
Abstract. This is a review of research results on conditions
under which spatially restricted low-temperature antiferromag-
nets and their composites can be considered as a special class of
acoustic magnetic metamaterials (magnetoacoustic metama-
terials). In these, the dynamic magnetoacoustic interaction
produces a number of effects that are acoustic analogs of
polariton effects and which are currently intensively studied in
nonmagnetic acoustic metamaterials. It is shown that the elas-

tostatic approach to the analysis of the magnetoelastic dy-
namics of spatially restricted compensated magnetics is an
effective tool in the search for new types of resonance acoustic
anomalies, part of which are typical of the magnetostatic spin
wave physics (elastostatic bulk and surface spin waves, nonuni-
form spin±spin resonances with their participation, etc.).

1. Introduction

In recent years, much attention has been paid to so-called
metamaterialsÐ composite media whose dynamic properties
in the long-wavelength limit prove to be qualitatively
different from those of the constituent resonance structural
elements [1±5]. The number of such composite structures,
which demonstrate unique electrodynamic characteristics, is
steadily increasing. Such structures, inter alia, comprise
artificial dielectrics and artificial magnets [6±8], chiral and
omega media [9, 10], photonic crystals [11, 12], and single-
negative and double-negativemedia [13±15]. This, in turn, has
stimulated the search for acoustic analogs of a whole number
of fundamentally new electrodynamic effects that are quite
numerous in the physics of metamaterials. The appropriate
class of composite media involving acoustically resonant
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spatially ordered structural elements is called acoustic
metamaterials.

Because of the large potential of acoustic metamaterials
for practical applications [16], the analysis of their wave
properties has become one of the most dynamically devel-
oping areas of modern physical acoustics of composite
media. In particular, the opportunity to apply acoustic
metamaterials for the creation of highly efficient acoustic
insulators in certain frequency ranges [17±20], the realization
of the negative acoustic refraction effect [21±24], focusing
acoustic beams and acoustic superlenses [25±31], acoustic
cloaking coatings [32±36], etc. have been intensely studied in
recent years. Intensive work is also being performed in the
field of creation of single- and double-negative acoustic
metamaterials [37±39]. In spite of numerous publications
devoted to these issues, however, the overwhelming majority
of them are related to studying exclusively nonmagnetic
structures [40±42].

At the same time, much attention has been paid in recent
years to photonic crystals involving magnetic materials, and
specifically to magnetic photonic materials [43±45]. Since the
overwhelming majority of photonic crystals are acoustically
continuous media [43], they can also be considered to be
magnetic acoustic metamaterials [more precisely, magnetic
phononic crystals (MPCs)]. Based on the magnetoacoustics
of spatially homogeneous magnets [46], we should expect
that, through the action of a constant external field and by
changing the temperature or pressure, we can substantially
change the degree of acoustic contrast between magnetic and
nonmagnetic components of such a composite medium.
Furthermore, a smooth variation of the frequency of
acoustic resonances of magnetic inclusions in a nonmagnetic
matrix becomes possible.

Another distinctive feature of the acoustic properties of
magnets is the existence of additional internal degrees of
freedom in them, which are related to the spin subsystem of a
magnetic crystal (spin waves). Of special interest is the
realization of conditions for magnetoacoustic resonance
(MAR)Ða fundamental rearrangement of the spectra of
elastic and spin waves in a magnet if their frequencies and
wave vectors are equal to one another. In this case, for the
wave vectors k4 kmph (kmph is determined from the existence
condition for the MAR: os�kmph� � oph�kmph�, where os�k�
and oph�k� are the respective dispersion relations for the
spectrum of normal spin and elastic waves of an unbounded
magnet without allowance for the magnetoelastic interaction
[47]), we should search for an analogy between the spectrum
of magnetoelastic excitations and the spectrum of polaritons.

Thus, the range of wavelengths with k4 kmph can
represent a significant interest for the creation of new
acoustic metamaterials based on magnetic structural ele-
ments with a certain characteristic dimension d� [e.g., the
film thickness or the diameter of the filament (particle)]. If
k � 2p=d, the condition k4 kmph will be fulfilled already for
d�4 d4 a, where a is the lattice parameter.

To date, a number of monographs (see, for example,
Refs [47±49]) and reviews [46, 50±54] devoted to the analysis
(within the continuum model) of different aspects of the
interaction of the spin subsystem of a magnetically ordered
crystal and the lattice have been published. Thus, the specific
features of the resonance interaction of spin and acoustic
waves �k � kmph� in unbounded magnets were considered in
monograph [47]. The specificity of propagation of soft
magnetoacoustic waves in infinite ferromagnetic (FM) or

antiferromagnetic (AFM) crystals in the region of magnetic
phase transitions for k5 kmph has been analyzed in the
reviews [46, 50, 51]. The problems of the resonance interac-
tion of magnetostatic waves with normal elastic waves in
ferromagnetic plates (fast magnetoelastic waves) are dis-
cussed in paper [52]. Review [53] is devoted to the specific
features of the nonlinear magnetoelastic dynamics of an
unbounded antiferromagnet in the vicinity of magnetic
phase transitions for k5 kmph. The rotational invariance
effects and the surface acoustic waves in bounded ferro-
magnets and antiferromagnets are considered in Ref. [54].

As to the specific features of the interaction between bulk
spin and elastic waves with wave vectors k4 kmph in bounded
nongyrotropic magnets, they have not been represented in the
review literature. At the same time, if, following Ref. [55], we
describe the magnetoelastic dynamics of a spatially homo-
geneous magnet in terms of effective elastic moduli, it is
precisely in this range of wave vectors that we can expect the
appearance of frequency intervals in which some effective
elastic moduli become negative. However, we should take
into account that a magnetically ordered medium is char-
acterized by a sufficiently strong intrinsic nonlocality related
to an inhomogeneous exchange interaction. This means that
for the inequality k4 kmph to be fulfilled, it is necessary that
already in an unboundedmagnetic medium the phase velocity
of the elastic wave be much greater than the propagation
velocity of normal spin oscillations. Apart from ferromag-
nets, such a property is, as is known, characteristic of low-
temperature antiferromagnets, for which, according to review
[53], TN < TD, where TN and TD are the NeÂ el and Debye
temperatures, respectively. It should be emphasized that, in
contrast to the spin-wave dynamics of FMs, the spin-wave
dynamics of exchange-collinear AFMs is characterized by the
simultaneous exchange enhancement of effects related to the
magnetoelastic interaction and by an exchange weakening of
the role of the magnetodipole interaction [46, 50, 53]. In
addition, since the magnetodipole interaction effects in
antiferromagnetic crystals are proportional to the equili-
brium magnetization, their contribution can be additionally
reduced in comparison with the magnetoelastic contribution
if, in the equilibrium state, the total magnetization of the
antiferromagnet sublattices is equal to zero. Such a magnetic
structure, according to monograph [56], corresponds to a
compensated antiferromagnet. This definition corresponds
not only to spatially homogeneous exchange-collinear
AFMs, in which the ferromagnetism vector is equal to zero
in the ground state, but also to composite magnetic materials
produced on their basis. One-dimensional MPCs consisting
of identical ferromagnetic or ferrimagnetic layers can also be
related to the compensated AFM structures under the
condition that the orientations of the equilibrium magnetiza-
tions of any two neighboring layers be mutually opposite.

In the case of magnet±ideal-diamagnet structures, the
phononic mechanism of the interlayer interaction should be
much more efficient than the magnetodipole one. As a rule,
these structures are studied from the viewpoint of the
conditions for the coexistence of magnetic and superconduct-
ing phases [57]. In addition, the photonic crystals consisting
of superconducting and nonsuperconducting components
have been intensely studied recently in connection with the
exploration of the terahertz frequency range [58].

The fulfillment of the inequality k4 kmph means that, to
describe the dynamics of the elastic subsystem of a magnet in
all the above-mentioned structures, we can use, instead of the
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total equations of the mechanics of continuum medium, their
elastostatic limit [59]. As a result, by analogy with the
spectrum of magnetostatic excitations [60, 61], it can be
expected that for kmphd5 1 in a bounded magnet with a
characteristic dimension d there will simultaneously act, apart
from themechanism of inhomogeneous exchange interaction,
also two mechanisms of indirect spin±spin interaction,
namely, magnetodipole and phononic. In the phononic
mechanism, the indirect spin±spin interaction is implemen-
ted through the long-range field of quasistatic magnetoelastic
deformations.

This review aims to present the results of investigations
into acoustic analogs of polariton effects induced by dynamic
magnetoelastic interaction through the example of bounded
compensated AFM structures, in particular, easy-axis (EA)
AFMs.

The paper outline is as follows. In Section 2, the principal
relations are given that make it possible to describe the
magnetoelastic dynamics of finite compensated antiferro-
magnets and related layered structures [in particular, one-
dimensional (1D) MPCs] in terms of the continuum model.

In Section 3, we discuss the results of investigations of the
magnetoelastic dynamics of plates of compensated AFMs in
the framework of the elastostatic approximation, from which
it follows that in some cases it is expedient to speak of the
existence in such systems of a special class of nonexchange
propagating spin-wave excitationsÐelastostatic spin waves.
These waves can be considered to be an acoustic analog of
well-known magnetostatic spin waves. Discussed also are the
anomalies of the bulk spin-wave dynamics of bounded
magnets induced by the hybridization of the considered
mechanism of the indirect spin±spin interaction through the
long-range field of elastostatic magnetoelastic deformations
and the inhomogeneous exchange interaction.

Possible mechanisms of the localization of shear elastic
waves near the external surface of a compensated antiferro-
magnetic structure in the cases of both mechanically free
surfaces and acoustically continuous interfaces between the
antiferromagnetic and nonmagnetic media are considered (in
the elastostatic approximation) in Section 4.

Section 5 is devoted to the discussion of possible acoustic
analogs of Otto and Kretschmann configurations for the
excitation of shear surface acoustic waves (SAWs) consid-
ered in Section 4; conditions of the reflectionless propagation
of a shear elastic wave through a finite 1D MPC are also
presented. Based on an analysis of the local geometry of the
wave-vector surface (refraction surface), the problems of the
interrelation between the specific features of the refraction of
a shear bulk wave at the compensated AFM±nonmagnetic
dielectric interface, as well as the anomalies of the bulk and
surface magnetoelastic dynamics of a bounded compensated
AFM that were considered in Sections 3 and 4, are discussed.

In Section 6 (Conclusions), some opportunities for
applying the results obtained are discussed, and a number of
questions concerning the further development of the investi-
gations presented in the review are formulated.

2. Energy, equations of motion,
and boundary conditions

Consider the most frequently encountered models of com-
pensated antiferromagnetic structures: a spatially homoge-
neous two-sublattice exchange-collinear AFM; an EA-
AFM±ideal-diamagnet-type 1D MPC, and an EA-FM±

ideal-diamagnet-type one-dimensional MPC with an anti-
ferromagnetic type of ordering of neighboring tangentially
magnetized ferromagnetic layers that form the elementary
period of the 1DMPC.

2.1 Models of spatially homogeneous magnetic
(two-sublattice exchange-collinear AFM)
and nonmagnetic media
In terms of the vectors of ferromagnetism �m� and antiferro-
magnetism �l�, the energy density of the two-sublattice model
of an orthorhombic antiferromagnet (medium 1) with
isotropic elastic and magnetoelastic interaction can be
represented as [60, 62]

W �Wm �Wme �We ; �2:1�

where the densities of the magnetic �Wm�, magnetoelastic
�Wme�, and elastic �We� energies are written out as

Wm �M 2
0

�
d
2
m 2 � a

2
�Hl�2 � b1

2
l 2z �

b2
2

l 2y ÿmHm

�
; �2:2�

Wme �M 2
0 �blilkuik� ; �2:3�

We � l
2
u 2
ii � mu 2

ik : �2:4�

Here, d and a are the homogeneous and inhomogeneous
exchange interaction constants; b1 and b2 are the anisotropy
constants; Hm is the magnetodipole field strength;
uik � �qui=qxk � quk=qxi�=2 is the deformation tensor; u is
the elastic displacement vector; l and m are the LameÂ
coefficients; b is the magnetoelastic interaction constant,
and m � �M1 �M2�=2M0 and l � �M1 ÿM2�=2M0, where
M1 and M2 are the sublattice magnetizations, with jM1j �
jM2j �M0. When writing out formulas (2.1)±(2.4), it was
assumed that

jmj5 jlj : �2:5�

As a result, the set of dynamic equations for this phenomen-
ological model of a magnet should include not only the
Landau±Lifshitz equations for the vectors of ferromagnet-
ism and antiferromagnetism [60, 62]:

1

gM0

qm
qt
�
�
m

qW
qm

�
�
�
l
qW
ql

�
;

�2:6�
1

gM0

ql
qt
�
�
m

qW
ql

�
�
�
l
qW
qm

�
;

where g is the magnetomechanical ratio, but also the
equations of magnetostatics

divB � 0 ; rotHm � 0 �2:7�

and elastodynamics [59, 63]

r1
q2ui
qt 2
� q2W

qxk quik
; �2:8�

where B is the magnetic induction vector, and r is the density
of the medium (of medium 1 in this case).

It follows from expressions (2.1)±(2.8) that if conditions
b1 < 0 and b2 � 0 are fulfilled simultaneously, then in the
equilibrium state vector l is collinear to the z-axis: lkz. In that
case, equations (2.6) and (2.8) in the approximation linear in
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the amplitudes of small oscillations of the antiferromagnetic
vector l �~l� and lattice displacements u �~u� can be written out
as follows:�

c 2mDÿ
q2

qt 2
ÿ o2

0 ÿ o2
me

�
~lx � c 2m

a
bl0

�
q~uz
qx
� q~ux

qz

�
;�

c 2mDÿ
q2

qt 2
ÿ o2

0 ÿ o2
me

�
~ly � c 2m

a
bl0

�
q~uz
qy
� q~uy

qz

�
; �2:9�

r1
q2~ui
qt 2
� qsik

qxk
; sik � q�We �Wme�

quik
;

where o2
0 � g 2M 2

0 djb1j is the frequency of the homogeneous
antiferromagnetic resonance, o2

me � g 2M 2
0 b

2d=m1 is the
magnetoelastic gap, c 2m � g 2M 2

0 da is the limiting velocity of
the spin wave propagation in an unbounded magnet [53], and
sik is the elastic stress tensor.

Wewill seek the solution to the set of equations (2.9) in the
form of plane waves with a frequency o and a wave vector k.
From the set of equations obtained, which are linear with
respect to the unknown oscillation amplitudes of the vectors~l
and ~u, using the first and second equations (2.9), we eliminate
the components of~l that enter into the elastic stress tensor sik.
As a result, we will find that, without allowance for the
magnetodipole interaction (in compensated antiferromag-
nets its influence is weakened owing to the exchange
interaction), the spectrum of linear magnetoacoustic oscilla-
tions of themodel of the unboundedmagnet under considera-
tion, just like the spectrum of the nonmagnetic crystal, can
formally be described by an equation of the form

��ci jkl kj kk ÿ ro2dil� ~u0l � 0 ; �2:10�

where ~u0 j is the amplitude of small oscillations of the vector ~u
that are polarized along the j-axis.

In a magnetic medium, however, part of the moduli of
elasticity �ci jkl entering into equation (2.10), in contrast to
those in a nonmagnetic medium, are only effective because of
the dynamic magnetoelastic interaction, since they can
possess both time and spatial (for cm 6� 0) dispersions.
Notably, the nonzero effective moduli entering into equation
(2.10) for the model of an antiferromagnet under considera-
tion have the form

�c11 � �c22 � �c33 � l1 � 2m1 ;

�c12 � �c21 � �c23 � �c32 � �c13 � �c31 � l1 ; �2:11�

�c44 � �c55 � m1
o2

0 � c 2mk
2 ÿ o2

o2
0 � o2

me � c 2mk
2 ÿ o2

; �c66 � m1 :

If we neglect the magnetoelastic interaction (to this end, we
should formally pass in Eqn (2.11) to the limit of o2

me ! 0),
the relationships (2.10) and (2.11) will describe the spectrum
of elastic waves of an unbounded elastically isotropic
medium [59].

Note at once that in this case it is expedient to refrain from
drawing strong analogies to the problem of dispersion
properties of exciton polaritons that is considered in crystal
optics [64, 65]. In the exchange-collinear magnets considered
in this review, the manifestation of the spatial dispersion
effect in the effective elastic moduli (2.11) (just as in the
components of the magnetic susceptibility tensor [47]) is due
to the inhomogeneous exchange interaction. As a result, the
role of waves that are additional for acoustics or optics is

played in this case by exchange spin waves which for this class
of magnetic media are sufficiently correctly described by the
Landau±Lifshitz equations. This circumstance cardinally
changes the approach to the analysis of the spatial dispersion
effects in the class of magnets under consideration as
compared to that developed in the theory of excitons [64, 65].

It follows from expressions (2.10) and (2.11) that in the
unbounded easy-axis elastically isotropic two-sublattice
antiferromagnet �lkz� the factorization of the spectrum of
normal magnetoelastic waves (independent propagation of
elastic waves polarized in the plane of propagation and
perpendicularly to it) without allowance for the magnetodi-
pole interaction is possible for the following geometries:
uk lkz and k 2 xy, uky and k 2 xz, or ukx and k 2 yz. In
these cases, the spectrum of the magnetoacoustic waves of the
unbounded EA AFM under consideration when neglecting
magnetodipole interaction can be presented, using the above-
introduced effective moduli of elasticity (2.11), in the
following form [46, 50, 51]

at k 2 xy, as

�ro2 ÿ �c11k
2
x ÿ �c66k

2
y ��ro2 ÿ �c11k

2
y ÿ �c66k

2
x �

ÿ ��c12 � �c66�2k 2
xk

2
y � 0 ; u 2 xy ; �2:12�

ro2 ÿ �c44�k 2
x � k 2

y � � 0 ; ukz;

at k 2 xz, as

�ro2 ÿ �c11k
2
x ÿ �c44k

2
z ��ro2 ÿ �c11k

2
z ÿ �c44k

2
x �

ÿ ��c12 � �c44�2k 2
xk

2
z � 0 ; u 2 xz ; �2:13�

ro2 ÿ �c66 k
2
x ÿ �c44k

2
z � 0 ; uky;

and at k 2 yz, as

�ro2 ÿ �c11k
2
y ÿ �c44k

2
z ��ro2 ÿ �c11k

2
z ÿ �c44k

2
y �

ÿ ��c12 � �c44�2k 2
y k

2
z � 0 ; u 2 yz ; �2:14�

ro2 ÿ �c66 k
2
y ÿ �c44k

2
z � 0 ; ukx :

Let us analyze the relationships (2.11)±(2.14) for the spectrum
of magnetoacoustic waves in the long-wavelength and short-
wavelength limits. As is known, in the long-wavelength limit
�jkj ! 0� the spin subsystem effects in the dynamics of elastic
oscillations of a magnetically compensated nongyrotropic
magnet can approximately be taken into account if we
formally pass to a static limit (qm=qt � ql=qt � 0 for
qu=qt 6� 0) in the Landau±Lifshitz equations in formula
(2.9). Then, we can eliminate the amplitudes of spin oscilla-
tions from the third equation in formula (2.9) using the first
and second equations of this set. As a result, the spectrum of
elastic waves in the magnet (`quasiphonons') will be described
by the equations of elastodynamics under the condition that
they contain effective moduli of elasticity (2.11) with o � 0
[46, 50, 51]:

r
q2u
qt 2
� qsik

qxk
; sik � �cik �o � 0� uik : �2:15�

If without allowance for the magnetoelastic interaction
the limiting phase velocity of propagation of spin waves �cm�
is much lower than the phase velocity vs of propagation of
elastic waves, then it follows from Eqns (2.9)±(2.14) that in
the short-wavelength range of the spectrum of normal
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magnetoacoustic waves �k4 kmph� the elastic subsystem
effects in the dynamics of spin oscillations can be taken into
account by formally moving in the equations of elastody-
namics in formula (2.9) to a static limit (qu=qt � 0 for
qm=qt 6� 0, ql=qt 6� 0). Next, we can eliminate the amplitudes
of spin oscillations from the third equation in formula (2.9)
using the first and second equations of this set. The spectrum
of spin-wave excitations in the magnet (`quasimagnons') is
then described by the equations of elastostatics under the
condition that the relationships for the stress tensor contain
the effective moduli of elasticity (2.11) with o 6� 0:

qsik
qxk
� 0 ; sik � �cik�o� uik : �2:16�

A similar approach to the analysis of low-lying spin-wave
excitations is realized, as is known, in the electrodynamics of
unbounded magnets. In the short-wavelength (Coulomb)
limit, equations of magnetostatics are studied, instead of
simultaneously solving the Landau±Lifshitz and Maxwell
equations, and the components of the magnetic susceptibility
tensor in the material relations are assumed to be frequency-
dependent (they are calculated separately from the Landau±
Lifshitz equations [47]).

2.2 Variants of boundary conditions
In terms of the phenomenological theory, the existence of a
contact between two media is taken into account by
introducing appropriate boundary conditions; in this case,
elastic and magnetodipole.

An acoustically continuous interface between the two
media, namely, magnetic medium 1 and nonmagnetic
medium 2, with the normal n to the interface, can be
described using the relationships

s 1
ikn

1
k � s 2

ikn
2
k at x � 0 ; �2:17�

u1i � u2i at x � 0 ; �2:18�
where sa

ik is the elastic stress tensor, ua is the vector of elastic
displacements in the medium a �a � 1; 2�, and x is the current
coordinate along the normal to the interface between the two
media.

The mechanically free or rigidly fixed surface of the
medium a at x � 0 with the normal n is determined by one
of the following conditions

sa
iknk � 0 at x � 0 ; �2:19�

ua � 0 at x � 0 ; �2:20�

respectively. If at x � 0 there exists a slip-boundary condition
between media 1 and 2, then, according to book [66], we have

�u1i ÿ u2i� ni � 0 ; �san� � 0 ; x � 0 ; �2:21�
sai � sa

iknk ; a � 1; 2 : �2:22�

In the magnetostatic limit, the electrodynamic interfaces
between media 1 and 2 with a normal n to the interface are
described by the relations [60]

B1i � B2i ; j1 � j2 ; x � 0 : �2:23�

If medium 2 is an ideal diamagnet, then

B1n � 0 ; x � 0 : �2:24�

If, simultaneously, the spatial dispersion effects are taken into
account (which are due to the inhomogeneous exchange
interaction in the magnetoelastic medium model consid-
ered), it is also necessary to specify additional (exchange)
boundary conditions. For the class of magnetic media under
consideration, the exchange boundary conditions, which also
take into account the effects of uniaxial surface anisotropy
with a constant k at the magnet±nonmagnet interface, can be
presented as [47, 60]

q~li
qx
� k~li � 0 ; x � 0 : �2:25�

If the magnetodipole-active elastic wave is localized in the
semiboundedmedium 1 occupying the lower half-space, then,
apart from the realization of the above boundary conditions,
it is necessary to require the fulfillment of the following
relations far from the interface:

j1 ! 0 ; ~u1i ! 0 ; ~li ! 0 as x! ÿ1 : �2:26�

2.3 Models of one-dimensional
compensated antiferromagnetic structures.
Effective-medium approximation
Aswas noted in the Introduction, amagnetic photonic crystal
can be considered in many situations to be a particular case of
an acoustic magnetic metamaterial, since not only the
electrodynamic but also the elastic properties of the compo-
site magnetic medium prove to be spatially modulated. In
other words, the real acoustically continuous magnetic
photonic crystals represent, in fact, magnetic photonic±
phononic crystals.

In the general case, the dispersion properties of the
magnetic medium itself that enters into the composite
material are determined not only by the magnetodipole and
magnetoelastic interactions but also by the spatial dispersion
effect (for a magnet this effect is caused by the nonlocal
exchange spin±spin interaction [60]). As a result, an analysis
of only the linear dynamics of an MPC on the basis of the
T-matrix method (see, e.g., paper [67]) with allowance for all
three above-mentioned interactions would require extremely
cumbersome analytical calculations even in the case of a one-
dimensional two-component (media 1 and 2) acoustic
magnetic superlattice.

If a magnetic photonic crystal contains a nonmagnetic-
medium±ideal-superconductor-type structure (London pene-
tration depth lL � 0), no magnetodipole mechanism of
interlayer interaction is possible in such a structure. In the
presence of acoustic interlayer contact, the elastic interlayer
interaction can determine the spectrum of collective magne-
toelastic excitations of a given composite magnetic medium.
Thus, an acoustically continuous magnet±superconductor-
type superlattice with a thickness of the superconducting
layers of more than 2lL can already be considered to be the
simplest example of a one-dimensional MPC.

Some acoustic properties of such structures were studied
in Refs [68±70] by the example of a one-dimensional piezo-
magnet±ideal-superconductor-type superlattice, for which
the spectrum of shear normal bulk oscillations and the
Bragg type amplitude and phase resonances for the shear
bulk wave propagating through such bounded superlattice
have been investigated. However, the magnetoelastic interac-
tion was not taken into account in these calculations, which,
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in contrast to piezomagnetic interaction [59], exists at an
arbitrary symmetry of a magnetic crystal. An analytical
investigation of the resonance properties of a composite
structure is simplified substantially if we restrict ourselves to
the long-wavelength limit in the spectrum of elastic oscilla-
tions, i.e., if we assume that the component kak of the wave
vector that is normal to the interface between the layers in
each of the media a �a � 1; 2� satisfies the condition

kakda 5 1 ; �2:27�

where da is the thickness of an ath medium layer incorporated
into the 1D MPC. As a result, the spectrum of collective
excitations of such a one-dimensional photonic±phononic
crystal can be studied using the effective-medium method
[71, 72], since in the range of frequencieso and wave numbers
k? that satisfy the above inequality the superlattice can be
considered to be a certain hypothetical spatially homoge-
neous medium. The latter is characterized, with allowance
made for interlayer electrodynamic, elastic, and exchange
boundary conditions, by quantities averaged over the super-
lattice period D � d1 � d2. Let Aa be some physical quantity
that refers to the medium a, and hAi be its magnitude
averaged over the superlattice period D. In the case of a
two-component �a � 1; 2� fine-layered superlattice, one finds
hAi � �A1d1 � A2d2�=D.

Let us consider an EA-AFM±ideal-superconductor (dia-
magnet)-type two-component 1D MPC, assuming that the
superlattice axis (normal n to the interface between the layers)
and the easy magnetic axis are directed along the axes of the
Cartesian coordinate system [73].

The requirement of acoustic continuity of this superlattice
and of ideality �lL � 0� of the diamagnetic properties of the
medium 2 that enters into its composition leads to the
following relationships at the interface between the magnetic
and nonmagnetic layers:

u1i � u2i ; x � d1 �ND ; x � ND ; �2:28�
s 1
ikn

1
k � s 2

ikn
2
k ; x � d1 �ND ; x � ND ; �2:29�

B1n � 0 ; x � d1 �ND ; x � ND : �2:30�
Here, x is the coordinate along the normal n to the interface
between the layers (along the superlattice axis), and
N � 0; 1; 2; . . . . In the range of frequencies and wave
numbers for which inequality (2.27) is fulfilled, the rigorous
allowance for the boundary conditions (2.28)±(2.30) makes it
possible to regard the fine-layered superlattice under con-
sideration as a hypothetical spatially homogeneous medium
(see paper [71]). Its elastic dynamics can be described in this
case using effectivemoduli of elasticity �cik, which possess both
spatial and time dispersion. For the case of an EA-AFM±
ideal-superconductor-type one-dimensional MPC that is of
interest in this section, three main configurations permitting
the propagation of a shear elastic wave in the unbounded
easy-axis (z-axis) antiferromagnet (as well as in a nonmag-
netic elastically isotropic medium 2) are possible at lkz and
jmj � jHj � 0 with allowance for the cylindrical symmetry of
the EA AFM model in question [see also relationships (2.9)±
(2.11)]:

�1� nkx ; k? ky ; uk lkz ;

�2� nkx ; k? k lkz ; uky ; �2:31�
�3� nk lkz ; k? kx ; uky :

If m1 � m2 � m and r1 � r2 � r, then for all these relative
orientations of the vectors n, k?, l, and u, the corresponding
effective moduli, which determine the dispersion law of the
normal magnetoelastic SH wave propagating in the fine-
layered one-dimensional MPC under consideration, can be
represented in the nonexchange approximation [with cm ! 0
in Eqn (2.11)] in the following form [73]

at nkx, k? ky, and uk lkz, as

�c55 � m
o2

0 ÿ o2

o2
0 � o2

me f1 ÿ o2
; �c44 � m

o2
0 � o2

me f2 ÿ o2

o2
0 � o2

me ÿ o2
;

�2:32�

at nkx, k? k lkz, and uky, as

�c44 � m
o2

0 � o2
me f2 ÿ o2

o2
0 � o2

me ÿ o2
; �c66 � m ; �2:33�

and at nk lkz, k? kx, and uky, as

�c44 � m
o2

0 ÿ o2

o2
0 � o2

me f1 ÿ o2
; �c66 � m : �2:34�

Here, f1 � d1=D, and f2 � d2=D. In the limiting case of the
absence of the nonmagnetic medium 2 � f2 � 0�, the relation-
ships (2.32)±(2.34) coincide with the corresponding relation-
ships (2.9) and (2.10) derived for the spatially homogeneous
EA AFM.

As a result, for all these magnetoacoustic configurations
the dispersion law for the normal SH wave propagating in an
unbounded fine-layered 1D MPC like that under considera-
tion can be represented, with allowance made for equation
(2.15), as follows:

o2 � s 2t �ckk 2
k � c?k 2

?� ; s 2t �
m
r
; �2:35�

where, at k 2 xy and nkx, we have

ck �
�c55
m
; c? � �c44

m
; kk � kx ; k? � ky ;

at k 2 xz and nkx,

ck �
�c66
m
; c? � �c44

m
; kk � kx ; k? � kz ;

and at k 2 xz and nkz,

ck �
�c44
m
; c? � �c66

m
; kk � kz ; k? � kx :

Another variant of a magnetically compensated, i.e.,
acoustically nongyrotropic, structure can be a magnet±ideal-
superconductor-type 1D MPC composed of tangentially
magnetized equivalent ferromagnetic or ferrimagnetic layers
with an antiferromagnetic type of interlayer ordering [74, 75].

As an example of a magnetic medium entering into the
composition of the superlattice under study, let us consider a
one-sublattice model of an easy-axis (EA coincides with the
z-axis) ferromagnet, assuming that its magnetoelastic and
elastic properties are isotropic. In this case, with due regard
for the interaction between the spin and elastic subsystems
and neglecting the inhomogeneous exchange interaction, the
energy density W of the one-sublattice model of a uniaxial
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ferromagnetic crystal (medium 1) is determined by the
following expression:

W � ÿ b
2
M 2

z ÿMhm � bMiMkuik � l1u 2
ii � m1u

2
ik ; �2:36�

where b and b are the constants of the easy-axis anisotropy
and isotropic magnetoelastic interaction, respectively; l1 and
m1 are the LameÂ coefficients of themagnetic medium; uik is the
elastic deformation tensor, and hm is the magnetodipole field
strength. The dynamic properties of this model of the magnet
are described by a set of equations consisting of the basic
equation of the mechanics of continua, magnetostatics
equations, and the Landau±Lifshitz equation:

r1
q2ui
qt 2
� q2W

qxk quik
; �2:37�

div hm � ÿ4pdivM ; rot hm � 0 ; �2:38�

ÿ 1

g

qM
qt
� �Mhm� : �2:39�

It follows from Eqns (2.36)±(2.39) that, since for b > 0 in the
equilibrium state we have Mkz, in the unbounded easy-axis
one-sublattice ferromagnet under consideration the disper-
sion law for the normal SHwave with ukMkz and k 2 xy can
be written out as

o2 � s 2t Z�k 2
x � k 2

y � ; Z � 1ÿ o0ome

D
; D � o2

0 ÿ o2 ;

�2:40�
where o0 � gbM0 � gb 2M 2

0 =m1, and ome � gb 2M 2
0 =m1.

Notice that, for a given geometry of the shear wave
propagation, the EA FM can be considered as a nonmag-
netic acoustically gyrotropic medium with the following
effective moduli of elasticity:

�c11 � �c22 � �c33 � l1 � 2m1 ;

�c12 � �c21 � �c23 � �c32 � �c13 � �c31 � l1 ; �c44 � �c55 � Zm1 ;

�c45 � ÿ�c54 � iZ� m1 ; Z� �
omeo
D

; �c66 � m1 : �2:41�

As a result, if, as before, m1 � m2 � m and r1 � r2 � r, then in
terms of the effective-medium method at k 2 xy, ukz, and
nkx the propagation of an elastic SH wave in an unbounded
compensated EA-FM±ideal-superconductor 1D MPC with
an antiparallel ordering of neighboring identical tangentially
magnetized layers is described by relationship (2.35), but with
the following effective elastic moduli:

ck �
�c55
m
� o2

2 ÿ o2

o2
1 ÿ o2

; c? � �c44
m
� o2

3 ÿ o2

o2
2 ÿ o2

: �2:42�

Here, o2
1 � o2

0 ÿ f2o0ome, o2
2 � o2

0 ÿ o0ome, and o2
3 � o2

0ÿ
omeo0�1� f1� � o2

me f1.

3. Elastostatic magnonsÐ
a special class of nonexchange spin waves

3.1 Nonexchange bulk
elastostatic s- and p-type spin waves
When studying spin waves in different magnetically ordered
crystals, the main focus is on two formation mechanisms of

the spectrum: exchange and magnetodipole interactions (see,
e.g., Refs [60, 76, 77]). In the limiting cases, when one of these
interactions is dominating in themagnet, we are talking about
exchange ormagnetostatic spin waves. As to onemore type of
interactionÐmagnetoelasticÐ its influence on the character
of the spin wave spectrum is usually considered either in the
region of the magnetoacoustic resonance [47, 52] or at small
values of the wave vector k, at which the frequency of the
quasiacoustic branch is much lower than the frequency of the
quasispin branch, o4 stk? (where st is the velocity of the
shear wave) [46, 50, 51, 53]. In the last case, themagnetoelastic
interaction leads to the appearance of a magnetoelastic gap in
the spectrum of spin waves, whose existence manifests itself
most clearly upon spin-reorientation phase transitions. As
this takes place, the transverse quasiacoustic branch of the
spectrum with a distinct polarization can change its character
from linear to quadratic at the very point of transition even as
jkj ! 0 (i.e., the velocity of the transverse quasisound in the
theoretical limit will decrease to zero when approaching the
stability limit of a given magnetic state).

As said in the Introduction, we aremainly interested in the
other part of the spectrum of magnetoelastic waves, namely,
the range of sufficiently large wave vectors, k4 kmph, in
which the frequency of the quasispin branch satisfies the
inequality

o2 5 s 2t k
2 : �3:1�

This part of the spectrum of magnetoelastic (ME) waves is
mainly analogous to the spectrum of magnetostatic waves
(MSWs) [60, 61, 76±78], but now the role of the electro-
magnetic subsystem is played by the elastic subsystem of the
crystal. In the description of the region of the spectrum ofME
waves that is of interest for us, we can use equations of
elastostatics [59, 63] instead of the dynamic equations of the
elasticity theory, just as in the description of MSWs the
magnetostatics equations are utilized instead of the general
Maxwell equations. Therefore, by analogy with the case of
MSWs, we will call these branches of the spectrum of ME
waves elastostatic spin waves (ESSWs). The `fast' subsystem
for ESSWs is the elastic subsystem (in contrast, the `fast'
subsystem for the range of small wave vectors is the spin
subsystem of the crystal). In this case, the role of the elastic
subsystem reduces to the formation of an indirect (non-
Heisenberg) exchange interaction between the spins through
a field of quasistatic phonons. The long-range character of
this interaction, as we will see below, leads to a quasinonana-
lytical dependence of the frequency of ESSWs on the
components of the wave vector (the term quasinonanalytical
dependence is used here because the wave vector k can tend to
zero only formally, since ESSWs exist only at sufficiently
large jkj), just as the long-range character of magnetostatic
interactions with jkj ! 0 leads to a nonanalytical dispersion
law for MSWs [79].

It is natural that in any magnet there simultaneously exist
both magnetoelastic and magnetodipole interactions. In the
antiferromagnets considered in this review, however, the
magnetoelastic interaction is exchange-enhanced, whereas
the magnetodipole interaction is exchange-weakened and,
therefore, can be neglected in the first approximation.

In addition, the ESSWs manifest themselves most vividly
when the effect of the exchange interaction on the spectrum,
in spite of the condition k4 kmph, does not yet suppress
other contributions to the dispersion relation for ESSWs, for
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which the fulfillment of the inequality cm 5 st is required
(where cm is the characteristic velocity of spin waves), which
leads to the condition TN < TD that takes place in many
AFMs [53].

The condition k4 kmph is sufficiently rigid; for usual
ESSWs in magnets of finite dimensions, however, it can be
fulfilled in view of the presence of a component of the wave
vector that is normal to the sample surface. This component,
because of the size-quantization effect, is equal to pn=d (where
d is the sample thickness, and n is an integer) and, at
sufficiently small thicknesses (and for n 6� 0) can exceed kmph.

Let us find those necessary conditions whose fulfillment,
together with a rigorous allowance for the interaction
between the spin and elastic subsystems in a bounded
magnet, leads to the possibility of the formation of a new
class of propagating nonexchange spin oscillations whose
dispersion properties and conditions of localization are
completely determined by the magnetoelastic and elastic
properties of the crystal.

Let us start with the case of an elastically isotropic model
of a two-sublattice tetragonal antiferromagnet with an easy-
axis anisotropy (with the EA coinciding with the z-axis).
Below, we will assume that the external magnetic field is zero,
and the magnetic sample comprises an infinite uniformly
magnetized plate of width d. If in this case the surface of the
crystal at x � 0; d is free of elastic stresses, the corresponding
boundary condition can be written out as [63, 66]

siknk � 0 ; x � 0; d : �3:2�

The dynamics of this crystal can be described using a set of
equations including Landau±Lifshitz equations for the
vectors of the ferromagnetism and antiferromagnetism and
the equations of elastostatics (2.16). In the equilibrium state,
lkz and jmj � 0; thus, an unbounded magnet exhibits a
cylindrical symmetry with the rotation z-axis. As before, we
restrict ourselves to magnetoacoustic configurations that
allow (without regard for magnetodipole interaction) an
independent propagation of SH-type elastic waves (see
Section 2). We also assume that the vector n of the normal
to the surface of the plate is aligned with one of the Cartesian
coordinate axes.

If the sagittal plane coincides with the xz plane, it follows
from Eqn (2.13) that at uky for plane waves with a frequency
o and wave vector k 2 xz the spectrum of magnetoelastic
oscillations in the elastostatic limit (3.1) in an unbounded
magnet without allowance for boundary conditions (3.2) can
be written as

�c44k
2
z � �c66k

2
x � 0 ; �c44 � m

o2
0 ÿ o2

o2
0 � o2

me ÿ o2
; �c66 � m :

�3:3�

Regarding the frequency o and the component of the
wave vector k that is tangential to the sample surface as
specified external parameters, we can affirm, based on
Eqn (3.3), that the magnetoelastic wave with uky that
propagates in the sagittal plane xz is one-partial. In this
case, it follows from the solution to equations of elastostatics
(using the standard method of calculation [63]) that in a given
geometry in the spectrum of bulk ESSWs propagating along
the antiferromagnetic plate at nkz only the direct waves
(k? qo=qk? > 0, k? is the wave number) are formed
(depending on the orientation of the normal n to the surface

of the AFM plate) [80]:

O 2
n � o2

0 � o2
me

k 2
?

k 2
? � �pn=d �2

; n � 1; 2; . . . ; �3:4�

whereas at nk x, k 2 xz, only waves of the reverse type
�k? qo=qk? < 0� arise [80]:

O 2
n � o2

0 � o2
me

�pn=d �2
k 2
? � �pn=d �2

; n � 1; 2; . . . : �3:5�

In either case, the spectrum of the nonexchange bulk
ESSWs under consideration possesses both long-wavelength
and short-wavelength crowding points and these points are
nondegenerate in frequency between themselves (Figs 1a, b).
In addition, for any values of k? and mode-order numbers n
and r �r > n� in the case of Eqn (3.4), the inequality On > Or

is fulfilled, whereas the relation On < Or is observed in the
case of Eqn (3.5).

It should be noted that the physical mechanism respon-
sible for the formation of such propagating spin-wave
excitations is, as follows from an analysis, the existence in a
bounded magnet of an indirect spin±spin interaction through
the long-range field of quasistatic magnetoelastic deforma-
tions, whose displacement vector u is polarized along the
normal to the sagittal plane (in this case, uky).

However, the dispersion characteristics of the class of
nonexchange spin waves under discussion are only partly
similar to those already known in the physics of magneto-

0

b

k?

o

�o0

o0

1 2 3

0

c

k?

o

�o0

o0

1 2 3

0 k?

o

�o0

o0

1 2 3

a

Figure 1. Structure of the spectrum of isotropic bulk ESSWs in an EA

AFM plate (with EA along the z-axis): (a) lkz, nkz, s-type waves with

k 2 xz; (b) lkz, nkx, s-type waves with k 2 xz, and (c) lkz, nkz, or nkx,
p-type waves with k 2 xz. Curves 1±3 correspond to spectrummodes with

n � 1, 2, 3, respectively.
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static oscillations, since in the case of ESSWs the indirect
spin±spin exchange, in contrast to that for MSWs, is realized
through the tensor field of elastic deformations rather than
through the vector field (forMSWs, themagnetodipole field).
As a result, for a given magnetoacoustic configuration a
change in the direction of the polarization of the field of
electrostatic elastic displacements with respect to the plane of
propagation of spin oscillations can qualitatively change the
dispersion properties of propagating ESSWs. As an example,
we consider, in the same elastostatic limit (3.1) for the
magnetoacoustic configurations corresponding to Eqn (3.4)
or (3.5), the dispersion relation for a propagating bulk ESSW
with k 2 xz, whose vector u of elastic lattice displacements lies
in the sagittal plane.

Since it is known from the general theory of wave
processes in layered media that the spectrum of bulk waves
nonuniformly distributed over the plate thickness is only
weakly sensitive to the character of boundary conditions, we
will assume, for convenience and to facilitate calculations,
that the following boundary conditions are fulfilled on both
sides of the antiferromagnetic plate of thickness d at nkz:

siknk � 0 ; un � 0 ; z � 0; d ; �3:6�

which, from the physical point of view, describe a slip
boundary between elastic and absolutely rigid bodies [66, 81].

In an unbounded magnet, the spectrum of the magneto-
elastic waves with k 2 xz and u 2 xz can be represented in the
elastostatic limit (3.1), following Eqn (2.13), as

��c11k 2
x � �c44k

2
z ���c11k 2

z � �c44k
2
x � ÿ ��c12 � �c44� k 2

xk
2
z � 0 ;

�c11 � l� 2m ; �c12 � l ; �3:7�

�c44 � m
o2

0 ÿ o2

o2
0 � o2

me ÿ o2
; �c66 � m :

If, as before, we consider the frequency o and the
component of the wave vector k tangential to the sample
surface as given external parameters, then, based on
formulas (3.7), we can state that in this case the magnetoe-
lastic wave with u 2 xz propagating in the sagittal xz plane is
two-partial. Then, by solving equations of elastostatics using
the standard method [63], we can show that both at nkz and
at nkx the spectrum of propagating nonexchange bulk
ESSWs satisfying conditions (3.1), (3.6) and (3.7) takes on
the form

O 2
n � o2

0� o2
me

�
1ÿ s 2t

s 2l

�
4p2n 2d 2k 2

?
�k 2
?d 2 � p2n 2�2 ; n � 1; 2; . . . : �3:8�

Here, st � m=r and sl � �l� 2m�=r.
It follows from expression (3.8) that in this case the long-

wavelength and short-wavelength crowding points in the
spectrum of the nonexchange bulk spin waves under
consideration are degenerate in frequency. As a result, for
any given mode number n of the spectrum of bulk ESSWs,
the corresponding dispersion curve is characterized by the
existence of an extremum (maximum) (or minimum if
nk�101�) for k? � k� 6� 0, so that for k? < k� the corre-
sponding dispersion curve refers to a direct-type wave, and
for k? > k�, to a reverse-type wave (Fig. 1c). In addition, in
contrast to waves (3.4) and (3.5), now for any mode numbers
n and any r �r > n� there always exists such a wave number

k? 6� 0 at which a crossover of dispersion curves belonging
to various modes of bulk ESSWs like those defined by
formula (3.8) is possible: On � Or. If k 2 xz, the spectrum
(3.8) of propagating bulk ESSWs remains unchanged at
nkx, as well.

An analysis shows that the physical mechanism respon-
sible for the formation of spin-wave excitations of such a kind
is the existence in a bounded magnet of an indirect spin±spin
interaction through a long-range field of quasistatic magne-
toelastic deformations whose displacement vector u lies in the
sagittal plane.

As is seen from the above, the dispersion properties of a
given class of spin-wave excitations depend substantially on
the orientation (relative to the sagittal plane) of the vector u of
elastic displacements of the field of quasistatic elastic
deformations responsible for the formation of a given
ESSW. If we restrict ourselves to the consideration of only
the above-mentioned geometries, then, following the analogy
with the spectrum of polariton excitations [82], we will call the
elastostatic spin wave in which the vectors u, n, and k are
coplanar a p-type ESSW [see, e.g., formula (3.8)], and the
ESSW for which conditions u?n and u?k are fulfilled
simultaneously an s-type ESSW [see, e.g., formulas (3.4),
(3.5)].

The structure of the spectrum of nonexchange bulk s- and
p-type ESSWs propagating along the antiferromagnetic plate
under consideration in the case of the sagittal yz plane and
ukx or u 2 yz at nkz or nky coincides with the above-
considered one.

Thus, we can state that, in contrast to the properties of
MSWs, the dispersion properties of a given class of
propagating nonexchange spin excitations are determined
first of all by the elastic and magnetoelastic parameters of
the crystal, and the type of wave (direct or reverse) is
determined by the relative orientation of the normal n to
the surface of the film, the equilibrium orientation of the
vector of antiferromagnetism, and the wave vector k? in the
film plane.

This means that in a bounded magnet the indirect spin±
spin exchange through the long-range field of quasistatic
magnetoelastic deformations exhibits an additional (with
respect to the magnetodipole and inhomogeneous exchange
interactions) formation mechanism of the dispersion of
propagating spin-wave excitations.

Notice that for the sagittal plane containing the normal n
to the interface between the media conditions (3.6) allow the
simultaneous propagation of bulk ESSWs of both s and p
types in an EAAFM in one and the same range of frequencies
and wave numbers. As a result, an additional effect becomes
possible in the spectrum of propagating bulk ESSWs, which
consists in the formation of additional, as compared to
expression (3.8), crossover points (Fig. 2). The appearance
of such crossover points is caused in this case by the
possibility of the simultaneous propagation of bulk ESSWs
of both s and p types with the same frequency and the same
wave number. Thus, if the sagittal plane coincides with xz,
then these crossover points are determined from the condition
of the equality among the right-hand sides of formulas (3.4)
and (3.8) at nkz (Fig. 2b):

1

k 2
?d 2 � p2n 2

�
�
1ÿ s 2t

s 2l

�
4p2r 2

�k 2
?d 2 � p2r 2�2 ; n; r � 1; 2; . . .

�3:9�
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or from the condition of the equality between the right-hand
parts of formulas (3.5) and (3.8) at nkx (Fig. 2a):

n 2

k 2
?d 2 � p2n 2

�
�
1ÿ s 2t

s 2l

�
4k 2
?d

2

�k 2
?d 2 � p2r 2�2 ; n; r � 1; 2; . . . :

�3:10�

It can easily be shown that the above types of propagating
nonexchange bulk ESSWs are also possible in the case of a
plate of a cubic AFM in the phase for which lk�001� �jmj � 0�
in the equilibrium state.

Up to now, we have restricted ourselves to the case in
which the equilibrium vector of antiferromagnetism in the
tetragonal AFMwas collinear to the high-symmetry direction
and was located in the sagittal plane. This makes it possible,
following the analogy with theMSWs [61, 78], to assume that
the bulk ESSWs discussed above in this section are isotropic
bulk elastostatic spin waves.

The derivation of formulas (3.2)±(3.10) was mainly based
on the following assumptions: (1) the equilibrium vector of
antiferromagnetism is collinear to the high-symmetry direc-
tion and lies in the sagittal plane; (2) the vector l and the
normal n to the plate surface are collinear or orthogonal, and
(3) the elastic andmagnetoelastic properties of themagnet are
isotropic.

Let us now consider how the rejection of any of these
assumptions under condition (3.1) will change the spectrum
of nonexchange bulk s-type ESSWs propagating in a plate of
a two-sublattice AFM, as compared to the conditions (3.2)±
(3.10).

3.2 Formation mechanisms
of anisotropic bulk elastostatic spin waves
Let us consider now (using the example of nonexchange bulk
s-type ESSWs) the effects of the orthorhombic and magne-
toelastic anisotropies of the magnetic medium.

3.2.1 Role of magnetic anisotropy. It was shown in Refs [83±
86] that if the indirect spin±spin exchange in a thin magnetic

film occurs through the magnetodipole interaction, the
rigorous allowance for the magnetocrystalline anisotropy
can lead to the formation of new types of propagating
magnetic excitationsÐanisotropic-dipole spin waves. How-
ever, because of the exchange weakening of the magnetodi-
pole interaction, the efficiency of this formation mechanism
of nonexchange spin-wave excitations is reduced sharply in
the films of antiferromagnetic materials. At the same time, it
was shown in Section 3.1 that if the frequency o of spin
oscillations and the projection k? of its wave vector k onto the
plane of the magnetic film satisfies the elastostatic criterion
(3.1), a mechanism that is an alternative to themagnetodipole
mechanism of the formation of nonexchange spin waves can
be the exchange-enhanced (in antiferromagnets) indirect
spin±spin exchange through the long-range field of quasi-
static magnetoelastic deformations.

Let us determine the necessary conditions under which
the influence of magnetocrystalline anisotropy on the
character of spin±spin exchange through the field of
`elastostatic' phonons can lead to the formation in bounded
magnets of a new class of propagating nonexchange bulk
spin-wave excitationsÐanisotropic ESSWs. As an example,
let us consider the two-sublattice model (2.1)±(2.4) of an
antiferromagnet [60, 62], assuming that the magnetoelastic
and elastic properties of the crystal are isotropic. If b1; 2 > 0
[in the equilibrium state, lkx �jmj � 0�] and, moreover, the
inequality

jb2j5 jb1j �3:11�

holds true, then condition (3.1) can be satisfied by only the
low-frequency mode of the spectrum of spin waves in an
unbounded easy-plane (EP) AFM. We will restrict ourselves
to the analysis of situations in which the normal to the sagittal
plane coincides with the direction of one of the axes of the
Cartesian coordinate system. The calculations performed
have shown that in this case, for a given sagittal plane, the
simultaneous propagation of nonexchange bulk s- and p-type
ESSWs in the same ranges of frequencies andwave numbers is
impossible.

In particular, when both surfaces of the EP AFM plate
under consideration are mechanically free [see boundary
condition (3.2)], direct nonexchange bulk s-type ESSWs
with the dispersion relation analogous to formula (3.4) are
formed under conditions (3.1) at nkx, k 2 xz or at nky,
k 2 yz. Under the same boundary conditions, the formation
of reverse nonexchange bulk s-type ESSWs with the disper-
sion relation analogous to formula (3.5) takes place at nkz
and k 2 yz or k 2 xz. If the conditions analogous to formula
(3.6) are satisfied on both surfaces of the plate, then
nonexchange bulk p-type ESSWs with the dispersion law
analogous to formula (3.8) can propagate along the plate at
k 2 xy and nky or nkx.

Thus, in the case of an EP AFM plate we can, by analogy
with anisotropic dipole MSWs, say that the s-type ESSWs
exemplify anisotropic bulk ESSWs, since their formation in
the sagittal plane with the normal along the equilibrium
direction of the vector l is related exclusively to the presence
of a hard easy axis orthogonal to l in the AFM medium.

The calculations reveal that if the elastostatic criterion
(3.1) is simultaneously satisfied for both branches of the
spectrum of the orthorhombic AFM with lkx �jmj � 0�
under consideration, then for a plate with boundary
conditions (3.2) the spectrum of propagating anisotropic
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Figure 2. Inhomogeneous spin±spin resonance with the participation of

isotropic bulk s- and p-type ESSWs in an EA AFM plate (with EA along

the z-axis): (a) lkz, nkx, k 2 xz; (b) lkz, nkz, k 2 xz; pr and sn denote

dispersion curves of the spectrum of bulk p- and s-type ESSWs with mode

numbers r and n.

582 Yu V Gulyaev, S V Tarasenko, V G Shavrov Physics ±Uspekhi 54 (6)



bulk s-type ESSWs can be written out in the case of k 2 yz
and nky or nkz as follows:

�o2
k� o2

meÿ o2��o2
?ÿ o2�� �o2

kÿ o2
?�o2

me

�pn=d �2
k 2
?� �pn=d �2

� 0 ;

�3:12�
o2
k �

b1c
2

a
; o2

? �
b2c

2

a
; nkz ; �3:13�

o2
k �

b2c
2

a
; o2

? �
b1c

2

a
; nky : �3:14�

When deriving expressions (3.12)±(3.14), the magnetoe-
lastic and elastic properties of the magnet were assumed to be
isotropic. An analysis of these relationships gives evidence
that a characteristic feature of the spectrum of this type of
nonexchange bulk s-type ESSWs is that the dispersion curves
of its constituent modes for any fixed mode number n and any
wave number k? lie on the �n; k� plane of external parameters
in two nonintersecting bands (let us arbitrarily call them high-
frequency and low-frequency bands). Let us denote the
frequencies of these excitations with a mode number n as
O�n�k?� and Oÿn�k?�, respectively. The magnitude of the
`forbidden' gap between these bands is determined by the
extent of the difference from unity of the magnetic anisotropy
effective parameter Z � b1=b2. If Z � 1 or b! 0, this type of
propagating nonexchange spin-wave excitations in such a
magnetoacoustic configuration is not realized. This gives
grounds to assume them to be anisotropic bulk s-type
ESSWs (acoustic analogs of anisotropic bulk MSWs). As
follows from expressions (3.12)±(3.14), in contrast to the
spectrum of bulk isotropic s-type ESSWs (or bulk anisotro-
pic s-type ESSWs in the plate of an EPAFM), the spectrum of
this type of bulk anisotropic ESSW features two long-
wavelength �k? ! 0 �ok; �o?�� and two short-wavelength
�k? ! 1 ��ok;o?�� crowding points:

�ok �
��������������������
o2
k � o2

me

q
; �o? �

���������������������
o2
? � o2

me

q
:

In the model of the magnet under consideration, one of
the following systems of inequalities can be realized for the
magnetoacoustic configurations considered in formulas
(3.12)±(3.14), depending on the magnitudes of the magnetic
anisotropy constants (the magnetoelastic and elastic proper-
ties were assumed to be isotropic):

�1� ok < Oÿn�k?� < �ok < o? < O�n�k?� < �o? ;

�2� ok < Oÿn�k?� < o? < �ok < O�n�k?� < �o? ; �3:15�
�3� o? < Oÿn�k?� < �o? < ok < O�n�k?� < �ok ;

�4� o? < Oÿn�k?� < ok < �o? < O�n�k?� < �ok :

Notice that the behavior of the dispersion curve of each of
the branches O�n �k 2 yz� depends on the relative orientation
of the normal n to the film surface and on the direction of the
equilibrium antiferromagnetic vector l.

In particular, the `high-frequency' branch of the spec-
trum of anisotropic bulk ESSWs (3.12)±(3.14) for variants 1
or 2 in Eqn (3.15) is represented by a reverse wave
�k?qOÿn=qk? < 0�, and the `low-frequency' branch of the
spectrum (3.12)±(3.14) refers to direct-type waves
�k?qO�n=qk? > 0�. An opposite situation for the spectrum
of anisotropic bulk s-type ESSWs is realized in the case of

variants 3 or 4 in Eqn (3.15). Variants 1 and 3 are illustrated in
Fig. 3.

In addition, the magnetocrystalline anisotropy effect
leads in the case of k 2 xy and nky or nkx to the possibility
of the formation, instead of a single point as in formulas (3.9)
and (3.10), of two crossover points for any two dispersion
curves belonging to the spectrum of propagating non-
exchange bulk s- and p-type ESSWs, respectively (see also
Fig. 4).

3.2.2 Effect of oblique geometry. As follows from an analysis
of expressions (3.4) and (3.5), the coincidence of the crowding
points of the spectrum with the upper and lower boundaries
of the domain of existence of isotropic nonexchange bulk
s-type ESSWs occurs because in these cases either the
direction of the normal to the surface of the EA AFM plate
[in the case of spectrum (3.4)] or the direction of the
propagation of ESSWs [in the case of spectrum (3.5)]
coincides with the direction along which in the unbounded
elastoisotropic EA AFM a maximum decrease occurs in the
phase velocity of the shear elastic wave at the boundary of the
loss of stability of a given magnetic state. This means that we
can expect the formation of anisotropic bulk s-type ESSWs
already in the case of an elastically isotropic EA AFM plate
with boundary conditions (3.2), when the direction of the
normal n to the film surface lies, as before, in the sagittal
xz plane but makes an angle c with the z-axis �0 < c < p=2�.
The structure of the spectrum of anisotropic bulk s-type
ESSWs for this case is illustrated in Fig. 5.

It follows, thence, that in this case there exist two short-
wavelength crowding points in the spectrum of nonexchange
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Figure 3. Structure of the spectrum of anisotropic bulk s-type ESSWs in a

plate of an orthorhombic AFM (with EA along the x-axis) at k 2 yz, lkx,
and nkz or nk y: (a) variant 3 from Eqn (3.15); (b) variant 1 from

Eqn (3.15); curves 1±3 correspond to spectrum modes with n � 1; 2; 3,
respectively.
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bulk anisotropic ESSWs lying at the boundary of the domain
of existence of bulk spin-wave excitations of a given type, and
one (noncoincident with them) long-wavelength crowding
point o� �o2

� � o2
0 � o2

me sin
2 c�. For a specified mode

number n 6� 0 and any fixed value of k? and a value of the
anglec from the interval 0 < c < p=2, there are two branches
in the spectrumof bulk ESSWs, one ofwhich corresponds to a
direct wave, and the other to a reverse wave [87].

In the limiting cases of c � 0 or c � p=2, the spectrum of
anisotropic bulk ESSWs passes into the spectrum of isotropic
bulk s-type ESSWs considered in Section 3.2.1.

3.2.3 Magnetoelastic mechanism. An alternative mechanism
of formation of bulk anisotropic s-type ESSWs with a
spectrum structure analogous to that shown in Fig. 5 can
also be related in the case of an EA AFM plate with
mechanically free conditions (3.2) to the anisotropy of the
magnetoelastic and elastic properties of the magnet even at
c � 0 or c � p=2 �k 2 xz�. Notably, this is possible for a

cubic AFM at lk�111�kz and uk��110�ky [88, 89]. In addition,
the allowance made for the magnetoelastic and elastic
anisotropy in the anisotropic bulk s-type ESSWs considered
in Section 3.2.1 can lead to a situation where at any mode
number n and an arbitrary magnitude of the wave number the
high-frequency and low-frequency branches O�n of the
spectrum can simultaneously be waves of the same type
(direct or reverse).

3.3 Elastoexchange spin dynamics
of bounded compensated antiferromagnets
3.3.1 Classification of propagating elastoexchange spin waves.
Traditionally, the theoretical description of spin-wave excita-
tion in bounded ferromagnets and antiferromagnets (a plate
of thickness 2d ) is constructed on the basis of a rigorous
allowance for only magnetodipole and inhomogeneous
exchange interactions [60, 76]. If any one of these mechan-
isms dominates in a bounded magnet, the spin wave is called
magnetostatic or exchange. Although the number of modes n
forms an infinite countable set �n � 1; 2; . . .� in both cases, the
dispersion curves o � On�k?� that are characteristic of each
type of magnons differ substantiallyÐ they depend on both
the polarization of the spin wave and the magnitude of the
wave number k?, and also on the relative orientation of the
vectors n, l,m, and k?=jk?j. At sufficiently large values of n=d,
the dispersion properties of the bulk spin wave are formed
first of all due to the inhomogeneous exchange interaction
(the exchange interaction is considered in the nearest-
neighbor approximation); for this reason, inequalities
qOn�k?�=qk? > 0 and q2On�k?�=qk 2

? > 0 simultaneously
take place.

As the magnitude of n=d decreases, the structure of the
spectrum of bulk magnons becomes progressively more
dependent on the hybridization effect for both types of spin±
spin interaction. Therefore, in the dispersion curve On�k?� of
the mode with the number n in the spectrum of bulk dipole±
exchange spin waves there can arise a whole number
of anomalies for k? 6� 0. We can relate inflection points
�q2On�k?�=qk 2

? � 0�, crossover points On�k?� � Or�k?�
�n 6� r�, and extremum points to the specific features of the
spectrum of bulk magnons induced by the dipole-exchange
interaction. The character of the formation of these features
at a giveno, k?, n, and d depends on the relative orientation of
n, k?=jk?j, m, and l. At arbitrary boundary conditions, the
degeneracyOn�k?� � Or�k?� is removed and the correspond-
ing dispersion curves (without regard for dissipation) experi-
ence mutual repulsion. Such a situation corresponds to an
inhomogeneous dipole±exchange spin±spin resonance.

The necessary condition for the formation of the above
anomalies in the spectrum of the bulk dipole-exchange
magnon mode with a mode number n, frequency o, and
wave number k? is the fulfillment of the magnetostatic
criterion o5 cpn=d for n 6� 0 and o5 ck? at n � 0 (c is the
speed of light in vacuum) for a magnetic plate of thickness 2d.
In view of the relativistic nature of the magnetodipole
interaction, the optimum conditions for the realization of
these anomalies exist primarily in those magnetic crystals in
which the spectrum of normal spin-wave oscillations contains
branches with a sufficiently low activation energy. Inter alia,
this takes place in weakly anisotropic magnets (e.g., cubic or
easy-plane ones) or in the vicinity of soft-mode-type magnetic
phase transitions. In all the above cases, as is known, the
dimensionless parameter of a linear magnon±phonon inter-
action becomes of the order of unity [46, 50, 51], and a correct
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Figure 5. Structure of the spectrum of anisotropic bulk s-type ESSWs in an

EA AFM plate (with EA along the z-axis) at k 2 xz, lkz, and n 2 xz. The

normal n makes an angle c with the z-axis. Curves 1±3 correspond to

spectrum modes with n � 1; 2; 3, respectively.
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description of the spectrum of a low-frequencymagnon in the
model of an unbounded crystal is only possible with
allowance made for the effect of the elastic subsystem, even
beyond the conditions of magnetoacoustic resonance.

With the above in mind, we can affirm that a rigorous
theoretical description of the low-frequency spin dynamics of
a real magnetic crystal requires simultaneously taking into
account at least three factors: (1) the finite dimension of a real
magnetic sample; (2) nonlocal spin±spin interactions (mag-
netodipole, inhomogeneous exchange, etc.), and (3) the
interaction between the spin and elastic subsystems.

As noted above, with increasing wave number, an increase
is observed in both the contribution of the inhomogeneous
exchange interaction to the formation of the character of
dispersion and the localization of linear spin-wave excitations
propagating along the bounded magnet. As a result, a
rigorous description of the spin-wave dynamics of a bounded
magnet in the elastostatic limit should simultaneously take
into account both the elastostatic and the exchange mechan-
isms of the development of dispersion even in the case of
exchange-reduced magnetodipole interaction. Let us perform
an appropriate analysis by the example of the two-sublattice
model of an elastically isotropic EA AFM (see Section 3.1),
which now additionally takes into account an inhomoge-
neous exchange interaction.

If we restrict ourselves to the case where in the equilibrium
state lkz and jmj � 0, then the total spectrum of magnetoe-
lastic excitations defined in terms of this model will consist of
five branches (see Section 2). Since in the elastostatic
approximation (3.1) that is of interest for us we will take
into account only the phononic and inhomogeneous
exchange mechanisms of spin±spin interaction, then, by
analogy with dipole-exchange spin waves, we can assume in
this case that the above shortened description of the dynamics
of the spin system of a magnet corresponds to the elastoex-
change approximation [the corresponding spin-wave excita-
tions will be called elastoexchange spin waves (EESWs)].
Because in terms of the magnet model under consideration
the inhomogeneous exchange interaction is isotropic, then
without regard for the shape of the magnetic sample the
problem will, as before, exhibit a cylindrical symmetry
relative to the z-axis. This permits us, upon analyzing the
peculiarities of hybridization of the above two types of spin±
spin interactions, just as in Section 3.1, to restrict ourselves to
the case of k 2 xz. From formula (2.13) it follows that without
consideration for the boundary conditions in this magneto-
acoustic configuration the simultaneous and independent
propagation of elastoexchange spin waves of both s type,

o2 � o2
0 � o2

me

k 2
x

k 2
x � k 2

z

� c 2m�k 2
x � k 2

z � ; c 2m � g 2M 2
0 da ;

�3:16�
and p type [90],

o2 � o2
0 � o2

me

�
1ÿ s 2t

s 2l

�
4k 2

xk
2
z

�k 2
x � k 2

z �2
� c 2m�k 2

x � k 2
z � ; �3:17�

is now possible. Under real conditions, we always deal with
bounded crystals in which the presence of the surface, as is
known, can lead to the appearance of surface (or quasi-
surface) excitations of various natures with an amplitude
that decreases when moving away from the surface. In such
oscillations, the component of the wave vector that is normal
to the sample surface is no longer independent but, in view of

the boundary conditions, is determined by the wave fre-
quency o (or by the component k? of its wave vector along
the surface).

Thus, under conditions of the simultaneous allowance for
the phononic and inhomogeneous exchange mechanisms of
spin±spin interactions, we can perform a classification of the
possible types of EESWs at given values of o and k? for
various orientations of the wave vector k and normal n to the
surface (an analogous classification of MSWs was performed
in Refs [91, 92].

As is seen from the dispersion relations (3.16) and (3.17),
the wave-vector components kx and kz enter into them in a
different way. Therefore, the classification of the possible
types of EESWs proves to be different at different orienta-
tions of the normal n [90].

Let us consider first the variant with nkx. Assuming that
kz � k? and kx � ik, let us rewrite the dispersion relation
(3.16) using dimensionless variables:

O 2 � O 2
0 � r 2�1ÿ q 2� ÿ q 2

1ÿ q 2
; �3:18�

where the following designations were introduced:

O 2 � o2

o2
me

; O 2
0 �

o2
0

o2
me

; r � cmk?
ome

; q � k
k?

:

If we construct the graph of the dependenceO 2�r�, the section
of this graph with straight lines corresponding to a certain
value of O yields roots q 2

i of equation (3.18). And it is the
number and signs of these roots that determine the type of
EESWs: if all the roots are positive �q 2

i > 0�, the EESW
represents purely surface wave (two-partial evanescent
EESW); if at least one of the roots is negative �q 2

i < 0�, this
corresponds to a bulk wave; if the intersection is absent at a
given O 2, this means that all the roots are complex and the
EESW represents a generalized two-partial evanescent
EESW. In the case under consideration, we can easily obtain
from formula (3.18) that for O 2 < O 2

0 � r 2 there are two real
roots q 2

1; 2 > 0, which corresponds to a two-partial evanescent
EESW. ForO 2 > O 2

0 � r 2, one of the roots becomes negative,
and the EESW acquires a bulk character. Consequently, on
the �r;O� plane there are two ranges of parameter values in
which the types of possible EESWs are different (Fig. 6a,
f1�r� > O 2

0 � r 2).
A substantially different classification of the possible

types of EESWs takes place when nkz. Suppose now that
kx � k? and kz � ik; then, in the dimensionless variables that
were introduced above, Eqn (3.16) takes on the form

O 2 � O 2
0 � r 2�1ÿ q 2� � 1

1ÿ q 2
: �3:19�

Although last expression, just as Eqn (3.18), is quadratic with
respect to q 2, the partition of the �r;O 2� plane of parameters
becomes more complex. It can be shown that on the �r;O 2�
plane there are three characteristic curves

f1�r� � O 2
0 � r 2 � 1 ; �3:20�

f2; 3�r� � O 2
0 � 2r ;

which divide this plane into four regions (Fig. 6b). In region I,
q 2
1; 2 > 0, and it is the region of a two-partial evanescent

EESW; in region II, all the roots are complex, which
corresponds to a generalized two-partial evanescent EESW;
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in region III, q 2
1; 2 < 0, and in region IV, q 2

1 > 0 and q 2
2 < 0,

i.e., these are regions where bulk EESWs exist.
The case of a p-type EESW (3.17) is `symmetrical' with

respect to the components kx and kz; therefore, the classifica-
tion of the EESWs at nkx and nkz is the same. Assuming,
without the loss of generality, that nkx, we rewrite relation
(3.17) in the form

O 2 � O 2
0 � r 2�1ÿ q 2� ÿ q 2

�1ÿ q 2�2 ; �3:21�

where

O 2 � o2

4o2
me�1ÿ s 2t =s

2
l �
; O 2

0 �
o2

0

4o2
me�1ÿ s 2t =s

2
l �
;

r � cmk?

4ome

��������������������
1ÿ s 2t =s

2
l

q ; q � k
k?

:

Thus, Eqn (3.21) is cubic with respect to q 2. Nevertheless, in
this case as well, it is possible to classify the types of EESWs

depending on the values of k? and o. The corresponding
partition of the �r;O 2� plane is shown in Fig. 6c.

In regions I and I 0, all three roots of the bicubic equation
(3.21) are real and positive �q 2

1; 2; 3 > 0�, i.e., this is the region
of three-partial evanescent EESWs. In region II, there is one
positive root, q 2

1 > 0, and two complex roots, which corre-
sponds to three-partial generalized evanescent EESWs. In
region III, q 2

1 < 0, and q 2
2; 3 are complex-conjugate roots; in

region IV, q 2
1; 2; 3 < 0; in region V, q 2

1 < 0, and q 2
2; 3 are

positive; consequently, regions III, IV, and V correspond to
different cases of three-partial bulk EESWs.

The analytical expressions for the curves that divide the
�r;O 2� plane in the case under consideration are quite
unwieldy: we therefore do not give them here. Notice only
that r 2� � 3ÿ3=2.

The effect of the allowance for the anisotropy of the
magnetoelastic and elastic interactions on the localization of
EESWs near the surface of an orthorhombic antiferromagnet
was considered in detail in Ref. [90].

3.3.2 Dispersion properties of elastoexchange bulk spin waves
in a thin film. The above classification of possible types of
EESWs that can be realized in crystals at given k? ando does
not answer the question of which type of EESW exists in a
bounded AFM at a fixed k? (or o), since the dispersion
relation o � o�k?� for a wave is determined both by the
geometry of the problem and by a particular type of boundary
conditions.

In Sections 3.1 and 3.2 we have analyzed the influence of
the lattice type on the bulk spin-wave dynamics of thin
magnetic films not only in the elastostatic �o=�stk?� ! 0�
but also in the nonexchange �cm ! 0� approximations. The
first corresponds to disregarding the acoustic delay effects
and, consequently, is valid in the case of sufficiently thin films
at arbitrary values of the wave number jk?j of the propagat-
ing bulk spin oscillations. As to the nonexchange approxima-
tion, it can easily be shown that its application leads to more
serious restrictions, since it prevents the extension of the
results of the above analysis of the elastostatic dynamics of
thin magnetic films to both the case of sufficiently large wave
numbers jk?j satisfying the condition cmk? � o0 and the case
of sufficiently thin films, cm=d � o0. The more so, since, as
follows from the results of the classification of the possible
types of surface and bulk spin-wave excitations performed in
Section 3.3.1 under the conditions of o5 stk? and an
arbitrary value of jk?j, a rigorous analysis of the spin
dynamics of bounded magnets should be based on the
simultaneous allowance for both the above-studied indirect
spin±spin exchange interaction through the long-range field
of `elastostatic phonons' and the Heisenberg mechanism of
spin±spin interaction.

Thus, this section is aimed at an analysis of anomalies in
spin-wave dynamics of thin magnetic films under the
condition of o5 stk? in the framework of the elastoex-
change approach [90].

Note at once that, in contrast to the calculations of the
spectrum in terms of crystallooptics involving exciton-type
excitations [82], in this case the calculation [in conditions
specified by inequality (3.1)] of the spectrum of magnetoelas-
tic excitations with allowance for the spatial dispersion effects
is performed not based on equations of elastostatics (2.16)
with effective elastic moduli (2.11) for cm 6� 0, but on the basis
of a simultaneous solution to the set of dynamic equations
that consists of equations of elastostatics and Landau±
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Figure 6. Classification of the possible types of EESWs in a bounded EA

AFM (lkz, k 2 xz): (a) nkx, s-type waves; (b) nkz, s-type waves, and

(c) nkz, p-type waves. In the dimensionless variables introduced in

formula (3.18), the equation of the curve in figure (a) is O 2 � O 2
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the equation of curve 1 in (b), O 2� O 2
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0 � 2r; of curve 3 in (b), O 2 � O 2

0 ÿ 2r (the dashed line is

discussed at the end of Section 4.1).
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Lifshitz equations with consideration for the elastic and
exchange boundary conditions on the surface of the magnet.
A similar approach is used (with the replacement of equations
of elastostatics by equations of magnetostatics) in the
calculations of the spectrum of dipole±exchange spin waves
in magnetic plates and semibounded magnets [76, 91, 92].

Let us start from the case of a propagating s-type EESW
under the condition nkz, k 2 xz, and such values of the wave
number and frequency that correspond to regions III and IV
in Fig. 6b. In these regions, as noted in Section 3.3.1, there are
two negative roots to equation (3.19), q 2

1; 2 < 0, i.e., four
purely imaginary values of q. In a semiinfinite magnet, such
a situation permits us to pose the problem of a multipath
reflection of a spin wave from the surface of the magnet
without a change in its polarization. We here consider an
EESW propagating in a plate of finite thickness, where a
problem of eigenvalues exists.

Let the magnet occupy the region jzj < d. If on both
mechanically free surfaces of an EA AFM plate the spins are
completely unpinned, viz.

syz
��
z��d� 0 ;

q~l
qz

����
z��d

� 0 ; �3:22�

then the solution of the equations of motion corresponding to
the bulk branch of the spectrum of EESWs should be sought
in the form of a four-partial wave. However, it can easily be
shown that in the situation under consideration there exist
independent symmetrical and antisymmetrical (with respect
to the z � 0 plane) solutions of the form

~uy�x; z; t� �
ÿ
A1 cos � p1z� � A2 cos � p2z�

�
exp �ik?xÿ iot� ;

~ly�x; z; t� �
ÿ
B1 cos � p1z� � B2 cos � p2z�

�
exp �ik?xÿ iot� ;

8<:
~uy�x; z; t� �

ÿ
A1 sin � p1z� � A2 sin � p2z�

�
exp �ik?xÿ iot� ;

~ly�x; z; t� �
ÿ
B1 sin � p1z� � B2 sin � p2z�

�
exp �ik?xÿ iot� ;

8<:
�3:23�

where p 2
1; 2 � ÿq 2

1; 2k
2
? > 0 and q 2

1; 2 are the roots of equation
(3.19).

The corresponding dispersion equations take the form

p1� p 2
1 � k 2

?� tan �2p1d � � p2� p 2
2 � k 2

?� tan �2p2d � �3:24�

for the symmetrical mode, and

p1� p 2
1 � k 2

?� cot �2p1d � � p2� p 2
2 � k 2

?� cot �2p2d � �3:25�

for the antisymmetrical mode described by formulas (3.23).
An analysis of relationships (3.24) and (3.25) gives

evidence that, in the regions of the wave vectors k? and
excitation frequencies o under consideration, the simulta-
neous allowance for the inhomogeneous exchange interaction
and indirect spin±spin interaction through the field of virtual
phonons leads to the formation of an additional (with respect
to the exchange bulk spin wave) bulk �p 2

1; 2 > 0� elastostatic-
type spin wave with the same polarization. The analytical
expression for the dispersion relation for the regions that are
determined by expressions (3.24) and (3.25) could not be
obtained explicitly and numerical calculations are required.
The most important features of the dispersion law can easily
be analyzed, however, in the limit of sufficiently small values

of the wave vector �ome=cm 4 jk?j�. In this case, it follows
from Eqns (3.24) and (3.25) that they describe two qualita-
tively different types of bulk spin waves with the same
polarization. In the limit under consideration, the dispersion
law of one of the waves is mainly formed by the indirect
exchange through the field of elastostatic phonons; this wave
is direct �k? qo=qk? > 0�, and the following dispersion
relation corresponds to such a wave:

o2 � o2
0 � o2

me

k 2
?

k 2
? � p 2

1

; p1 � pn
2d

; n � 1; 2; . . . : �3:26�

Under the same conditions, an ordinary bulk spin wave
with the dispersion law

o2 � o2
0 � c 2m�k 2

? � p 2
2 � ; p2 � pn

2d
; n � 1; 2; . . . ; �3:27�

which is mainly formed due to the inhomogeneous exchange
interaction, corresponds to the second solution. Comparing
relationships (3.26) and (3.27), we can conclude that in the
vicinity of the values of the wave vector that are determined
by the condition

o2
me

k 2
?

k 2
? �

ÿ
pn=�2d ��2 � c 2m

�
k 2
? �

�
pr
2d

�2�
; n 6� r �3:28�

a resonance interaction between the above two types of spin
excitations takes place, i.e., an inhomogeneous spin±spin
resonance. In this regard, the structure of the spin-wave
spectrum is determined by the general relationships (3.24)
and (3.25), and the simultaneous allowance for both above-
considered mechanisms of spin±spin exchange is of funda-
mental importance for their formation. Here, as usual, a
`repulsion' of the interacting modes shows its worth and, as a
consequence, `windows of nontransparency' (in frequency)
are formed for the propagating spin-wave oscillations with a
specified k?. Notice that the above-described elastoexchange
mechanism of the inhomogeneous spin±spin resonance is a
magnetoelastic analog of the well-known dipole±exchange
resonance (see, e.g., paper [93]), and the windows of
nontransparency represent an analog of the so-called `dipole
gaps' [94]. The magnitude of such a gap depends on the
character of the boundary conditions. In particular, if on both
surfaces of the plate the conditions

syz � 0 ; ~l � 0 ; z � �d �3:29�
(where ~l is the amplitude of small oscillations of the vector of
antiferromagnetism near the equilibrium orientation) are
fulfilled simultaneously, i.e., both surfaces of the plate are
mechanically free and the spins are completely pinned (Kittel
conditions), then the spectrum of the elastoexchange bulk
spin wave takes on the form

O 2
n � o2

0 � o2
me

k 2
?

k 2
? � p 2

1

� c 2m�k 2
? � p 2

1 � ; �3:30�
p1 � pn

2d
; n � 1; 2; . . . :

Thus, the gap will be equal to zero in this particular case,
since for k? 6� 0 a crossover of the modes of the spectrum of
elastoexchange bulk waves becomes possible: On � Or

�n 6� r� (Fig. 7a).
Let us now consider the features of the AFM-crystal spin

dynamics in the case where the indirect spin±spin exchange
through the field of virtual phonons leads to the formation of
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an associated surface elastostatic-type spin wave, which
accompanies the exchange bulk spin wave propagating over
the crystal. Let, as before, k 2 xz, but now nkx. Assuming
that themagnet is bounded by x � ÿd and x � d planes, let us
write down boundary conditions analogous to those used in
formulas (3.22)±(3.25):

syx
���
x��d
� 0 ;

q~l
qx

����
x��d
� 0 : �3:31�

In a finite plate, the solutions to the equations ofmotion in
a given geometry are four-partial:

p1 � pn
2d

; p2 � �i
�
k 2
? � p 2

1 �
Z

k 2
? � p 2

1

�1=2

; n � 1; 2; . . . ;

�3:32�

where Z is a positive constant, and the dispersion relation for
EESWs is written out as

O 2
n � o2

0� o2
me

p 2
1

k 2
?� p 2

1

� c 2m�k 2
?� p 2

1 � ; n � 1; 2; . . . : �3:33�

Since without regard for the phononic mechanism of
exchange the spectrum of the exchange spin wave has the
form o2 � o2

0 � o2
me � c 2m�k 2

? � p 2
1 �, we can conclude that in

amagnetic film the interference of the exchange bulk �p 2
1 > 0�

and elastostatic accompanying surface �p 2
2 < 0� partial spin

waves (3.32) qualitatively changes the character of the
dispersion curve of the propagating bulk spin wave (Fig. 7b).
More specifically, the competition between the inhomoge-
neous exchange �c 2mk 2

?� and phononic mechanism of non-
Heisenberg exchange �o2

mep
2
1 =� p 2

1 � k 2
?�� leads to the appear-

ance of an extremum in the dispersion curve (3.33). For
k? < k� �k 2

� � ome p1=cm ÿ p 2
1 �, the dispersion law for a

bulk EESW corresponds to the reverse spin wave
�k?qo=qk?< 0�; for k? > k�, it corresponds to the direct
wave �k?qo=qk? > 0�. It should be noted that the existence
of an extremum point in the dispersion curve at a fixed mode
number n of the propagating bulk ESSW is determined by the
condition d > pncm=2ome, n � 1; 2; . . . : If d < pncm=2ome,
then k� � 0 and, consequently, the corresponding bulk ESSW
mode represents a direct wave �k?qo=qk? > 0� at any
magnitude of the wave vector k?.

It should be noted that the above dispersion relations for
propagating bulk s-type EESWs remain valid even when on
both surfaces of an AFMplate slip boundary conditions (3.6)
are fulfilled instead of the conditions for a mechanically free
surface.

Let us now consider the second class of elastoexchange
waves propagating in the plate of the AFMconsidered, whose
dispersion properties result from the hybridization of the
inhomogeneous exchange interaction and indirect spin±spin
exchange through the field of quasistatic elastic deformations
polarized in the sagittal plane (p-type EESWs). Since, as is
known, the spectrum of bulk waves distributed inhomogen-
eously over the plate thickness only weakly depends on the
character of the boundary conditions, we restrict ourselves to
the consideration of the case in which the solution can be
obtained explicitly. To this end, we assume that the following
conditions are fulfilled simultaneously on both surfaces of the
plate with nkx:

~l
���
x��d
� 0 ; �3:34�

~ux � 0 ; sxz � 0 ; x � �d : �3:35�

If the sagittal plane is the xz plane, then, as follows from
formulas (2.13), for u 2 xz the solution to the Landau±
Lifshitz equations and equations of elastostatics, correspond-
ing to this type of bulk EESWs, should be sought in the form
of a six-partial wave. The calculations show that, as a result,
the dispersion law of the propagating bulk p-type EESW can
be written out as follows:

O 2
n � o2

0 � o2
me

�
1ÿ s 2t

s 2l

�
4p 2

1 k
2
?

� p 2
1 � k 2

?�2
� c 2m�k 2

? � p 2
1 � ;

n � 1; 2; . . . : �3:36�

A comparison of formula (3.36) with analogous formula
(3.8) obtained in the nonexchange limit �cm ! 0� shows that
the hybridization of the above two mechanisms of spin±spin
exchange can lead to the formation, in the dispersion curves
of the corresponding elastostatic bulk modes with a suffi-
ciently small number, of not only a point of maximum but
also of a point of minimum (Fig. 7c).Moreover, for given two
mode numbers, two crossover points can arise rather than

0 k?

o

1

2

3

4

b

0 k?

o

1

2

3

4

c

0 k?

o

1

2

3

4

a

Figure 7. Structure of the spectrum of isotropic bulk EESWswith k 2 xz in

an EA AFM plate: (a) lkz, nkz, s-type waves, (b) lkz, nkx, s-type waves,
and (c) lkz, nkz, or nkx, p-typewaves. Curves 1±4 correspond to spectrum
modes with n � 1; 2; 3; 4, respectively.
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one, as for cm ! 0. In contrast to the dispersion relation for
the above-considered elastoexchange bulk s-type waves, the
dispersion law of this class of elastoexchange excitations does
not change qualitatively if the orientation of the normal to the
plate surface swings in the sagittal plane (xz plane) by 90�

�nkz�.

3.4 Relation between the spectrum
of elastoexchange spin waves and the spectrum
of bulk magnetoelastic waves in the plate
of a compensated antiferromagnet
It follows from the results of paper [95] that the various
combinations of elastic and exchange boundary conditions
used in Sections 3.1±3.3 make it possible to obtain, for the
same magnetoacoustic configurations, the dispersion equa-
tions for the spectrum of bulk magnetoelastic waves in the
AFM plate of thickness 2d explicitly, without imposing the
restriction on the relative magnitude of the phase velocities of
elastic and spin waves in an unbounded magnet.

In the AFM plate being considered, let xz be the sagittal
plane, n be parallel to z, and conditions

~l � 0 ; ~uz � 0 ; sxz � syz � 0 ; z � �d �3:37�

be fulfilled. In this case, the solution to the set of equations
(2.9) with the simultaneous allowance for the magnetoelastic
and inhomogeneous exchange interactions and arbitrary
magnitude of the wave number k? (satisfying requirements
of the phenomenological theory of elasticity [63, 66]) makes it
possible to represent the spectrum of bulk magnetoelastic
waves as

�ro2 ÿ �c11k
2
? ÿ �c44 p

2
1 ��ro2 ÿ �c11 p

2
1 ÿ �c44k

2
?�ÿ

ÿ ��c12 � �c44�k 2
? p

2
1 � 0 ; u 2 xz ;

ro2 ÿ �c66 k
2
? ÿ �c44 p

2
1 � 0 ; uky ; �3:38�

�c11 � l� 2m ; �c12 � l ;

�c44 � m
o2

0 � c 2m�k 2
? � p 2

1 � ÿ o2

o2
0 � o2

me � c 2m�k 2
? � p 2

1 � ÿ o2
; �c66 � m :

If for the same sagittal xz plane the condition nkx is fulfilled
and boundary conditions (3.31) are specified on both surfaces
of the AFM plate under consideration, then for the spectrum
of bulk magnetoelastic waves with uky we have

ro2 ÿ �c66 p
2
1 ÿ �c44k

2
? � 0 : �3:39�

From a comparison of Eqn (3.38) with Eqns (3.30) and (3.36),
and of Eqn (3.39) with Eqn (3.33), it follows that, to obtain
the spectrum of the above-considered elastoexchange bulk
spin-wave excitations, it is necessary in the dispersion relation
(3.38) for bulk magnetoelastic waves in a bounded magnet to
formally pass to the limit of r=m! 0. In other words, the bulk
elastoexchange spin waves considered in Section 3.1 describe
in the frequency range (3.1) the dispersion properties of the
low-frequency branch of bulk magnetoelastic excitations in
zero order in the parameter ro2=�m� p 2

1 � k 2
?��, whose small-

ness just corresponds to the elastostatic criterion (3.1). Notice
that the elastostaticity criterion (3.1) for the bulk waves under
consideration can be represented in the form

o2 5 s 2t � p 2
1 � k 2

?� : �3:40�

Thus, the elastostaticity criterion for an AFM with cm < st
can be satisfied for the low-frequency branch of the spectrum
of magnetoelastic waves with a fixed mode number n in the
entire range of the variability of the wave number k?, starting
from zero if the plate thickness satisfies the condition

o2 5
s 2t p

2n 2

4d 2
; n � 1; 2; . . . : �3:41�

In this case, the elastostaticity criterion will be associated with
the standing (over the plate thickness) bulk magnetoelastic
wave. It follows from Eqns (3.37)±(3.41) that under the
condition (3.41) at k? � 0 we have

O 2
n � o2

0 � c 2m p 2
1 ; u 2 xz ; lknkz ; �3:42�

O 2
n � o2

0 � c 2m p 2
1 ; uky ; nk lkz ; �3:43�

O 2
n � o2

0 � o2
me � c 2m p 2

1 ; uky ; lkz ; nkx ; �3:44�

where n � 1; 2; . . . .
Thus, the fulfillment of the existence criterion (discussed

in Refs [46, 50, 51]) for a magnetoelastic gap in the spectrum
of spin-wave excitations of a boundedmagnetic sample with a
linear dimension L, namely

ome > stL
ÿ1 �3:45�

(for the AFM plate under consideration,L � 2d ), depends to
a significant extent on a concrete magnetoacoustic configura-
tion [96]. Foro0 5ome and cm 5 st, condition (3.41) is in fact
opposite to criterion (3.45); nevertheless, in the case of
spectrum (3.44), the magnetoelastic gap in the spectrum of
the standing bulk quasimagnon wave in an AFM plate does
exist.

4. Shear surface acoustic waves (SAWs)
at the interface between magnetic
and nonmagnetic media that are nonvanishing
in the elastostatic limit

4.1 A shear SAW in a nonpiezomagnetic antiferromagnet
caused by the hybridization of magnetoelastic
and inhomogeneous exchange interactions
It is well-known that, from the viewpoint of both crystal-
lattice dynamics and the elasticity theory of a continuous
medium, the mechanically free surface of an elastic half-space
can be considered to be a specific local disturbance in an
unbounded ideal half-space. In this case, the surface acoustic
wave propagating near the crystal boundary can be repre-
sented as a localized oscillation in a crystal with a planar
defect [97].

At present, the problem of the existence and the unique-
ness of the SAW solutions in the elasticity theory is being well
studied analytically for both a mechanically free surface [98±
100] and a loaded boundary of a nonmagnetic crystal [101,
102]. Namely, it has been shown that for a mechanically free
boundary of a crystal, an SAW can exist at arbitrary
directions of propagation of elastic oscillations, except for
some preferred orientations. The problem of the existence of
SAWs should be solved for them separately, since the
boundary conditions in this geometry are satisfied in the
case of a purely shear bulk wave. This circumstance makes
such a bulk elastic wave unstable with respect to the
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transformation into an SAW already in the presence of small
changes in the elastic boundary conditions. The formation of
a shear Gulyaev±Bleustein wave can serve as an example in
the presence of piezoelectric [103±105] or piezomagnetic [106±
108] interactions in a crystal, as can the appearance of a Love
wave [101, 109] when the surface of a semibounded crystal
(medium 1) has a rigid acoustic contact with the surface of a
layer (medium 2), and the relationship between the elastic
parameters of the layer and the half-space is such that

s1 > s2 ; �4:1�
where s1 �s2� is the phase velocity of propagation of a shear
elastic wave in an unbounded medium 1 (2). In the case of an
antiferromagnet, additional mechanisms of localization of a
shear elastic wave arise, namely, piezomagnetic andmagneto-
electric [99, 106±108, 110]; for this to occur, however, the
magnetic structure should satisfy certain symmetry require-
ments [59].

At the same time, in spite of intense investigations of
various aspects of the formation and propagation of SAWs in
magnetically ordered crystals, the corresponding calculations
were traditionally performed neglecting the inhomogeneous
exchange interaction in the spin system of the magnet
(`nonexchange approximation'). In a few studies devoted to
the investigation of the effect of the inhomogeneous spin±spin
exchange on the conditions of the localization and propaga-
tion of SAWs, the role of the nonlocality of the Heisenberg
spin±spin exchange in the phonon dynamics of the crystal was
reduced to the transformation of an SAW into a pseudo-
surface (leaky) acoustic wave, i.e., to the implementation of
the delocalization of the SAW [111].

Let us show that the effect of the nonlocality of the
Heisenberg mechanism of spin±spin interaction on the
propagation of a limiting wave even without allowance for
the magnetodipole interaction leads to the formation of a
shear SAWof a new type near themechanically free surface of
a semibounded magnet [90, 112]. Since an exchange enhance-
ment of magnetoelastic effects and an exchange weakening of
magnetodipole effects simultaneously occur in antiferro-
magnets [46, 50, 51], we consider, as an example, the
magnetoelastic dynamics of a two-sublattice model of an
easy-axis (with the EA coincident with the z-axis) antiferro-
magnet, assuming, to simplify the calculations and make
them more demonstrable, that the magnetoelastic and elastic
properties of the magnet are isotropic. If the antiferromag-
netic medium occupies the upper half-space �z > 0�, whose
surface �z � 0� is mechanically free and the spins are
completely unpinned, the corresponding set of boundary
conditions can be written down as follows:

q~l
qz
� 0 ; siknk � 0 at z � 0 ; �4:2�

j~lj ! 0 as z!1 :

According to the standard technique of solving boundary-
value problems, the solution to the above dynamic set of
equations localized near the free surface of a magnet, e.g., for
u, should be sought in the form

u �
X
j

Aj exp �iotÿ qjzÿ ik?r?� ; �4:3�

where 1 < j < N,Aj are arbitrary constants to be determined;
qj �q 2 � ÿ�kn�2� are the roots of the dispersion (character-

istic) equation determining the spectrum of magnetoelastic
oscillations of an unbounded magnet, and k? and r? are the
projection of the wave vector and the current coordinate
along the direction of the propagation of magnetoelastic
oscillations in the boundary plane, respectively.

Since in this reviewwe are interested only in shear acoustic
oscillations propagating along high-symmetry directions (i.e.,
in this case, in planes with the normals along the Cartesian
coordinate axes), we consider the case of nkz as an example.
Since the problem exhibits cylindrical symmetry, the y-axis
was chosen without the loss of generality in the yz plane of the
wave propagation. Thus, k 2 yz and ukx.

As follows from the calculated results, the characteristic
equation of the magnetoelastic boundary-value problem (4.2)
represents a reduced equation biquadratic in q [at N � 2 in
formula (4.3)], whose coefficients are functions of external
parameters specified in experiment, i.e., of the frequency o,
and of the component k? of the wave vector ofmagnetoelastic
oscillations perpendicular to n [112]:

q 4 ÿ P1q
2 � P2 � 0 ;

P1 � o2
0 � 2c 2mk

2
? ÿ o2�1� c 2m=s

2
t �

c 2m
; �4:4�

P2 � o2
0 � c 2mk

2
? � o2

me ÿ o2

c 2m

�
k 2
? ÿ

o2

s 2t

�
:

Equations (4.3) and (4.4) permit us to classify the possible
types of propagating magnetoelastic oscillations depending
on the character of their spatial localization near the surface
of the magnet. An analysis showed that, depending on the
magnitude of the frequency o and of the projection k? of the
wave vector onto the film plane, four fundamentally different
types of propagating two-partial magnetoelastic normal
oscillations differing in the character of their spatial localiza-
tion along the normal to the surface of the magnet are
possible. For o and k? satisfying the conditions

k? > k3 ; o2
��k?� < o2 < o2

0 � o2
me � c 2mk

2
? ;

0 < k? < k1 ; o2 < s 2t k
2
? ; �4:5�

k1 < k? < k4 ; o2 < o2
ÿ�k?�

[where o2
��k?� are the roots of the equation P 2

1 � 4P2

quadratic in o2], a two-partial magnetoelastic shear evanes-
cent wave with q 2

1; 2 > 0 can exist, whereas in the region of

k? > k1 ; o2
ÿ�k?� < o2 < o2

��k?� �4:6�

a generalized two-partial magnetoelastic shear evanescent
wave with Re q 2

1; 2 6� 0, Im q 2
1; 2 6� 0, and Im q 2

1; 2 > 0 can be
formed. Bulk magnetoelastic waves of the first type �q 2

1 < 0,
q 2
2 > 0� arise for

0 < k? < k2 ; s 2t k
2
? < o2 < o2

0 � o2
me � c 2mk

2
? ; �4:7�

k? > k2 ; s 2t k
2
? > o2 < o2

0 � o2
me � c 2mk

2
? ;

where

k 2
1 �

o2
0

s 2t ÿ c 2m
; k 2

2 �
o2

0 � o2
me

s 2t ÿ c 2m
; oÿ�k4� � 0 ;

k 2
3 �

o2
0 � o2

me�1� s 2t =c
2
m�

s 2t ÿ c 2m
:
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Outside the regions specified by formulas (4.5)±(4.7), bulk
magnetoelastic waves of the second type �q 2

1; 2 < 0� can form.
The condition for the existence of a localized solution to the
boundary-value problem under consideration is the existence
of a nontrivial solution to the set of equations (4.2) with
respect to the partial amplitudes Aj from expansion (4.3) in
the case where the corresponding o and k? belong to the
regions (4.5) or (4.6). An analysis shows that in the case of
completely free spins the solution to the boundary-value
problem (4.2), which describes the dispersion law of the two-
partial shear magnetoelastic SAW, can be found exactly, and
at an arbitrary value of the wave number jk?j can be
represented explicitly as [112]

o2 � N1

2
�

����������������������������
N1

2

�2

ÿN2

s
; �4:8�

N1 � 2o2
0 � c 2mk

2
? ÿ c 2m�o2

0 � o2
me � c 2mk

2
?�=s 2t

1ÿ c 2m=s
2
t

;

N2 � �o
2
0 � c 2mk

2
?�2 ÿ �o2

0 � o2
me � c 2mk

2
?�c 2mk 2

?
1ÿ c 2m=s

2
t

:

The amplitudes of oscillations of both the elastic displace-
ment vector u and the vector of antiferromagnetism l are
linearly polarized and are directed along the normal to the
sagittal plane (in this case, to the yz plane).

A comparison of Eqn (4.8) with Eqns (4.5)±(4.7) indicates
that a SAW of this type at k? � k1 becomes delocalized,
transforming into a bulk elastic wave. If k? < k1 < k�
�k� � 6ome=5cm�, the shear SAW under consideration is a
two-partial generalized shear surface elastic wave, whose
dispersion curve at k? � k� is transformed into a two-partial
surface shear elastic wave [with q 2

1; 2 > 0 in expression (4.3)]. It
can easily be shown that without regard for the inhomoge-
neous exchange interaction �a! 0� this type of localized
magnetoelastic excitations is not realized. In this connection,
the above solution (4.8) of the boundary-value magnetoelas-
tic problem (4.2) can be considered as a magnetoelastic shear
exchange-type SAW.

It is easily comprehended that in the elastostatic limit
�o2=�s 2t k 2

?� ! 0� the dispersion relation for a shear SAW of
this type describes a surface elastoexchange spin wave whose
dispersion curve is shown by a dashed line in Fig. 6b [90].

In the limit of p1; 2d!1, this dispersion law is obtained
from expression (3.24) under the condition that p 2

1; 2 < 0.
Notice that a shear SAW of this type can be regarded as an
acoustic analog of surface exciton polaritons [113] or general-
ized surface magnetic polaritons [91, 92].

4.2 Shear first- and second-type SAWs
in a fine-layered one-dimensional magnetic phononic
crystal of the antiferromagnet±ideal-diamagnet type
Up to now, we have considered only the case of a
mechanically free surface of a magnet, for which reason the
shear SAWs formed near the surface of a compensated EA
AFM represented acoustic analogs of the corresponding
types of surface magnetic TE polaritons. In this regard, the
localization effect appeared as a result of a hybridization of
the inhomogeneous exchange interaction and phononic
mechanism of the indirect spin±spin interaction due to the
long-range field of elastostatic elastic deformations. How-
ever, if the magnetic medium investigated has a continuous
acoustic contact with a more rigid nonmagnetic medium, a

lateral spin±spin interaction via the long-range field of
elastostatic elastic deformations in the nonmagnetic medium
also becomes possible. Thus, we can expect in the case of an
acoustically continuous interface between magnetic and
nonmagnetic media that the localization effect of a shear
elastic wave near the surface of a magnet can be realized as a
result of hybridization of only phononic mechanisms of
indirect spin±spin interaction through a long-range field of
elastostatic elastic deformations in the magnet and in its
nonmagnetic coating.

Such a shear SAW will represent an acoustic analog of
surface magnetic TE polaritons existing near the antiferro-
magnet±nonmagnetic-dielectric interface.

As said in Section 2, the magnetodipole interaction effects
for a superlattice of the magnet±ideal-diamagnet (super-
conductor) type can be neglected in terms of the effective
medium method.

However, the problem of the spectrum of collective elastic
excitations of a magnetic phononic crystal of the nongyro-
tropic-magnet±ideal-diamagnet type with allowance for its
finite dimensions has remained unsolved to date.

Let us determine, in terms of the effective medium
method, the necessary conditions for the localization of a
shear elastic SH wave propagating along the external surface
of a bounded one-dimensional magnetic phononic crystal of
an EA-AFM (medium 1)±ideal-superconductor (medium 2)
type, which has an acoustically continuous contact with the
nonmagnetic coating [114]. We will consider only such
magnetoacoustic configurations which allow the propaga-
tion of SH-type waves (see Section 2).

Let the magnetic superlattice considered have a limited
number of periods N� and represent a strip �ÿt4x4 t� of
thickness 2t � DN� which is infinite in the most developed
plane. Assume that at x � �t this strip is acoustically rigidly
connected with the semibounded ideal diamagnetic layers of
thickness t� and tÿ, respectively, whose external surfaces are
mechanically free.

If we restrict ourselves to a long-wavelength limit, then the
effective elastic moduli introduced in Section 2 can be used to
describe the elastic dynamics of the superlattice. We will also
assume that the nonmagnetic coating of the superlattice is an
elastically isotropic medium and that its elastic properties
(shear modulus ~m, and density ~r) are identical for x < ÿt and
x > t. As a result, with allowance made for expressions
(2.32)±(2.35), the dispersion equation for the spectrum of
SH-type shear waves propagating along such a structure for
all three geometries considered can be represented in the form
[114]

c 2k a
2 � ackaq

�
tanh �qk?t�� � q tanh �qk?tÿ�

�
coth �2ak?t�

� a 2q 2 tanh �qk?t�� tanh �qk?tÿ� � 0 ; �4:9�
where

a 2 � c? ÿ o2=�s 2t k 2
?�

ck
> 0 ; q 2 � 1ÿ o2

�~sk?�2
;

~s 2 � ~m
~r
; a � ~m

m1
:

If we formally assume that t� � 0 and tÿ � 0, the relation-
ships (2.32)±(2.35) and (4.9) will describe the spectrum of a
shear elastic wave propagating along a bounded one-dimen-
sional fine-layered magnetic phononic crystal of the EA-
AFM±ideal-superconductor type of thickness 2t, one surface
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of which ismechanically free and the other has an acoustically
continuous contact with the nonmagnetic layer. The external
surface of the nonmagnetic layer is mechanically free. An
analysis of dispersion equation (4.9) with regard for expres-
sions (2.32)±(2.35) indicates that the formation of an SH-type
SAW occurs under the condition that the inequalities ck < 0
and q 2 > 0 are satisfied simultaneously. For the magnetoa-
coustic configurations (2.32)±(2.35) this is possible if k? kx,
uky, lknkz or k? ky, uk lkz, and nkx. Let us consider the
interface between two half-spaces, one of which is occupied
by the above-mentioned fine-layered superlattice �x < 0�, and
the other by the nonmagnetic medium �x > 0� under the
condition of ~s > st. Then, relationships (4.9) with allowance
made for expressions (2.32)±(2.35) take on the form

cka � ÿaq : �4:10�

Thus, the long-wavelength point of the termination of the
dispersion curve for a shear SAW is determined for both the
above geometries of propagation of a surface SH wave from
expressions (2.32)±(2.35) and dispersion equation (4.9) at
q � 0, ck � 0. A joint analysis of expressions (2.32)±(2.35)
and (4.9) also shows that if k? kx, uky, and lknkz, then the
shear SAW for any ratio d1=d2 6� 0 also has a short-
wavelength ending point of the spectrum, whose position on
the (frequency, wave number) plane of the external para-
meters is determined from the relationships (2.32)±(2.35) and
(4.10) at a � 0.

According to the terminology accepted in the dynamics of
polaritons [113], such an SH-type SAW, which possesses a
short-wavelength ending point of the spectrum, can be called
a virtual shear SAW, or a shear SAW of the second type.

Let us now consider the geometry where k? ky, uk lkz,
and nkx. It follows from relationships (2.32)±(2.35) and
(4.10) that in this case the structure of the spectrum of the
shear SAWpropagating along the semibounded-fine-layered-
1D-MPC±semibounded-nonmagnetic-medium interface will
substantially depend on the ratio between magnetic layer and
nonmagnetic layer thicknesses which determine the elemen-
tary period of the given MPC. If the inequality

d1 < d2 �4:11�
is satisfied, the dispersion curve for the shear SAW described
by expressions (2.32)±(2.35) and (4.10) will have a short-
wavelength ending point of the spectrum (i.e., will be
characteristic of a virtual shear SAW). Its position on the
(frequency, wave number) plane of the external parameters is
determined from the relationships (2.32)±(2.35) and (4.10) at
a � 0.

Thus, under the condition (4.11), it is a virtual shear SAW
that propagates along the interface between the semibounded
fine-layered 1D MPC and semibounded nonmagnetic med-
ium. If condition (4.11) is not fulfilled, the relationships
(2.32)±(2.35) and (4.10) describe the spectrum of a shear
SAW whose dispersion curve has no short-wavelength end-
ing point (in terms of the phenomenological approach).

According to the terminology accepted in the dynamics of
polaritons [113], such an SH-type SAW, possessing no ending
point of the spectrum, can be called a shear SAW of the first
type.

From expressions (2.32)±(2.35) and (4.9), (4.10), it follows
that already in the elastostatic limit (3.1) nonexchange surface
elastostatic s-type spin waves can propagate in the bounded
one-dimensional fine-layered MPC with a nonmagnetic

coating under consideration at k? ky, uk lkz, and nkx. The
corresponding dispersion relations follow from formulas
(2.32)±(2.35) and (4.9), (4.10) under the condition that

a 2 � c?
ck
> 0 ; q 2 � 1 ; ck < 0 : �4:12�

In particular, in the limit of d2=d1 ! 0 we understand from
dispersion equation (4.9) that the spectrum of such s-type
ESSWs has the form

�o2 ÿ O 2
���o2 ÿ O 2

ÿ� � 0 ; �4:13�

where

O 2
� � o2

0 � o2
me

R1 �
������������������
R 2

1 ÿ R2

q
1� R1 �

������������������
R 2

1 ÿ R2

q ;
�4:14�

R1 � a

2

�
tanh �k?t�� � tanh �k?tÿ�

�
coth �2k?t� ;

R2 � a 2 tanh �k?t�� tanh �k?tÿ� :

The physical mechanism responsible for the formation of this
type of nonexchange surface spin-wave excitations is the
hybridization of phononic mechanisms of indirect spin±spin
interaction through the field of long-range quasistatic shear
elastic deformations both in the magnet itself and in its
nonmagnetic coating. This, in particular, leads to the
possibility of the formation of an extremum (maximum) in
the dispersion curve for the shear SAW, corresponding to
formulas (4.13), (4.14). The position of this maximum on the
(frequency, wave number) plane of external parameters can
be changed by varying the thicknesses of the nonmagnetic
coating and magnetic layer (1D MPC layer).

Thus, the presence of an acoustic contact �a 6� 0� between
the nonmagnetic coating �z < 0� and the surface of the
superlattice considered �x5 0� is of fundamental impor-
tance for the formation of a surface elastic SH wave of the
type under examination and of an s-type ESSW.

The structure of the spectrum of the shear SAW being
studied in the case of a bounded 1D PMC, both of whose
external surfaces have continuous acoustic contact with
identical nonmagnetic half-spaces, is shown in Fig. 8 for the
geometry of k? ky, uk lkz, and nkx for d1=d2 > 1 and
d1=d2 < 1. It should also be noted that any one of relation-
ships (4.9)±(4.12) and the conclusions made on their basis (in
particular, Fig. 8) remain valid for the spectrum of the shear
SAW of a fine-layered compensated 1D MPC of the ferro-
magnet±ideal-diamagnet type with an antiparallel ordering of
equilibrium magnetizations of any neighboring tangentially
magnetized ferromagnetic layers. In this regard, it is necessary
to assume that the effective elastic moduli in formulas (4.9)±
(4.12) are determined by relationships (2.42).

In addition, as follows from the results of calculations, the
dispersion properties of shear SAWs of this type with the
dispersion relation (4.9) can also be governed by changing the
character of elastic boundary conditions on the external
surfaces of the nonmagnetic coatings bounding the layer of
the 1D MPC at hand. More specifically, if the boundary
conditions correspond to a rigidly fixed, rather thanmechani-
cally free, boundary, then coth �qk?t�� should be substituted
for tanh �qk?t�� in the dispersion relation (4.9).

It should also be noted that as d1=d2 ! 0 the spectrum of
shear SAWs propagating along the EA AFM plate, both of
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whose surfaces have a continuous acoustic contact with the
nonmagnetic medium, represents an acoustic analog of the
spectrum of surface TM polaritons in a plate [115].

5. Refraction of bulk elastic waves
at the interface between the magnetic
and nonmagnetic media induced
by dynamic magnetoelastic interaction

As follows from the general theory of wave processes in
layered media [59, 66, 116], the local geometry of the wave-
vector surface (surface of refraction) of a normal wave
propagating in an unbounded medium should be closely
connected with the conditions of refraction and localization
of a given normal oscillation with allowance for the finite
dimensions of an actual sample. In this section, we will
consider some examples indicating the validity of these
statements for the case of magnetoelastic waves in layered
media [74].

Let us start from an analysis of the possibility of excitation
of shear SAWs of types discussed in Section 4 by the example
of already considered one-dimensional fine-layered MPC.

5.1 Excitation of shear SAWs using acoustic analogs
of Otto and Kretschmann configurations
Since the above-described types of shear SAWs are acoustic
analogs of various types of surface polaritons, they can be
studied using elastic analogs of the Otto and Kretschmann
configurations (the nontotal internal reflection method),
which are widely applied in the analysis of the spectra of
surface polaritons in both nonmagnetic and magnetic media
[82, 113, 117, 118]. As is known, an electromagnetic wave with
polarization similar to that of the surface polariton investi-

gated falls in both configurations from a more dense half-
space onto an optically less dense two-layer structure of the
magnetic-layer±nonmagnetic-half-space type (Kretschmann
configuration) or nonmagnetic-layer±magnetic-half-space
type (Otto configuration), on whose internal boundary a
surface magnetic polariton can be formed. Thus, the surface
magnetic polariton traveling along the interface between a
magnetic and nonmagnetic media generates in the optically
denser half-space a bulk electromagnetic wave with the same
polarization as that of the surface wave; this means that it is a
leaky-type wave.

It follows, thence that if we choose a fine-layered 1DMPC
as an example of amagneticmedium, then an elastic analog of
the Otto configuration for the excitation of a shear SAWnear
the MPC external surface will be an acoustically continuous
sandwich structure of the `semiinfinite soft nonmagnetic
medium (medium I)±rigid nonmagnetic layer of thickness L
(medium II)±semiinfinite fine-layered 1DMPC (medium III)'
type. An elastic analog of the Kretschmann configuration is
an acoustically continuous sandwich structure of the `semi-
infinite soft nonmagnetic medium (medium I)±layer of a fine-
layered 1D MPC of thickness L (medium III)±semiinfinite
rigid nonmagnetic medium (medium II)' type. In both cases,
the structures indicated permit one to resonantly excite a
shear SAW near the 1D-fine-layered-MPC±rigid-nonmag-
netic-medium interface at the expense of a bulk SH wave
incident from the soft nonmagnetic medium I.

The structure of the sections of the wave-vector surfaces
(WVSs) that ensure the excitation of a virtual shear SAW in a
three-component acoustically continuous structure in the
case of the Otto and Kretschmann configurations is demon-
strated in Fig. 9 (see also paper [119]). The region of wave
numbers in which the excitation of the considered shear SAW
of the first or second type proves to be possible is limited in
Fig. 9 by vertical dotted lines, while the region of the wave
numbers is designated by two-sided arrows at that interface
between the media where a surface wave is formed.
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As to the reflection coefficient R at the interface between the
layer and the upper half-space, the absolute value jRj is
rigorously equal to unity without allowance for the dissipa-
tion in the lower half-space, since in both the layer and the
lower half-space only evanescent waves are excited. Other-
wise, jRj will pass through a minimum at the same values of
the frequency and wave number (angle of inclination), which
simultaneously satisfy the dispersion law of the shear SAW
localized at the layer±lower-half-space interface.

As shown in paper [120], the allowance made for the
dissipation can qualitatively change the character of the
reflection of an elastic wave incident on the surface of a
defect near which there is a localized modeÐfrom the
complete reflection to virtually total transmission. At the
same time, under certain conditions a nondissipative mechan-
ism of the realization of the reflectionless propagation effect
of a shear elastic wave is also possible in a fine-layered one-
dimensional MPC of a finite thickness.

5.2 Reflectionless propagation
of a bulk shear elastic wave
through a bounded fine-layered
one-dimensional MPC with a nonmagnetic coating
Using the transition matrix M̂ for a layer of thickness dwith a
normal n to the surface and a surface impedance Z, let us
derive an expression for the reflection coefficient R of the
shear bulk wave for a structure consisting of a layer of
thickness d, both surfaces of which have continuous acoustic
contact with nonidentical (in terms of elastic properties) half-
spaces [121] [see formula (2.22)].

If u is the component of the polarization vector and kk is
the component of the wave vector of the bulk SH wave
normal to the layer surface, then one obtains

u
s

� �
0

�Mik
u
s

� �
ÿd
;

�5:1�
Mik�kk; d � �

cos �kkd � Zÿ1 sin �kkd �
ÿZ sin �kkd � cos �kkd �

� �
:

For a shear bulk SH wave incident from the upper half-space
�x > 0� on the layer surface, we then have

R � Z�ZÿM12 �M21 � i�Z�M11 ÿ ZÿM22�
Z�ZÿM12 ÿM21 � i�Z�M11 � ZÿM22� ; �5:2�

whereZ� andZÿ are the surface impedances of the media for
x > 0 and x < ÿd, respectively, and Mik are the elements of
the transition matrix (5.1).

Thus, in the case of a half-wave layer, we obtain

M11 �M22 � 1 ; M21 �M12 � 0 ; R � Z� ÿ Zÿ
Z� � Zÿ

: �5:3�

If the shear wave in the layer is evanescent �k 2
k < 0�, we have

jRj < 1 at Z� � Zÿ in expression (5.2).
Now let the intermediate layer that connects the upper

and lower half-spaces in the structure under consideration be
an acoustically continuous system consisting of a layer of an
elastically isotropic nonmagnetic medium (medium II) and a
1D MPC layer described by relationships (2.32)±(2.35)
(medium III), with thicknesses tII and tIII, respectively. If
ZII �ZIII� is the surface acoustic impedance of medium II
(III), the expression for the reflection coefficient R of the

shear bulk elastic wave will, as before, have the form (5.2), but
now

M11 � cos �kIItII� cos �kIIItIII� ÿ ZIII

ZII
sin �kIItII� sin �kIIItIII� ;

M12 � Zÿ1III cos �kIItII� sin �kIIItIII�
� Zÿ1II cos �kIIItIII� sin �kIItII� ; �5:4�

M21 � ÿZII sin �kIItII� cos �kIIItIII�
ÿ ZIII sin �kIIItIII� cos �kIItII� ;

M22 � cos �kIItII� cos �kIIItIII� ÿ ZII

ZIII
sin �kIItII� sin �kIIItIII� ;

where k 2
II � o2rII=mII ÿ k 2

?, rII and mII are the density and
shear modulus of the medium II, respectively, and kIII is the
component [determined from expressions (2.32)±(2.35)] of the
wave vector of the shear bulk wave in theMPC that is normal
to the 1DMPC surface.

An analysis of Eqn (5.4) shows that, as before, relation-
ships (5.3) can be valid in this case again under the condition
that the frequency and the angle of incidence of the bulk SH
wave in the upper half-space simultaneously satisfy the
following conditions

ZII � ÿZIII ; qIItII � qIIItIII ; �5:5�
where q 2

II � ÿk 2
II, and q

2
III � ÿk 2

III. When the upper and lower
half-spaces are identical in terms of elastic properties,
Z� � Zÿ, these properties correspond to the total transmis-
sion �R � 0� of the shear bulk wave through the two-layered
structure under consideration. In this case, in particular, it is
necessary that relationships ZIIZIII < 0 and tIItIII 6� 0 be
fulfilled simultaneously.

An analysis of conditions (5.5) shows that, in spite of the
existence of a field of evanescent shear elastic waves in the
nonmagnetic layer of medium II, the presence of a layer of a
composite magnetic material (fine-layered MPC) makes
possible a reflectionless transmission of a shear bulk wave
through the layered structure under examination.

From the physical viewpoint, the first of the relationships
in Eqn (5.5) defines the dispersion equation of the shear SAW
propagating along the interface between two half-spaces, one
of which is occupied by the nonmagnetic medium II, and the
other by the fine-layered 1DMPC (4.10). The validity of these
relationships is possible upon the excitation of a shear SAW
of both the first and second types on the surface of the 1D
MPC.

The structure of the sections of theWVSof a shear wave in
the four-component structure of interest is shown in Fig. 10
for the case of reflectionless transmission with the participa-
tion of a shear SAW of the first or second type.

It should also be noted that the conditions (5.5) for the
reflectionless transmission of a shear bulk wave remain valid
for tIII < tII, even when the layer of medium III is located
inside rather than on the surface of the nonmagnetic layer
(medium II). If tIII > tII, relationships (5.5) determine the
conditions for the reflectionless transmission of the bulk SH
wave also for the structure in which the layer of nonmagnetic
medium II is inside rather than on the surface of medium III.

The anomalies found in the propagation of a shear elastic
wave through the layered acoustically continuous structure
containing a layer of a composite magnetic material represent
an acoustic analog of the enhancement effect of photon
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tunneling by a layer of a uniaxial anisotropic left medium
[122].

5.3 Negative and anomalous acoustic refraction
in a one-dimensional fine-layered phononic crystal
As known from crystal optics and crystal acoustics [59, 123,
124], in the analysis of conditions for reflection and refraction
of bulk normal vibrations at the interface between media, the
shape of the refraction surface of such a normal wave is of
great importance.

In this section, using the example of a fine-layered 1D
MPC of the EA-AFM±ideal-diamagnet type (see Section 2),
we will show (see also paper [125]) that under certain
conditions in such a composite medium some new acoustic
effects can manifest themselves, whose electromagnetic
analogs have actively been studied in the dynamics of
photonic crystals possessing negative refraction indices (so-
called left media), but which have not been known for
magnetic phononic crystals. The case in point is negative
acoustic refraction (group velocities of the incident and
refracted elastic waves lie on the same side from the normal
to the interface between the media, i.e., the tangential
components of the group velocities of the incident and
refracted waves differ in sign). If, as before, we restrict
ourselves to the same magnetoacoustic configurations as in
Section 2, then the corresponding effective elastic moduli will
be determined in terms of the effective-medium model by
relationships (2.32)±(2.35).

Let the 1DMPC under study occupy the lower half-space
�x < 0� and its external surface �x � 0� have continuous
acoustic contact with a homogeneous elastically isotropic
half-space �x > 0�, from which an elastic bulk wave with a
frequency o and a wave number k? is incident on the surface
of the superlattice.

Below, we restrict ourselves to the case where the normal
to the incidence plane coincides with one of the coordinate
axes; then, the elastic normalmodes excited in the superlattice
will be split into waves polarized in the plane of incidence
(quasilongitudinal and quasitransverse modes) and those
polarized perpendicular to it (SH-type waves). If k 2 xy, the
quasilongitudinal and quasitransverse waves transform into
longitudinal and transverse (P- and SV-type) waves, respec-

tively [63]. Then, the kinematics of the reflected (refracted)
normal wave with a given frequency o and projection k? of
the wave vector onto the surface of the medium is determined
by the structure of the section of its WVS by the plane of
reflection (refraction) in the k space [59, 123, 124]. The radius
vector of a point in such a section is collinear to the direction
of the phase velocity, and the external normal coincides with
the direction of the group velocity of the normal mode being
excited with kk � kk�k?;o�, where kk is the projection of the
wave vector of the excited wave onto the normal to the
interface between the media.

Thus, we can distinguish four types of points in the WVS
section, in which the projections of the wave and group
velocities onto the interface between the media and onto the
normal to it have different signs (we restrict ourselves to the
case where both the phase and group velocities of the
refracted wave lie in the same plane):

A

�
k?

qo
qk?

> 0 ; kk
qo
qkk

> 0

�
;

B

�
k?

qo
qk?

> 0 ; kk
qo
qkk

< 0

�
; �5:6�

C

�
k?

qo
qk?

< 0 ; kk
qo
qkk

> 0

�
;

D

�
k?

qo
qk?

< 0 ; kk
qo
qkk

< 0

�
:

For the refracted wave, two conditions should always be
fulfilled: (1) tangential projections of the wave vectors of the
incident �k? i� and refracted �k?r� waves onto the interface
between the media should be equal, and (2) the vector of the
group velocity vg of the refracted wave should make an acute
angle with the internal normal to the interface between the
media. Thus, negative refraction �k?r qo=qk?r < 0� is, in
principle, possible only for points of C and D types (5.6) on
the WVS of the refracted wave.

With allowance made for relationships (2.32)±(2.35), the
shape of the WVS section due to the incident plane for the
bulk SH-type wave refracted in a 1DMPC takes the form

k 2 � k 2
0

ck cos2 f� c? sin2 f
; k0 � o

st
;

�5:7�
tanf � k?

kk
; k 2

k � k 2
? � k 2 :

Here, the following notations were introduced:

ck � �c44 ; c? � �c66 ; k 2 xz ; nkz ; tanf � kx
kz
;
�5:8�

ck � �c66 ; c? � �c44 ; k 2 xz ; nkx ; tanf � kz
kx

:

Thus, negative acoustic refraction is possible if

�c44 < 0 ; k 2 xz ; nkx ; �5:9�
whereas the anomalous acoustic refraction effect (phase
velocities of the incident and refracted elastic waves lie on
the same side of the normal to the interface between the
media, i.e., the normal components of phase velocities of the
incident and refracted waves have different signs) shows itself
for

�c44 < 0 ; k 2 xz ; nkz : �5:10�

kk

I

III

a

k?

kk

II

I

I

III

II

I

I

b

k?

kk

Figure 10. Structure of the sections of the surface of refraction for a layered

magnet±nonmagnet-type structure that is responsible for the reflectionless

transmission of a bulk SH wave due to the excitation of a shear

magnetoelastic SAW of the (a) first or (b) second type. I (II) corresponds

to a soft (rigid) nonmagnetic medium, and III corresponds to a magnetic

medium (1D MPC).

June 2011 Spin wave acoustics of antiferromagnetic structures as magnetoacoustic metamaterials 595



The structure of the WVS sections for the bulk shear wave in
the cases under consideration is illustrated in Fig. 11.

For the above-considered magnetoacoustic configura-
tions, the revealed anomalies of acoustic refraction also exist
in the limiting case of d2=d1 ! 0, which corresponds to a
spatially uniform EA AFM.

A qualitatively different situation is observed in the case
where the sagittal plane coincides with the xy plane in the fine-
layered 1D MPC [see formulas (2.32)±(2.35)]. For such a
magnetoacoustic configuration, theWVS section of a normal
shear wave under the condition d1d2 � 0 [infinite spatially
uniform magnetic (at d2 � 0) or nonmagnetic (at d1 � 0)
medium] has the shape of a circle, which strongly contradicts
the conditions for the fine-layered MPC �d1d2 6� 0�. The
shape of the WVS section due to the incidence plane for the
bulk SH-type wave refracted in the MPC is, as before,
determined by Eqn (5.7), but now

ck � �c55 ; c? � �c44 ; k 2 xy ; nkx ; tanf � ky

kx
: �5:11�

An analysis shows that in this magnetoacoustic configuration
the negative acoustic refraction effect for the shear bulk wave
is realized if the following inequalities hold true simulta-
neously:

ck � �c55 > 0 ; c? � �c44 < 0 ; �5:12�

whereas the anomalous acoustic refraction effect in the same
magnetoacoustic configuration is possible if the following
inequalities are satisfied simultaneously:

ck � �c55 < 0 ; c? � �c44 > 0 : �5:13�

Thus, we can govern the character of refraction even at
fixed values of the frequency and angle of incidence of the
bulk shear wave on the external surface of the superlattice by
changing the relative fraction of the magnetic and nonmag-
netic media comprising the period of the 1D MPC. In this
case, both the negative and anomalous acoustic refraction
effects are unattainable, in principle, for a given magnetoa-
coustic configuration, when, instead of the fine-layered 1D
MPC, there is a spatially homogeneous magnetic or non-
magnetic medium forming the elementary period of the
phononic crystal under examination (i.e., at d1d2 � 0). Thus,
the 1DMPC can be regarded in this case as a magnetoacous-
tic metamaterial.

It follows from expressions (2.35) and (2.42) that the result
analogous to inequalities (5.13) can also be obtained for a

fine-layered compensated 1DMPC of the ferromagnet±ideal-
diamagnet type with an antiparallel ordering of equilibrium
magnetizations of any neighboring tangentially magnetized
ferromagnetic layers.

The negative acoustic refraction can arise not only in the
case of a refracted elastic wave polarized orthogonally to the
plane of incidence (sagittal plane), but also when the refracted
elastic wave is polarized in the incidence plane. In the model
of a fine-layered magnetic superlattice under consideration,
this is possible if the sagittal plane coincides with xz or yz.

Let, for example, nkz, k 2 xz; then, the calculations with
allowance made for expressions (2.32)±(2.35) show that in the
fine-layered superlattice considered at a given magnetoacous-
tic configuration an acoustic birefringence effect is possible
without a change in the branch, and moreover both branches
belong to the same mode (possess the same frequency o,
polarization, and wave number k? of the spectrum of normal
elastic oscillations of the quasitransverse mode).

The section of the corresponding part of the WVS by the
incidence plane �xz� is described by the following relation-
ships:

k 2 � A�
�����������������
A2 ÿ 4B
p

2B
o2 ; A � l� 2m� �c55 ;

tan y � kx
kz
; �c55 � m1

o2
0 ÿ o2

o2
0 � o2

me f1 ÿ o2
; �5:14�

B � �l� 2m��c55 � �l� m��mÿ �c55� sin2 2y :

It follows from the last formulas that negative acoustic
refraction is possible for the specified values of k? and o
only for one of the branches of the refracted quasibulk wave
under the condition that the inequality k? > k� and one of the
following inequalities

ÿ �l� m� < �c55 < 0 ; �5:15�
�c55�o� >

�����������������������������������������������������
m�l� m� � 0:25�3l� 2m�2

q
ÿ 0:5�3l� 2m�

are fulfilled. Here, k� is determined as the value of k?
satisfying the relationship qk?=qkk � 0.

As to the second branch of the refracted quasitransverse
wave from Eqn (5.14), possessing the same polarization,
frequency o, and wave number k?, the negative acoustic
refraction effect is absent for this branch �k?qo=qk? > 0�
and the phase velocities of the incident and refracted waves lie
on the same side from the external normal to the interface
between the media (anomalous acoustic refraction effect).

The structure of the WVS sections of the quasitransverse
wave in this case is shown in Fig. 12.

Similar to the case of photonic crystals [126], the above-
considered negative acoustic refraction effect can also
manifest itself in the nonlinear magnetoelastic dynamics of a
one-dimensionalMPC, for instance, upon the generation of a
refracted wave with harmonics being multiples of the
principal frequency.

It should also be noted that, apart from striction, there
are also possible other mechanisms of formation of the
negative curvature on the section of the WVS by the sagittal
plane and, consequently, of the realization of both the
negative and anomalous acoustic refraction effects, e.g.,
piezoelectric and piezomagnetic effects for SH-type waves
and the anisotropy of elastic properties for quasitransverse
elastic waves.
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Figure 11. Structure of the sections of the surface of refraction in the case

of a bulk SH wave �k 2 xz� incident from the elastically isotropic

nonmagnetic medium (upper half-space, dashed curve) on the surface of

a semibounded 1D MPC: (a) negative acoustic refraction �nkx�, and
(b) anomalous acoustic refraction �nkz�.
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5.4 Manifestation of the topology
of the wave-vector surface of normal magnetoelastic
excitations in the spectrum of a bounded magnet
Since for the given values of the wave number k? and
frequency o the limiting bulk wave propagating along the
surface of the magnet can prove to be unstable with respect to
a transformation into a surface wave with the same polariza-
tion [98, 109], it can be expected that the necessary conditions
for the formation of such a surface wave will be connected
with the shape of the section of theWVS of the corresponding
normal bulk wave by the sagittal plane (this was first
demonstrated by the example of Rayleigh waves propagating
in nonmagnetic media, and by the example of shear SAWs in
piezomagnets in Refs [127, 128] and [108], respectively).

Let us consider now how the effects in the surface
dynamics of the semibounded magnet are connected with a
local geometry of the WVS of the normal magnetoelastic
wave propagating in an unbounded magnet. Let us start with
the case of the nonexchange limit.

5.4.1 Relation between the local geometry of the WVS section
and the conditions for the formation of a shear SAW on the
surface of a magnet. As an example, we will use relationships
(2.32)±(2.35). For a fixed value of the frequency, these
relationships determine, inter alia, the shape of the WVS
section of a normal SH wave of an unbounded fine-layered
1D MPC of the EA-AFM±superconductor type at nkx,
k? ky, and uk lkz. Let us compare relationships (2.32)±
(2.35) with the conditions for the existence of a shear surface
one-partial SAW near the external surface of a semibounded
1D MPC with d1 < d2 in the same magnetoacoustic config-
uration [see dispersion relation (4.10)]. The analysis gives
evidence that, for the formation of a virtual shear SAW of the
second type, it is necessary that the maximum of the negative
curvature on the WVS section of the corresponding normal
wave in the unbounded medium be coincident with the
direction of the propagation of the nonexchange SAW
under consideration (Fig. 11b).

It also follows from the relationships obtained in
Section 4.2 that this criterion remains, in principle, valid

also in the case of a shear two-partial SAW forming near the
mechanically free surface of the EA AFM due to the
hybridization of the magnetoelastic and inhomogeneous
exchange interactions. In particular, it follows from disper-
sion relation (3.16) that in the case of uky, k 2 xz, and nkzk l,
while neglecting the acoustic delay �o=stk? ! 0�, the shape
of the section, in the k space, of the isofrequency �o � const�
surface of the normal bulk elastoexchange spin wave in an
unbounded antiferromagnet crystal by the sagittal xz plane is
determined by an equation of the form

c 2mk
2 � o2 ÿ o2

0 ÿ o2
me sin

2 y : �5:16�
The calculated results testify that the conditions under

which portions with a negative Gaussian curvature are
formed in dispersion curve (5.16) can be represented in the
form

o2 < o2
0 � 2o2

me ; �5:17�

k 2
? <

o2
me

c 2m
: �5:18�

As follows from equation (5.16), the portion of the curve with
the maximum negative Gaussian curvature in the WVS
section of interest is realized at y � p=2 (Fig. 13). In
addition, it is required that the normal n to the surface of the
magnet be perpendicular to the direction in which the above-
mentioned portion of the curve with the maximum negative
curvature is formed.

Since the spatial distribution of the amplitudes of the
normal bulk oscillations is a result of the interference of waves
incident on the sample and reflected from its boundaries, it
can be expected that the local geometry of the surface of wave
vectors of normal oscillations under consideration should
also substantially affect the structure of bulk oscillations with
the same polarization as in the case of a crystal of finite
dimensions.

5.4.2 Relation between the local geometry of the WVS section
and the structure of the spectrum of bulk magnetoelastic
excitations in a bounded magnet (elastostatic limit). As an
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Figure 13. Frequency dependence of the sections of the surface of

refraction in the case of the incidence of a bulk SHwave from the elastically

isotropic nonmagnetic medium (upper half-space, dashed line) on the

surface of a semibounded EA AFM (lkz, nkz, k 2 xz) in the elastoex-

change limit: (a) o2
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2
0 � o2

me < o2 < 2o2
me � o2

0,

and (c) o2 > 2o2
me � o2

0.

vg

vgI

III k?

kk b

vg
III

I

k?

kk a

vg

III

I

k?

kk d

vg

III

I

k?

kk c

Figure 12. Frequency dependence of the sections of the surface of

refraction in the case of the incidence of a bulk SV wave �k 2 xz� from
an elastically isotropic nonmagnetic medium (upper half-space, dashed

line) on the surface of a semibounded 1D MPC: (a) 0 < �c55�o�5 m;
(b) ÿ�l� m� < �c55�o� < 0; (c) second inequality in Eqn (5.15), and

(d) 0 < �c55�o� � m.
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example, we will consider a plate of an EA AFM (in the
equilibrium state, with lkz and jmj � 0), whose spectrum of
elastoexchange excitations was discussed in Section 3.3. The
results of calculations reveal that in the elastostatic approx-
imation (3.1), with allowance made for the magnetoelastic
and inhomogeneous exchange interactions in an unbounded
EAAFM, the shape of the section of the correspondingWVS
by the sagittal xz plane for s-type EESWs is determined by
equation (5.16), whereas for p-type EESWs, it is determined
by the following expression:

c 2mk
2 � o2 ÿ o2

0 ÿ o2
me

�
1ÿ s 2t

s 2l

�
sin2 2y : �5:19�

The structure of these curves depending on frequency is
illustrated in Figs 13 and 14.

In the nonexchange approximation �cm ! 0�, the WVS
sections of both bulk s- and p-type ESSWs in the k space,
which are described by relationships (5.16) and (5.19), will
represent two [in the case of an s-type wave (5.16)] or four [in
the case of a p-type wave (5.19)] straight lines that intersect at
the origin (see Figs 11 and 12b, respectively). It is known that
the normal to the surface of refraction (WVS) coincides with
the direction of the group velocity of the wave [59, 123]. In this
regard, it can be expected that the investigation of the local
geometry of the section of the isofrequency surface [expres-
sions (5.16), (5.19)] by the sagittal plane will make it possible
to decide which type of wave (direct or reverse) the portion of
the dispersion curve of the corresponding bulk wave in the
plate refers to, since any point of sections (5.16) and (5.19) will
be described by two numbers from the following set
characterizing our bulk wave: o, n, d, and k? (in choosing
two numbers, the remaining two should be considered to be
given).

A comparison of relationships (5.16) and (5.19) [both in
the nonexchange approximation �cm ! 0� and with allow-
ance made for the inhomogeneous exchange interaction] with
the corresponding dispersion relations for the elastostatic or
elastoexchange bulk s- or p-type spin-wave excitations
propagating along an AFM plate (see Sections 3.1, 3.3)
allows the following conclusions.

As an example, let us consider the case of bulk s-type
ESSWs and EESWs [see relationships (3.4), (3.5), Figs 1a, b;
and relationships (3.30), (3.33), Figs 7a, b, respectively] and
section (5.16) by the sagittal xz plane (see Fig. 13).

If the projection of the group velocity onto the interface
between the media is negative for a given o � const and the
surface of refraction (5.16) at the point of intersection of this
surface with the straight line k? � const, then a bulk ESSW
with a mode number n, which propagates along a film of
thickness d in the k?=jk?j direction, will be a reverse wave
[see, e.g., relationships (3.5), (3.33)]. If this projection is
positive, the corresponding bulk wave propagating along the
plate in the k?=jk?j direction will be a direct wave [see, e.g.,
relationships (3.4), (3.30)]. Thus, just as in the case of bulk
polaritons, the negative refraction and the formation of a
reverse wave are accompanying effects. If at a given
o � const the straight line k? � const intersects the curve
determining the section of the WVS by the sagittal plane
several times [two times in the case of section (5.16)], this
means that in this magnetoacoustic configuration the
necessary conditions for the realization of crossover between
the dispersion curves belonging to the modes of the spectrum
of bulk waves with the same polarization that propagate
along the plate in the k?=jk?j direction exist. The mode
numbers correspond to the ordinates of the points of
intersection of the straight line k? � const with the section
(5.16).

In the section of the WVS by the sagittal plane, the
existence of points at which qo=qk? � 0 for some k? 6� 0
(the normal to the surface is orthogonal to the interface
between the media) corresponds to the case where, in the
dispersion curve of themodewith a number n belonging to the
spectrum of bulk oscillations traveling along the surface of a
film of thickness 2d in the k?=jk?j direction, there is an
extremum at this value of the wave number k?. Whether this
point is a maximum or a minimum depends on whether the
Gaussian curvature of theWVS section of this type of normal
wave is negative or positive, respectively.

The validity of this approach is retained in the case of bulk
p-type ESSWs and EESWs as well [see relationships (3.8),
Fig. 1c and relationships (3.36), Fig. 7c, respectively, and also
the WVS section (5.19) by the sagittal xz plane in Fig. 14].
Notice that the above-mentioned linkage between the local
symmetry of the WVS section and the structure of the
spectrum of both surface and bulk normal modes remains
valid for waves of other physical natures, too [129±132].

Up to now, when considering the relation between the
shape of the WVS and the magnetoelastic dynamics of a
bounded magnet by the example of a plate of an EA AFM in
the collinear phase, we have restricted ourselves to an analysis
of the effects connected with the topology of the section of the
WVS with a given polarization of spin (elastic) oscillations.
But, as follows from expressions (5.16) and (5.19), already in
the unbounded EA AFM a closed line can exist, along which
the above-mentioned wave vector surfaces corresponding to
different polarizations of normal oscillations intersect. Each
point of such a line determines some special direction in the
k space, along which any spin wave with a frequency
o � const has one and the same phase velocity, irrespective
of the polarization. If the polarization of the wave in a plane
with the normal along such a special direction describes an
elliptic curve, the group velocity of the spin wave will
determine a conical surface with an apex lying at the point
of the intersection of the surfaces from Eqns (5.16) and (5.19)
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Figure 14. Frequency dependence of the sections of the surface of

refraction in the case of the incidence of a bulk SV wave from an

elastically isotropic nonmagnetic medium (upper half-space, dashed line)

on the surface of a semibounded EA AFM (lkz, nkz, k 2 xz) in the

elastoexchange limit �~o2
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[133]. In this case, the section of the WVS by the plane in
which the easy axis lies is shown in Fig. 15a.

Analogous special directions of the propagation of
normal oscillations are well known in the acoustics (optics)
of anisotropic mediaÐ they represent such directions of the
wave normal n � k=jkj, along which two normal waves
propagate with coincident phase velocities [59, 134±136].
These directions of n are called acoustic (optical) axes [AAs
(OAs)], respectively. The main physical cause of the existence
of AAs (OAs) is the anisotropy of acoustic (optical) proper-
ties of crystals, which induces the anisotropy of the dispersion
law of the corresponding normal oscillations depending on
their polarization and propagation direction. As to magnetic
oscillations, the analogous effects upon the propagation of
spin waves have never been studied to date. In the case under
consideration, the physical factor responsible for the appear-
ance of such special directions of propagation of normal
elastoexchange waves is the indirect spin±spin exchange
through the long-range field of quasistatic magnetoelastic
deformations, which leads to the removal of the degeneracy of
the spectrum of spin oscillations in the EA AFM for virtually
all directions of propagation in the k space, except for the
above-indicated magnetic axes (they can also be called the
binormals of spin waves).

If the sagittal plane contains such a magnetic axis (spin-
wave binormal), it is just in the case of a magnetic plate with
the above magnetoacoustic configuration that the discussed
type of inhomogeneous spin±spin resonance induced by the
phonon mechanism of the indirect spin±spin interaction
under consideration will be observed. Notice that the
existence of orthorhombic anisotropy can substantially
affect the character of the orientation of the spin wave
binormals in the k space (see Figs 15b, c). In particular, if
the sagittal plane is the xz plane, the existence of a hard
y-axis will lead to the formation of an additional binormal of
spin waves in this sagittal plane, which corresponds to the
formation of an additional point of an inhomogeneous spin±

spin resonance between s- and p-type ESSWs (and EESWs),
whose existence was discussed at the end of Section 3.3.2 (see
also Fig. 4).

As is well known, the optical and acoustic axes (optical
and acoustic binormals) are related to a whole class of
polarization effects [e.g., optical or acoustic internal conical
refraction (ICR)] which are undoubtedly of practical interest.
Correspondingly, in the case under consideration, the
phononic mechanism of indirect spin±spin interaction can
induce the spin-wave internal conical refraction effect in the
EA AFM [133]. In addition, upon the propagation of bulk
magnetoelastic waves along the spin-wave binormal tangent
to the surface of themagnet under the conditions of spin-wave
ICR, the possibility of the formation of additional polariza-
tion anomalies (analogous to those considered in paper [137]
for the conditions of an acoustic ICR) appears.

6. Conclusions

It follows from the results presented in this review that if a
magnetic material possesses properties necessary for the
realization of magnetoacoustic resonance, there exists for it
a certain critical dimension d� of the magnetic sample that
determines the changeover of the behavior of the resonance
characteristics of the magnet: for the dimensions d of the
magnetic sample that are much less than d� �d5 d�� the
resonance characteristics of the magnet can change qualita-
tively, compared to those for a macroscopic sample �d4 d��.
The physical factor responsible for this effect is the appear-
ance in such a bounded magnet of an indirect spin±spin
interaction through the long-range field of quasistatic
magnetoelastic deformations. As a consequence, in such a
bounded magnet there arises a new, special class of propagat-
ing nonexchange spin excitationsÐelastostatic spin waves
(the acoustic counterpart of well-known MSWsÐ slow
electromagnetic waves in magnets).

These excitations can be resonantly induced by an
external elastic field acting on the magnetic plate (magnetic
switching) whose thickness is far less than the length of an
acoustic wave with a given frequency. As a result, an
assemblage of such thin magnetic plates in a nonmagnetic
medium (in particular, magnetic photonic crystals) can be
considered to be a special type of acoustic metamaterial in
which the local resonances have a spin-wave nature. The
characteristics of nonexchange spin-wave excitations of this
type (both bulk and surface), in contrast to the characteristics
of MSWs, are mainly determined by the elastic and
magnetoelastic properties of the magnet. Therefore, the
presence of a nonmagnetic coating (or substrate) in the case
of acoustically continuous contact between the magnetic and
nonmagnetic media makes it possible to substantially affect
the dispersion properties of both nonexchange surface and
bulk ESSWs that are quasihomogeneous over the thickness of
the magnetic plate.

The simultaneous allowance for some other earlier known
mechanisms (first and foremost exchange and magnetodi-
pole), apart from elastostatic ones, of the formation of the
dispersion of spin oscillations in a bounded magnet leads to a
number of additional anomalies in both the bulk and surface
spin-wave dynamics of such bounded magnetic media. In
monograph [78], the physics of MSWs is considered to be
spin-wave electrodynamics; the results discussed in this
review make it possible to regard the physics of ESSWs as
spin-wave acoustics of bounded magnetic structures.
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Figure 15. Elastoexchange mechanism of the formation of binormals of

spin waves in an orthorhombic AFM (2.2) at lkz, kk kz �b1 < 0�:
(a) b2 � 0, k? 2 xy; (b) b1 < b2 < 0, k? � kx, and (c) b2 > 0, k? � kx.

The dashed line in (a) delineates the shape of the sections of the internal

cavity of a two-cavity WVS (figure of rotation about the z-axis) by the

coordinate planes.
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Going beyond the framework of elastostatic approxima-
tion (the employment of the total equations of the mechanics
of continua, instead of their elastostatic variant, for describ-
ing the dynamics of the elastic subsystem of a magnet)
corresponds to the allowance for the acoustic delay effects.
This permits us to indicate a number of new localization
mechanisms of shear elastic waves, both near the mechani-
cally free surface of the magnet and near the acoustically
continuous interface between the magnetic and nonmagnetic
media.

Of undoubted interest can also be the linkage between the
local geometry of the wave vector surface (WVS) of normal
magnetoelastic oscillations and the specific features of the
refraction and propagation of the waves of this type in
bounded magnetic media. Notice that a number of problems
concerning the relation between the local geometry of the
wave vector surfaces of normal elastic waves and the
propagation of acoustic waves in nonmagnetic spatially
periodic structures have been discussed in review [138].

A significant part of the above effects (related to s-type
elastostatic spin waves) represent acoustic analogs of well-
known polariton effects in the dynamics of composite
materials, including not only slow surface and bulk electro-
magnetic waves (MSWs), inhomogeneous spin±spin reso-
nance, and dipole-exchange spin waves, but also exciton-
type surface polaritons, the negative and anomalous refrac-
tion effects, the enhancement of evanescent waves, reflection-
less transmission, acoustic analogs of the FroÈ hlich mode,
Otto and Kretschmann configurations, binormals of spin
waves, and so forth.

As to the analysis in the elastostatic limit (3.40) of the
dynamics of one-dimensional MPCs without the assumption
about their fine-layered structure, the corresponding calcula-
tion in terms of the T-matrix method [139±142], just as in the
case of MSWs [143±145], leads to quite unwieldy relation-
ships even in a nonexchange approximation. However, if
following the approach developed in paper [146] for an
analysis of the band structure of the MSW spectra in one-
dimensional MPCs, it can be stated that the explicit expres-
sions found in Section 3 for the spectra of bulk elastostatic
[see Eqns (3.4), (3.5), (3.8)] and elastoexchange [see
Eqns (3.30), (3.33), (3.36)] spin waves determine [in the
elastostatic approximation (3.41) for corresponding magne-
toacoustic configurations] the band structure of the spectrum
of spin-wave excitations of the one-dimensional MPC of the
AFM±ideal-diamagnet type with very narrow allowed bands.
To ensure this, it is necessary that the interlayer elastic
boundary conditions only quite insignificantly differ from
those used in the calculations in Section 3. It should be noted
that in the same approach relationships (3.38) and (3.39)
determine for the same magnetoacoustic configurations the
band structure of the spectrum of magnetoelastic excitations
of the one-dimensional MPC of the AFM±ideal-diamagnet
type with very narrow allowed bands and with an arbitrary
relationship between the phase velocities of propagation of
spin and elastic waves.

On the whole, this review can be considered to be a
supplement to Maynard's review [147] devoted to the
discussion of acoustic analogs of some effects in condensed
state physics, and to a review by Lu et al. [148] concerning
nonmagnetic phononic crystals and acoustic metamaterials.

As follows from the results of calculations, all effects that
were discussed in this review are determined to a significant
extent by a concrete magnetoacoustic configuration which

substantially depends on external parameters. This permits us
to expect the possibility of smoothly governing the dynamic
characteristics of an acoustic metamaterial, including mag-
netic components of the above-mentioned characteristic
dimension.

Notice that the results given in this review were obtained
without allowance for the magnetodipole interaction, since,
as was noted in the Introduction, in the spectrum of low-
frequency spin-wave excitations of exchange-collinear anti-
ferromagnets the exchange-related weakening of the magne-
todipole interaction and exchange-induced enhancement of
the magnetoelastic interaction occur simultaneously. At the
same time, a rigorous theoretical description of the spin-wave
dynamics of real bounded magnets for d�4 d4 a should
simultaneously take into account the phononic, magnetodi-
pole, and inhomogeneous exchange mechanisms of the
formation of the dispersion of propagating spin waves.

In our opinion, in order to solve such a boundary-value
problem in the elastostatic limit (3.1), (3.41) under considera-
tion it is suitable to use an extension of the approach that was
developed earlier for an analysis of the effect of the
magnetodipole interaction on the spectrum of exchange
magnons in a thin ferromagnetic film (see, e.g., Ref. [149]).
Now, however, with allowance made for the electrodynamic
and elastic boundary conditions in the elastostatic limit, it is
necessary to exclude from consideration not only the
magnetostatic potential f but also the vector u of elastic
lattice displacements. Then, it is necessary to solve the
corresponding set of integro-differential equations for the
components of magnetization with only exchange boundary
conditions. The solution, as before, can be sought in the form
of an expansion in terms of the eigenfunctions of the exchange
boundary-value problem. In separate particular cases of the
combination of exchange elastic and electromagnetic bound-
ary conditions, such a problem admits an explicit solution, for
instance, when the following relationships are fulfilled
simultaneously:

q~l
qz
� 0 ; ~u � 0 ; Bz � 0 ; z � �d : �6:1�

Physically, this corresponds to an EAAFMplate of thickness
2d �lknkz�, on both surfaces of which the spins are
completely free and the very surfaces have a continuous
acoustic contact with an ideal superconductor. If the super-
conductor is muchmore rigid in its elastic characteristics than
the magnetic medium, this can approximately be described as
the attachment of both surfaces of the antiferromagnetic
plate. As a result, the spectrum of a bulk elastoexchange s-
type spin wave for the sagittal xz plane in the elastostatic limit
(3.40) with allowance for the magnetodipole and inhomoge-
neous exchange interactions takes on the form

O 2
n �

�
o2

0 � o2
me

k 2
?

k 2
? � p 2

1

� c 2m�k 2
? � p 2

1 �
��

1� 4p
d

k 2
?

k 2
? � p 2

1

�
;

p1 � pn
2d

; n � 1; 2; . . . :
�6:2�

As to the spectrum of an elastoexchange p-type spin wave
with u 2 xz (see Section 3), this wave is not magnetodipole-
active in the given magnetoacoustic configuration.

Thus, it can be said that the relationships for the spectrum
of elastoexchange bulk spin waves represent a zero-th
approximation in the small parameter 4p=d5 1. Since the
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influence of the magnetodipole interaction on the dispersion
characteristics of spin-wave excitations can be substantial
only in the long-wavelength range, it can easily be shown that
the magnetodipole mechanism of the indirect spin±spin
interaction can be efficient, most of all, in a bounded
compensated low-temperature AFM for bulk magnetization
waves that are quasihomogeneous over the thickness of the
magnetic plate residing in a vacuum and on both surfaces of
which the spins are fully free. If both surfaces of the plate have
continuous acoustic contact with an ideal diamagnet, then the
dispersion properties of bulk spin oscillations that are
quasihomogeneous over the thickness of the magnetic plate
will be determined in the elastostatic limit (3.1) by the
phononic and inhomogeneous exchange mechanisms of the
indirect spin±spin interaction.

Muchmore substantial can be the influence ofmagnetodi-
pole interaction on the localization conditions of the shear
elastic wave near a mechanically free surface of an easy-axis
nonpiezomagnetic antiferromagnet [150].

It can easily be shown that the phononic mechanism of the
indirect spin±spin interaction in the bounded magnets,
considered in this review, is also valid for the uncompensated
magnetic structures, e.g., in the case of a Parekh wave
propagating in the Voigt geometry along a mechanically free
EA-FM±vacuum interface [54, 151]. In this case, it is
necessary to perform a formal limiting transition 4p! 0 in
the relationships that describe the dispersion law and the
spatial distribution of the elastic displacement vector of the
surface shear SAW considered. An analysis of the relation-
ships obtained shows that the formation of a shear SAW on
the mechanically free boundary of a magnet, even without
allowance for the magnetodipole interaction, occurs because
the magnetic medium studied possesses acoustic activity.

Thus, the rigorous allowance for the above-discussed
phononic mechanism of the spin±spin interaction in the case
of uncompensated magnetic structures leads to a whole
number of additional effects in the dynamics of bulk and
surface magnetoelastic excitations already in the elastostatic
approximation both by itself and with simultaneous regard
for the magnetodipole and inhomogeneous exchange
mechanisms of the formation of the dispersion of propagat-
ing spin waves [87, 152]. However, the discussion of these
effects is beyond the scope of this review.

It should also be noted that, according to the performed
investigations of the role of phonons in semiconducting
nanostructures (see monograph [153]), the description of the
spectrum of acoustic phonons in terms of the continuum
model remains valid even in the case of nanoparticles. This
permits us to hope that the elastostatic mechanism of the
indirect spin±spin interaction that is discussed in this review
can prove to be efficient also in the case of other magnetic
heterostructures (see also paper [154]). Notice that the
elastostatic mechanism of the formation of an additional
class of nonexchange spin waves in bounded magnets can be
considered as a particular case of the manifestation of the
non-Heisenberg spin±spin interaction in amagnetic sample of
finite dimensions, discussed in Nagaev's monograph [155].

In our opinion, of undoubted interest is the development
of a similar approach in the following areas:

(1) analysis of the dynamic properties of composite
multiferroics representing structures of various connectivity
and consisting of ferromagnetic and piezoelectric or ferro-
electric components in which the determining role belongs to
the elastic system [156, 157];

(2) searching in magnetic heterostructures induced by
striction for bulk and surface spatially inhomogeneous states
like those discussed in Refs [158±161] on the basis of an
analysis of the spectrum of magnetoelastic excitations;

(3) allowance for the existence of a mismatch in the elastic
parameters of the contacting media in the dynamics of
composite magnetic media [162];

(4) analysis (with allowance for the elastic system) of the
dynamics of magnetic heterostructures differing in the
connectivity, conductivity, and shape of inclusions [163];

(5) studying additional features under the conditions of
the formation and propagation of elastoexchange-type spin-
wave excitations in bounded low-temperature antiferromag-
nets induced by the symmetry of the magnetic structure (first
and foremost, those caused by piezomagnetic or magneto-
electric interactions [164±166];

(6) studying the manifestation of nonlinear magnetoa-
coustic effects (the generation of higher harmonics, formation
of soliton regimes of the propagation of surface and bulk
waves) in such materials [167];

(7) allowance made for the possibility of a qualitative
rearrangement of the character of the propagation and
localization of magnetoelastic waves in composite structures
under the dissipation effect [120, 168].

It should be noted that a major part of the above acoustic
counterparts of polariton effects in bounded magnets can, in
principle, be also realized in other dipole-active media with a
long-range order, e.g., in ferroelectrics, whose parameters, as
is known [169], under certain conditions permit the appear-
ance of an effect analogous to magnetoacoustic resonance.
More specifically, as follows from monograph [170], it is
precisely the elastostatic mechanism that determines the
specific features of the dynamics of the order parameter
upon phase transitions with a linear striction. Consequently,
a part of the above-mentioned effects can also be observed in
the bounded samples of materials in the vicinity of a given
phase transition.

Most effects considered in this review require experimen-
tal verification. The materials that are promising in this field
are cubic or easy-plane magnetic low-temperature antiferro-
magnets, various magnetic heterostructures, in particular,
compensated antiferromagnetic structures such as one-
dimensional magnetic photonic crystals based on ferro-
ferrimagnetic layers of magnets with an antiferromagnetic
mechanism of interlayer ordering.

On the whole, the use of the above-discussed acoustic
analogs of polariton effects in the production of acoustic
magnetic metamaterials can substantially widen and vary the
functional opportunities of this promising class of composite
media.
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