves with amplitudes Dq and DH�q.
To take double scattering on deviations of the crystal

potential from periodicity into account, we keep all ampli-
tudes q 0 6� q, q�H in diffuse waves in the right-hand side of
Eqns (6). These amplitudes can then be expressed in terms of
D0,DH,Dq, andDH�q by using equations (4) and substituting
in (6). After this first iterative step, the coefficients at Dq and
DH�q in Eqns (6) acquire correctionsDw 0GG 0 , which completely
coincide in form with dispersion corrections DwGG 0 in (11) to
the wave vectors of strong Bragg waves but depend on the exit
angles Dy 0:

�ÿ2e0q � w0 � Dw 000�Dq � �CEwÿH � Dw 00H�DH�q

� ÿ�dwqD0 � C dwÿH�qDH� ; �15�
�CEwH � Dw 0H0�Dq � �ÿ2eHq � w0 � Dw 0HH�DHq

� ÿ�C dwH�qD0 � dwqDH� ;

where e0q and eHq are excitation errors for diffusely scattered
waves and Dw 0GG 0 are dispersion corrections taking double
diffuse scattering into account. Corrections to the coefficients
at the amplitudes D0 and DH in the right-hand sides of the
system of equations (15), which also appear at this iterative
step and describe the scattering of diffuse waves back to
strong Bragg waves, are neglected as small higher-order
quantities [19, 20, 24, 25].

Imposing boundary conditions on the amplitudes of
diffuse waves for the Bragg diffraction geometry and
transforming the obtained amplitudes of plane waves on
the crystal surface to the amplitude of diffuse scattering
within a solid angle in the direction K 0, we obtain the
diffuse component of the differential reflectivity of a crystal
plate [25]:

Rdiff�Dy� � Fdynm00�Dy�t
g0

; m00�Dy� � mds�Dy� p�mit� ;

Fdyn � 1� jz 0jbRcoh � 2Re �z 0c �d�� ;

p�mit� �
1ÿ exp �ÿ2mit�

2mit
; z 0 � jCEwH � Dw 0d0Hj

jCEwÿH � Dw 0 dH0j
;

where mi is the interference absorption coefficient.

3.1.3 The Laue geometry. To determine the differential
reflectivity in the Laue diffraction geometry, we use the
corresponding boundary conditions for the amplitudes of
the transmitted DT�r� and diffracted DS�r� waves:

DT�r� �
X
d

D d
0 exp �ÿiK d

0 r�
���
z� 0
� E0 exp �ÿiKr� ;

�16�

DS�r� �
X
d

D d
H exp �ÿiK d

Hr�
���
z� 0
� 0 ; DS�r�

���
z� t
� ES�r� :

Solving (8) together with (16), we obtain the amplitudes of
strong Bragg waves in a crystal in the Laue diffraction

geometry [23] (we take into account here that for the Laue
diffraction geometry, gH � jgHj, whereas for the Bragg
diffraction geometry, gH � ÿjgHj) in the form

D d
0 � �ÿ1�d

Ad 0

A1 ÿ A2
E0 ; D d

H � D d
0Ad ;

Ad � ÿ2e
d
0 � w0 � wd

00

CEwÿH � Dwd
0H

;

e d0 �
1

2

�
ÿa� w0r ÿ �ÿ1�d

���������������������������������������������
a 2 � C 2E 2�w 2

Hr ÿ w 2
Hi�

q �
� i

1

2

 
w0i ÿ �ÿ1�d

C 2E 2wHrwHi���������������������������������������������
a 2 � C 2E 2�w 2

Hr ÿ w 2
Hi�

q !
:

For the coherent component of the differential reflectivity
in the Laue geometry, we find the expression

R�y� � jE
a
Hj2
jE0j2

� 1

jE0j2
����X

d

D d
H exp �ÿiKDdt�

����2
� exp

�ÿÿm0 � mds�y�
�
l
�

2�1� y 2�

�
�
cosh

xC�m0 � mds�l��������������
1� y 2

p ÿ cos 2A
��������������
1� y 2

p �
; �17�

where

y � Dy sin 2yB
CEjwHrj

; A � pCjwHrjl
l

; x � wHi

w0i
; l � t

g0
:

Because the second term in (17) strongly oscillates when the
thick-crystal condition m0l4 1 is satisfied (where m0 � Kw0i is
the photoelectric absorption coefficient) and because the term
with a negative power in the expansion of cosh x is negligibly
small, we obtain a simpler expression for R�y� in the semi-
infinite crystal approximation,

R�y� � Rp�y� exp
�
ÿmds�y�l

�
1ÿ xC��������������

1� y 2
p ��

; �18�

where Rp�y� is the coherent component of the differential
reflectivity of a perfect dynamically scattering crystal for the
Laue diffraction geometry in the thick-crystal approxima-
tion,

Rp�y� � 1

4�1� y 2� exp
�
ÿm0l

�
1ÿ xC��������������

1� y 2
p ��

:

Solving the system of equations for the amplitudes of diffuse-
scattered waves with boundary conditions corresponding to
the Laue diffraction geometry, we obtain the diffuse compo-
nent of the differential reflectivity in the thick-crystal
approximation [24]:

Rdiff�Dy� � 1

K 2

�
dSK 0 RD�k� ; �19�

RD�k� � P0
C 2E 2K 2w 2

Hr

jD1 ÿ D2j2 jD 01 ÿ D 02j2

�
X
d; t

jD 0t ÿ Ddj2 j2g0Dd 0 ÿ w0j2
��H0u�q���2Pdt ; �20�
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where uq is the Fourier component of the displacement field
for a single defect,

Pdt � exp �2Kt ImDd� ÿ exp �2Kt ImD 0t�
2Kt Im �Dd ÿ D 0t�

;

Dd � e d0
g0
� 1

2g0

�
ÿa� w0 ÿ �ÿ1�d

������������������������������������
a 2 � C 2E 2wHwÿH

p �
;

D 0t �
e t0q
g0
� 1

2g0

�
ÿa 0 � w0 ÿ �ÿ1�t

��������������������������������������
a 0 2 � C 2E 2wHwÿH

p �
;

a 0 � Dy 0 sin 2yB :

In the thin-crystal approximation for the Laue geometry,
the diffuse component of the differential reflectivity becomes

Rdiff�Dy�

� C 2

P
�1ÿ E 2�Ql exp �ÿm0l � mds�Dy� exp

ÿÿmds�Dy�l � ; �21�
where

P �
�
mds�Dy� dy ; Q �

ÿ
pjwHrj

�2
l sin �2yB� :

3.1.4 The extinction coefficient. When a dynamically scatter-
ing crystal has defects distorting its lattice, apart from the
Krivoglaz±Debye±Waller factor, another structurally sensi-
tive parameter mds�Dy� appears, which was first introduced in
[16] and independently in [54] (where the expression for
mds�Dy� was obtained under the condition Dy � 0, where Dy
is the angular deviation from the exact Bragg relation). The
parameter mds�Dy� describes the efficient absorption or
extinction of coherent waves due to their scattering by
defects and transformation to diffuse waves, which are in
turn also scattered dynamically. The expression for mds has
the form [16, 54]

mds�k0� � cC 2E 2m0J�k0� ;
�22�

J�k0� � 1

p

�
dSK 0 F�q� ;

where the integration is performed over the Ewald sphere
near a reciprocal lattice site, F�q��juqj2, uq� Huq, m0 �
2pvc

ÿ
HjwHrj=�2l�

�2
, l is the radiation wavelength, and K 0 is

the magnitude of the wave vector of the diffusely scattered
plane wave. In the case of spherically symmetric clusters, the
displacement field of lattice atoms is given by

u�r� � A
r

r 3
;

and therefore

t�r� � A
�Hr�
r 3

;

which gives the Fourier component

tq � 4piA
vc

�Hq�
q 2

:

Because q5K, it is convenient to pass from integration
over a sphere in (22) to integration over the plane P
approximating the Ewald sphere near the reciprocal lattice
site H (Fig. 3). Passing to polar coordinates k �
�k cosj; k sinj; k0� in this plane and substituting dSK 0 �

k dk dj and Hq � Hq cosj cos yB in (22), where yB is the
Bragg angle, according to [16±18], we obtain

mds � c
ÿ
CjwHj

�2 4p3A2H 2

2vcl
2

cos2 yB ln
q 2
m

q 2
c

; �23�

where c is the concentration of defects, qm � 2p=Reff is the
interface between the Huang and Stokes±Wilson diffuse
scattering regions, qc � 2p=Ls is the cut-off parameter from
the side of small q, and Ls � l

����������
g0gH
p jwHrjÿ1 is the extinction

length. Because


jtqj2� � �pR 2
0 bH

vc

�2
B1 � B2�H0q0�2

q 2
;

H0 � H=H, for randomly oriented dislocation loops [54], we
can obtain

mds � c
ÿ
CjwHj

�2 4p3A2H 2

vcl
2

�
B1 � B2

2
cos2 yB

�
ln

q 2
m

q 2
c

; �24�

where

B1� 4

15

�
pbR 2

L

vc

�2

; B2� bB1 ; b � 1

4
�3n 2 � 6nÿ 1��1ÿ n�ÿ2

for randomly oriented dislocation loops and

B1 � 0 ; B2 �
�
4pAcl

vc

�2

for clusters. Here, b is the loop Burgers vector modulus, RL is
the loop radius, and n is the Poisson ratio,

Reff � RL

�������
Hb
p

E for dislocation loops;�����������
HAcl

p
E for clusters;

�
Acl � GeR 3

p , G � �1=3��1� n��1ÿ n�ÿ1, e is the deformation
at the cluster boundary, and Rp is the cluster radius (the
subscript p refers to `precipitate').

Expression (23) was obtained by Dederix to describe
integrated Bragg intensities by assuming in integration that
mds�Dy� � mds�0�, i.e., mds is always equal to the value for
which the direction of the wave vector K of the incident
beam exactly corresponds to the Bragg relation. But for the

yB

Dy

Dy 0

K 0

K H

DH

j k0

km
ky

kx

k

Y

X
0

kxy

Ewald sphere

Figure 3.Diagram of wave vectors in the Bragg geometry.

668 V B Molodkin, A P Shpak, M V Kovalchuk, V FMachulin, V L Nosik Physics ±Uspekhi 54 (7)



rocking curve method, which is widely applied for diagnos-
tics of real crystals, as well as for consideration of dynamical
effects in the diffuse component of the reflectivity, the
expression for mds obtained in [24, 25, 54] is more impor-
tant; it explicitly depends on the deviation Dy of the incident
beam direction from the exact Bragg condition. Due to such
a deviation, a reciprocal lattice siteH does not fall exactly on
the Ewald sphere, but deviates from it by k0 (see Fig. 3). In
this case, it is convenient to pass to the cylindrical coordinate
system q � �k cosj; k sinj; q0�, where k � �q 2 ÿ q 2

0 �1=2,
dSK 0 � k dk dj, and H0 � �cos yB; 0; sin yB�. Instead of (23),
we then obtain

mds�q0� �
4p3A2H 2

vcl
2

�

cos2 yB ln
qm
qc
�
�
sin2 yB ÿ 1

2
cos2 yB

�
q 2
0

�
1

q 2
c

ÿ 1

q 2
m

�
;

jq0j4 qc ;

cos2 yB ln
qm
qc
�
�
sin2 yB ÿ 1

2
cos2 yB

�
q 2
0

�
1

q 2
0

ÿ 1

q 2
m

�
;

jq0j > qc :

8>>>>>>>><>>>>>>>>:
�25�

However, these expressions neglect the fact that diffuse
scattering is different in two regions (Huang and Stokes±
Wilson), with the function juqj2 respectively behaving in these
regions as � 1=q 2 and � 1=q 4 [54]. Different expressions for
the diffuse scattering intensity

juqj2�
�
B1� B2�H0q0�2

q 2

�
1

q 2
in the Huang region and

�26�

juqj2�
�
B1� B2�H0q0�2

q 2

�
k 2
m

q 4
in the StokesÿWilson region

(where q0 � q=q) were taken into account in [55, 56]. With
relations (26), we obtain J�k0� [see (22)] under the condition
Reff 5L [57]:

J�k0� �

b1

�
1ÿ k 2

0

k 2
c

�
� b2 ln

�
e
k 2
m

k 2
c

�
� b3k

2
0

�
1

2k 2
m

ÿ 1

k 2
c

�
;

jk0j4 kc ;

b2 ln

�
e
k 2
m

k 2
0

�
� b3

�
k 2
0

2k 2
m

ÿ 1

�
; kc 4 jk0j4 km ;�

b2 ÿ 1

2
b3

�
k 2
m

k 2
0

; jk0j > km ;

8>>>>>>>>>>><>>>>>>>>>>>:
�27�

where k0 � KDy sin 2yB, kc � qc, km � qm, b1 � B1 � B2=3,
b2�B1� �1=2�B2 cos

2 yB, and b3��1=2� cos2 yB�1ÿ tan2 yB�.
When the size of defects is comparable to the extinction

depth L, diffuse scattering from such defects is concentrated
in the vicinity of the Bragg peak, i.e., in the cut-off region
k � kc, and expressions for the total integrated intensity
(TII), which is the sum of the coherent and diffuse
components of the integrated scattering intensity, with
mds�Dy�mds�Dy� in (27), are not correct for large defects. The
complex nature of the imparted momentum q � k� imn
caused by multiple diffuse scattering by the periodic part of
the susceptibility was taken into account in [55, 56], which
allowed eliminating the divergence of integral (22) near the
reciprocal lattice site as k! 0 and obtaining analytic

expressions for mds�Dy� that are also valid for large defects:

J�k0� � JH�k0� � JHÿSW�k0� � J �H�k0� ; jk0j < km ;

JSW�k0� ; jk0j5 km ;

�
�28�

with

JH�k0� � b2 ln

�
e
k 2
m � m 2

i

k 2
0 � m 2

i

�
� �b3k 2

0 � b4m 2
i �
�

1

k 2
m � m 2

i

ÿ 1

k 2
0 � m 2

i

�
;

JHÿSW�k0� � k 2
m

k 2
m � m 2

i

�
b2 ÿ 1

2

b3k
2
0 � b4m 2

i

k 2
m � m 2

i

�
;

JSW�k0� � k 2
m

k 2
0 � m 2

i

�
b2 ÿ 1

2

b3k
2
0 � b4m 2

i

k 2
0 � m 2

i

�
;

b4 � B2

�
1

2
cos2 yB ÿ 1

�
;

J �H�k0� � sgn �Dy� sgn �e� b1
� �����������������

k 2
m � m 2

i

q
ÿ

�����������������
k 2
0 � m 2

i

q �
;

where the interference absorption coefficient mi in the Bragg
geometry in the asymptotic regime whereDy 0;Dy4the Bragg
peak half-width has the form

mi �
m0
2g0

1� g0=jgHj
2

:

We consider the extinction coefficient in the Laue
geometry (Fig. 4) in the case of significant effects. Integrating
in (22), we decompose the wave vector k of the diffusely
scattered wave into components k0 and k0 such that the
condition k0 ? SK 0 and k0 lies in the plane SK 0 . In addition,
we pass to polar coordinates k0 � �k 0 cosj; k 0 sinj�. Then
q 2� k 2

0� k 0 2� m 2
i , k � �k 0 cosj; k 0 sinj; k0�, and H0 �

�ÿ sin yB; 0; cos yB�. For (15), it then follows that

F�q�

�
�
B1� B2

k 0 2 cos2 j sin2 yB� k 2
0 cos

2 yBÿ k0k
0 cosj sin 2yB

k 0 2 � k 2
0 � m 2

i

�
� 1

k 0 2 � k 2
0 � m 2

i

: �29�

Dy

Dy
0

n

K
0

k
kx

ky

k0 H

K

yB

k
0

Dy

Figure 4.Diagram of wave vectors in the Laue geometry.
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The element of the integration area in the chosen coordinate
system is dSK 0 � k 0 dk 0 dj. Substituting (29) in (22) and
integrating, and taking different types of scattering in the
Huang and Stokes±Wilson regions into account, we obtain
the differential extinction coefficient of coherent scattering
due to the escape of its part to the diffuse background in the
case of the Laue diffraction geometry in the same form as in
(28), but with the coefficients bi given by

b2 � B1 � B2

2
sin2 yB ; b3 � B2

�
1

2
sin2 yB ÿ cos2 yB

�
;

b4 � 1

2
B2 sin

2 yB ;

and with the interference absorption coefficient

mi �
KCEwHrwHi

g0
�������������������
w 2
Hr ÿ w 2

Hi

q
for the same asymptotic regime Dy 0;Dy!14 the Bragg
peak half-width.

In the case of defects of several types, including large ones,
we must take into account that with the correlations between
positions of defects neglected, a linear superposition of
contributions from various types of defects to LH and
mds�Dy� occurs [42, 56]:

LH �
Xn
a� 1

L a
H ; mds �

Xn
a� 1

ma
ds ;

where n is the number of the defect types denoted by the
superscript a.

3.2 Dynamical model of the three-axis diffractometry
of imperfect crystal systems
The intensity of diffracted radiation detected with a three-axis
diffractometer (TAD) depends on two angles, Dy and Dy 0,
specifying the deviation of the sample and analyzer crystals
from their exact reflecting (Bragg) positions. When a crystal
under study contains randomly distributed effects, this
intensity can be represented as a sum of the coherent �Icoh�
and diffuse �Idiff� components [43],

I�Dy;Dy 0� � Icoh�Dy;Dy 0� � Idiff�Dy;Dy 0� : �30�

When the dispersionless �n;ÿn 0; n� TAD configuration is
used with the Bragg diffraction geometry for all crystals
(except a sample in which the Laue diffraction geometry
with refractive indices n 0 is realized), the coherent and
diffusion components of the measured intensity can be
written in the form [43±45]

Icoh�Dy;Dy 0� � I0

�1
ÿ1

dxRnM
M

n
bÿ1M

�ÿbÿ1S �xÿ Dy� ÿ Dy
�o

� Rcoh

�ÿbÿ1S �xÿ Dy��RA�xÿ Dy 0� ; �31�

Idiff�Dy;Dy 0�

� I0

�1
ÿ1

dxRnM
M �x�

�1
ÿ1

dx 0 rdiff�j�RA�x 0 ÿ Dy 0� ; �32�

while for the dispersionless �n;ÿn; n� TAD configuration
with the Bragg diffraction geometry for all crystals in the
X-ray optical arrangement, expression (31) for the coherent

component of the measured intensity must be replaced by the
expression

Icoh�Dy;Dy 0� � I0

�1
ÿ1

dxRnM
M

n
bÿ1M

�
bÿ1S �xÿ Dy� ÿ Dy

�o
� Rcoh

�
bÿ1S �xÿ Dy��RA�xÿ Dy 0� ; �33�

where I0 is the radiation intensity incident on a monochro-
mator, RM and RA are the reflection coefficients of the
monochromator and analyzer, nM is the monochromator
reflection multiplicity, bM and bS are the asymmetry para-
meters of the monochromator and the crystal, and
j� kxex � kzez, where ex and ez are unit vectors in the
scattering plane. The function rdiff in expression (32) is the
diffusion component of the differential reflection coefficient
of the crystal under study integrated over the vertical
divergence j. The function Rcoh for the sample in the Laue
geometry takes the valuesRcoh � T orRcoh � R depending on
whether the transmitted or diffracted beams are detected with
the TAD. According to the results presented in Section 2.1
and generalized in [46, 47], T and R are given by

T � exp
�ÿ�m0 � mds�t

� 1

4jy 2 � 1j2
�
n��y� ��������������

y 2 � 1
p ��2 exp �ÿKtwi�

� ��yÿ ��������������
y 2 � 1

p �� exp �Ktwi�
ÿ 2Re

�ÿ
y�

��������������
y 2 � 1

p �ÿ
yÿ

��������������
y 2 � 1

p ��
exp �iKtwr�

�o
;

�34�

R � exp
�ÿ�m0 � mds�t

�
4jy 2 � 1j2 jzj2

� �exp �Ktwi� � exp �ÿKtwi� ÿ 2 cos �Ktwr�
�
; �35�

where wr � Rew, wi � Imw, w � lLÿ1
��������������
y 2 � 1

p
,

z � ��CEwH � DwH0��CEwÿH � Dw0H�ÿ1
�1=2

;

K � 2p=l is the modulus of the wave vector of the incident
wave, l is the wavelength in the vacuum, L is the extinction
length, t is the thickness of a plane-parallel plate, y is an
angular function, C is a polarization factor, DwGG 0 are
dispersion corrections to the wave vectors of `strong' Bragg
waves caused by diffuse scattering, �G;G 0 � 0;H�,
m0 � ÿKwi0�1=g0 � 1=gH�=2 is the normal photoelectric
absorption coefficient, g0 and gH are the respective direction
cosines of the incident and diffracted waves, wG and wiG are the
Fourier component of the complex polarizability
w�r� � wr�r� � iwi�r� of a crystal averaged over an ensemble
of defects and the Fourier component of its imaginary part
�G � 0;H�, E � exp �ÿLH� is the Krivoglaz±Debye±Waller
factor, and mds � ÿK Im �Dw00=g0 � DwHH=gH�=2 is the nor-
mal absorption coefficient caused by the imaginary part of
dispersion corrections due to diffuse scattering by defects to
the wave vectors of `strong' Bragg waves in the case of the
Laue diffraction geometry.

As mentioned above, the diffuse component of the
differential absorption coefficient for a certain reflex in the
dynamical theory, unlike that in the kinematical theory, is not
a single Fourier transform of the displacement field of defects
uq, invariant under arbitrary diffraction conditions, but is
transformed in a complicated way as these conditions, for
example, the crystal thickness t, change. The diffuse compo-
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nent for the Laue diffraction can be represented in the form
[46, 47]

RD�k� � c�1ÿ c�vct
g0jy 2 � 1jjy 0 2 � 1j

�
CEK 2

4p

�2���� CEwH � DwH0

CEwÿH � Dw0H

����
�
X
dtls

�ÿ1�d�t�l�sXdt

�����
z 0d

q �
Xls

�����
z 0l

q ��
Pdtls�Huqdt��Huqls��;

�36�
Xdt � wHc

0 �t�

c �d�z 0d
ÿ wÿH ; �37�

which confirms the conclusions made above. Here, c is the
concentration of effects and the factor

Pdtls �
exp

�ÿiKt�Dd ÿ D�l�
�ÿ exp

�ÿiKt�D 0t ÿ D 0 �s �
�

iKt�D 0t ÿ D 0 �s ÿ Dd � D�l�
�38�

describes interference absorption, in particular, the Borr-
mann effect for diffuse scattering, and Dd and D 0t are the
respective accommodations of the wave vectors of coherent
and diffusely scattered waves.

Similarly, in the case of the Bragg diffraction geometry,
the transmission and reflection coefficients for coherent
waves can be written as [46, 47]

T � 4jy 2 ÿ 1j exp �ÿ�m0 � mds�t
�

�
n��y� �������������

y 2ÿ 1
p �� exp �Ktwi� �

��yÿ �������������
y 2ÿ 1

p �� exp �ÿKtwi�

ÿ 2Re
�ÿ
y�

��������������
y 2 ÿ 1

p ��ÿ
yÿ

��������������
y 2 ÿ 1

p �
exp �iKtwr�

�oÿ1
;

�39�
R � jzj�exp �Ktwi� � exp �ÿKtwi� ÿ 2 cosKtwr

�
�
n��y� �������������

y 2ÿ 1
p �� exp �Ktwi� �

��yÿ �������������
y 2ÿ 1

p �� exp �ÿKtwi�

ÿ 2Re
�ÿ
y�

��������������
y 2 ÿ 1

p ��ÿ
yÿ

��������������
y 2 ÿ 1

p �
exp �iKtwr�

�oÿ1
;

�40�
where

m0 � ÿ
Kwi0�1=g0 ÿ 1=jgHj

�
2

;

mds � ÿ
K Im

ÿ
Dw00=g0 ÿ DwHH=jgHj

�
2

:

The diffuse component of the reflection coefficient for the
Bragg diffraction geometry can be written as [48, 49]

RD�k� � c�1ÿ c�vct
g0

�
CEK 2

4p

�2
1

jU j2jU 0j2

�
X
dtls

�ÿ1�d�t�l�sXdtX
�
lsPdtls�Huqdt��Huqls�� ; �41�

Xdt � c 0 �t�

c �d�
wH ÿ z 0wÿH ; �42�

Pdtls �
exp

�
iKt�Dd ÿ D�l ÿ D 0t � D 0 �s �

�ÿ 1

iKt�Dd ÿ D �l ÿ D 0t � D 0 �s �
;

jU j2 � ��y� ��������������
y 2 ÿ 1

p �� exp �Ktwi�
ÿ ��yÿ ��������������

y 2 ÿ 1
p �� exp �ÿKtwi�

ÿ 2Re
�ÿ
y�

��������������
y 2 ÿ 1

p ��ÿ
yÿ

��������������
y 2 ÿ 1

p �
exp �iKtwr�

�
;

jU 0j2 � ��y 0 � ���������������
y 0 2 ÿ 1

p �� exp �Ktw 0i �
� ��y 0 ÿ ���������������

y 0 2 ÿ 1
p �� exp �ÿKtw 0i �

ÿ 2Re
�ÿ
y 0 �

���������������
y 0 2 ÿ 1

p ��ÿ
y 0 ÿ

���������������
y 0 2 ÿ 1

p �
exp �iKtw 0r�

�
;

where w 0 �w 0r� iw 0i � lL 0 ÿ1
��������������
y 0 2� 1

p
, z 0 � �CEwH � Dw 0 dH0��

�CEwÿH � Dw 0d0H�ÿ1 is the extinction length for diffusely
scattered waves, and Dw 0 dGG 0 are dispersion corrections to the
wave vectors of diffusely scattered waves, corresponding to
the dth sheet of the dispersion surface for coherent waves
�G;G 0 � 0;H�.

It follows from the results presented above that the
influence of defects on the coherent and diffuse components
of the scattering pattern in the dynamical theory is deter-
mined not only by the Krivoglaz±Debye±Waller factor but
also by dispersion corrections to the wave vectors of `strong'
Bragg and diffuse waves (in fact, by the extinction parameters
due to diffuse scattering), which are caused by diffusion
scattering from defects and typically exert a stronger effect
than the Krivoglaz±Debye±Waller factor. Dependences on
the diffraction conditions for the Bragg and diffusion
components, unlike those in the kinematical theory, princi-
pally differ from each other and change with changing the
diffraction geometry and the type of defects. This occurs, in
particular, due to dispersion corrections. Expressions for
dispersion corrections and the diffuse scattering intensity
itself [1±7, 15, 50] are presented below in the most general
form, i.e., taking the scattering multiplicity into account in
both Huang and Stokes±Wilson regions and also including
the anisotropy of displacement fields of atoms in a crystal
caused by the selected discrete orientations of different types
of defects without spherical symmetry.

Dispersion corrections, for example, to the wave vectors
of `strong' Bragg waves can be presented as a sum of real and
imaginary parts, the latter being responsible for the extinction
of coherent waves caused by their scattering by defects to the
diffuse background:

DwGG 0 � PGG 0 ÿ imGG 0

K
;

m00�Dy� � b
C 2V

4l2

�
dk0 S�q� ; S�q� � Re hdwq�HdwÿqÿHi ;

dwH�q � iEwH
X
a

�Huqa�cqa ;
�43�

mHH�Dy� � bÿ1m00�Dy� ; m0H�Dy� � mH0�Dy� � 0 ;

where V is the crystal volume.
The real parts of dispersion corrections are linked to the

imaginary parts by the known Kramers±Kronig dispersion
relations.

When the superposition principle is fulfilled for the
displacement fields of atoms in a matrix around defects of
various types, the problem of the relation of dispersion
corrections to the defect parameters reduces to the determina-
tion of the so-called correlation function

S�q� �
X
a

Sa�q� ; Sa�q� � ca
N

E 2wHwÿHFa�q�

for each type a of defects with concentration ca. This function
is described by different expressions in the Huang (H) and
Stokes±Wilson (SW) scattering regions, with the interface
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between them determined by the effective radius R a
eff of the

defect a,

Fa�q� �
F H
a �q� � �Huqa��Huÿqa� ; q4 kma � 1

R a
eff

;

F SW
a �q� � F H

a �q�
k 2
ma

q 2
; q > kma :

8>><>>:
The Fourier components uq of the displacement fields for

different types of defects, for example, in themost general and
complex case of prismatic (not spherically symmetric)
dislocation loops with the Burgers vector b and radius R0,
are given by [13]

uq � pjbjR 2
0

vc�1ÿ n�q 2

�
2�1ÿ n�b�bq�

jbj2 � nqÿ q�bq�2
q 2jbj2

�
:

After averaging over a set of discrete spatial orientations (n is
the Poisson ratio), the function F�q� takes the form [46, 47, 49,
51]

F�q� � C 2
n1

3

�
pHjbjR 2

0

vc�1ÿ n�n1jqj
�2
(����H0q

q

����2��9ÿ 4Zn1�n 2

� 2�Zn1 ÿ 6�n� 7
�� 4�1ÿ n�

�
�1ÿ n� ÿ 2Re

�H0q�2
jqj2

�

� 4�Zÿ 3�
jqj2

�
�1ÿ n�2S�H0;H0; q; q

��

ÿ �1ÿ n�Re

��H0q�S�H0; q; q; q
��

jqj2
�

�
����H0q

2q 2

����2S�q; q; q�; q���
)
;

where Z � C 1
n1
=C 2

n1
, Cm

n1
are binomial coefficients, a pair of

numbers �n1; Z� determines the averaging type and is �2; 2� or
�3; 1� for the respective orientations h110i and h111i, and the
function

S�a1; a2; a3; a4� � a1xa2xa3xa4x � a1ya2ya3ya4y � a1za2za3za4z

depends on the components of vectors an [46, 47, 49, 51].
The extinction coefficient for coherent waves due to

diffuse scattering is

mds�k0� � mHH�Dy� ; k0 � KDy sin 2yB : �44�

With (43), expression (44) takes the form

mds�k0� � cC 2E 2 ~m0A0J�k0� ; ~m0 � vc
4

�jwHrj
l

�2

; �45�

J�k0�

�

A1 ln e
k 2
m

k 2
0 � m 2

i

�
XM
n�2

An

nÿ 1

�
1

�k 2
0 � m 2

i �nÿ1
ÿ 1

nk 2nÿ2
m

�
;

k 2
0 � m 2

i 4 k 2
m ;

k 2
m

XM
n�1

An

n�k 2
0 � m 2

i �n
; k 2

0 � m 2
i > k 2

m ;

8>>>>>>><>>>>>>>:
where mi is the interference absorption coefficient,
A0 � p3C 2

n1
�HjbjR 2

0 =n1vc�1ÿ n��2=3 and coefficients An

depend on diffraction conditions and the deviation angle Dy
of a sample from the exact Bragg position (with the discrete
orientation of dislocation loops M � 4 taken into account)
[46, 47, 49, 51].

3.3 Influence of integration over the vertical divergence
on the distribution of the diffuse component
of diffracted intensity
Because of the influence of a number of instrumental factors,
it is impossible to detect the initial differential distribution of
the diffracted radiation intensity in real experiments. For
example, a simple uniaxial diffractometer performs instru-
mental integration of the radiation intensity over all angular
variables. A high-resolution biaxial diffractometer integrates
the diffuse scattering intensity over a solid angle in the
scattered wave direction, preserving the dependence of the
one-dimensional intensity distribution (rocking curves) only
on the deviation angle of the diffraction vector from the
Ewald sphere (the sample deviation angle from the exact
Bragg position). We note that on the one hand, integration
leads to the loss of information on the fine structure of the
diffuse scattering intensity distribution, which could be used,
e.g., to find the type (loops, clusters) and orientation of
defects in a crystal. But on the other hand, integration in a
broad angular range results in an increase in the relative
contribution of diffuse scattering, providing a more reliable
detection of small defects with broad but low-peak-intensity
diffuse scattering distributions.

The most detailed information on the diffracted radiation
intensity distribution and hence on defects in crystals is given
by a three-axis diffractometer, which allows constructing the
distribution maps for the coherent and diffuse components of
the scattering pattern in the diffraction plane. But the three-
axis diffractometer also performs instrumental integration
with respect to the angular divergence of the incident beam in
the direction perpendicular to the diffraction plane (over the
vertical divergence of the beam). Hence, to correctly deter-
mine changes in the scattering pattern caused by distortions
of a crystal lattice in themethod of three-axial diffractometry,
we should take changes produced by instrumental factors (in
particular, by integration with respect to the vertical diver-
gence) into account.

The integration of expressions over the vertical divergence
of anX-ray beam in a TAD, i.e., over the component ky of the
imparted momentum, reduces to the calculation of integrals
of the expressions


�Huq1��Huq2��
� � 4C 2

n1

3

�
pjbjR 2

0

vc�1ÿ n�n1

�2
(
�Hq1��Hq�2�
4q 2

1 q
� 2
2

�
�
�9ÿ 4Zn1�n 2 � 2�Zn1 ÿ 6�n� 5� 2

�q1q�2�2
q 2
1 q
� 2
2

�

� �1ÿ n� �q1q
�
2�

q 2
1 q
� 2
2

�
�1ÿ n�H 2 ÿ �Hq1�2

q 2
1

ÿ �Hq�2�2
q � 22

�

� Zÿ 3

q 2
1 q
� 2
2

�
�1ÿ n�2 S�H;H; q1; q�2�

ÿ 1ÿ n
2

��Hq1�S�H; q1; q1; q�2�
q 2
1

� �Hq�2�S�H; q1; q�2; q�2�
q � 22

�

� �Hq1��Hq�2�S�q1; q1; q�2; q�2�
4q 2

1 q
� 2
2

�)
; �46�
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and can be conveniently performed by decomposing (46) into
a sum of elementary fractions
�Huqdt��Huqls��

� � S0

�
S1

�k 2
y � p 2

1 �2
� S2

�k 2
y � p 2

2 �2

� S3

k 2
y � p 2

1

� S4

k 2
y � p 2

2

�
; if dt 6� ls ; �47�


�Huqdt��Huqls��
� � S0

� ~S1

k 2
y � p 2

�
~S2

�k 2
y � p 2�2

�
~S3

�k 2
y � p 2�3 �

~S4

�k 2
y � p 2�4

�
; if dt � ls ; �48�

where pdt � qdt ÿ kyey and the vectors p1 and p2 correspond
to vectors pdt with pairs of noncoincident subscripts, while the
vector p � pdt corresponds to pairs with coinciding sub-
scripts. The constants Sn and ~Sn in expressions (47) and (48)
can be found by themethod of undetermined coefficients. The
constant S0 is then given by

S0 �
4C 2

n1

3

�
pjbjR 2

0

vc�1ÿ n�n1

�2

;

and the other constants are found in [47].
The integration (caused by the instrumental factors of a

TAD) of the differential distribution of the diffuse scattering
intensity over the vertical divergence of X-rays in the case of
the Laue diffraction geometry gives the expression

rdiff�p� �
�
CEK 2

16pgH

�2���� CEwH � DwH0

CEwÿH � Dw0H

���� vctc�1ÿ c�S0

jy 2 � 1jjy 0 2 � 1j

�
X
dtls

�ÿ1�d�t�l�sXdt

�����
z 0d

q �
Xls

�����
z 0l

q ��
PdtlsI

1
SW ; �49�

if the Huang scattering region lies beyond the integration
limits and

rdiff�p� �
�
CEK 2

16pgH

�2���� CEwH � DwH0

CEwÿH � Dw0H

���� vctc�1ÿ c�S0

jy 2 � 1jjy 0 2 � 1j

�
X
dtls

�ÿ1�d�t�l�sXdt

�����
z 0d

q �
Xls

�����
z 0l

q ��
�Pdtls�I1SW ÿ IASW � IAH� ; �50�

if the integration region contains both theHuang and Stokes±
Wilson scattering regions.

The integration of the differential distribution of the
diffuse scattering over the vertical divergence of X-rays in
the case of the Bragg diffraction geometry gives

rdiff�p� �
�
CEK 2

16pgH

�2 vctc�1ÿ c�S0

jU j2jU 0j2

�
X
dtls

�ÿ1�d�t�l�sXdtX
�
lsPdtlsI

1
SW ; �51�

if the Huang scattering region lies beyond the integration
limits and

rdiff�p� �
�
CEK 2

16pgH

�2 vctc�1ÿ c�S0

jU j2jU 0j2

�
X
dtls

�ÿ1�d�t�l�sXdtX
�
lsPdtls�I1SW ÿ IASW � IAH� ; �52�

if the integration region contains both theHuang and Stokes±
Wilson scattering regions.

The function I1SW is equal to the integral of (47) or (48)
over the Stokes±Wilson region occupying the entire recipro-
cal space, and IAH and IASW are equal to the integrals over the
Huang and Stokes±Wilson regions restricted with respect to
the variable ky to the segment �ÿA;A�.

If dt 6� ls, the limit value is A � �����������������
k 2
m ÿ p 2

a

p
[where

pa � �p 2
1 � p 2

2 �=2] and the integrals in (49)±(52) are given by

I1SW �
2k 2

mp
KDp 2

(
1

pa

�
S3 ÿ S4 � 2�S1 � S2�

Dp 2

�
ÿ 1

p1

�
S3 � S1

�
1

2p 2
1

� 2

Dp 2

��
� 1

p2

�
S4 � S2

�
1

2p 2
2

ÿ 2

Dp 2

��)
; �53�

IASW �
4k 2

m

KDp 2

(�
S3 ÿ S4 � 2�S1 � S2�

Dp 2

�
arctan �A=pa�

pa

ÿ
�
S3 � S1

�
1

2p 2
1

� 2

Dp 2

��
arctan �A=p1�

p1

�
�
S4 � S2

�
1

2p2
ÿ 2

Dp 2

��
arctan �A=p2�

p2

ÿ S1A

2p 2
1 �A2 � p 2

1 �
� S2A

2p 2
2 �A2 � p 2

2 �

)
: �54�

IAH �
1

K

��
2S3 � S1

p 2
1

�
arctan �A=p1�

p1

�
�
2S4 � S2

p 2
2

�
arctan �A=p2�

p2

� S1A

p 2
1 �A2 � p 2

1 �
� S2A

p 2
2 �A2 � p 2

2 �
�
: �55�

If dt � ls, the limit value is A � �����������������
k 2
m ÿ p 2

p
and the

integrals in (49)±(52) take the form

I1SW �
k 2
mp

2Kp 3

(
~S1 � 3

4p 2

�
~S2 � 5

6p 2

�
~S3 � 7 ~S4

8p 2

��)
; �56�

IASW �
1

K

(�
~S1 � 3

4p 2

�
~S2 � 5

6p 2

�
~S3 � 7 ~S4

8p 2

���

�
�
k 2
m arctan �A=p�

p 3
� A

p 2

�
� A

2p 2k 2
m

�
~S2 � 3

4p 2

�
~S3 � 5 ~S4

6p 2

��
� A

3p 2k 4
m

�
~S3 � 5 ~S4

6p 2

�
� A ~S4

4p 2k 6
m

)
; �57�

IAH �
1

K

(�
2 ~S1� 1

p 2

�
~S2� 3

4p 2

�
~S3� 5 ~S4

6p 2

���
arctan �A=p�

p

� A

p 2k 2
m

�
~S2 � 3

4p 2

�
~S3 � 5 ~S4

6p 2

��
� A

2p 2k 4
m

�
~S3 � 5 ~S4

6p 2

�
� A ~S4

3p 2k 6
m

)
: �58�
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4. Diversity of dynamical scattering patterns
in crystals with defects and its physical nature

Figures 5±9, obtained using theoretical models (30)±(58),
clearly demonstrate the diversity of the total dynamical
scattering patterns in crystals with defects. Figure 6 (cf.
Fig. 5) demonstrates the anomalous increase in the contribu-
tion of the diffuse component, resulting in a change in the
scattering pattern upon changing the crystal thickness. The
change in the scattering pattern is caused by the Borrmann
effect for the Bragg and diffuse components and extinction
due to diffuse scattering, as well as by differences between
these effects for the Bragg and diffuse components. Figures 5±
8a illustrate the diversity of the influence of effects on the
dynamical scattering pattern as a whole, i.e., the diversity of
the entire pattern with changing the diffraction conditions.

The dynamics of the scattering pattern and its dependence
on various types of defects under changing diffraction
conditions, demonstrated by dependences on the crystal
thickness and diffraction geometry, are due to the competi-
tion between all multiple scattering effects considered earlier
and described above in this review. It follows from the
analysis that for thin crystals �m0t � 1�, the main role is
played by processes related to the different influence of
multiplicity effects on the Bragg and diffuse components of
the crystal reflectivity, while for thick crystals �m0t4 1�,
processes related to the different influence of scattering
multiplicity on the absorptivity for these components dom-
inate.

Figures 5±9 show that in thin crystals, the anomalous
increase in the contribution from the diffuse component with
increasing crystal thickness plays a dominant role. This is
explained by the fact that extinction effects caused by Bragg
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Figure 5. Two-dimensional distributions in the diffraction plane for (a) the total diffraction intensity and (b) its Bragg and (c) diffuse components. The

Laue geometry, Cu-Ka 220 (spherical clusters in silicon), t � L=10, L � 15:4 mm is the extinction length, kx and kz are deviations in the scattering plane

from a reciprocal lattice site in the reciprocal extinction length units, Ecl � 0:583, and mds�0�=m0 � 0:237.
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Figure 6. The same as in Fig. 5, but for t � 100 mm.
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Figure 7. The same as in Fig. 5, but for t � 1000 mm and mds � 0.
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and diffuse scattering differ from each other by a few orders of
magnitude. In thick crystals, the difference between the Bragg
and diffuse components with respect to the Borrmann effect
and extinction effects caused by diffuse scattering plays a key
role. As the crystal thickness (diffraction conditions) changes,
the dominant mechanisms of multiplicity effects and the
relation between the Bragg and diffuse components change,
resulting in a change in the type (and even the sign) of the
effect that defects exert on the dynamical scattering pattern;
in other words, defects can both reduce and enhance the
scattering intensity at any point of the reciprocal lattice space,
in contrast to the case with a perfect crystal. The difference in
the dependences of all the multiple scattering effects listed
here on the characteristics of defects of different types and
diffraction conditions produces the unique diversity of the
dynamical pattern determined by the fact that the resulting
influence of defects on the scattering pattern depends on
diffraction conditions and provides qualitatively new func-

tional possibilities of diagnostics (in particular, multipara-
metric diagnostics).

To illustrate the advantages of multiparametric diagnos-
tics based on the dynamical theory, we perform a numerical
experiment by simulating the `experimental' scattering
pattern for a crystal with the defect structure presented in
the second column of Table 1, taking the accuracy of a real
experiment into account, with the best fit for the R factor
� 4ÿ5%. Table 1 shows that for a thin crystal, both the real
defect structure (second column) and the structures recon-
structed by an independent fit (third and fourth columns) give
good results (the R factor of the order of the experimental
error� 4ÿ5%), i.e., the defect structures presented in Table 1
are indistinguishable in the kinematical approach. As diffrac-
tion conditions change (for example, the effective crystal
thickness increases due to a change in the radiation wave-
length), the scattering pattern predicted by the kinematical
theory does not change. On the contrary, in the dynamical
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Figure 8. The same as in Fig. 5, but for the Bragg geometry and t � 1000 mm. The change in the pattern upon changing the diffraction geometry is shown.
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theory, the difference between scattering patterns for the
defect structures presented in Table 1 on passing to dynami-
cally `thin' and `thick' crystals increases due to the above-
mentioned reasons, resulting in the diversity of the dynamical
diffraction pattern (the R factor for the reconstructed defect
structures increases), i.e., only the real defect structure
satisfies all experimental conditions.

Therefore, it is the discovered diversity of the dynamical
scattering pattern that gave rise to multiparametric crystal-
lography. The contributions from the diffuse component and
defects of each type to the scattering pattern depend on
diffraction conditions. These dependences are substantially
different, which can be used for solving the problem of unique
multiparametric diagnostics. As a result, the methods of
diffuse-dynamical multiparametric diffractometry allow
uniquely reconstructing the parameters of complex defect
structures.

The difference between kinematical and dynamical
theories is most clearly manifested in the integral intensities
of diffracted radiation discussed in Section 5.

5. Dynamical theory
of integrated scattering intensity
for crystals with defects of several types

The dynamical scattering theory for imperfect crystals [30,
61±63] must take multiple scattering from the periodic and
fluctuation parts of the crystal susceptibility into account.
Defects in the crystal not only affect the coherent component
but also, as in the case of kinematical diffraction in imperfect
crystals, lead to diffuse scattering. Diffuse scattering of waves
by the distortions of the crystal lattice produced by defects
and its influence on Bragg scattering are very sensitive to the
defect structure of a single crystal.

The distribution and scattering properties of diffuse waves
strongly depend on the characteristics of defects producing
displacement fields on which the waves are scattered. In the
case of small defects in dynamically thin crystals, integrated
expressions can be obtained in the kinematical one-wave
approximation for the diffuse scattering component, when
multiple scattering of diffuse waves on the periodic part of the
scattering potential is insignificant because the angular
distribution width for such waves greatly exceeds the width
of a coherent peak. In this case, the propagation direction for
most diffuse waves considerably differs from that corre-
sponding to the Bragg relation, and therefore such waves are
not involved in dynamical diffraction from the periodic part
of the scattering potential.

But when a crystal contains large defects (comparable to
or exceeding the extinction length), the propagation direction
of such waves differs weakly from the direction correspond-

ing to the exact Bragg relation. As a result, such waves
predominantly fall precisely in the dynamical region, and
hence the dynamical effects should be important for them and
even for their integrated contributions.

5.1 Integrated intensities
in the case of small extinction effects
The development of integrated diagnostic methods required
the derivation of the expression for the TII, which is a sum of
the coherent and diffusion components. Dynamical extinc-
tion effects in the TII are taken into account by the coherent
and diffuse extinction factors. As a result, the TII is described
under different diffraction conditions by the universal
expression

Ri � ERipF
coh
ds � R kin

iD F diff
ds ;

where Rip is the integrated scattering intensity for a perfect
dynamically scattering crystal, E is the Krivoglaz±Debye±
Waller factor, R kin

iD is the diffusion scattering component of a
kinematically scattering crystal, and F coh

ds and F diff
ds are the

coherent and diffuse extinction factors, due to diffuse
scattering.

In the case of weak extinction, the integrated intensities,
which are expressed generally in terms of integrated extinc-
tion factors, can be expressed in terms of integrated extinction
coefficients caused by diffuse scattering.

5.1.1 The Laue geometry for thin crystals. For the Laue
diffraction geometry in the thin-crystal approximation
(m0l5 1, where l � t= cos yB, t is the crystal thickness, and m0
is the linear photoelectric absorption coefficient), the TII is
described by the expression [19, 24]

Ri � exp �ÿm0l �
�
CQEI0�hs�F coh

ds � �1ÿ E 2�QlF diff
ds

�
; �59�

where I0 is the zeroth-order Bessel function of imaginary
argument and hs � mHlCE is the dynamical photoelectric
absorption coefficient. The integrated extinction factors
introduced in (59) are defined as

F coh
ds �

�1
ÿ1

Rc�k0� exp
ÿÿmds�k0�l �dk0 � �1

ÿ1
Rc�k0� dk0

�ÿ1
;

�60�

F diff
ds �

�1
ÿ1

mds�k0� exp
ÿÿmds�k0�l � dk0 � �1

ÿ1
mds�k0� dk0

�ÿ1
;

�61�
where Rc�k0� is the coherent component of the reflection
curve. If extinction caused by diffuse scattering is weak
�mds�0�l5 1�, factors (60) and (61) reduce to exp �ÿm 0

dsl � and

Table 1. Quantitative characteristics (R factor) of the deviation of the `experimental' scattering pattern from scattering patterns simulated for the three
types of defect structures, depending on diffraction conditions (the crystal effective thickness).

Defect parameters

Diffraction conditions

Two real loop types,
R1 � 200 nm,

n1 � 2:05� 1011 cmÿ3;
R2 � 100 nm,

n2 � 1:54� 1012 cmÿ3

Two reconstructed loop types,
R1 � 1800 nm,

n1 � 2:87� 1011 cmÿ3;
R2 � 110 nm,

n2 � 1:2� 1012 cmÿ3

One reconstructed loop type,
R1 � 150 nm,

n1 � 9:43� 1011 cmÿ3

Kinematically thin crystal
�m0t � 0:03�

4.88% 4.89% 4.91%

Dynamically thin crystal �m0t � 1� 4.56% 6.42% 7.33%

Thick crystal �m0t � 10� 4.27% 5.95% 5.97%
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exp �ÿm �l �:
F coh
ds � exp �ÿm 0

dsl � ; �62�

F diff
ds � exp �ÿm �l � ; �63�

where the integrated extinction coefficients are given by

m 0
ds �

�1
ÿ1

Rc�k0� mds�k0� dk0
� �1
ÿ1

Rc�k0� dk0
�ÿ1

; �64�

m � �
�1
ÿ1

m 2
ds�k0� dk0

� �1
ÿ1

mds�k0� dk0
�ÿ1

: �65�

In the case of small defects, the width of the function
mds�Dy� greatly exceeds that of the function Rc�k0�, and the
latter can therefore be treated as a delta function. As a result,
we have m 0

ds � mds�0� and, taking (27) into account, instead of
(64) and (65) we obtain

m 0
ds � cC 2m0B ; �66�

B � b1 � b2 ln

�
e
k 2
m

k 2
c

�
;

m � � m 0
ds f �r0� ; �67�

f �r0�

�
5� 2r0 ln r0 ÿ 3:8r0

3�1ÿ ln r0� for dislocation loops;

4� r0 ln r0 ÿ 2r0
5ÿ 6 ln r0

for spherical clusters;

8>><>>:
where r0 � R0=L and R0 is the defect radius.

Therefore, in the Laue geometry in the thin-crystal
approximation for small extinction effects, the TII is
described by the expression

Ri � exp �ÿm0l �
�
CQEI0�hs� exp �ÿm 0

dsl �

� �1ÿ E 2�Ql exp �ÿm �l �� :
For large defects, approximations (66) and (67) become

incorrect, and extinction coefficients are determined by
integrating (64) and (65), with (28) taken into account.

5.1.2 The Laue geometry for thick crystals. The coherent
integrated extinction factor F coh

ds in the Laue diffraction
geometry in the thick-crystal approximation is given by

F coh
ds �

�1
ÿ1

Rp�y� exp
�
ÿmds�y�l

�
1ÿ xC��������������

1� y 2
p ��

dy�1
ÿ1

Rp�y� dy
: �68�

In the case of small extinction effects,

F coh
ds � exp �ÿm 0

dsl � :

In contrast to the total reflection effect, typical of
dynamical Bragg diffraction geometry, the anomalous
transmission of X-rays is observed in the Laue diffraction
geometry. This effect is manifested in the considerable
intensity of transmitted radiation within a small angular
region close to the Bragg angle, even in rather thick single

crystals (t4 tabs, where tabs is the absorption depth inversely
proportional to the photoelectric absorption coefficient m0),
which is caused by a considerable interference decrease in the
absorption coefficient for such waves.

For a thick crystal, radiation diffusely scattered from
small defects is almost completely absorbed in the crystal
because of its broad angular distribution (except for a small
part falling into the above-mentioned narrow angular
interval), except for a small layer (with a thickness of the
order of the absorption length) on the output side of the
crystal.

However, in the case of large defects, from which diffuse
waves propagate mainly within the above-mentioned narrow
angular interval, the anomalous transmission effect also
becomes considerable for diffuse scattering. In this case,
diffuse waves are produced in a significantly larger volume
than in the case of small defects. As a result, the sensitivity to
dynamical extinction effects in diffuse scattering from large
defects considerably increases in the study of crystals in the
Laue geometry in the thick-crystal approximation. Here,
expressions for the scattering intensity are significant in
crystals with large defects from which diffuse scattering
occurs predominantly dynamically.

The diffuse extinction factor in the Laue geometry in a
thick crystal is given by

F diff
ds �

2P0

pKt

X
d; t

Idt ;

Idt � 1

K 3 sin 2yB

�
Ddt�a; a 0�F �q� rdt�a; a 0�

� �exp ÿ2Ktmd�a�
�ÿ exp

ÿ
2Ktmt�a 0�

��
dk ; �69�

md�a� � ImDd�a�

� 1

2g0

 
ÿjw0ijÿ �ÿ1�d

C 2E 2wHrwHi���������������������������������������������
a 2 � C 2E 2�w 2

Hr ÿ w 2
Hi�

q !
ÿ mds�a�

2g0K
;

P0 � ctvcH
2

16g 30 l
2
; Ddt�a; a 0� � jD

0
t ÿ Ddj2j2g0Dd 0 ÿ w0j2
jD1 ÿ D2j2jD 01 ÿ D 02j2

:

Here, the terms Idt describe the contribution to the diffuse
scattering intensity from strongly �t � 2� and weakly �t � 1�
absorbed diffuse wave fields produced by the scattering of
strongly �d � 2� andweakly �d � 1� absorbed coherent waves
from crystal lattice distortions.

To find the diffuse integrated extinction factor in the Laue
geometry in the thick-crystal approximation for weak
extinction effects and small defects, we pass in (69) from the
integration variables kx and kz to the variables

y � jK�Hj ÿ K

KCE
�����������������
wHrwÿHr
p ; y 0 � jK

0 ÿHj ÿ K

KCE
�����������������
wHrwÿHr
p ;

using the relations

kx �
�
�y 0 ÿ y� cosc

tan yB
� �y 0 � y� sinc

�
p
L
;

kz �
�
ÿ�y 0 ÿ y� sinc

tan yB
� �y 0 � y� cosc

�
p
L
:

July 2011 Multiparametric crystallography using the diversity of multiple scattering patterns for Bragg and diffuse waves 677



As a result, we obtain

F diff
ds �

P0

ÿ
KCE jwHrj

�2�KL�2
16p2K sin2 yBR kin

iD

X
d; t�1; 2

Idt ; �70�

Idt �
��

dy dy 0 fdt�y; y 0�Pdt�y; y 0� ;

fdt�y; y 0� � jD
0
t ÿ Ddj2j2g0Dd 0 ÿ w0j2
�y 2 � 1��y 0 2 � 1�

�
dky

��H0u�qdt�
��2 ;

Pdt � exp �ÿm0l �
exp

ÿÿmd�y�
�ÿ exp

ÿÿmt�y 0�
�

mt�y 0� ÿmd�y� ;

md�y� � mds�y�l� �ÿ1�d
mHlC��������������
y 2 � 1

p :

The factorPdt in the integrand in (70), which describes the
anomalous transmission of diffusely scattered waves [23, 42],
is a sharply decreasing function of y and y 0. The factors fdt in
(70) are smoothly varying functions of y and y 0. We can
therefore estimate integral (70) asymptotically for mHl4 1 by
the Laplace method [23, 42], according to which the
asymptotic expression for the integral

F �l� �
� b

a

dx f �x� exp ÿlS�x��
as l!1, with S 00�x0� 6� 0 and a < x0 < b [where x0 is the
position of the maximum of S�x�], has the form

F �l� � f �x0�
������������������
ÿ2p

lS 00�x0�

s
exp

ÿ
lS�x0�

�
:

We thus obtain the diffuse extinction factor

F diff
ds �

aCE jwHrj m 0
ds

16 sin2 yB mHCg 20R
kin
iD

������������
2p

mHlC

s
� exp

�ÿ�m0 ÿ mHC� m 0
ds�l
�
:

5.1.3 The Bragg geometry for thin and thick crystals. The
coherent extinction factor in the Bragg geometry in the thin-
crystal approximation is given by

F coh
ds �

3

8

�1
ÿ1

r�z; t; g; k� dz ; �71�

where

r�z; t; g; k�

� cosh xr ÿ cos xi

L� cosh xr �
�������������
L2�ÿ1

p
sinh xrÿ Lÿ cos xi�

�������������
1ÿL2ÿ

p
sin xi

:

Generally speaking, expression (71) describes extinction
effects in coherent scattering both in the thin and thick-crystal
approximations. But in the latter case, expression (71) for the
integrated coherent factor can be considerably simplified
because the approximation xr !1 is valid as m0t!1.
Then the coherent extinction factor in the Bragg geometry in
the thick-crystal approximation has the form

F coh
ds �

3

8

�1
ÿ1

r�z; t; g; k� dz ; �72�

where r�z; t; g; k� � L� ÿ
���������������
L2� ÿ 1

p
.

The coherent extinction factor for the Bragg diffraction
geometry (in reflection) in the case of weak extinction effects
is

F coh
ds � 1ÿ 3ps

4
; �73�

where s � �m0 � mds�0��LE=�gC � and the condition s5 1
must be satisfied.

With the extinction effects that are not small in the Bragg
geometry taken into account, we find the diffuse extinction
factor

F diff
ds �

cvc

�2p�3LH

�
dk jHukj2 1ÿ exp �ÿ2mit�

2mit
: �74�

Assuming that mds�0�5 m0 and performing the corresponding
expansions in the small parameter, we obtain

F diff
ds �

g=2
�m0 � m ��t �75�

in the thick-crystal approximation, where g �
�1=g0 � 1=jgHj�ÿ1.

In the thin-crystal approximation, the integrated diffuse
extinction factor in the Bragg geometry is

F diff
ds �

1

1� �m0 � m ��t=g :

As follows from expressions for extinction factors in
different diffraction cases, contributions from defects of
different types are not additive in the expressions for the TII
in general. This is, as a rule, due to the nonlinearity of the
dependences of the TII on structurally sensitive parameters
LH, m 0

ds, and m �.

5.2 Integrated intensities
in the case of large extinction effects
5.2.1 The Laue geometry and thin crystals. The integrated
extinction factor F coh

ds of the coherent component of the TII
for the Laue geometry in the thin-crystal approximation in
the presence of various types of defects in the crystal is

F coh
ds �

Icoh
Rip
�
�1
ÿ1

R�k0� exp
�
ÿ
Xn
a� 1

ma
ds�k0�l

�
dk0

�
� �1
ÿ1

R�k0� dk0
�ÿ1

; �76�

where R�k0� is the differential reflectivity of a perfect crystal
taking the Krivoglaz±Debye±Waller factor into account. But
here, in contrast to [55], the effective absorption or the
extinction coefficient ma

ds�k0� caused by diffuse scattering is
determined by expression (28), which is also valid for large
defects. Neglecting the dynamical oscillations of the differ-
ential reflectivity of the perfect crystal in the integration and
taking into account that

R�k0� � K 2s 2
0

2�k 2
0 b� K 2s 2

0 �
exp �ÿm0l � ;

where K � 2p=l, l is the radiation wavelength and s 2
0 �

C 2
j E

2wHwÿH, we obtain

Rip � pKs0
2
���
b
p exp �ÿm0l � :
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To take the integral of Icoh, it is convenient to arrange the
quantities kma separating the Huang and Stokes±Wilson
regions in their increasing order km1 < km2 < km3 < . . .
< kmn, where n is the number of defects in the crystal.
Because the integrand is even, we can represent Icoh as
follows: the first integral is taken over the interval
k0 2 �0; km1�, in which all ma

ds�k0� are represented in the form
corresponding to the Huang region; the second integral is
taken over the interval k0 2 �km1; km2�, in which m 1

ds�k0� is
represented in the form corresponding to the Stokes±Wilson
region, and the rest of ma

ds�k0� corresponds to the Huang
region, and so on. In the interval k0 2 �kmn;1�, all integrals
have the form corresponding to the Stokes±Wilson region.
We thus obtain

F coh
ds �

K 2s 2
0

gRip
exp �ÿm0l �

 Xnÿ1
i� 0

exp �ÿb5i � b4i�

�
� kmi�1

kmi

�k 2
0 � m 2�b1i
k 2
0 � A2

1

exp

�
ÿ
�
b3i
k 2
0

� b2i
2

k 2
0

��
dk0

� 2

�1
kmn

exp �ÿb3n=k 2
0 �

k 2
0 � A2

1

dk0

!
;

where

b1i �
Xn
j� i�1

Fjlb2 j ; b2i �
Xn
j�i�1

Fjlb3 j
kmj

;

b3i �
Xi
j�1

Fjl

�
b2 j ÿ 1

2
b3 j

�
k 2
m j ; b4i �

Xn
j� i�1

Fjlb3 j ;

b5i �
Xn
j� i�1

Fjlb2 j ln
�
e�k 2

m j � m 2�� ;
A2

1 �
K 2s 2

0

g
; Fj � cjC

2E 2m0 :

When the effective size of defects is much smaller than the
extinction length, the diffuse background distribution pro-
duced by such defects is much broader than the coherent
peak, i.e., the propagation directions of most of the diffuse
waves considerably deviate from the Bragg angle. In this case,
we can determine the integrated intensity of the diffuse
background by neglecting dynamical effects in diffuse
scattering because their relative contribution is very small.
However, when the size of defects is comparable to the
extinction length, the diffuse background distribution is
narrow, and all waves diffusely scattered along the propaga-
tion direction weakly differ from coherent waves, i.e., they are
concentrated in a substantially dynamical region. In this case,
the dynamical character of diffuse scattering should be taken
into account. The diffuse component of the TII has the form

RiD � C 2�1ÿ E 2�F diff
ds Ql exp �ÿm0l � :

With the dynamical effects in diffusion scattering taken
into account, the integrated extinction factor of the corre-
sponding TII component is given by

F diff
ds �

Idiff
I0
�
�1
ÿ1

Xn
a� 1

ma
ds�k0� exp

�
ÿ
Xn
a� 1

ma
ds�k0�l

�
dk0

�
� �1
ÿ1

Xn
a� 1

ma
ds�k0� dk0

�ÿ1
: �77�

We note that the expression

I0 � �1ÿ E 2�R kin
ip � 2LH R kin

ip

is also valid. With (76) and (77), we obtain

I0 �
Xn
a�1

�1
ÿ1

ma
ds�k0� dk0

� 2
Xn
a�1

Fa

�
b2a

�
3kma ÿ 2m arctan

kma

m

�

ÿ 5kmab3a
6

� kma

�
b2a ÿ 1

2
b3a

��
:

By ordering the kma as in the calculation of F coh
ds , we find

F diff
ds �

2

lI0

(Xnÿ1
i�0

ei

�
�b5i ÿ b4i�Ii ÿ

X3
j�1

bi j
qIi
qbi j

�

�
�������
b3n

p
erf

� �������
b3n

p
kmn

�)
;

where

Ii �
� kmi�1

kmi

�x 2 � m 2� b1i exp
�
ÿ
�
b2i
2

x 2 � b3i
x 2

��
dx ;

ei � exp �ÿb5i � b4i� :
5.2.2 The Laue geometry for thick crystals. Regarding the
coherent factor for large extinction effects in the Laue
geometry, we have

F coh
ds �

1

Rip

�1
ÿ1

Rp�y� exp
�
ÿmds�y�l

�
1ÿ xC��������������

1� y 2
p ��

dy ;

�78�

where

Rip � Bi0�mHlC �����������������
2pmHlC

p exp
�ÿ�m0 ÿ mHC �l

�
is the integrated reflectivity for Laue diffraction geometry in
the thick perfect crystal approximation,

B � pCE jwHrj
2 sin �2yB� ; i0�x� � 1� 1

8x
� 9

128x 2
� . . . :

To calculate the diffuse extinction factor, we can make
some simplifications:

jD 0t ÿ Ddj2

� 1

4g 20

h
�aÿ a 0� � �ÿ1�d

����������������
a 2 � a 2

0

q
ÿ �ÿ1�t

������������������
a 0 2 � a 2

0

q i2
;

j2g0Dd 0 ÿ w0j2 �
�
a� �ÿ1�d 0

����������������
a 2 � a 2

0

q �2
;

jD1 ÿ D2j2 � 1

g 20
�a 2 � a 2

0 � ; jD 01 ÿ D 02j2 �
1

g 20
�a 0 2 � a 2

0 � ;

Ddt�a; a 0� �

� g 20
4

1

�a 2 � a 2
0 ��a 0 2 � a 2

0 �
�
a� �ÿ1�d 0

����������������
a 2 � a 2

0

q �2
�
h
�aÿ a 0� � �ÿ1�d

����������������
a 2 � a 2

0

q
ÿ �ÿ1� t

������������������
a 0 2 � a 2

0

q i2
:
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The expression for rdt�k0; k 0� can be reduced to the form

rdt�a; a 0� �
1

2Kt Im �Dd ÿ D 0t�

�
"ÿ
mds�a�ÿmds�a 0�

�
l� b0Kl

2

 
�ÿ1�d���������������
a 2� a 2

0

q ÿ �ÿ1� t�����������������
a 0 2� a 2

0

q !#ÿ1
:

In (69), we pass from integration over dk to integration
over dy dy 0 dj 0, where j 0 is the deviation angle of a diffusely
scattered wave from the diffraction plane. We express the
components of the wave vector k of the diffuse wave in the
vacuum in terms of the angular variables y, y 0, and j 0 (see
Fig. 4):

kx � K�y 0 � 2y cos2 yB� ; ky � Kj 0 ; kz � ÿKy sin 2yB :

Thus, by passing to angular variables in integral (62), we
obtain the integration element

dk � dkx dky dkz � K 3 sin 2yB dy dy 0 dj 0 :

If a crystal contains several types of defects, it is necessary,
as in the case of the coherent component, to replace the
differential extinction component by a sum of extinction
coefficients from defects of each type and also to replace the
expression F�q� by a sum of such expressions for each type of
defect:

F �q� �
X
a

Fa�q� :

Such replacements can be used because quantities that are
quadratic in displacement fields from defects of different
types are combined additively (assuming that pair correla-
tions between displacements from different types of defects
can be neglected, which is valid for a small volume fraction of
defects, when c5 1).

Integrating (69) over j 0 yields

Idt �
�
Ddt�a; a 0�F �a; a 0� rdt�a; a 0�

�
h
exp

ÿ
2Ktmd�a�

�ÿ exp
ÿ
2Ktmt�a 0�

�i
dy dy 0 ; �79�

where

F �a; a 0�

�
fH

� ����������������
k 2
mÿ kk

q �
ÿ fH�0� � fSW�1� ÿ fSW

� ����������������
k 2
mÿ kk

q �
fpr jkkj < km ;

fSW�1� ÿ fSW�0� for jkkj5 km ;

8>><>>:
fH�x� � B2k

2
1 x

K�k 2
k � m 2

i ��k 2
k � x 2 � m 2

i �

�
B2k

2
1 � 2B1�k 2

k � m 2
i �

K�k 2
k � m 2

i �3=2
arctan

x�����������������
k 2
k � m 2

i

q ;

fSW�x� � k 2
m

4K

(
x

�k 2
k � m 2

i �2�k 2
k � x 2 � m 2

i �2

��B2k
2
1 �5k 2

k � 3x 2� m 2
i � � 4B1�k 2

k � x 2� m 2
i ��k 2

k � m 2
i �
�

�
3B2k

2
1 � 4B1�k 2

k � m 2
i �

�k 2
k � m 2

i �5=2
arctan

x�����������������
k 2
k � m 2

i

q )
;

kk �
����������������
k 2
x � k 2

z

q
; k1 � ÿkx sin yB � kz cos yB :

5.2.3 The Bragg geometry for thin and thick crystals.
According to (74), the diffuse integrated extinction factor in
the Bragg geometry is described by the expression

F diff
ds �

1

2g0R kin
iD

�1
ÿ1

1ÿ exp �ÿ2mt�
m

Fdyn

�X
a

ma
ds�k0�

�
dk0 :

�80�

In the limit cases of thin and thick crystals, the exponential in
(80) transforms to 0 or 1ÿ 2mit, respectively.

The coherent and diffuse factors in the Bragg geometry
can be found by integrating expressions (71), (72), and (80)
numerically in the thin and thick-crystal approximations.
However, we recall that when the crystal contains large
defects, extinction factors must be integrated considering the
orientation dependence of the interference absorption coeffi-
cient. This dependence strongly affects the TII [60].

6. Method of integrated diffuse-dynamical
multiparametric diffractometry (IDDMD)

6.1 Physical foundations of the method
of diffuse-dynamical multiparametric diffractometry
Figure 10 shows a scattering pattern in a perfect crystal and
an imperfect crystal (at the upper-right corner of the screen).

According to the Krivoglaz kinematical theory, the TIIRi

for imperfect crystals are [15, 24]

Ri � RiB � RiD ; �81�
RiB � Rip exp �ÿ2L� ; �82�
RiD � Rip

�
1ÿ exp �ÿ2L�� ; �83�

Rip � 2CQt

g0
; �84�

Q �
ÿ
pjwHrj

�2
l sin �2yB� ; �85�

where Rip is the integrated scattering intensity in perfect
crystals (without defects), wHr is the real part of the Fourier
component of the crystal polarizability, yB is the Bragg angle,
l is the radiation wavelength, t is the crystal thickness, and C
is a polarization factor.We emphasize that in expressions (82)
and (83) for the Bragg �RiB� and diffuse �RiD� components of
the TII, only the factor Rip depends on the diffraction

b

Cr

a

Sc

b � 2p=a
O

C
M

S

Figure 10. Scattering patterns in a perfect crystal [the size and shape of

dark spots on the screen (Sc) are determined in the kinematical theory only

by the size and shape of the sample] and in an imperfect crystal (Cr). The

dark spot in the upper-right corner of the screen corresponds to the

distribution of the Bragg component of the diffracted intensity in the

reciprocal space, and the lighter spot around it gives the diffuse component

distribution. S: source, M: monochromator, C: collimator.
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conditions. This factor is independent of the structure of
defects in a crystal, whereas terms containing the Krivoglaz±
Debye±Waller factor E � exp �ÿL�, which is determined for
each reflex independently of diffraction conditions, depend
on this structure.

Another important circumstance is that the integrated
scattering intensity in crystals with defects is characterized by
two integral parameters, which can be conveniently intro-
duced in the following way. The first parameter is the total
brightness of the scattering pattern (a blurred Laue spot
shown in the upper-right corner of the screen in Fig. 10), i.e.,
the total integrated reflection intensity Ri in (81), equal to the
sum of the Bragg and diffuse components. For convenience,
this parameter is normalized to the total brightness Rip of the
scattering pattern in a perfect crystal. The second parameter is
the relative contribution of the diffuse component or the ratio
RiD=RiB of the diffuse and Bragg components. It follows from
(81)±(83) that in the kinematical theory of imperfect crystals,

Ri � Rip or
Ri

Rip
� 1 ; �86�

RiD

RiB
� 1ÿ exp �ÿ2L�

exp �ÿ2L� � 2L ; �87�

i.e., the total integrated intensity for each selected reflection is
independent of the crystal lattice distortion, and hence the
only structure-dependent factor is the second parameter
RiD=RiB, which is independent of the diffraction conditions.

Therefore, expressions (86) and (87) for these two
parameters give two conservation laws in the kinematical
theory.

The first conservation law reflects the independence of the
total integrated intensity Ri (the first parameter) on the
structure of defects in crystals, i.e., the value of Ri for
imperfect crystals in the kinematical theory is the same �Rip�
as in a perfect crystal and hence depends only on diffraction
conditions. However, the normalization of this parameter to
Rip leads to the loss of its dependence on the diffraction
conditions, making it a universal constant equal to unity in
the kinematical theory, i.e., it completely loses its information
content.

The second conservation law in the kinematical theory
shows that the relative contribution of the diffuse component
(the second parameter) for each reflex is independent of
diffraction conditions. Therefore, the kinematical theory
contains only this structure-sensitive parameter for any the
diffraction conditions. We note that, as follows from (81)±
(87), conservation laws (86) and (87) can hold only because
the factors in the expressions describing the dependences of
the Bragg and diffuse component intensities on diffraction
conditions are identical. Both these factors are equal to the
integrated intensity of diffracted radiation for the corre-
sponding reflex in the perfect crystal. When the Bragg and
diffuse components are added, their parts depending on the
defect parameters therefore cancel, and the dependence on
diffraction conditions cancels upon their division, resulting in
the appearance of the two conservation laws in the kinema-
tical theory.

The analysis of expressions (76)±(80) in the dynamical
scattering theory shows that both integral parameters of the
scattering pattern introduced above (the sum and ratio of the
diffuse and Bragg components Ri), unlike parameters (81)±
(87) in the kinematical theory, depend on the defect structure
parameters and diffraction conditions. Expressions (76)±(80)

demonstrate the principal difference between the depen-
dences of the Bragg and diffuse components of Ri not only
on defect parameters but also on diffraction conditions.
Multiple scattering of the Bragg and diffuse components
leads to their different dependences on dynamical diffraction
conditions, resulting in violation of the above conservation
laws of the kinematical theory in the case of dynamical
diffraction.

The existence of two conservation laws for two integral
parameters of the scattering pattern in the kinematical theory
of scattering in imperfect crystals and the superstructure
established in [4] restricts the information content of the
kinematical scattering pattern. Because the distribution of
the first parameter in the reciprocal lattice space is the
scattering pattern itself, while for the second parameter, it is
the distribution of the diffuse component of the scattering
pattern, we can reach conclusions about the reasons restrict-
ing the information content of the diffraction pattern itself for
kinematical scattering and about the principal inadequacy of
the kinematical consideration of dynamical diffraction not
only for integral approaches but also for integro-differential
and differential methods of diffractometry.

The first conservation law of the kinematical theory,
according to which the first parameter [see the first expres-
sion in (86)] depends only on diffraction conditions (radiation
wavelength, crystal thickness, diffraction geometry, and so
on) and is independent of structural parameters, remaining
the same as in a perfect crystal for any deviations from the
crystal lattice periodicity, was established previously [30±42]
as the conservation law for the total integrated intensity of
diffracted radiation in imperfect crystals. Only the second
integral parameter, Eqn (87), therefore depends on the crystal
structure. In the kinematical theory for small L, this
parameter reduces to twice the Krivoglaz±Debye±Waller
factor, i.e., RiD=RiB � 2L.

Krivoglaz analyzed parameter (87) to obtain the classifi-
cation of defects in crystals according to their influence on
the scattering pattern [15]. The kinematical scattering
pattern proved to be the Fourier transform of an imperfect
crystal, which is uniquely determined by the second para-
meter independent of diffraction conditions and by its
distribution in the reciprocal lattice space. This parameter
is independent of diffraction conditions due to the single-
scattering approximation, which is the essence of the second
conservation law, automatically following, like the first one,
from the kinematical theory. But the second conservation
law of the kinematical theory was not established earlier and
was first formulated in [4].

Figure 11 illustrates a drastic change in the influence of
defects on the integrated scattering intensity (the first
parameter) in the case of dynamical diffraction as the
curvature radius r of the macroscopic elastic bending of a
crystal changes. Also, a change in the influence of defects on
these deformation dependences under changes in other
diffraction conditions is demonstrated by passing from the
limit case of dynamical diffraction in a `thin' crystal (Fig. 11a),
in which a significant increase in the TII compared to that for
a perfect crystal caused by defects is observed, to the limit case
of a `thick' crystal (Fig. 11b), in which the TII significantly
decreases due to the presence of defects [3, 39]. This is
explained by the fact that the curvature radius of the elastic
bending and thickness of the crystal affect the Bragg and
diffuse components of the dynamical diffraction pattern
substantially differently, as is illustrated in Fig. 11. This
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leads to a violation of the second conservation law in
dynamical diffraction and, as a result, also of the first law.

Therefore, the total brightness of the dynamical scattering
pattern normalized to the pattern brightness for the corre-
sponding perfect crystal and the dependences of the normal-
ized total brightness and its normal components on diffrac-
tion conditions become uniquely sensitive to defect character-
istics or parameters of the superstructure because they are
substantially different, providing the different influences of
defects on these dependences under different diffraction
conditions.

This unique phenomenon and the dependence of the
selectivity to defects of different types on diffraction condi-
tions [41, 42] were used for the development of the new
integral DDMD methods [2, 3, 30±42], which cannot be
developed in the kinematical approach.

It was shown in [1, 3] that nonlinear multiple scattering
effects lead to principally different dependences of the Bragg
and diffuse components of the dynamical scattering pattern
on the dynamical diffraction conditions (the radiation
wavelength, crystal thickness, diffraction geometry in trans-
mission or reflection, reflection asymmetry parameter,
azimuthal angle, curvature radius of the elastic bending of a
crystal, and so on).

Figure 11 shows that the difference between the behavior
of the Bragg and diffuse components leads to a violation of
the second conservation law of the kinematical theory in
dynamical diffraction and also to a violation of the first
conservation law. This explains the unique sensitivity of the
normalized total brightness of the scattering pattern to crystal
structure distortions. First, in the case of dynamical diffrac-
tion, both integral parameters of the dynamical scattering

pattern in (86) and (87) become sensitive to the crystal
structure. Second, which is more important, the number of
experimental pairs of these parameters beingmeasured is now
equal to the number of dynamical diffraction conditions that
can be realized experimentally, i.e., these structurally sensitive
parameters become multidimensional and the dynamical
picture itself becomes diverse.

The main feature and advantage of the new generation of
diagnostics (DDMD) developed in [1±3, 31] and considered in
this review is the unique possibility of combined numerical
processing of experimental measurements of scattering
pattern parameters under different dynamical diffraction
conditions by different methods (integral, integro-differen-
tial, and differential, i.e., one-, two-, and three-axis). The new
principles of highly informative diagnostics [1±3, 31±33] are
based on experimental measurements and theoretical analysis
of the required set of the above pairs of integral parameters
and their distributions in the reciprocal lattice space. Thus, we
consider not only integral parameters but also the integro-
differential and differential characteristics of the distribution
of these two main parameters of dynamical scattering
patterns, namely, the distribution of the diffraction bright-
ness pattern and of its diffuse component in the reciprocal
space.

6.2 Thickness and spectral dependences
of the total integrated intensity
As mentioned above, finding the differences in the mechan-
isms of multiple scattering for the Bragg and diffuse
components led to the discovery of qualitatively new
dynamical diffraction effects as far back as the 1980s [37, 38,
57, 58]. One of the spectacular examples is the violation of the
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(b) thick crystal; and the normalized TII (r � Ri=Rip�: (c) thin crystal, (d) thick crystal. The dotted and dashed curves are respectively the calculated

deformation dependences of the coherent and diffuse components of the TII; thin solid curves are the deformation dependences of the TII in a crystal

without defects.

682 V B Molodkin, A P Shpak, M V Kovalchuk, V FMachulin, V L Nosik Physics ±Uspekhi 54 (7)



first conservation law of the kinematical theory for the total
integrated reflectivity for the Bragg and diffuse components
in imperfect crystals (independence of crystal distortions) in
the case of dynamical diffraction. As a result, the thickness,
spectral, azimuthal, deformation, and other dependences of
the TII became very sensitive to defects [1±8, 30±40]. These
dependences can be rapidly measured and interpreted by
using analytic expressions obtained by the authors.

Experimental data presented in Fig. 12a demonstrate the
thickness dependence of the diffuse scattering contribution
and the violation of the conservation law of the TTI (the
curves show theoretical dependences). The TII is normalized
to the TII for a perfect crystal, which always gives unity in the
kinematical theory [see (86)].

We note that the horizontal straight line in Fig. 12a
corresponds to a perfect crystal in the dynamical considera-
tion �Ri perf� or any (perfect or imperfect) crystal in the
kinematical case; in the latter case, the TII is insensitive to
crystal distortions.

Figure 12b shows thickness dependences of the specific
contributions of the diffuse and coherent components of the
TII. We see that the change in the relative contribution of the
diffuse component of the TII (which is continuous as the

crystal thickness changes and discrete when passing from the
thin-crystal approximation to the thick-crystal approxima-
tion) caused by substantially different thickness dependences
of the TII components and by the change of these depen-
dences on passing from thin to thick crystals determines its
unique sensitivity to defects.

Figure 13 presents the spectral dependences of the TII for
imperfect crystals, demonstrating the different behavior of
the TII in the thin-crystal (short-wavelength region) and
thick-crystal (long-wavelength region) approximations for
the Bragg diffraction geometry.

We see that this difference is stronger for the Bragg
diffraction than for the Laue diffraction geometry. How-
ever, in the latter case, the high sensitivity of dynamical
diffraction to defects of different types in samples is also
preserved and considerably increases with an increase in the
contribution from the diffuse component as the wavelength
decreases, i.e., upon increasing the absorption length and
hence the volume where diffuse scattering is formed.

Expressions (76)±(80) of the dynamical theory and the
analysis presented above show that the Bragg and diffuse
components of the scattering pattern depend differently on
the defect parameters and dynamical diffraction conditions
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(diffraction geometry, thin and thick crystals, and so on). The
main conclusion is that the Bragg and diffuse components
depend on the dynamical diffraction conditions differently,
which leads to the effects considered above.

6.3 Asymmetry of the azimuthal dependence
of the normalized total integrated intensity
It is known that the azimuthal dependences of the TII
normalized to the TII for a perfect crystal for different types
of crystal distortions are symmetric with respect to the angle
of 90�. Such crystal distortions include small Coulomb defects
(dislocation loops, clusters, and so on) �R5L� and a
distorted surface layer.

The symmetry of the azimuthal dependence was studied
by measuring this dependence for an imperfect crystal. A
sample for measurements was cut from a CZSi ingot (p-type
conductivity, r � 10 O cm, h111i growth axis, oxygen and
carbon concentrations � 1� 1018 cmÿ3 and � 1016 cmÿ3).
The sample was fabricated in the form of a plate 4000 mm
thick parallel to the �111� plane. Distortions of the surface
structure produced during mechanical machining were
removed by chemical±mechanical polishing, followed by
chemical etching to the depth � 10 mm.

The azimuthal dependence of the normalized TII proved
to be strongly asymmetric due to the presence of large defects
in the crystal (dislocation loops with the radius 15 mm)
(Fig. 14a), whereas calculations by expressions (66) and (68)
give the symmetric dependence even for large defects. But
because the size of dislocation loops exceeds the extinction
length, these expressions can no longer correctly describe the
TII because they were derived under the assumption that the
defects are small, which allowed neglecting multiple scatter-
ing of diffuse waves by the periodic part of the crystal
potential. For large defects, as mentioned above, the TII
should be calculated with (72) and (80).

Calculations by generalized expressions also give an
asymmetric azimuthal dependence of the normalized TII,
which is consistent with experimental data (the solid curve in
Fig. 14a).

The asymmetry of the azimuthal dependence is caused by
the behavior of the diffuse component of the TII. It was found
that large defects in the crystal lead to a symmetric azimuthal
dependence of the diffuse component (this dependence is
asymmetric in the case of small defects), whereas the
azimuthal dependence of the coherent component remains
asymmetric (as in a perfect crystal), as shown in Figs 14b, c.

Hence, by normalizing the azimuthal dependence of the
TII for a crystal with defects to that for a perfect crystal, we
obtain a symmetric dependence for small defects and an
asymmetric dependence for large defects. Therefore, because
azimuthal dependences for small and large defects are
substantially different and the shape of the azimuthal
dependence is sensitive to the size of large defects, it is
possible to determine their parameters. The parameters of
small defects can be determined by using other diffraction
conditions for the same sample.

6.4 Deformation dependences of integrated scattering
intensity in imperfect crystals for the Laue diffraction
geometry in the absorption K-edge region
To study diagnostic possibilities under the specified condi-
tions, it is necessary first to construct an adequate theoretical
model. The fitting [61] of the deformation dependences of the
TII for a symmetric 220-Laue reflex from a silicon single
crystal measured by using the characteristic Fe-Ka radiation
gave the parameters of a semiphenomenological TII model
for a bent thick crystal with randomly distributed defects. The
TII jumpS near the absorptionK-edge obtained in thismodel
is given by [7]

S � Ri�l1�
Ri�l2� ;

where l1 � 0:1139 nm, l2 � 0:1094 nm,

Ri�l� � Ri � Ri coh

�
1� 0:074 �BTm0l �

�
� exp

�ÿ0:00604 �BTm0l �2�
� Ri diff

�
1� 0:0157 �BTm0l �

�
exp

�ÿ0:00044 �BTm0l �2� ;
�88�

B � l2 sinc
�
1� g1g2�1� n��

2pjwHrj2rd
; T � ptjwHrj

l
���������
g1g2
p ;

g1 � cos �yB � c�, g2 � cos �yB ÿ c�, r is the curvature radius
of the cylindrical bend of the crystal, d � a=�h 2 � k 2 � l 2�1=2,
a is the lattice constant, h, k, and l are Mueller indices,
Ri coh � ERipF

coh
ds and Ri diff � R kin

i F diff
ds are the coherent and

diffuse components of the integral intensity in the unbent
crystal, in which extinction factors are determined by
expressions (78) and (70) with (79) taken into account, and
E is the Krivoglaz±Debye±Waller factor.

The results of computations for the model in (88) at
different values of the asymmetry parameter c for the �2�20�
and ��220� reflections are shown in Fig. 15.
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Figure 15 shows that the stronger the deformation is, the
greater the difference of the deformation dependence of the
TII jump from that calculated for the perfect crystal. This is
explained by the considerable difference between the defor-
mation dependences of jumps for the coherent and diffusion
components of the TII and, possibly, by a noticeable
contribution from the diffuse component.

Figure 16 shows the calculated deformation dependences
of the TII jump in a crystal with defects normalized to that in
the perfect crystal.

We see that the influence of defects on the deformation
dependence of the TII increases as the crystal thickness
increases. The TII jump in an unbent crystal with the
maximal thickness 740 mm increases twofold in the presence
of defects. As the degree of crystal bending increases, the TII
sensitivity to defects first decreases to zero and then the jump
value decreases by two orders of magnitude upon further
increasing the degree of bending, while the TII sensitivity to
defects increases by two orders of magnitude.

Figure 17 shows that despite the small inclination angle of
the reflecting plane to the normal to the crystal surface, the
deformation dependences of the TII in the perfect crystal and
of the coherent component of the TII and TII itself in crystals
with defects are pronounced for the short-wavelength
boundary of the absorption K-edge. This is caused by the
anomalous transmission effect, which decreases with decreas-
ing the effective thickness m0t. At the same time, Fig. 17 shows
that because of the smallness of the inclination angle of the
reflection plane to the normal to the crystal surface, the
deformation dependences of the coherent and diffuse compo-
nents of the TII for the long-wavelength boundary of the
absorption K-edge and for the diffuse component near the
short-wavelength boundary of the absorption K-edge are
virtually absent. This is caused by a change in the relative
contributions from the deformation dependences of the
reflectivity and absorptivity for the Bragg and diffuse
components to the resulting deformation dependence with
changing m0t.

103=r, cmÿ1

S

0

0

50

100

300

250

200

150

5 10 15

t � 740 mm

b

Perfect
crystal

�220

GeR � 6 mm

c � 0:267�
c � 1:17� 10ÿ17

103=r, cmÿ1
0

0

50

100

350
S

300

250

200

150

5 10 15

a

t � 740 mm

Perfect
crystal

2�20

GeR � 5 mm

c � 0:341�
c � 1:66� 10ÿ17

Figure 15.Deformation dependences of the TII jump calculated by expressions (88) (curves) and measured (dots) in [54] near the absorption K-edge for a

740 mm thick Ge crystal. The solid, dashed, dotted, and dotted-dashed curves are the respective deformation dependences of the TII jump, its coherent

component, its diffuse component, and the TII jump for a perfect crystal and c is the probability of replacing a lattice site with a defect.

0
0

1

S
5
m
m
/S

p
er
fe
ct

2

5 10 15 20 25 30 35

103=r, cmÿ1

t � 650 mm

t � 740 mm

t � 380 mm

t � 520 mm
t � 590 mm

Figure 16.Deformation dependences of the TII jump in imperfect crystals

with different thicknesses calculated by expressions (88) and normalized to

the deformation dependence of the TII jump in perfect crystals.

cloops � 1:4� 10ÿ17
Rloops � 5 mm

t � 650 mm

0

400

800

1200

1600

2000
S

220, Ge

Total

Perfect
crystal

Diffuse

Coherent

c

20100ÿ10ÿ20
103=r, cmÿ1

150

100

50R
i
�
1
0
9

t � 650 mm

0

220, Ge 0.1094 nm

Perfect
crystal

Total

DiffuseCoherent

a

Rloops � 5 mm

103=r, cmÿ1
0 10 20 30ÿ10ÿ20ÿ30

cloops � 1:4� 10ÿ17

cloops � 1:4� 10ÿ17
Rloops � 5 mm

R
i
�
1
0
8

t � 650 mm

50

0

100

150

200

220, Ge 0.1139 nm

Total

Perfect
crystal

Diffuse
Coherent

b

30

103=r, cmÿ1
20100ÿ10

Figure 17. Deformation dependences of the TII in perfect crystals, crystals with defects, the TII Bragg and diffuse components and their jump near the

absorption K-edge calculated by expressions (88) for a 650 mmthick crystal.

July 2011 Multiparametric crystallography using the diversity of multiple scattering patterns for Bragg and diffuse waves 685



6.5 Deformation dependences of the integrated scattering
intensity in imperfect crystals for the Laue diffraction
geometry under violation of the Friedel law
Based on the semiphenomenological model of the TII for a
bent thick crystal with randomly distributed defects [61], the
asymmetry parameter of the deformation dependence of the
TII introduced in [63] can be written as [8]

Y � R
���
i

R
�ÿ�
i

;

R
���
i � Ri coh

�
1� 0:074 �BTm0l �

�
exp

�ÿ0:00604 �BTm0l �2�
� Ri diff

�
1� 0:0157 �BTm0l �

�
exp

�ÿ0:00044 �BTm0l �2� ;
R
�ÿ�
i � Ri coh

�
1ÿ 0:074 �BTm0l �

�
exp

�ÿ0:00604 �BTm0l �2�
� Ri diff

�
1ÿ 0:0157 �BTm0l �

�
exp

�ÿ0:00044 �BTm0l �2� :
�89�

The values of the mean radius R � 5 mm of dislocation loops
and their concentration c � 1:69� 10ÿ17 used in the calcula-
tion of the thickness dependences of asymmetry parameters
for imperfect crystals presented in Fig. 14 are close to the
parameters of dislocation loops found in [61] by fitting the
deformation dependences of the TII jump near the absorption
K-edge [62]. The results of calculations are presented in
Fig. 18.

We see that for the 0.1094 nm radiation, the presence of
defects causes a noticeable decrease in the normalized
asymmetry coefficient Y. In this case, the change in the
normalized asymmetry coefficient with increasing crystal
thickness is much more sensitive to large defects than to
small ones.

Figure 19 shows that in the perfect crystal, Y drastically
increases with the crystal thickness for a strongly absorbed
wavelength near the absorption K-edge. Therefore, Y
drastically decreases with the crystal thickness for the
intensity jump at the K-edge, this decrease being stronger
with increased elastic bending of the sample. The difference
between these dependences of Y or the jump of Y near the
absorption K-edge for the TII in an imperfect crystal and
those for the TII in the perfect crystal demonstrates the high
sensitivity of the method to defects.

6.6 Experimental approbation of the IDDMD method
The combined processing of the experimental thickness and
deformation dependences of the TII for the sample described
in Section 6.4 by using theoretical models in the framework of
the IDDMDmethod gave the characteristics of defects of two
types: large dislocation loops with the Burgers vector
jbj � a=

���
2
p

, R � 5 mm, and c � 8:85� 10ÿ18 and small
dislocation loops with the Burgers vector jbj � a

���
2
p

,
R � 0:02 mm, and c � 1:47� 10ÿ10. The Krivoglaz±Debye±
Waller factor E � exp �ÿLH� � 0:998 is larger than the
thermal Debye±Waller factor exp �ÿM � � 0:966 for the 220
reflex used in experiments, i.e., the rms displacements of
atoms caused by defects are smaller than thermal displace-
ments. This demonstrates the high quality of the Ge single
crystal under study, which is confirmed by low defect
concentrations. The possibility of determining the para-
meters of defects producing such small distortions illustrates
the high structural sensitivity of the IDDMD method.

In Table 2, to illustrate the advantages of the combined
treatment of X-ray diffraction experiments by the IDDMD
method, we present the radii and concentrations n for defects
of four types determined by analyzing the thickness depen-
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dences of the TII and by the combined analysis of the
thickness and deformation dependences of the TII obtained
under different dynamical diffraction conditions for a silicon
sample with a three-axis diffractometer.

Table 2 shows that the analysis of the thickness depen-
dences gives relatively reliable estimates only for the char-
acteristics of medium-size defects [disc-shaped oxygen pre-
cipitates (clusters) with high h andmedium-radius dislocation
loops], which is explained by a partial compensation of
contributions to the TII from large and small defects
affecting the Bragg and diffuse components of the dynamical
scattering pattern differently (small defects at a high con-
centration predominantly increase the diffuse component,
while large defects at a low concentration predominantly
reduce the coherent component).

We recall that the kinematical description of such
experiments is impossible in principle due to the conserva-
tion laws considered above, which lead to the insensitivity of
the kinematical scattering pattern to any distortions in a
crystal lattice at the level of the integrated reflectivity of
imperfect crystals and to the low information content of the
scattering pattern (or its complete inadequacy in the case of
dynamical diffraction) at the level of the differential reflectiv-
ity. However, the combined analysis of the thickness and
deformation dependences of the TII under different diffrac-
tion conditions provides the unique and accurate determina-
tion of all four types of defects simultaneously present in
crystals, thereby considerably increasing the information
content of the IDDMD method compared to other dynami-
cal approaches.

The additional advantage of the approach used above for
determining the characteristics of defects of several types is
the application of a three-crystal diffraction procedure. This

allowed us to measure the intensities of the Bragg and diffuse
waves separately, i.e., to directly measure both structurally
sensitive parameters of the dynamical theory.

We note that DDMDmethods allow detecting impurities
at concentrations lower than a few million fractions of a
percent and atomic displacements that are a million times
smaller than the size of atoms. The sensitivity of DDMD
methods achieves several femtometers, providing the possibi-
lity of controllable technologies at the femtolevel.

7. Diffuse-dynamical multiparametric
diffractometry of multilayer structures

As mentioned above, the high information content and
uniqueness of the DDMD diagnostics are conditional on
the unique possibility of performing a required complete set
of independent diffraction experiments with one sample
with a complex defect structure for solving the inverse
problem of multiparametric diagnostics of nanotechnology
materials and devices. In [33], the DDMD method was
generalized to heterostructures and applied to a multilayer
InxGa1ÿxAs1ÿyNy quantum-well (QW) system (Fig. 20a). By
fitting experimental data with curves calculated in the
dynamical diffraction theory for layered systems (Fig. 20b),
the chemical composition and thickness of each layer were
thus determined for the first time, as were the characteristics
of defects, segregation effects, and elastic deformation fields
in a substrate and each layer.

The characteristics of individual layers of the multilayer
QW structure and the parameters of its defects determined by
the DDMDmethod are presented in Table 3.

The required complete set of experimental data can be
obtained not only by changing diffraction conditions (the

Table 2. Radius R and concentration n of defects determined by the independent and combined analysis of experimental data obtained under different
dynamical diffraction conditions, separately for only the thickness dependences of the TII and together for the thickness and deformation dependences of
the TII (combined processing).

Diagnostic
methods

Large loops Clusters Medium loops Small loops

R, mm n, cmÿ3 R, mm; h, mm n, cmÿ3 R, mm n, cmÿ3 R, mm n, cmÿ3

Thickness depen-
dences of the TII

10� 1 0:5ÿ3:3� 103 0:45� 0:01;
0:012� 0:001

�1:12� 0:01��107 0:45� 0:01 �2:6� 0:01��106 0.001 ë 0.033 7:3� 1010 ë
7�1013

Combined
processing

8� 0:8 �5� 1��103 0:45� 0:01;
0:012� 0:01

�1:12� 0:01��107 0:84� 0:01 �8:4� 1��106 0:035� 0:001 �2� 0:1��1011
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Bragg and Laue geometries, thin and thick crystal limits,
diffraction asymmetry, wavelength, different reflexes) but
also by changing the measurement methods (differential,
integro-differential, integral) of three-axis, two-axis, and
one-axis diffractometry (see Section 4).

8. Conclusions

We have considered theoretical foundations of the dynamical
three-axis diffractometry of crystals containing various types
of defects. Based on the developed theoretical model, we have
demonstratively shown the diversity of the dynamical scatter-
ing patterns in imperfect crystals caused by the fact that the
influence of defects on the dynamical scattering pattern
depends on diffraction conditions, which was recently
discovered by the authors. The basic mechanisms and multi-
plicity effects for Bragg and diffuse scattering have been
established. The different manifestations of these mechan-
isms for different scattering components and defects of
different types lead to this diversity. The diversity of the
dynamical scattering pattern allows performing the unique
multiparametric diagnostics of crystals containing defects of
different types.

We also described the dynamical theory of integrated
scattering intensities in detail and analyzed dynamical
extinction effects for coherent and diffuse scattering. The
extinction coefficient caused by diffuse scattering was con-
sidered in detail in the presence of small and large defects in
crystals, taking the Huang and Stokes±Wilson scattering
regions into account. The integrated extinction coefficients
and factors were obtained for small and large defects for weak
extinction effects. In addition, the integrated extinction
factors were obtained for large extinction coefficients and
arbitrary-size defects. These cases were considered for the
Laue and Bragg diffraction geometries in the thick-crystal
and thin-crystal approximations, in which dynamical diffrac-
tion processes occur substantially differently in the coherent
and diffuse components of the TII, as is shown in the
corresponding sections.

This difference in dynamical diffraction processes leads to
different dependences of the TII components on experimental
parameters, such as the wavelength, crystal thickness, and
azimuthal angle, and contributions to them from defects of

different types. Theoretical expressions obtained for these
cases, in conjunction with corresponding experimental data,
provide amore reliable and complete diagnostics of defects of
several types in crystals than in the case where only one
diffraction condition is studied. The combined use of different
diffraction conditions for the same sample is a new-genera-
tion diagnostics, called the diffuse-dynamical multipara-
metric diffractometry.

We have considered the example of Coulomb defects,
namely, dislocation loops and spherical clusters. But the
obtained expressions were used for developing theoretical
models for other types of crystal lattice distortions, such as
elastic bending, distorted surface layer, and inhomogeneous
depth distribution of defects, and also for constructing
dynamical models in different heterostructures.

To summarize, we have presented the theoretical founda-
tions of a new method of integrated diffuse-dynamical
multiparametric diffractometry.

We also compared the information content of kinematical
and dynamical scattering patterns based on the results of
kinematical and dynamical theories of integrated scattering
intensities and intensity distributions in the reciprocal lattice
space. First, we found that the information content of the
kinematical scattering pattern and kinematical theory is
considerably restricted by the presence of two integrated
parameters of the kinematical scattering pattern and, accord-
ingly, of the two conservation laws in the kinematical theory:
the total integrated intensity of diffraction reflection (the first
parameter) is independent of defect parameters (the first law)
and the specific contribution of the diffuse component (the
second parameter) to the integrated intensity is independent
of diffraction conditions (the second law).

Second, we showed that the violation of these laws in the
case of dynamical diffraction leads to a considerable increase
in the information content of the DDMD and provides the
diagnostics of crystals containing several types defects and
multiparametric nanosystems in passing from the kinematical
to the dynamical scattering pattern. i.e., by generalizing the
kinematical Krivoglaz theory to the case of dynamical
scattering. In dynamical diffraction, both the introduced
parameters (the total reflection brightness and the fraction
of the diffuse component in the total brightness) become
structure sensitive and multidimensional, i.e., depend on

Table 3. Parameters of a multilayer quantum well InxGa1ÿxAs1ÿyNy=GaAs structure.

GaAs substrate GaAs layers AlxGa1ÿxAs layers GaAs1ÿyNy layers InxGa1ÿxAs1ÿyNy

QW

Layer thickness t, nm ì
150
175
150
10

320
120

24
24

7.4

Chemical
composition*

x ì ì 0.3 0.37

y ì ì 0.012
(0.01)

0.02

Dislocation
loops

Concentration nL, cmÿ3 3� 1016

1� 1018
ì ì ì 5� 1017

Radius RL, nm 1.5
0.5

ì ì ì 1.5

LH 3:79� 10ÿ3

4:68� 10ÿ3
ì ì ì 6:31� 10ÿ2

* The nominal chemical composition is given in parentheses.
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diffraction conditions, while the dynamical scattering pat-
terns become diverse. That is, all possible experimental
diffraction conditions are characterized by their own dyna-
mical scattering patterns and their own pairs of integral
parameters (or their distribution in the reciprocal space).
The influence of defects on the scattering pattern as a whole
and both its parameters depends on the diffraction condi-
tions. Based on these results, we have developed new
principles for increasing the information content of diagnos-
tics and providing new functional possibilities of the methods
of diffuse-dynamical multiparametric diffractometry, which
have been demonstrated with a number of examples.

This work was supported by the Ministry of Education
and Science of Ukraine (projectsM/93-2010 andM/94-2010).

List of abbreviations

DDMD: diffuse-dynamical multiparametric diffractometry,
IDDMD: integrated diffuse-dynamical multiparametric dif-
fractometry,
QW: quantum well,
OAD: one-axis diffractometer;
TII: total integrated intensity,
TAD: three-axis diffractometer.
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