
Abstract. This paper reviews the physical fundamentals and
mathematical formalism for problems concerning acoustic
waves passing through gradient wave barriers formed by a
continuous one-dimensional spatial distribution of the density
and/or elastic parameters of a medium in a finite-thickness
layer. The physical mechanisms of such processes involve non-
local (geometric) normal and anomalous dispersion determined
by the profiles and geometric parameters of the gradient bar-
rier. The relevant mathematics relies on exactly solvable gradi-
ent barrier models with up to three free parameters and on the
auxiliary barrier method with which the exactly solvable models
found can be used to build new, also exactly solvable, models for
such barriers. The longitudinal and shear wave transmission

spectra through the gradient barriers considered are pre-
sented, and the dependence of these spectra on the gradient
and curvature of the density distribution and on the elastic
parameters of the barrier is expressed using general formulas
corresponding to the geometrical and abnormal geometric dis-
persion. Examples of reflectionless tunneling of sound through
gradient barriers formed either by the elastic parameter distri-
bution in an inhomogeneous layer or by curvilinear boundaries
of a homogeneous layer are considered. It is also shown that by
using subwavelength gradient barriers and periodic structures
composed of them, phonon crystal elements can be fabricated.

1. Introduction. Inhomogeneous acoustic media

This review is devoted to the physical foundations and
mathematical apparatus of the theory of gradient acoustic
barriers. Such barriers are formed by finite-thickness layers of
an inhomogeneous elastic medium with continuous density
and elastic modulus distributions of the medium inside the
layer. The propagation of elastic waves in inhomogeneous
natural media traditionally attracted attention in geophysical
problems [1±3]. The advent of artificial materials (metama-
terials [4±6]) in recent years and their extensive studies
stimulated the development of the qualitatively new concept
of gradient acoustic barriers based on the results of these
investigations. This concept is being developed now in
connection with the problems of sound reflection and
transmission in layers of inhomogeneous alloys [7], compo-
site materials [8], and spatially bounded porous structures [9],
in particular, of subwave dimensions. The acoustic spectra of
such layers can drastically differ from these spectra of natural
and homogeneous media.
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(1) Gradient acoustic barriers have characteristic frequen-
cies determined by the shape of spatial profiles of the density
and elastic properties of the barrier and its thickness. The
influence of these frequencies on the propagation of waves
leads to a strong geometrical or nonlocal frequency disper-
sion of the reflection and transmission spectra of the barrier
produced artificially in the specified frequency range. Con-
siderable amplitude±phase variations in the wave field
structure can be produced at distances shorter than the
wavelength (subwavelength barriers).

(2) The artificial dispersion controlled by the parameters
of a gradient barrier can be both normal and anomalous. To
provide the required dispersion in the specified frequency
range, the material and thickness of the gradient barrier can
be chosen tominimize the wave energy losses in this frequency
range.

(3) The effects of artificial geometrical dispersion allow
establishing analogies between the properties of gradient
barriers in acoustics and optics [10]. In particular, acoustic
barriers with artificial dispersion of the waveguide type open
the possibility of reflectionless tunneling of longitudinal and
transverse acoustic waves.

The physical features of the effects considered here are
illustrated with the example of problems concerning the
interaction of sound with gradient barriers in the simplest
geometry. We assume that a plane acoustic wave is incident
from the side z < 0 normally to the boundary of an isotropic
layer coinciding with the plane z � 0; another boundary of
the layer is formed by the plane z � d. It is known that in this
configuration, two acoustic waves corresponding to the
longitudinal and transverse modes can propagate in a
homogeneous layer in the z direction. The velocities vl and
vt of these modes and their wave numbers kl; t for each
frequency o are given by [11]

v 2
l �

E�1ÿ m�
r�1� m��1ÿ 2m� ; v 2t �

E

2r�1� m� ; kl; t � o
vl; t

;

�1:1�

whereE is theYoungmodulus, r is the density of themedium,
and m is Poisson's ratio. Sound dispersion in medium (1.1) is
absent.

Unlike (1.1), the density r and quantities E and m in the
gradient layer under study depend on the coordinate z. These
dependences can be conveniently represented by introducing
dimensionless differentiable functions F 2�z� and W 2�z�. For
the density profile r�z�, we then assume

r�z� � r0F
2�z� ; r

��
z�0� r0 ; F

��
z�0 � 1 : �1:2�

Shear waves can be conveniently described by relating the
function W 2�z� to the coordinate-dependent shear mod-
ulus G�z�:

G�z� � G0W
2�z� ; G0 � E

1� m
; W

��
z�0� 1 : �1:3�

The values of E, m, and G0 in (1.3) correspond to the barrier
boundary z � 0. The functionW 2�z� for longitudinal waves is
defined in Sections 3.1, 4.1, 4.2, and 6.1.

We note that the nonlocal acoustic dispersion in the
gradient media considered here principally differs from the
local spatial dispersion of sound in structured materials
containing homogeneously distributed inclusions with elas-
tic properties different from those of the main material [12,

13]. The elastic moduli of such homogeneous structured
materials are characterized by two additional constants g
and h having the dimension of length and related to the
potential and kinetic energies of inclusions in the wave field.
The phase velocities of longitudinal �Vl� and shear �Vt�waves
defined in this approach depend on the corresponding wave
numbers kl and kt [14]:

Vl; t � vl; t

���������������������
1� g 2k 2

l; t

1� h 2k 2
l; t

vuut :

Here, vl and vt are the phase velocities of longitudinal and
shear waves in the absence of inclusions, Eqn (1.1). The local
dispersion of the phase velocity determined by the character-
istic size of inclusions is of interest for studying this size. For
example, applied to the acoustics of solid porous biomater-
ials, this approach gives the estimate g � h � 10ÿ5 m [15].

The physical foundation of the gradient acoustic barriers
under study is the geometric dispersion of sound caused by
inhomogeneous profiles of the density and elastic properties
of the material and the barrier thickness. The mathematical
apparatus that allows determining and optimizing the
contribution from these dispersion effects to the spectral
characteristics of the barrier is based on exact solutions of
the equations of gradient acoustics. Because the thickness of
acoustic barriers can be comparable to or smaller than the
wavelength, the required solutions are not related to the
assumption of smallness or slow variation of the parameters
of the medium or wave field. Correspondingly, the WKB
approximation, the perturbation theory, or asymptotic
methods [16] are not used in these problems. A number of
exact solutions in the acoustics of inhomogeneous media are
studied in monograph [17] generalizing the results known at
the time of publishing (1989). By contrast, in this review, we
mainly consider new analytic methods revealing the specific
features of dispersion and tunneling in subwavelength
gradient acoustic barriers produced by spatial distributions
of the density and elasticity moduli of materials. Special
attention is paid to the auxiliary barrier method representing
a standardized algorithm for obtaining reflection spectra
from new barriers based on the transformation of previously
known analytic solutions.

Our aim is to find the laws of nonlocal dispersion and
reflection and transmission spectra for waves in gradient
acoustic barriers characterized by different distributions of
parameters F 2�z� and W 2�z�. Section 2 is devoted to the
shifts of oscillation eigenfrequencies in solid and liquid layers
caused by the density and elastic modulus gradients. Sections
3 and 4 show the influence of the curvature of the profiles of
F 2�z� andW 2�z� on the reflection spectra of longitudinal and
shear waves in gradient barriers. In Section 3, the effects of
these profiles are considered separately, and Section 4 is
devoted to reflection from complex barriers formed simul-
taneously by both profiles (`double' barriers). In these
sections, the auxiliary barrier method is illustrated using a
simple mathematical apparatus. The reflectionless sound
tunneling through gradient barriers for different tunneling
mechanisms is considered in Section 5. Examples of
subwave gradient structures, in particular, periodic struc-
tures of interest for the development of phonon crystals, are
discussed in Section 6. In conclusion, in Section 7, a number
of urgent problems to be solved in this theory that has been
developing in recent years are pointed out.
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2. Eigenfrequencies of shear waves
in gradient layers

Theoretical problems of sound propagation in elastic media
are considered based on the equations of motion relating the
displacement u of particles of amedium to the components sik
of the stress tensor [11]

r
q2ui
qt 2
� qsik

qxk
: �2:1�

Here, r is the density of the medium and xk are coordinates;
the density r and the tensor components sik in gradient media
continuously depend on coordinates xk. We analyze an
acoustic wave with frequency o propagating along the z
direction and characterized by the displacement
ux exp �ÿiot� of the medium in the direction x ? z (the shear
wave) taking into account that Eqn (2.1) contains only one
stress tensor component, sxz�z� [11]. Representing this
component with the help of the functionW 2�z� in the form

sxz�z� � E

2�1� m�
dux
dz

W 2�z� ; �2:2�

we can write equation of motion (2.1) as

W 2�z� q
2u

qz 2
� o2

v 20
F 2�z�u� 2WWz

qu
qz
� 0 ; �2:3�

where u � ux. Here, Wz � qW=qz and v0 � vt, where vt
defined in (1.1) is the shear wave velocity on the layer
boundary. The choice of model functions F and W in (2.3) is
limited so far only by the conditions F 2�0� �W 2�0� � 1.
Equation (2.3) is used in Section 3 for solving problems in
gradient layer acoustics. In Sections 2.1 and 2.2, we discuss
the frequency spectra of shear oscillations of these layers,
which are determined by the density and shear modulus
distributions.

2.1 Variable-density strings:
a new look at the old problem
``Stretched strings should be always of special interest for a
mathematician because it is they that were at the center of
arguments between D'Alembert, Euler, Bernoulli, and
Lagrange concerning the solution of partial differential
equations''Ð thus in The Theory of Sounds [18] Rayleigh
defined the role of the problem of oscillations of an elastic
string in the development of mathematical physics. These
words proved to be prophetic: in the years to follow, the
equation of elastic oscillations of a thin homogeneous string
became the standard equation for many problems in optics,
radiophysics, and quantum mechanics. This equation, which
follows from (2.3) with F �W � const � 1, coincides with
the one-dimensional wave equation

q2u
qz 2
ÿ 1

v 2
q2u
qt 2
� 0 ; �2:4�

describing a bending wave propagating at the speed v along a
thin string with a constant cross section S stretched by the
force T, where [11]

v 2 � T

Sr
: �2:5�

The spectrum of eigenfrequenciesOn of a homogeneous string
stretched between points z � 0 and z � d, such that the string
displacement at these points is zero, is described by the
classical formula

on � v0pn
d

; n � 1; 2; 3; . . . : �2:6�

Rayleigh extended the applicability limits of these expressions
for perturbations and studied the oscillation spectrum of a
``string with a linear density not quite constant'' [18].
Assuming that density variations are very weak and using
the perturbation theory, Rayleigh found small corrections to
spectrum (2.6).

To illustrate the methods of gradient acoustics, it is useful
to consider this classical problem again and to find the
oscillation spectrum of a variable-density string without the
assumption of small density variations. Assuming that
W � const � 1 in Eqn (2.3), we can rewrite this equation in
the form

d2u

dz 2
� o2

v 20
F 2�z� u � 0 : �2:7�

The dimensionless function F 2�z� simulates the density
distribution along the string. Equation (2.7) can be formally
considered the wave equation for amedium in which the wave
velocity depends on the coordinate as v�z� � v0=F �z�.
Solutions of such equations bear an essential dependence on
the form of the function F 2�z�. For example, we consider a
simple model having an exact solution in the form of
elementary functions [15]

F �z� �
�
1� s1z

L1
� s2z

2

L2
2

�ÿ1
; s1 � 0;�1 ; s2 � 0;�1 : �2:8�

Profile (2.8) contains four free parameters: the characteristic
lengths L1, L2 and s1, s2. The values s1 � ÿ1, s2 � 1
correspond to a convex profile of F �z�, and s1 � 1, s2 � ÿ1
correspond to a concave profile. We note that for s2 � 0,
profile (2.8) transforms into the Rayleigh model [18]

F �z� �
�
1� z

L

�ÿ1
; �2:9�

describing monotonic density variations, often used in the
theory of waves in gradient media. This model is a particular
case of more flexible model (2.8), which can be used to
describe both monotonic and nonmonotonic (convex and
concave) distributions.

We consider the lowest oscillations of a string of length d
with a convex symmetric density profile r�z� (Fig. 1). In this
case, the function F �z� in (2.8) satisfies the condition
F �0� � F �d � � 1 and the profile maximum rmax is located
at the point z � 0:5d. The unknown lengths L1 and L2 in
model (2.8) are expressed in terms of the layer thickness dwith
the help of a dimensionless parameter y:

y � L2

2L1
; L2 � d

2y
; L1 � d

4y 2
; �2:10�

and the parameter y is related to the profile maximum rmax as

rmax �
r0

�1ÿ y 2�2 ; y �
�����������������������
1ÿ

����������
r0
rmax

rs
: �2:11�

It follows from (2.11) that 04 y 2 < 1.
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To solve wave equation (2.7), it is convenient to introduce
the function C and variable Z [10]:

u � C���
F
p ; Z�z� �

� z

0

F �z1� dz1 : �2:12�

After such a change of variables, Eqn (2.7) becomes an
equation with constant coefficients in the Z space [10]:

d2C
dZ 2
� q 2C � 0 ; q � o

v0
N� ; N� �

��������������
1� S 2

1

q
; S1 � O1

o
;

�2:13�

where O1 is the characteristic frequency determined by the
propagation time of the wave at the speed v0 through a
gradient layer with the thickness d and the geometric
parameters [form factor y1�y�]

O1 � v0
d

y1�y� ; y1�y� � 2y
��������������
1ÿ y 2

p
; �2:14�

Z �
� z

0

F �z1� dz1 � L2��������������
1ÿ y 2

p arctan
x

��������������
1ÿ y 2

p
1ÿ xy

; x � z

L2
:

�2:15�

Writing the linearly independent solutions of Eqn (2.13) in the
form sin �qZ� and cos �qZ�, we can represent the solutions
of (2.7) describing standing waves established in the string in
the form

u � sin �qZ�����������
F �z�p : �2:16�

The frequencies of standing waves are described by solutions
(2.16), vanishing at the string endpoints Z � 0 and Z�d �; the
value of Z�d � is then calculated from (2.16) as

Z�d � � dA ; A �
�
2y

��������������
1ÿ y 2

p �ÿ1
arctan

2y
��������������
1ÿ y 2

p
1ÿ 2y 2

:

�2:17�

Substituting the values of q from (2.13) and Z�d � from (2.17)
in the condition sin �qZ� � 0 and taking the characteristic
frequencyO1 in (2.14) into account, we find the discrete mode
spectrum of a gradient string with a `convex' density

distribution along the string specified by function (2.8) with
s1 � ÿ1 and s2 � 1:

O�n � onDn : �2:18�

Here, on is eigenfrequency (2.6) of the homogeneous string
and Dn is the dimensionless correction coefficient,

Dn �
��������������������������������������
Aÿ2 ÿ 4y 2�1ÿ y 2�

p2n 2

r
: �2:19�

The mode spectrum of the string with `concave' density
profile (2.8) (s1 � 1 and s2 � ÿ1) is determined similarly.
From (2.13)±(2.15), we obtain

q � o
v0

Nÿ ; Nÿ �
��������������
1ÿ S 2

2

q
; S2 � O2

o
; �2:20�

O2 � v0
d

y2�y� ; y2�y� � 2y
��������������
1� y 2

p
: �2:21�

Similarly to (2.11), the parameter y is related to the minimal
density rmax in the layer:

y �
���������������������������������

r0
rmin

r
ÿ 1

s
; �2:22�

Z�d � � dB ; B � �2y ��������������
1� y 2

p �ÿ1
ln

y�
yÿ

; �2:23�
y� �

��������������
1� y 2

p
� y :

The mode spectrum Oÿ n of the string with `concave' density
profile (2.8) can be rewritten in form (2.18) by introducing a
correction coefficient Hn:

Oÿ n � onHn ; Hn �
���������������������������������������
Bÿ2 � 4y 2�1� y 2�

p2n 2

r
: �2:24�

We note that the mode spectrum of variable-density string
(2.8) was calculated without assuming that density variations
are small. Plots of the correction coefficients Dn and Hn for
different eigenfrequencies are shown in Fig. 2. In the limit of

0.2 0.4 0.6 0.8 1.0
x

0.8

F
�x
;y
�

0.6
0

1.0

1.2

1.4

1.6

1

2

3

4

Figure 1. The profile of F �x� in (2.8) in gradient barriers; x � z=d is the

normalized barrier thickness. Profiles 1 and 2 correspond to s1 � ÿ1 and

s2 � 1 (convex profile), and 3 and 4 correspond to s1 � 1 and s2 � ÿ1
(concave profile). For curves 2 and 3, the parameter y � 0:3, and for

curves 1 and 4, y � 0:6.
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1
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Figure 2. Correction factors (a) Dn in Eqn (2.19) and (b) Hn in Eqn (2.24)

for the mode spectra of strings with inhomogeneous density distribution

(2.8). Numbers 1, 2, 3 at the curves are mode numbers.
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the vanishing inhomogeneity �y! 0�, it follows from (2.19)
and (2.24) that

limDn

��
y!0
� 1 ; limHn

��
y!0
� 1 ; �2:25�

limO� n

��
y!0
� limOÿ n

��
y!0
� on :

As expected, spectra (2.18) and (2.24) of gradient strings are
reduced in this limit to classical formula (2.6) for a homo-
geneous string.

2.2 Eigenfrequencies of a variable-shear modulus layer
In contrast to the oscillations considered in Section 2.1, we
here consider eigenoscillations of a layer with constant
density and with the shear modulus depending on the
coordinate. Such a model is used, in particular, in geoacous-
tics to describe the propagation of seismic shear waves [18] in
sedimentary rock layers on the seabed. In that case, depth
variations in the rock density are neglected �r � r0,
F � const � 1� and the dependence of the shear modulus
G�z� on the depth z in a layer �04 z4 d � is given by the
empirical formula

W �
�
1� z

L

�q

; 0 < q < 1 : �2:26�

Here, L is a characteristic length, q is a dimensionless
parameter, and the depth z is measured downward from the
surface of a sedimentary rock layer lying on a solid seabed.

To solve Eqn (2.3) in model (2.26), it is convenient to
introduce a new variable x and function f [19]:

x � 1� z

L
; u � x 1=2ÿq f : �2:27�

Such a change of variables reduces Eqn (2.3) to the form

d2f

dx 2
� 1

x

d f

dx
� f

�
o2L2

v 20 x
2q
ÿ �1=2ÿ q�2

x 2

�
� 0 ; �2:28�

where v0 is the velocity of shear waves on the layer surface
z � 0. To solve Eqn (2.28), it is necessary to introduce the new
variable

x � ym ; m � 2

1ÿ q
: �2:29�

Substitution (2.29) transforms (2.28) into the equation

d2f

dy 2
� 1

y

df

dy
� 4f

�
p 2y 2 ÿ s 2

y 2

�
� 0 ;

�2:30�
p � oL

v0�1ÿ q� ; s � qÿ 1=2

1ÿ q
;

which becomes the Bessel equation after the change of
variables y 2 � u. The medium displacement at the depth z in
the shear wave field can be written in the form of a standing
wave:

u �
�
1� z

L

�1=2ÿq
Js

�
p

�
1� z

L

�1ÿq �
: �2:31�

Assuming that the displacement of the medium at the water
layer bottom �z � d � is zero, we can determine the eigen-
frequencies of the layer in terms of the roots of the Bessel

function Js�wsn� � 0 [17],

on � v0�1ÿ q�wsn
L�1� d=L�1ÿq ; n � 1; 2; 3; . . . : �2:32�

For typical values v0 � 100 m sÿ1, q � 0:6, d � 200 m, and
L � 1 m [19], expression (2.32) gives the resonance frequen-
cies of the first modes lying in the frequency range of several
hertz. In the particular case q � 2=3, it follows from (2.30)
that s � 0:5. It is known that for half-integer values of the
parameter s, the Bessel function is expressed in terms of
elementary functions. For example, J0:5�x� � xÿ0:5 sin x; in
this case, the roots are wsn � pn and oscillation spectrum
(2.32) of a gradient layer consists of equally spaced frequen-
cies.

Another interesting example of acoustic eigenfrequencies
appearing in gaseous and liquid media with an inhomoge-
neous density r�z� in the gravitational field with the gravity
acceleration g are the V�ais�al�a±Brunt frequencies OVB (see,
e.g., [20]):

O 2
VB � ÿ

g

r
dr
dz

: �2:33�

Typical OVB values are of the order of 10ÿ2 Hz in the
atmosphere and 10ÿ3ÿ10ÿ4 Hz in the ocean [20]. Internal
gravitational waves at such frequencies play an important
role in the dynamics of the atmosphere and ocean [20±22].

3. Nonlocal dispersion of gradient acoustic
barriers: normal and anomalous dispersion

Unlike Section 2, where standing waves in elastic inhomoge-
neous media were discussed, this section is devoted to the
interaction of traveling acoustic waves with gradient solid
layers. The acoustics of structured solids containing inclu-
sions of other materials was considered in [13]. The specific
features of ultrasonic fields in such structures were studied
in [14]. For arbitrary frequencies, the reflection and transmis-
sion spectra of waves in acoustic barriers formed by gradient
isotropic subwavelength layers can have a strong frequency
dispersion produced in the required wavelength range with
the help of specially selected spatial distributions of the
density F 2�z� or elastic properties W 2�z� across barriers.
The distributions F 2�z� and W 2�z� are considered for which
the wave field inside a barrier is described by exact analytic
solutions of Eqn (2.3) (exactly solvable models). The required
spectra are calculated from the continuity conditions for
displacements and stresses at the barrier boundary. For the
normal incidence of waves on the boundary z � 0, these
conditions can be written as [8]

�a� the equality of displacements ui;

uijz�ÿ0 � uijz��0; �3:1�
�b� the equality of normal stresses siz;

sizjz�ÿ0 � sizjz��0 : �3:2�

For simplicity, we assume below that elastic media on the
left and right of the barrier are homogeneous and identical.
An exactly solvable model of such a barrier with an
inhomogeneous density and homogeneous elastic properties
is considered in Section 3.1 using the approach developed in
Section 2.1. The opposite situation with variable elastic
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properties and constant density of the medium is analyzed in
Section 3.2 with the help of the special `auxiliary barrier'
method allowing the use of solutions obtained in Sections 2.1
and 3.1. Although such a separation of medium properties is
conventional, it allows choosing the approach to the devel-
opment of gradient acoustic materials with specified reflec-
tion and transmission spectra.

3.1 The passage of a longitudinal sound wave
through a variable-density layer
Propagation of a longitudinal sound wave incident along the
direction z normally to a variable-density layer can be studied
using equations of motion (2.1) and (2.3), assuming that
u � uz, r�z� � r0F

2�z�, and W � 1. In this case, the only
component szz of the stress tensor in the right-hand side of
(2.1) and the velocity v0 equal to the longitudinal wave
velocity vl in a homogeneous medium are determined by the
known expressions [8]

szz � E�1ÿ m�
�1� m��1ÿ 2m�

qu
qz

; v 2
0 � v 2l �

E�1ÿ m�
r0�1� m��1ÿ 2m� ;

�3:3�

and Eqn (2.3) takes form (2.7).
From (2.7), we can find the reflection spectrum for a

longitudinal wave incident from a homogeneous medium
�z4 0� along the z axis on a gradient wave barrier (a
variable-density layer). The properties of such spectra can be
conveniently studied using the exactly solvable model in (2.8),
which allows solutions in the form of elementary functions.

We first consider the normal incidence of a wave on a
layer with thickness d with a convex symmetric density
profile r�z� (see Fig. 1). In this case, the condition
F �0� � F �d � � 1 is satisfied for the function F �z� and the
profile maximum rmax is located at the point z � 0:5d.
Because the differential equation describing the propaga-
tion of a longitudinal sound wave through a layer formally
coincides in this case with (2.7), we can use the results of the
analysis of that equation in Section 2.1 and also reduce (2.7)
to simple wave equation (2.13) with constant coefficients in
the Z space. The parameters of this equation are defined in
(2.14) and (2.15). But the solution of Eqn (2.13) should be
sought not in the form of standing wave (2.16) but as a
superposition of direct and backward monochromatic
waves exp ��iqZ� traveling along the Z axis in opposite
directions:

u � Ar

�
exp �iqZ� �Q exp �ÿiqZ������������

F �z�p : �3:4�

Here, Ar is the wave field amplitude formed by the inter-
ference of the direct and backward waves. Because the wave is
incident on the layer boundary z � 0, the quantity Q
characterizes the contribution of the wave reflected from the
rear boundary z � d of the layer to the wave field and the
variable Z, determined by substituting (2.8) in (2.12), is
expressed by (2.15).

The reflection spectrum of the wave reflected from the
gradient layer is found from continuity conditions (3.1) and
(3.2) at the layer boundaries z � 0 and z � d. Representing a
longitudinal wave incident from a homogeneous medium
(z4 0, density r1, wave velocity v1) on the layer boundary
z � 0 in the form u � Ai exp

�
io�z=v1 ÿ t�� and introducing

the complex reflection coefficient R, we can write these

boundary conditions as

Ai�1� R� � Ar�1�Q� ; �3:5�

ior1v1�1ÿ R�Ai � Arr0v
2
0

�
ÿ 1�Q

2L1
� iq�1ÿQ�

�
: �3:6�

From (3.5) and (3.6), we find

R � ia� g=2ÿ iN��1ÿQ��1�Q�ÿ1
iaÿ g=2� iN��1ÿQ��1�Q�ÿ1 ; �3:7�

where a is the ratio of acoustic impedances I1; 2 of the adjacent
media �I � rv� and g is a dimensionless parameter:

a � r1v1
r0v0

; g � v0
oL1

� 2Sy��������������
1ÿ y 2

p : �3:8�

The quantity Q in (3.7) characterizing the backward wave
amplitude is found from boundary conditions similar to (3.1)
and (3.2) on the z � d surface. Assuming for simplicity that
the medium in the region z5 d is the same as in the region
z4 0, we can write

Q � ÿ exp �2iqZ0��g=2ÿ ia� iN��
g=2ÿ iaÿ iN�

; Z0 � Z�d � : �3:9�

Finally, substituting (3.9) in (3.7), we obtain an explicit
expression for the complex reflection coefficient R �
jRj exp �ifr�:

R � tan �qZ0��a 2 � g 2=4ÿN 2
�� � gN�

tan �qZ0��a 2ÿ g 2=4�N 2��ÿ gN�� 2ia
�
N�� �g=2� tan �qZ0�

� ;
�3:10�

tanfr �
2a
�
N� � �g=2� tan �qZ0�

�
gN� ÿ �a 2 ÿ g 2=4�N 2�� tan �qZ0�

; �3:11�

Z0 � Z�d � � L2��������������
1ÿ y 2

p arctan
2y

��������������
1ÿ y 2

p
1ÿ 2y 2

;
�3:12�

qZ0 �
N�
S

arctan
2y

��������������
1ÿ y 2

p
1ÿ 2y 2

:

Expressions (3.10)±(3.12) solve the problem of the
reflection of a monochromatic longitudinal wave from
gradient layer (2.8) with a convex density profile (curve 1 in
Fig. 1); in this case, the dependence q � q�o� specified in
(2.13) corresponds to normal dispersion.

The reflection spectra jR�S�j2 of longitudinal waves for
the anomalous and normal nonlocal dispersions of gradient
barriers are presented in Figs 3a and 3b. Spectra for the
impedance a � 1:25 are shown in Fig. 3c. Figure 3d shows
the phase fr�S� of the reflection coefficient R�S� �
jRj exp �ifr�S�� for a � 0:3 and y � 0:45 for m � 1 (curve 1)
and m � 3 (curve 2), where m is the number of barriers.
Figure 3e shows the transmission spectrum jT�S�j2 for m � 1
(curve 1), m � 3 (curve 2), and m � 6 (curve 3), with a � 0:3
and y � 0:45 (anomalous dispersion). It can be seen from
Fig. 3e that as the number of gradient barriers increases, the
number of wave frequencies at which almost 100% transmis-
sion of the wave through a multilayer periodic structure is
realized also increases considerably.

Before analyzing this result, it is useful to consider a
similar problem of reflection from a layer with the concave
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density profile described by (2.8) with s1 � 1 and s2 � ÿ1
(curve 2 in Fig. 1). Reflection coefficients are calculated the
same in both cases. The solution of wave equation (2.13) for
the concave profile is again represented in form (3.4), where
the `wave number' q is defined, unlike (2.13), by expressions
(2.20) corresponding to anomalous dispersion. The charac-
teristic frequencies O2 and O1 correspond to different form
factors defined (together with the frequencies) in (2.21) and
(2.14). The parameter y is related to the minimal density rmin

in the layer, Eqn (2.22). The coordinate Z in (2.15) for this
profile geometry is calculated from the expression

Z � L2

2
��������������
1� y 2

p ln
1� xy�
1ÿ xyÿ

; x � z

L2
; �3:13�

y� �
��������������
1� y 2

p
� y ; y�yÿ � 1 :

Finally, the reflection coefficient for the concave density
profile is found similarly to (3.10):

R � tan �qZ0��a 2 � g 2=4ÿN 2
ÿ� ÿ gNÿ

tan �qZ0��a 2ÿ g 2=4�N 2ÿ�� gNÿ� 2ia
�
Nÿÿ �g=2� tan �qZ0�

� :
�3:14�

The parameters g and qZ0 in (3.14) are given by

g � 2Sy��������������
1� y 2

p ; qZ0 �
Nÿ
S

ln
y�
yÿ

: �3:15�

If the reflection coefficient R is known, then the wave energy
transmission coefficient through the gradient barrier is
determined from the expression

jT j2 � 1ÿ jRj2 : �3:16�

We note that if the longitudinal wave velocity v0 � vl in (3.3)
is replaced with the shear wave velocity v0 � vt in (1.1),
expressions (3.10) and (3.14) can be used for calculating
reflection coefficients for shear waves. The analysis of
longitudinal sound waves in a gradient layer described
above can be used in a number of problems in the acoustics
of gradient media considered in Sections 3.2, 4±6.

3.2 Reflection spectra of shear waves
in a variable-shear modulus layer.
The auxiliary barrier method
The reflection of shear waves from a medium with a spatially
distributed shear modulus can be studied using Eqn (2.3). To
separate the effects caused by this distribution, we assume
that the medium density is independent of the coordinates
�r � r0� and consider the normal incidence of radiation on
the layer boundary z � 0. In this case, the only component of
the stress tensor entering (2.3) is written as

sxz �
�

E

2�1� m�
�
0

W 2�z� qux
qz

; �3:17�

and Eqn (2.3) takes the form

d2u

dz 2
� o2

v 20

u

W 2�z� � ÿ
2Wz

W

du

dz
: �3:18�

According to (1.1), the shear wave velocity v0 in (3.18) is equal
to the transverse velocity, v0 � vt. Equation (3.18) differs by
its right-hand side from Eqn (2.13) in the problem for a
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Figure 3. Reflection spectra jR�S�j2 for longitudinal waves for different

dispersions of gradient barriers formed by the density distribution:

(a) anomalous dispersion with the parameters a � 0:3, y � 0:45 (curve

1), and y � 0:7 (curve 2); (b) normal nonlocal dispersion for a � 0:3,
y � 0:45 (curve 1), and y � 0:7 (curve 2); (c) normal dispersion for

a � 1:25, y � 0:45 (curve 1), and y � 0:7 (curve 2), with a concave

profile. (d) The phase fr�S� of the reflection coefficient

R�S� � jRj exp �ifr�S�� for a � 0:03, y � 0:45; m � 1 (curve 1) and m � 3

(curve 2). (e) Transmission spectra jT�S�j2 for a � 0:3 and y � 0:45
(anomalous dispersion) for the number of barriers m � 1 (curve 1),

m � 3 (curve 2), and m � 6 (curve 3).
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variable-density medium, and is therefore solved using a
special algorithm based on the auxiliary barrier method.
This method involves the following stages.

(1) Differentiation with respect to z in (3.18) is replaced by
differentiation with respect to a new variable Z, which is now,
unlike (2.12), defined by the relation

dZ � dz

W 2�z� : �3:19�

Passing to the variable Z eliminates the right-hand side of
Eqn (3.18):

d2u

dZ 2
� o2

v 2
0

W 2�z�u � 0 : �3:20�

The displacement u in (3.20) depends on two variables, z and
Z. To solve this equation, it is necessary to specify the function
W 2�z� and express it in terms of Z. In particular, Eqn (3.20) is
reduced to Eqn (2.13) solved previously by introducing an
auxiliary barrier F 2�Z� in the Z space:

W 2�z� � F 2�Z� : �3:21�

The functionF 2�Z� in (3.21) can be chosen arbitrarily. But if it
is taken in form (2.8) with z replaced by Z, we can use ready-
made solution (2.13). We can write the function F 2�Z�
corresponding, for example, to the convex profile �s1 � ÿ1,
s2 � 1� in the form

F 2�x� � �1ÿ 2yx� x 2�ÿ2 ; x � Z
L2

: �3:22�

The characteristic lengths L1 and L2 and the parameter y in
(3.22) are unknown.

(2) Substituting expressions (3.22) and (3.21) in (3.19) and
using the condition Z jz�0 � 0 that follows from (3.22), we can
find the dependence of z on x by integrating (3.19),

z�x�
L2
� 1

2�1ÿ y 2�3=2
(
arctan

xÿ y��������������
1ÿ y 2

p � arctan
y��������������

1ÿ y 2
p

�
��������������
1ÿ y 2

p �
y� xÿ y

1ÿ y 2 � �xÿ y�2
�)

: �3:23�

To find y in (3.23), we note that according to (3.21), the
convex profileF 2�x� corresponds to the convex profileW 2�x�
and the maximum of the convex profile F 2

max > 1 correspond-
ing to the maximum of the profileW 2

max � F 2
max. Substituting

the value F 2
max � �1ÿ y 2�ÿ2 from (2.15), we find

y �
��������������������
1ÿ 1

Wmax

s
: �3:24�

The parameter x in (3.23) can be easily found by substituting
(3.22) in (3.21), solving the resulting equation for x, and
replacing y by (3.24):

x�W � �
��������������������
1ÿ 1

Wmax

s
�

�����������������������
1

W
ÿ 1

Wmax

s
: �3:25�

Expressions (3.23)±(3.25) implicitly define the coordinate
dependence of the shear modulus inside the barrier W 2�z�;
as follows from (3.22), the variable x ranges the interval

04 x4 2y. In this case, z�0� � 0 and the barrier width d,
determined by the distance between the points where
W�0� � 1 and W�2y� � 1, is related to the characteristic
size L2:

d � L2z�2y� � 2L2B1 ; �3:26�

B1 � 1

�1ÿ y 2�3=2
�
y
��������������
1ÿ y 2

p
� arctan

y��������������
1ÿ y 2

p �
: �3:27�

Thus, knowing the width d and heightWmax of the barrier
W 2�z� specified implicitly, we can find the parameters of the
auxiliary barrier F 2�Z� in (3.22) specified explicitly. The
height and width of the auxiliary barrier are Wmax and d1,
and the characteristic lengthsL1 andL2 are expressed in terms
of the width d and the parameter y:

d1 � 2yL2 � yd

B1
; L1 � d

4yB1
; L2 � d

2y
: �3:28�

The convex barrier W 2�z� and corresponding auxiliary
barrier (3.23), which are characterized by anomalous disper-
sion, are shown in Fig. 4a.

(3) To calculate the refection coefficient of the barrier
W 2�z�, it is necessary to find the field inside the barrier
described by Eqn (3.20). Under condition (3.21), Eqn (3.20)
coincides formally with (2.13). Introducing the variable t
similarly to (2.12),

t�Z� �
� Z

0

F �Z1� dZ1 ; �3:29�
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Figure 4. Gradient barriers formed by shear modulus distributions in

parametric form (curves 2) and the corresponding auxiliary barriers

(curves 1): (a) s1 � 1 and s2 � ÿ1, (b) s1 � ÿ1 and s2 � 1. Barriers (3.23)

in Fig. 4a are characterized by anomalous dispersion, and barrier (3.33) in

Fig. 4b is characterized by normal dispersion. The distances Z and z along

the horizontal axes are respectively normalized to d1 and d.
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we can write the solution of Eqn (3.20) in the form similar
to (3.4),

u � Ar

�
exp �iqt� �Q exp �ÿiqt������������

F �Z�p : �3:30�

Continuing this analogy, we can find the reflection coefficient
R for the shear modulus inhomogeneity inside barrier (3.23)
obtained by transforming the profile F 2�x� in (2.8). This
coefficient is expressed by the same formula (3.10) as the
reflection coefficient F 2�z� in (2.8) of the inhomogeneity of
density. In this case, the characteristic frequency O1 entering
the parameter S differs from (2.14) by its form factor y1�y�
caused by the ratio of barrier widths,

y1�y� � 2

1ÿ y 2

�
y
��������������
1ÿ y 2

p
� arctan

y��������������
1ÿ y 2

p �
: �3:31�

(4) Reflection from the concave profile W 2�z� character-
ized by the minimum Wmin can be studied by choosing the
concave profile of the auxiliary barrier F 2�x� with s1 � 1 and
s2 � ÿ1. Repeating the analysis in (3.21)±(3.25), we find the
parameter

y �
�������������������
Wÿ1

min ÿ 1
q

�3:32�

and the implicit expression for the shear modulus profile
inside the barrier

z�x�
L2
� 1

�1� y 2�3=2
(
artanh

xÿ y��������������
1� y 2

p � artanh
y��������������

1� y 2
p

�
��������������
1� y 2

p �
y� xÿ y

1� y 2 ÿ �xÿ y�2
�)

; �3:33�

x�W � �
��������������������

1

Wmin
ÿ 1

r
�

����������������������
1

Wmin
ÿ 1

W

r
: �3:34�

The auxiliary barrier width d2 and characteristic lengths L1

and L2 can be expressed, similarly to (3.28), in terms of the
width d of the barrier W 2�z� and the parameter y in (3.32):

d2 � yd

B2
; L1 � d

4yB2
; L2 � d

2y
; �3:35�

B2 � 1

�1� y 2�3=2
�
y
��������������
1� y 2

p
� artanh

y��������������
1� y 2

p �
: �3:36�

The concave barrier W 2�z� and the corresponding auxiliary
barrier (3.33) characterized by normal dispersion are shown
in Fig. 4b.

The reflection coefficient for the concave barrier is
calculated from expression (3.14), where the parameter y is
defined in (3.32), and the frequency O2 is given by (2.21), but
with a different form factor y2�y�:

y2�y� � 2

1� y 2

�
y
��������������
1� y 2

p
� artanh

y��������������
1� y 2

p �
: �3:37�

We note that reflection coefficients for shear waves
obtained in Section 3.2 can also be used for normally incident
longitudinal waves, assuming that v0 � vl in all expressions,
where vl is longitudinal wave velocity (1.1).

(I) The main results in this section are the expressions for
the reflection coefficients for longitudinal and shear waves

reflected from inhomogeneous wave barriers formed by
spatial distributions of the density and elastic properties.
These expressions are obtained based on exact analytic
solutions of the wave equation for a gradient medium
without using any assumptions about the smallness or slow
variations in the field and medium. The expressions include
the contributions to sound reflection caused not only by the
difference of acoustic impedances [the parameter a in (3.10)
and (3.14)] but also by the gradient and curvature of the
normalized density profile F 2�z� depending on the character-
istic lengths L1 and L2. As the inhomogeneity weakens
�L1 !1, L2 !1�, the parameters y and g and the
characteristic frequencies O1 and O2 tend to zero, while
expressions (3.10) and (3.14) transform into the known
expression for the reflection of normally incident sound
from a homogeneous layer:

R � tan d�a 2 ÿ 1�
tan d�a 2 � 1� � 2ia

; d � od
v0

: �3:38�

(II) It is important that the analysis of sound reflection
from gradient barriers involves the characteristic frequencies
O1 and O2 determined by the travel times of waves with
velocities v0 through a gradient barrier of width d and by the
geometric parameters y1�y� and y2�y� of the layer. In the
expressions forN� in (2.13) andNÿ in (2.20), whose structure
resembles that of refractive indices in the electrodynamics of
dielectrics with anomalous and normal (waveguide) disper-
sion, these frequencies characterize the nonlocal dispersion of
the acoustic medium.

The nonlocal artificial dispersion formed by the geometric
parameters of the barrier allows selecting a spectral range for
a specified frequency band far from the absorption band of
the acoustic medium.

(III) Within a unified approach, the auxiliary barrier
method reveals the similarity and differences of reflection
spectra caused by physically different gradient structures (for
example, inhomogeneities of the density and elastic para-
meters of the medium). In this approach, the reflection
spectra of acoustic waves reflected from barriers with the
normal and anomalous nonlocal dispersion are described by
general expressions (3.10) and (3.14), which are valid after the
substitution of the corresponding values of the parameter y
and form factors y1; 2�y�. This generality can be extended, as is
shown in Section 4, to other classes of acoustic barriers.

4. Propagation of sound
through gradient solid structures:
combined variable-density
and elasticity dispersion effects

Unlike the sound dispersion caused by either the density
distribution F 2�z� or the elastic parameter distribution
W 2�z� considered in Section 3, the dispersion of gradient
barriers discussed here depends on spatial distributions of
the density and the elastic parameters of the medium
simultaneously. Such combined dependences attract atten-
tion in the acoustics of organic materials [23], biological
microstructures [24], and composite and granulated metama-
terials [25, 26]. The combined action of these mechanisms
leads to competing dispersion effects in sound reflection and
transmission spectra of gradient barriers. Because both these
effects are simultaneously manifested in one barrier, we can
speak about `double' barriers and their complicated spectra.
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Some specific features of the formation of such spectra can be
distinguished by considering two qualitatively different
problems:

(i) finding the reflection spectrum of a barrier in which the
formal relation between the distributions of the density F 2�z�
and elastic moduliW 2�z� in (2.3) is absent; moreover, changes
in F 2�z� and W 2�z� inside the barrier can be different and
even opposite;

(ii) finding the spectral characteristics of the gradient
barrier in which the distributions F 2�z� and W 2�z� are
functionally related; by properly selecting these distribu-
tions, it is possible to optimize barrier parameters to obtain
the required reflection spectrum.

These problems are considered in Sections 4.1 and 4.2.

4.1 `Double' gradient barrier:
optimal barrier parameters for the specified dispersion
We consider a shear wave inside the gradient layer described
byEqn (2.3) and introduce a new variable Z by formula (3.19).
Then Eqn (2.3) takes the form

d2u

dZ 2
� o2

v 2
0

F 2�z�W 2�z� u � 0 : �4:1�

Describing the distribution F 2�z� and W 2�z� inside a barrier
of width d with the help of characteristic lengths l1 and l2,

W�z� � 1� z

l1
; F �z� � 1

1� z=l2
; �4:2�

we can study the effects caused by the increase or decrease in
the density and elastic parameters inside the `double' barrier
in the general form, considering both positive and negative
values of the lengths l1 and l2 in (4.2) independently. To
distinguish these lengths, related to models of different
physical quantities, from the lengths L1 and L2 characteriz-
ing the distribution of one quantity, for example, the density
in model (2.8), the former are written in lowercase letters.

Expressing the variable Z explicitly in terms of z with the
help of (3.19),

Z � z

1� z=l1
; �4:3�

and representing the functionsW�z� and F �z� in (4.2) with the
help of (4.3) as functions of Z, we find

F �z�W�z� � U�Z� � 1

1� Z=l
; �4:4�

l � l1l2
l1 ÿ l2

: �4:5�

Substituting (4.4) in (4.1), we can rewrite this equation in the Z
space in a form similar to (2.7),

d2u

dZ 2
� o2

v 2
0

U 2�Z� u � 0 : �4:6�

This equation is simple to solve using the algorithm that was
already applied in Sections 2 and 3. Introducing the new
variable

t �
� Z

0

U�Z1� dZ1 � l ln
l1�z� l2�
l2�z� l1� ; �4:7�

we can represent the solution of Eqn (4.6) in the form of direct
and backward waves traveling along the t axis:

u � Ar

�
exp �iqt� �Q exp �ÿiqt������������

U�Z�p : �4:8�

The `wave number' q in (4.8) corresponds to the waveguide-
type dispersion in a gradient layer:

q � o
v0

���������������
1ÿ O 2

o2

s
; O � v0

2l
: �4:9�

The characteristic frequency O in (4.9) depends via the
parameter l on the spatial scales l1 and l2 of variations of the
density and elastic properties. Taking boundary conditions
(3.1) and (3.2) at the barrier boundary Z � 0 �z � 0� into
account, we find the expression for the reflection coefficient
R. Unlike reflection coefficient (3.7) calculated for normal
dispersion, R in the problem considered here corresponds to
waveguide dispersion (4.9):

R � iaÿ g=2ÿ iN�1ÿQ��1�Q�ÿ1
ia� g=2� iN�1ÿQ��1�Q�ÿ1 ; �4:10�

N �
��������������
1ÿ S 2
p

; S � O
o
: �4:11�

But the parameterQ, which in (4.8) describes the contribution
of the backward wave to the field inside the barrier U�Z�,
should be calculated again because this barrier, unlike that in
(2.8), is asymmetric,U�Z � 0� 6� U�Z0�, where the coordinate
Z0 corresponds to the rear boundary of the barrier z � d:

Z0 � Z�d � � d

1� d=l1
; U0 � U�Z0� �

l1�d� l2�
l2�d� l1� : �4:12�

Writing the coordinate t in (4.7) corresponding to the rear
boundary of the barrier as

t0 � t�d � � l lnU0 ; �4:13�

and using the relations

dZ
dz
� 1

W 2�z� ;
dt
dz
� F �z�

W�z� ; �4:14�

which follow from distributions (4.2), we write the conditions
for the continuity of displacements and stresses at this
boundary:

Ar

�
exp �iqt0� �Q exp �ÿiqt0�

�������
U0

p � A2 ; �4:15�

Ar������
U0

p
�
ÿ iw

2

�
exp �iqt0� �Q exp �ÿiqt0�

�
�N

�
exp �iqt0� ÿQ exp �ÿiqt0�

�) � abA2 ; �4:16�

b � W�d �
F 3�d � �

�
1� d

l1

��
1� d

l2

�3

: �4:17�

Here, A2 is the transmitted wave amplitude, O is the
characteristic frequency defined in (4.9), and a is the ratio of
impedances in (3.8). In boundary conditions (4.15) and (4.16),
it is assumed for simplicity that the density and elastic
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parameters of the media on the left and right of the barrier are
the same.

Determining the parameter Q from the boundary condi-
tions

Q � ÿ exp �2iqt0��w=2ÿ ib� iN �
w=2ÿ ibÿ iN

; w � v0
lo

; �4:18�

and substituting this in (4.10), we find the reflection
coefficient

R � t�abÿ w 2=4ÿN 2� � i
��wt=2��a� b� �N�aÿ b��

t�ab� w 2=4�N 2� � i
��wt=2��aÿ b� �N�a� b�� ;

t � tan �qt0� ; qt0 � N

2S
lnU0 :

�4:19�

Expression (4.19) for R is written for positive parameters l in
(4.5). It can be seen from (4.5) that a value l > 0 is possible for
three density and shear modulus profiles (4.2):

�1� l1 > l2 ; l1 > 0 ; l2 > 0 ;

�2� l1 > l2 ; l1 < 0 ; l2 < 0 ; �4:20�
�3� l1 < l2 ; l1 < 0 ; l2 > 0 :

Each of the combinations 1±3 in (4.20) determining the value
of b in (4.17) corresponds to its own reflection coefficient. The
reflection coefficient can also be calculated by (4.19) for l < 0;
in this case, combinations of parameters similar to (4.20) are
also possible, the variable t remains positive, and the
parameter w, according to (4.11), should be taken with the
opposite sign, w! ÿw. Finally, in the particular case where
l1 � l2, by passing to the limit l!1 in (4.5) and (4.20), we
find

U! 1 ; O! 0 ; t � Z ; w � 0 ; N � 1 ; �4:21�

qt0 � od
v0

�
1� d

l1

�ÿ1
:

Substituting the quantities from (4.21) in (4.19), we obtain the
reflection coefficient in this limit case. We note that the
nonlocal barrier dispersion vanishes in this limit �O � 0,
N � 1�.

For a specified thickness d of the `double' barrier and
the cut-off frequency O in (4.9), i.e., under the condition
that one of the lengths l1 or l2 is chosen arbitrarily (with
l � const), this possibility is of interest for optimization of
the barrier parameters. We note that expression (4.9)
encompasses different types of the combined influence of
variations in the density and elastic properties, described by
models (4.2), on the reflection of normally incident shear
waves from a `double' gradient layer. These models also
allow finding a similar expression for the reflection coeffi-
cient of longitudinal waves for arbitrary positive and
negative parameters l1 and l2.

4.2 Reflection spectra of shear waves in a gradient layer
for consistent density and elasticity distributions
In this section, we consider an acoustic barrier in which
variations of the density and elastic parameters, unlike in
Section 4.1, are characterized by the same normalized
distribution F 2�z� �W 2�z�. In this case, Eqn (4.1) reduces

to the equation

d2u

dZ 2
� o2

v 2
0

F 4�z� u � 0 : �4:22�

Equation (4.22) can be conveniently solved by the auxiliary
barrier method described in Section 3.2.

We first consider a convex profile F �z� containing two
free parameters: the characteristic length L and a dimension-
less parameterM (Fig. 5a, different values ofM),

F �z� � cos
z

L
�M sin

z

L
; 04

z

L
4 p : �4:23�

The value of Z can be found by substituting the function
W 2 � F 2 in (3.19):

Z � Lt

1�Mt
; t � tan

z

L
: �4:24�

Using (4.23) and (4.24), we can express F 2�z� in (4.23) in
terms of Z:

F 2�z� �
�
1ÿ 2M

L
Z� 1�M 2

L2
Z 2

�ÿ1
: �4:25�
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Figure 5. Gradient barriers formed by the `consistent' density and shear

modulus distributions F 2�z� and W 2�z� when F 2�z� �W 2�z�, with

anomalous (4.23) and normal (4.31) nonlocal dispersions. (a) Plots of

F1�z� and F2�z� corresponding to the parametersM1 � 0:3 andM2 � 0:8.
(b) The auxiliary F�Z� � F 2�z�Z�� and the main convex barriers for

M � 0:8. (c) The auxiliary F�Z� and the main F 4�z�Z�� concave barriers

forM � 0:6.
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It is important that the function F 2�z� written in form (4.25)
coincides with the frequently usedmodel F �Z� in (2.8) if we set
s1 � ÿ1 and s2 � 1 in (2.8) and find the characteristic lengths
L1 and L2 and the parameter y of model (2.14) by comparing
it with (4.25):

2M

L
� 1

L1
;

1�M 2

L2
� 1

L2
2

; y � L2

2L1
� M����������������

1�M 2
p < 1 :

�4:26�

The function F 2�Z� thus defined forms an auxiliary convex
barrier (Fig. 5b) allowing the representation of Eqn (42) in the
form coincident with (2.7):

d2u

dZ 2
� o2

v 2
0

F 2�Z� u � 0 : �4:27�

The maxima of the F 4�z� and F 2�Z� barriers respectively
located in the z and Z spaces are equal to F 2

max � �1�M 2�2.
The width d of symmetric barrier (4.25) in the z space,
determined from the condition F �0� � F �d � � 1, is given by

d � L arctan
2M

1ÿM 2
: �4:28�

The width d1 of the auxiliary barrier in the Z space is
determined from condition (2.10),

d1 � 2yL2 � 2ML

1�M 2
: �4:29�

Comparing (4.28) and (4.29) shows that d1 < d for convex
barriers (Fig. 5b).

By reducing Eqn (4.22) for the barrier to form (4.27)
coincident with (2.7), we can use the solution of (2.7) to obtain
the reflection coefficient of the gradient barrier given by the
distribution F 2�z� �W 2�z� in form (3.10), where the char-
acteristic frequency O1 and the phase shift qZ0 are given by

O1 � v0
d

y1�M� ; y1�M� � arctan
2M

1ÿM 2
;

�4:30�
qZ0 �

oN�d
v0

; N� �
��������������
1� S 2

p
; S � O1

o
:

The auxiliary barrier method also allows finding the
reflection spectrum under the condition F 2�z� �W 2�z� for
a concave profile containing two free parameters L andM, as
in (4.23):

F �z� � cosh
z

L
ÿM sinh

z

L
�W�z� : �4:31�

Using the algorithm developed in (4.24)±(4.30) for a
convex profile and substituting (4.31) in (3.19), we introduce
the new variable

Z � Lt

1ÿMt
; t � tanh

z

L
: �4:32�

Expressing the function F 2�z� in terms of Z, we obtain the
concave profile of the auxiliary barrier

F 2�z� �
�
1� 2M

L
Zÿ 1ÿM 2

L2
Z 2

�ÿ1
: �4:33�

Profile (4.33) coincides with model (2.8) if the characteristic
lengths L1 and L2 and the parameter y of model (2.8) are

defined by the expressions

2M

L
� 1

L1
;

1ÿM 2

L2
� 1

L2
2

; y � M����������������
1ÿM 2
p : �4:34�

Thewidths d of barrier (4.31) and d1 of auxiliary barrier (4.33)
are

d � L artanh
2M

1�M 2
; d1 � 2ML

1ÿM 2
: �4:35�

The minima of the barrier F 2�z� in (4.31) and of auxiliary
barrier (4.33) coincide �F 2

min � �1ÿM 2�2�, while the widths d
and d1, unlike those for a convex barrier, are related by the
opposite inequality d1 > d.

The reflection coefficient for concave profile (4.31) can be
calculated from expression (3.14) found previously for the
barrier F 2�Z�, by using the expressions

O2 � v0
d

y2�M� ; y2�M� � artanh
2M

1�M 2
;

�4:36�
qZ0 �

oNÿd
v0

; Nÿ �
��������������
1ÿ S 2
p

; S � O2

o
:

Gradient barriers formed by shear modulus distributions
defined parametrically and the corresponding auxiliary
barriers are presented in Fig. 4. Barriers (3.23) are character-
ized in Fig. 4a by anomalous dispersion, while barrier (3.33)
in Fig. 4b has normal dispersion. The distances Z and z along
horizontal axes are respectively normalized to d1 and d.
Gradient barriers formed by the `consistent' density F 2�z�
and shear modulus W 2�z� distributions with F 2�z� �W 2�z�
and with anomalous (4.32) and normal (4.31) nonlocal
dispersion are presented in Fig. 5. We note that the reflection
spectra for these models are given by general expressions
(3.10) and (3.14), while the phase shifts qZ0 / N� entering
these expressions are determined by the characteristic
frequencies O1; 2 of nonlocal dispersion, which are described
for barriers with convex and concave inhomogeneity profiles
by similar expressions that differ only by geometric factors,
for example, O1; 2 � �v0=d �y1; 2. Notably, upon reflection
from concave profiles (3.14) in the low-frequency region
o < O2, S > 1, N 2

ÿ < 0, the phase shift qZ0 becomes imagin-
ary. Peculiar effects appearing in gradient acoustics in this
spectral range are considered in Section 5.

5. Sound tunneling
in a nonlocal dispersion medium

Tunneling is a fundamental phenomenon in the dynamics of
waves of different physical natures. The first steps in the
investigation of this phenomenon were taken in optics in
1908, when Eikhenval'd showed theoretically [27] by solving
the Maxwell equations that in the case of total internal
reflection of light incident on the interface of two transparent
media, the light field partially penetrates into the boundary
region of the reflecting medium, decreasing exponentially at a
distance of the order of the wavelength. This effect was
confirmed experimentally by Mandelstam and Zeleni in
1910 [28]. The interest in tunneling effects increased after
Gamow published his famous 1928 paper [29], where he
explained the nuclear a decay by the tunneling of de Broglie
waves describing the propagation of a particles through a
potential barrier surrounding the atomic nucleus.
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The probabilities of tunneling transitions of particles
through potential barriers calculated according to the
Gamow concept are used for solving many quantummechan-
ical problems [30]. Later, similar models were used in a
number of radiophysical and electrodynamic problems of
inhomogeneous plasmas [31].

But the models of homogeneous potential barriers
describing an exponentially small transmission (a rectangu-
lar barrier and d potential) used in these solutions could not
be used for studying the efficient and, in particular, reflection-
less energy transfer during the tunneling of waves through
inhomogeneous potential barriers (see Fig. 2). Such pro-
cesses, which have attracted recent attention to gradient
optics [32], the electrodynamics of metamaterials [33], and
the radiophysics of guiding systems [34], illustrate the
generality of tunneling regimes for fields of different physical
natures described by the wave equation.

This generality allows formulating the problem of sound
tunneling, also described by the wave equation, through
gradient acoustic barriers. It is known that the sound
transmission spectra of homogeneous acoustic barriers with
a waveguide dispersion (acoustic waveguides) are character-
ized by a cut-off frequency O2 dividing the wave spectrum
into two parts, traditionally called the transparency region
(o > O2, S < 1, N 2

ÿ > 0) and the nontransparency region
(o < O2, S > 1, N 2

ÿ < 0). In contrast, in gradient barriers,
sound can propagate efficiently, sometimes totally, through a
barrier in the nontransparency region. Such effects, which are
caused by the interference of the forward and backward
waves inside the barrier, can appear both for a certain profile
of the sound speed inside an inhomogeneous barrier and
inside a homogeneous barrier bounded by the walls of a
certain profile. These physically different tunneling effects are
considered in Sections 5.1 and 5.2.

5.1 Reflectionless acoustic tunneling
through gradient wave barriers
In Sections 2±4, we considered applications of model
equation (2.7) to a number of problems related to propaga-
tion of sound through gradient acoustic barriers formed by
inhomogeneous distributions of the density and elastic
parameters of a medium. In the case of the normal frequency
dispersion of the barrier (`concave profile'), reflection spec-
trum (3.14) that we obtained is valid for high frequencies
o5O2, where O2 is the cut-off frequency determined by
general expression (2.21) with the form factor y2 described by
(2.21) or (3.37), depending on the problem geometry. In the
low-frequency regiono < O2, model equation (2.13) can also
be used; but the spatial field structure inside the barrier is then
described by nonperiodic solutions of (2.13); in this case, we
can speak about sound tunneling. The simplest example of
such tunneling is the propagation of a longitudinal wave
incident on the z � 0 plane normally to gradient layer (2.8)
with s1 � 1 and s2 � ÿ1 (concave density profile). In this
case, the solution of wave equation (2.13) is written in a form
different from (3.4):

u � Ar

�
exp �ÿpZ� �Q exp � pZ������������

F �z�p ; �5:1�
p � o

v0
N ; N �

��������������
S 2 ÿ 1
p

:

The subsequent analysis is performed according to the
scheme in Section 3.2. The reflection coefficient R is

determined from the boundary conditions on the z � 0 plane:

R � iaÿ g=2�N�1ÿQ��1�Q�ÿ1
ia� g=2ÿN�1ÿQ��1�Q�ÿ1 : �5:2�

Calculating Q from conditions on the rear boundary z � d of
the barrier and substituting in (5.2), we obtain

R � t�a 2 � g 2=4�N 2� ÿ gN
t�a 2 ÿ g 2=4ÿN 2� � gN� 2ia�Nÿ gt=2� ; �5:3�

g � 2Sy��������������
1� y 2

p ; t � tanh � pZ0� ; pZ0 �
�����������������
1ÿ Sÿ2
p

Y ; �5:4�

Y � ln
y�
yÿ

; y� �
��������������
1� y 2

p
� y : �5:5�

If the wave frequency is equal to the cut-off frequency
�S � 1�, the reflection coefficient is obtained from (5.3) by
passing to the limit S! 1:

R
��
S!1

� Y
�
a 2 � y 2=�1� y 2��ÿ 2y=

��������������
1� y 2

p
Y
�
a 2ÿ y 2=�1� y 2��� 2y=

�������������
1� y 2

p
� 2ia�1ÿ yY=

�������������
1� y 2

p
� :

�5:6�

Finding jRj2 from (5.3), we can obtain the energy transmis-
sion coefficient jT j2 � 1ÿ jRj2 of the barrier:

jT j2 � 4a 2N 2�1ÿ t 2��
t�a 2 ÿ g 2=4ÿN 2� � gN

�2 � 4a 2�Nÿ gt=2�2
: �5:7�

The plots of jT �S�j2 are shown in Fig. 6. The transmission
coefficient T can also be written in complex form
T � jT j exp �ift�, where the phase ft of the wave that
tunnels through the barrier is given by

tanft �
t�a 2 ÿ g 2=4ÿN 2� � gN

2a�Nÿ gt=2� : �5:8�
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Figure 6. Transmission spectra jT �S �j2 in (5.7) for shear waves tunneling

through a single-layer gradient barrier formed by a density distribution:

(a) a � 0:3, curves 1 and 2 correspond to y � 0:45 and 0.7; (b) y � 0:3,
curves 1 and 2 are respectively constructed for a � 0:3 and 1.25.
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The transmission coefficient for the cut-off frequency can be
obtained from (5.7) by passing to the limit S! 1:

jT j2
���
S!1
� 4a 2

(�
Y

�
a 2 ÿ y 2

1� y 2

�
� 2y��������������

1� y 2
p �2

� 4a 2

�
1ÿ yY��������������

1� y 2
p �2

)ÿ1
: �5:9�

The reflection coefficient for a system of m adjacent
identical barriers is obtained by successively using boundary
conditions for each interface between two adjacent barriers
(3.1) and (3.2). The calculations again lead to expressions
(5.4) and (5.7), generalized with the help of the substitution

t! tm � tanh �mpZ0� ; mpZ0 � mY
�����������������
1ÿ Sÿ2
p

: �5:10�

In expressions (5.6)±(5.8) corresponding to the limit S! 1,
the combined effect of m identical barriers is taken into
account by the replacement Y! mY.

A fundamentally important effect inherent in gradient
acoustic barriers with waveguide dispersion is the possibility
of reflectionless tunneling at some frequency o0 4O2 of the
wave �R�o0� � 0, jT �o0�j2 � 1�. The condition for the
occurrence of this regime can be found from (5.3) and (5.9):

tanh
ÿ
mY

�����������������
1ÿ Sÿ2
p � � gN

a 2 � g 2=4�N 2
: �5:11�

The spectra of the waves tunneling through the system of
gradient acoustic barriers (5.7)±(5.9) depend on the ratio a of
the impedances of the barrier and surrounding medium, on
the geometric parameter g, and on the number m of barriers.
These dependences are shown in Fig. 7 for m � 2. It follows
from Figs 6 and 7 that the transmission of single barriers
monotonically increases with decreasing the frequency. But
the influence of the second barrier (see Fig. 7) complicates the
interference structure of the field and leads to the formation
of the transmission maximum jT j2 � 1 and a decrease in
transmission to zero with increasing the frequency. We note

the appearance of transparency windows with a finite spectral
width in the tunneling regime, which correspond to high
transmission coefficients. For example, according to Fig. 7a,
jT j2 reaches values jT j2 > 0:9 in the spectral range
1:22 < S < 1:48.

5.2 Longitudinal sound tunneling
through a homogeneous medium
in a channel with a variable cross section
The description of sound propagation in tubes, funnels, and
concentrators often involves problems related to acoustic
processes in waveguide systems with a variable cross section
F �z�, where z is the coordinate measured along the system
axis. The peculiarities of such processes can be found by
analyzing a simple problem of longitudinal sound propaga-
tion in the irregular waveguide shown in Fig. 8: a tube with a
cylindrical cross section has a narrowing in the region
04 z4 d (region II); the cross-sectional area in this region
changes continuously according to a law F �z�; for z4 0 and
z5 d (regions I and III), the tube cross section F0 is constant,
F �0� � F �d � � F0. Region II is separated from regions I and
III by thin soundproof membranes located in the z � 0 and
z � d planes; all the regions are filled with a continuous
medium characterized by a density r1 and longitudinal
speed of sound v1 (constant-cross-section regions I and III)
and r0 and v0 (variable-cross-section region II). For a
convenient comparison of the results obtained in this section
with those in Section 4.1, the parameters of region II are
indicated by subscripts 0.

If the characteristic radius of the tube is large compared to
the wavelength �r0�z�4 l� and the tube cross section changes
sufficiently slowly �dr0=dz5 1�, then the propagation of a
longitudinal sound wave along the z axis of this system is
described by the Webster equation [35]

q2P
qz 2
� q
qz

�
lnF

qP
qz

�
ÿ 1

v 2
0

q2P
qt 2
� 0 ; �5:12�

where P�z; t� is the acoustic pressure. Effects described by this
equation, which was proposed as early as 1919, are still being
analyzed [36±38]. The effects of nonlocal dispersion and
tunneling of sound through a variable-cross-section region
can also be studied using the Webster equation. To find an
exact analytic solution of this equation for a monochromatic
wave with frequency o, we introduce a new function f �z�
instead of pressure:

P�z; t� � f �z�����������
F �z�p exp �ÿiot� : �5:13�
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Figure 7. Transmission spectra jT �S �j2 for shear waves tunneling through
a composite gradient barrier formed by two identical density distributions

(5.11), m � 2, y � 0:577; (a) a � 0:2925; (b) a � 0:4515. At the points

S � 1:32 in Figs 7a and S � 1 in Fig. 7b, reflectionless tunneling is

attained.

z

IIIIII
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Figure 8. Narrowing in a channel filled with different liquids allows the

reflectionless tunneling of longitudinal sound through region II that has a

constant liquid density and is bounded by curvilinear walls.
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Substituting (5.13) in (5.12), we obtain the equation

d2f

dz 2
� f

�
o2

v 2
0

ÿ 1

2

d2F

dz 2
� 1

4F 2

�
dF

dz

�2�
� 0 ; �5:14�

which does not contain the first derivative of the unknown
function. The function F �z� describing a change in the tube
cross section in (5.14) is not yet defined here.

We consider a symmetric concave profile F �z� reducing
Eqn (5.14) to the wave equation with constant coefficients:

F �z� � Fm cosh 2

��
2z

d
ÿ 1

�
A

�
; F �0� � F �d � � 1 ;

F

�
d

2

�
� Fm < 1 ; A � arcosh

1������
Fm

p :
�5:15�

Here, d is the length of the narrowed part and Fm is the
minimal cross-sectional area. Substituting this F �z� in (5.14),
we obtain the simple wave equation for the function f �z�:
d2f

dz 2
� o2

v 2
0

N 2
ÿ f � 0 ; N 2

ÿ � 1ÿ S 2 ; S � O
o
; �5:16�

O � v0
d

y ; y � 2 arcosh
1������
Fm

p � 2 ln
1� ���������������

1ÿ Fm

p������
Fm

p : �5:17�

Here, O is the characteristic frequency for the narrowed
region. Equation (5.16) resembles the wave equation for a
waveguide or plasma, with O playing the role of the cut-off
frequency dividing the spectral regions of propagating
�o > O� and tunneling �o < O� waves. It is important in
this consideration that the medium in region II representing
an acoustic barrier is assumed homogeneous and nondisper-
sive, while the cut-off frequency is caused by nonlocal
dispersion depending on the geometric parameters, the
barrier thickness d and the minimal narrowed area Fm.

We consider the tunneling of longitudinal sound through
region II �04 z4 d �. The pressure P in this region can be
represented with the help of the forward and backward waves
that are solutions of Eqn (5.16):

P2 �
Ar

�
exp �ÿpz� �Q exp � pz������������

F �z�p ;

�5:18�
p � o

v0
N ; N �

��������������
S 2 ÿ 1
p

:

To simplify the notation, the factor exp �ÿiot� is omitted
hereafter. The pressure P and velocity V of the medium in a
sound wave field are related by the equations

r
qV
qt
� ÿ qP

qz
; V � ÿ i

or
dP

dz
: �5:19�

Substituting the pressure distributionP2 from (5.18) in (5.19),
we find the velocity distribution of the medium in region II:

V2 � iA2

v0r0

1���
F
p

�
Fz

2F

v0
o

�
exp �ÿpz� �Q exp � pz��

�N
�
exp �ÿpz� ÿQ exp � pz��� ; Fz � dF

dz
: �5:20�

The pressure and velocity distributions in sound fields in
regions in front of �z4 0� and behind �z5 d � the narrowing

are described by

P1 � A1

�
exp �ik0z� � R exp �ÿik0z�

�
;

�5:21�
V1 � A1

v1r1

�
exp �ik0z� ÿ R exp �ÿik0z�

�
;

P3 � A3 exp
�
ik0�zÿ d �� ; V3 � A3

v1r1
exp

�
ik0�zÿ d �� :

�5:22�

Here, A1, A2, and A3 are the respective amplitudes of the
incident, tunneling, and transmitted waves, and the para-
meter Q in (5.20) characterizes the contribution of the
backward wave in the sound field inside the narrowing.

The reflection coefficient for sound waves in region II can
be calculated by using the continuity conditions for pressure
and velocity at the region boundaries z � 0 and z � d. The
ratio Fz=�2F � in (5.20) is determined at the boundaries of
region II as

Fz

2F

����
z�0
� ÿ 2A

d

���������������
1ÿ Fm

p
� ÿ Fz

2F

����
z�d

: �5:23�

Using the values of pressure and velocity on both sides of the
boundary z � 0 given in (5.18), (5.20), and (5.21), we can
write the continuity conditions at this boundary relating the
complex reflection coefficient R and the parameter Q:

A1�1� R� � A2�1�Q� ; �5:24�
iA1�1ÿ R�

v1r1
� A2

v0r0

�
S

���������������
1ÿ Fm

p
�1�Q� ÿN�1ÿQ�� : �5:25�

The reflection coefficientR found from system (5.24), (5.25) is

R � ia1 ÿ S
���������������
1ÿ Fm

p �N�1ÿQ��1�Q�ÿ1
ia1 � S

���������������
1ÿ Fm

p ÿN�1ÿQ��1�Q�ÿ1 ; �5:26�

where a1 is the impedance ratio described, unlike a in (3.8), by
the expression

a1 � 1

a
� r0v0

r1v1
: �5:27�

The parameter Q can be found from boundary conditions at
the boundary of region II �z � d �:

Q � ÿ exp �ÿ2pd � a1 ÿ iS
���������������
1ÿ Fm

p ÿ iN

a1 ÿ iS
���������������
1ÿ Fm

p � iN
: �5:28�

Substituting Q (5.28) in (5.26), we obtain the reflection
coefficient

R �
n
t
�
a 2
1 � S 2�1ÿ Fm� �N 2

�ÿ 2SN
���������������
1ÿ Fm

p o
�
n
t
�
a 2
1 ÿ S 2�1ÿ Fm� ÿN 2

�
� 2SN

���������������
1ÿ Fm

p
� 2ia1

ÿ
Nÿ S

���������������
1ÿ Fm

p
t
�oÿ1

; �5:29�

t � tanh � pd � ; pd � 2NA

S
: �5:30�

Expressions (5.29) and (5.30) demonstrate a peculiar
effect of the similarity of gradient wave barriers of different
physical natures. These expressions describe the reflection of
sound during tunneling through a flat homogeneous layer
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bounded by a curvilinear boundary F �z� in (5.15). The
transmission of waves through region II determined by the
expression jT j2 � 1ÿ jRj2 depends on the geometric para-
meters Fm and A in (5.15). On the other hand, the substitu-
tions

1ÿ Fm � y 2

1� y 2
; 2A � ln

y�
yÿ

; a1 � aÿ1 �5:31�

made in (5.29) and (5.30) transform these expressions into
relations (5.3)±(5.5) describing another physical situation of
sound tunneling through a gradient barrier separating
homogeneous media. If a waveguide has several identical
adjacent narrowings �m > 1�, the reflection coefficient should
be calculated by making replacement (5.10) in (5.30).

With relations (5.31), we can use the reflection spectra
calculated for sound tunneling through gradient barriers to
analyze the tunneling of longitudinal acoustic waves through
narrowings in waveguides. For example, the spectrum in
Fig. 6 �y � 0:3, a � 1:25, m � 1� also describes the tunneling
effect for an irregular waveguide (see Fig. 8) with the
narrowing area Fm � 0:917, a1 � 0:8, and A � 0:59. In this
case, identical values of the normalized frequency S corre-
spond to the same transmission jT j2. This equality remains
valid for all sound frequencies o and the parameters of the
narrowed region, the velocity v0 and thickness d, connected
by the phase relation

od
v0
� 2A

S
: �5:32�

A similar comparison for y � 0:577, a1 � 0:2925, and m � 2
(see Fig. 7) shows, for example, that transparency windows
can appear during reflectionless tunneling �jT j2 � 1,
S � 1:28� through an irregular acoustic waveguide (see
Fig. 8) with two identical narrowings and the parameters
Fm � 0:75, a1 � 3:42, and A � 1:099. This effect appears at
all frequencies satisfying condition (5.32). This similarity
again illustrates the analogy between tunneling processes for
waves of different physical natures.

6. Gradient elements of phonon crystals

The increasing recent interest in the physics and technology of
phonon crystals is related to the development of new-
generation control systems for acoustic wave fluxes [39, 40].
As in the manufacturing of photonic crystals for optics and
radiophysics, these acoustic developments involve artificial
inhomogeneous and composite materials that are not
encountered under natural conditions. By continuing this
analogy, we can point out that along with the case of waves
normally incident on a gradient layer discussed in Sections 3±
5, the propagation of waves along the surface of a gradient
medium is also of interest for a number of structures. In this
case, we are dealing with surface waves in gradient structures.
Below, we briefly consider some properties of gradient
acoustic barriers (Section 6.1) and periodic structures con-
sisting of such barriers (Section 6.2), which are of interest for
the manufacturing of phonon crystals.

6.1 Subwavelength acoustic barriers
The reflection spectra of different gradient acoustic barriers
considered in Sections 3±5 demonstrate some general proper-
ties of these barriers produced by density or elastic parameter

inhomogeneities or by the combined effect of these inhomo-
geneities.

(1) The reflection and transmission coefficients for sound
propagating through a homogeneous nonabsorbing layer
depend in the case of normal incidence only on the layer
thickness d and the acoustic impedance contrast I � rv inside
and outside the layer. By contrast, in the case of incidence on a
gradient layer, the reflected wave is formed due to the
interference of waves reflected with their own values of the
amplitude and phase at each point inside the layer. A thin
layer with a thickness smaller than the wavelength can then
make a certain contribution to the reflected wave structure.
The thickness of such layers can be estimated from reflection
spectra R�S� (see, e.g., Figs 3 and 10). Using the values of the
dimensionless frequency S � O=o on the abscissas of these
plots and expressions for the characteristic frequencies O1 in
(2.14) and O2 in (2.21), we find the ratio

l
d
� 2pS

y
; �6:1�

where, according to Section 3.1, the form factors are
y � y1�y� � 2y

��������������
1ÿ y 2

p
or y � y2�y� � 2y

��������������
1� y 2

p
for the

density inhomogeneity shown in Fig. 1. The form factors
y1�y� in (3.31) and y2�y� in (3.37) in the case of shear modulus
inhomogeneities (see Fig. 5) are given in Fig. 9. Substitution
of these values in (6.1) shows that the thickness d has subwave
values for different wavelengths: d � �0:2ÿ0:3�l. Such
dimensions are promising for manufacturing miniature
phonon crystals.

(2) The transmission spectra for waves in the tunneling
regime for some sets of parameters are of interest for the
manufacturing of efficient gradient acoustic reflectors in
the specified frequency interval. Using Fig. 7, we can plot
the reflection coefficient jR�d�j2 � 1ÿ jT �d�j2 (Fig. 10). It
follows from Fig. 10 that the reflection coefficient of a barrier
consisting of two identical adjacent layers �m � 2� with a
thickness d each, which are characterized by concave density
profile (2.8) and the value y 2 � 1=3 and are surrounded by an
elastic medium (the impedance ratio is a), vanishes for
d � 1:32; in this case, the form factor is y � y2 �
2y

��������������
1� y 2

p
, Eqn (2.21). We now consider a configuration in

which this gradient barrier is replaced by a homogeneous
layer that similarly to the gradient barrier has the thickness 2d
at the same values of the frequency o, velocity v0, and
impedance ratio a. Rewriting expression (6.1) for the
gradient barrier in the form

od
v0
� y2

S
; �6:2�
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Figure 9. Form factors y1�y� in (3.31) and y2�y� in (3.37) for gradient

barriers formed by the shear modulus inhomogeneity.
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we find the reflection coefficient jRj2 of the given homo-
geneous layer for comparison. Substituting the parameter

d � 2od
v0
� 4y

��������������
1� y 2

p
S

�6:3�

in expression (3.38) describing reflection from such a layer
with thickness 2d, we calculate the reflection coefficients jRj2
for the values corresponding to Fig. 8 �y 2 � 1=3, a � 0:2925�.

It can be seen fromFig. 10 that the reflection coefficient of
the gradient barrier in the low-frequency region considerably
exceeds that of a homogeneous layer with the same para-
meters. Such a dispersion of the gradient barrier is of interest
for the manufacturing of acoustic filters and selectively
reflecting surfaces.

(3) In the case of certain relations between parameters of
the gradient barrier, its nonlocal dispersion can vanish. For
example, for a simple barrier formed by the convex density
profile F 2�z�, the characteristic frequency O1 in (2.14)
vanishes for y � 1, i.e., L2 � 2L1; in this case, the wave
number q is given by the standard expression q � o=v0.

A more complicated case is described by Eqn (4.2). In this
case, the propagation of a wave through a `double' barrier
depends on the density distribution F 2�z� and the shear
modulus distribution W 2�z�. In the particular case
F 2�z�W 2�z� � 1, the solution of (4.2) has the form

u � exp
ioZ
v0
�Q exp

�
ÿ ioZ
v0

�
: �6:4�

For the density profile F �z� � cos �z=L� �M sin �z=L� in
(4.23) instead of (4.24), we obtain the expression

Z � L tan �z=L�
1�M tan �z=L� �6:5�

for the variable Z in (6.4). The wave described by (6.4) and
(6.5) propagates in the `double' barrier F 2�z�W 2�z� � 1 with
a variable phase velocity but without dispersion distortions.

6.2 Periodic gradient structures
Acoustic metamaterials with a periodic structure are often
simulated as composite media consisting of isotropic matrices
with periodic inclusions of concentrated masses, elastic
elements (springs), and cavities with different shapes and
volumes [41]. By contrast, in this section, we point out the
possibility of producing periodic structures considered in
Sections 3±5 from gradient acoustic barriers providing
controllable reflection and transmission of wave fluxes in
the specified spectral range. Traditional multilayer structures
manufactured for this purpose contain alternating layers of
materials with different sound speeds vl; t and different
thicknesses d. Gradient layers forming a periodic structure
can differ not only in vl; t and d but also in the density and
elastic parameter distributions F 2�z� and W 2�z� inside each
layer. The reflection and transmission spectra of such a
periodic structure related to the discontinuities of the
gradient and curvature of F 2�z� and W 2�z� at the layer
boundaries can considerably differ from the corresponding
spectra of a single barrier.

For example, we consider a periodic structure composed
ofm identical adjacent barriers with variable density (2.8) and
anomalous geometric dispersion (Fig. 11a). The densities of
any adjacent barriers coincide on their common boundary
z � d �F 2�d � � 1�, while the density gradients experience a
discontinuity at this boundary determined from (2.8). This
discontinuity on crossing the boundary along the wave
propagation direction is

gradF 2
��
z�dÿ0ÿgradF 2

��
z�d�0 � ÿ

8y 2

d
: �6:6�

Using the continuity condition at the interface between two
adjacent layers and assigning the number m � 1 to the
extreme layer on the distant side of the structure (along the
wave propagation direction), we can obtain a recursive
relation for the parameter Om describing the contribution of
the backward wave in the mth layer,

Qm � exp
�
2i�mÿ 1�qZ0

�
Q0 : �6:7�

Here, Q0 is equal to Q defined in (3.9). Substituting Qm given
by (6.7) instead of Q in (3.9) shows that expression (3.10) for
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2 1
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1
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Figure 10. Reflection coefficient of a barrier with a thickness 2d as a

function of the dimensionless frequency d � od=v0: (a) a � 0:25;
(b) a � 0:4595. Curve 1: the reflection coefficient of a composite gradient

barrier formed by two identical layers with a thickness d, Eqns (5.7) and

(5.9), m � 2, y � 0:75; curve 2: reflection coefficient (3.38) of a homo-

geneous barrier with the thickness 2d. Reflection from the gradient barrier

in some regions of d is stronger than that from the homogeneous barrier

with the same thickness and the same velocity v0 and parameter a.
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Figure 11. (a) Periodic structure made of four convex gradient barriers

(curve 1 corresponds to y � 0:3, curve 2 to y � 0:6). (b) Transmission

spectra of a periodic structure consisting of three (curve 1) and five (curve

2) gradient barriers for a � 0:2925 and y 2 � 1=3.
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the reflection coefficient of a single barrier with anomalous
dispersion can be generalized to the case of reflection from a
periodic system of m such barriers (see Fig. 11) by replacing

tan �qZ0� ! tan �mqZ0� �6:8�

in (3.10). It follows from Fig. 11b that as the number m of
gradient barriers increases, the number of frequencies o at
which the wave completely passes through a periodic
structure with subwave inhomogeneities increases.

A periodic structure composed ofm gradient barriers (2.8)
with normal dispersion [a concave profile F 2�z�] is character-
ized by a different discontinuity of gradF 2, which is equal to
8y 2=d. In this case, replacement (6.8) in expression (3.14)
obtained for a single barrier with normal dispersion leads to
an expression for the reflection coefficient of the periodic
structure consisting ofm such barriers. The reflection spectra
of such gradient structures in Fig. 3 show that unlike the
transmission bands of structures composed of homogeneous
layers, the transmission bands of gradient periodic structures
with boundaries defined by the condition R � 0 have
different widths in different parts of the spectrum.

The complex reflection coefficient for a wave tunneling
through a structure containing m barriers is obtained by the
similar substitution

tanh � pZ0� ! tanh �mp0� �6:9�

in expressions (5.4) and (5.8). The transmission spectra of
waves tunneling through such structures are presented in
Fig. 7.

Figures 3 and 7 demonstrate a strong dependence of the
amplitudes of waves propagating through gradient periodic
structures on the numberm of barriers even for smallm. Such
a dependence, especially in the wave tunneling region, in
conjunction with the subwave thickness of gradient acoustic
barriers is of interest for the creation of subwave phonon
crystal elements.

7. Conclusions

The dynamics of wave processes in gradient media involve a
number of effects common for waves of different natures. A
typical example of such a generality is the above-mentioned
tunneling of waves in electrodynamics, acoustics, and
quantum mechanics. In this connection, we also note the
analogy between the `double' gradient acoustic barrier (see
Section 4.1) and a superhigh-frequency transmission line with
distributed parameters. It is known [42] that the distribution
of the current I and voltage V in a transmission line without
losses with distributed parameters is described by the system
of equations

qV
qz
� L�z� qI

qt
� 0 ;

qI
qz
� C�z� qV

qt
� 0 ; �7:1�

where L�z� � L0F
2�z� and C�z� � C0W

ÿ2�z� are the self-
induction and capacity distributions per transmission line
unit length, which depend on the coordinate z along the line.
From system (7.1), introducing the generating function C
such that

V �W 2�z�
C0

qC
qz

; I � ÿ qC
qt

; �7:2�

we obtain Eqn (2.3) derived for the description of a
displacement in a gradient layer with the density and shear
modulus distributions F 2�z� andW 2�z� across the layer. This
analogy is of interest for the simulation of complex acoustic
fields in inhomogeneous media with the help of a radio
engineering transmission line.

To explain the physics of the interaction of acoustic fluxes
with gradient barriers, we here used the simplest one-
dimensional model of this interaction, assuming the normal
incidence of the flux, simple laws of nonlocal dispersion, and
exactly solvable models for plane waves. We note that some
fundamentally important problems remain beyond the
framework of this model.

(I) One such problem is the problem of point sources and
acoustic beams of nonplane waves and momenta in inhomo-
geneous media. One of the few exact results not restricted by
the assumptions of one-dimensional plane waves and homo-
geneous media describes the refraction of an acoustic flux at
the interface of two liquids with densities r1 and r2 [43],

r1 tanf1 � r2 tanf2 ; �7:3�

where f1 and f2 are the angles between the flux vectors and
the normal to the interface between the liquids. Some exactly
solvable models of two-dimensional and three-dimensional
wave beams are discussed inmonograph [44]. But the physical
concepts of nonlocal dispersion and tunneling for such wave-
field configurations have not been developed yet.

(II) In this review, we have considered the problems of
wave propagation in gradient media in the direction of
density change �gradF 2� or of the elastic parameter change
�gradW 2�. We note that the different geometry of gradient
acoustic problems corresponding to the propagation of waves
perpendicular to gradF 2 and gradW 2 is also a `hot' problem
having numerous applications in radiophysics and electro-
nics. This field configuration is involved in the studies of
surface waves in gradient media [45]. Recently, surface wave
fields in gradient media characterized by their own inhomo-
geneity scale have attracted special interest. Information on
the spatial structure and spectral properties of such fields is
finding numerous applications, both for probing natural
geophysical media [46] and for manufacturing artificial
materials for the absorption and conversion of acoustic
waves [47].

(III) Another problem is the `acoustic mask.' Advances in
the theory of gradient dielectric layers covering an opaque
target, capturing the incident electromagnetic wave, and
minimizing scattering by this target (`invisible target') [48]
stimulated corresponding developments in acoustics [49]. For
example, physical foundations for such an `acoustic mask'
were developed in [50] in the particular case of a cylindrical
body on a water surface. The model of an acoustic
metamaterial with anisotropic density and elasticity consist-
ing of springs with different masses and rigidities was
proposed in [51]. However, this promising theory, which
does not repeat the `transformation optics' developed for the
corresponding electrodynamic problems [52], is now only
taking its first steps. We also note that the further develop-
ment of the resonance tunneling of waves through gradient
barriers in acoustics will involve the study of the role of
nonlinear effects, some of which have been investigated in
monograph [53]. In addition, it is very important to consider
the influence of large-scale flows on the resonance tunneling
of waves in the atmosphere and ocean. For example, in the
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presence of such flows in the atmosphere, the propagation of
internal gravitational waves (IGWs) from the troposphere
zones of crisis processes such as hurricanes and earthquakes,
to ionosphere altitudes followed by the generation of
indicators and precursors of these crisis phenomena in the
ionosphere is possible only for horizontal lengths of the IGW
modes no less than � 30 km [54].
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