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Abstract. Quantum restrictions on the measurability of an
electromagnetic field strength and their relevance to the en-
ergy —time uncertainty relation are considered. The minimum
errors in measuring electromagnetic field strengths, as they
were estimated by the author (1988) in the framework of the
phenomenological method of restricted path integral (RPI), are
compared with the analogous estimates found by Landau and
Peierls (1931) and by Bohr and Rosenfeld (1933) with the help
of certain measurement setups. RPI-based restrictions, includ-
ing those of Landau and Peierls as a special case, hold for any
measuring schemes meeting the strict definition of measure-
ment. Their fundamental nature is confirmed by the fact that
their associated field detectability condition has the form of the
energy — time uncertainty relation. The weaker restrictions sug-
gested by Bohr and Rosenfeld rely on an extended definition of
measurement. The energy — time uncertainty relation, which is
the condition for the electromagnetic field to be detectable, is
applied to the analysis of how the near-field scanning micro-
scope works.

1. Introduction

The most familiar difference between quantum mechanics
and classical mechanics resides in the Heisenberg relation
AqAp > /2, which imposes limitations on the measurability
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of the position and momentum of an elementary particle.!
When applied to photons, this relation imposes quantum
limitations on the measurability of some electromagnetic field
characteristics and on the measurability limits of those
facilities (for instance, optical microscopes) in which photons
are used as microsensors of the measuring equipment.

In some cases, however, attempts to apply the Heisenberg
relation to the quantum analysis of measurements involving
electromagnetic or other fields do not meet with success. In
particular, this is the case when measurements are made of the
field strength and the dimension of the measurement region
and the measurement time are extremely small. Other
approaches have been proposed for the quantum analysis of
such measurements.

In 1931, Landau and Peierls [3] proposed formulas for the
minimal error in measuring electromagnetic field strength,
which, in the authors’ view, were absolute in the sense that
they might not be overcome for the same geometrical
characteristics of the spatio-temporal measurement domain.
In 1933, employing a different measuring scheme, Bohr and
Rosenfeld [4] derived other formulas which yielded milder
limitations on the measurability of the field strength.
According to these formulas, the measurement error may be
made arbitrarily small by increasing the amount of charges
and currents of the probe bodies. The absolute character of
the limitations obtained by Landau and Peierls (LP) was
thereby questioned by Bohr and Rosenfeld (BR).

In 1988, the author of the present paper considered
quantum limitations on the measurability of electromagnetic
field strengths using the restricted path integral (RPI) method
and derived formulas which were consistent with the LP

! This relation always holds true for the uncertainties of the coordinate and
the momentum as characteristics of the particle state; however, when it is
interpreted as the quantum limitation on a measurement (when the
coordinate is measured accurate to Ag, the momentum acquires an
uncertainty 7i/2Ap, and vice versa), it may be violated under a specially
selected measurement mode [1, 2].
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formulas and generalized them [5, 6]. The phenomenological
RPI method does not rely on some specific measuring scheme,
and the conclusions drawn from this method are therefore
true for any field strength measurements that correspond to
the definition of measurement adopted under this approach.
It turned out that the minimal errors in field strength
measurements derived by the RPI method depend only on
the volume of the spatio-temporal domain of the spacetime in
which the measurement is made. In this sense, the resultant
limitations on measurability are absolute.

There emerges an apparent contradiction between the BR
formulas, on the one hand, and, on the other hand, the LP
formulas and those which were obtained by the author using
the RPI method. The scientific community supposedly
adopted the conclusion made by Bohr and Rosenfeld and
thought that the conclusions made by Landau and Peierls
were erroneous. In our view, there is no error in the paper by
LP as regards the limits of electromagnetic field measur-
ability.? Different estimates of the limitations on field
measurability, which have been obtained in a variety of
papers, emerge because the definitions of the measurement
notion itself are different in these papers.

The rigorous definition of measurement, which underlies
the RPI method, was also adopted in the measurement model
applied in the LP paper. This definition implies that the
quantity being measured does not go beyond the limits of the
measurement error anywhere in the spatio-temporal measure-
ment domain. In the paper by BR, use was made of the broad
interpretation of the very notion of measurement, which
implies the possibility of significant perturbation of the
measurable quantity in the measurement domain, provided
that these perturbations in a sense compensate for each other
in such a way that they do not make a large contribution to the
value of this quantity averaged over the measurement domain.
By taking advantage of such definition of measurement, Bohr
and Rosenfeld derived limitations on the field measurability,
which turned out to be milder than those derived by Landau
and Peierls and those obtained later by the RPI method.
Furthermore, the limitations on the field measurability
obtained by Bohr and Rosenfeld are not inherently absolute
(may be made arbitrarily mild by selecting the probe bodies).

As will be shown in the present paper, there is one more
indication that the limitations obtained by LP and borne out
(and generalized) by the author are inherently fundamental.
The point is that the formulas for the minimal field strength
measurement error derived in these works are linked to the
energy—time uncertainty relation in a special way. Specifi-
cally, the expression for the minimal detectable field
strengths, which follows from these formulas, turns out to
be equivalent to the energy—time uncertainty relation.

By way of illustration, the energy—time uncertainty
relation is employed to analyze the measurement procedure
realized in the so-called near-field scanning microscope
(NFSM). Unlike an ordinary optical microscope, the resolu-
tion of an NFSM is better than that imposed by the
diffraction limit, i.e., the uncertainty in determining the
position in this microscope is smaller than the wavelength of
light utilized therein. Of significance in the NFSM are the
processes occurring in the near-field zone, i.e., in the region
around the probe with dimensions much smaller than the

21t is another matter that a statement contained in the paper by LP turned
out to be incorrect, namely the statement that the relativistic general-
ization of the quantum theory is impossible.

wavelength. It makes no sense to represent the field in this
zone as an assemblage of photons, and conventional reason-
ing involving the application of the Heisenberg uncertainty
relation to photons cannot be employed here to analyze the
processes occurring in this zone. Instead, we may represent
the process in the NFSM as the detection of the near field and
apply to this process the limitations on electromagnetic field
detectability.

2. Restricted path integral (RPI) method

The phenomenological restricted path integral (RPI) method
introduced by the author of Ref. [7], as applied to the problem
of quantum field measurability, is based on the following
simple considerations.

The dynamic properties of a free quantum field in a given
spatio-temporal domain are described by the integral of the
Feynman amplitude exp [(i/%) S(o)] over all possible field
configurations ¢ in this domain. The Feynman amplitude, in
turn, depends on the field configuration ¢ and is defined as the
imaginary exponential of the classical action S(o) of this field
for its given configuration. This integral over the field
configurations is analogous to the Feynman path integral in
quantum mechanics and is quite often also referred to as the
path integral.

The integral over all field configurations ¢ in a given spatio-
temporal domain Q defines the field dynamics only when the
information about the true field configuration in this domain
is fundamentally inaccessible. But when the field in the Q
domain is measured, which yields certain information about
the state of this field in the given domain, the integral should be
limited to the set ¥ of such configurations ¢ which are
compatible with the measurement result.

For instance, when the field strength is measured in the Q
domain, integration should be performed only over such
configurations which are characterized by the strength values
obtained in the measurement. In view of the finite measure-
ment accuracy, the measurement result is characterized not by
some specific strength value but by some interval of strength
values.

In the general case, such a field strength interval should be
specified at each point of the Q domain. Only those
configurations are then included in the restricted path
integral, which are characterized at each point by the
strength falling into the specified interval. For simplicity, it
may be assumed that the interval of strength values is the
same at each point of the Q domain. For a relatively small
domain Q, this simplification is quite sufficient for obtaining
estimates that are correct to an order of magnitude.

Therefore, the result of field measurement in the Q domain
is described by some family X of field configurations ¢ in this
domain. By definition, X is the set of field configurations which
are ‘compatible with the measurement result’. Under the
conditions when the field is measured, its dynamics are
described by an integral /(X) which is similar to the Feynman
path integral, with integration taken not over all field
configurations but only over the limited set £ of configura-
tions ¢. This integral is termed the restricted path integral
(RPI).?

3 1t is technically more convenient and more realistic (but equivalent for
obtaining order-of-magnitude estimates) to define the restricted path
integral by introducing under the Feynman path integral sign a cut-off
functional which rapidly decreases beyond the X set. For the description of
this technique and other details of RPI application, see the monograph [7].
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The restricted path integral makes it possible not only to
describe the field dynamics under measurement conditions,
but also to find the probability distributions for different field
measurement results by estimating the square of the modulus,
P(2) = | I(Z)?, of each of the integrals I(X£). Most probable
are those £ measurement results for which the values of
| I(Z)|* are highest. When | /()| is much smaller than the
peak values, the corresponding > measurement result appears
with a very low probability.

This brings up the question: How broad or how narrow is
the set of those X measurement results for which the
probability of their occurrence is high enough? The answer
to this question gives an estimate for the measurement error:
the narrower the indicated set, the more accurate the
measurement defines field configuration, i.e., the smaller the
uncertainty of measurements.

The restricted path integral method [95, 6, 8, 9] shows that
the minimal possible uncertainty of strength measurement for
a quantum electromagnetic field depends on the 4-dimen-
sional volume of the spatio-temporal measurement domain
Q. By the order of magnitude, this minimal uncertainty is
estimated as

h
AEmin ~ ) 1
- (1)

where 7 is the time scale of the spatio-temporal domain Q in
which the measurement is made, and v is the volume of its
spatial section. A similar formula applies to magnetic fields,
with the substitution of H for E:

h
Ao ~ \ﬁ @)

Formulas (1), (2) are consistent with the limitation on
electromagnetic field measurability found by Landau and
Peierls [3]. However, Landau and Peierls implied a specific
measuring scheme, while formulas (1), (2) were derived by the
author employing the RPI method without recourse to some
specific measuring scheme, and therefore their applicability
has been substantiated in a broader range of conditions (for
more details about this, see Section 4).

3. Energy—time uncertainty relation

In Section 2, we considered quantum limitations on the
measurability of electromagnetic field strength and derived
expressions (1), (2) for the minimal uncertainty of field
strength measurements. From these formulas we now move
on to the formula for the minimal detectable magnitude of
strength.

An electric field is detectable, or observable, when the
magnitude of its strength E is higher than the minimal
uncertainty AE.;, of field measurements dictated by the
quantum nature of the field itself, the same applying to a
magnetic field. Hence, the condition for electromagnetic field
observability may be written in the form of inequalities

EZAEminv HZAHmin- (3)

Upon substitution of expressions (1), (2) for the minimal
uncertainty of field strength measurement into formula (3),
we obtain the minimal magnitude of the field strength for
which this field may be observed in the spatio-temporal
domain of volume zv. By denoting the lowest observable

strengths as Fopsery, Hobserv> fOT a field measurability condition
we obtain

[ h h
Ez Eobscrv ~ E P Hz Hobscrv ~A T (4)

v

Taking the squares of the expressions for Eqgpsery, Hobservs
we arrive (once again neglecting a factor on the order of unity)
at

h
(EZ + HZ) e (E(fbserv + H(fbserv) ~ (5)

™

But quantity E? 4+ H? is, by an order of magnitude, equal to
the energy density of the electromagnetic field. By multiplying
this expression by the volume v of the measurement domain,
we therefore obtain the field energy £ in this domain. As a
result, relation (5) takes on the form

h
gzgobserv ~ ; 5 (6)

where Eopsery 18 the lowest field energy at which this field is
observable, provided the observation time (the time dimen-
sion of the spatio-temporal measurement domain) equals .

Therefore, from expressions (1) and (2) for the lowest
measurable field strengths it is easy to derive inequality (6),
which coincides in form with one of the forms of the energy—
time uncertainty relation (see Ref. [10]). This is testimony to
the fundamental nature of formulas (1), (2) found with the aid
of RPIs. We shall additionally consider the status of these
formulas in Section 4, when comparing them, on the one
hand, with similar (though less general) formulas derived in
the paper by LP and, on the other hand, with quite a different
estimate of the minimal uncertainties for field strength
measurements, derived in the paper by BR.

4. Landau—Peierls and Bohr—Rosenfeld formulas:
what is called a measurement?

Let us compare the limitations (1), (2) on the measurability of
electromagnetic field strengths, which were derived in the
framework of the RPI method, with the results of the LP [3]
and BR [4] papers. This comparison elucidates the status of
the formulas derived in these studies (see also Ref. [8]).

4.1 Limitations on field measurability and measurement
models

In work that dates back to 1931 [3], Landau and Peierls
derived formulas for the minimal uncertainties of measure-
ments of electric and magnetic field strengths in the frame-
work of simple models of their measurement. We give these
formulas here and demonstrate that they are a special case of
formulas (1), (2), which were later derived [5, 6] by the
phenomenological RPI method (see Section 2).

For a model of electric field strength measurement,
Landau and Peierls adopted the measurement of accelera-
tion which a probe charge acquires under the action of the
field. The uncertainty of measurement comprised the inten-
sity of the field radiated by this charge due to its acceleration.
The minimal uncertainty of electric field strength measure-
ment turned out, according to LP, to be equal to

| h
AEmin LP = 6’37 . (7)

Expression (7) results from the general formula (1) by
substituting v = 4¢3, £ =ct (c is the speed of light). This
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coincidence is not accidental; it is precisely these measure-
ment parameters that should be substituted into the general
formula to move to the measuring scheme adopted by LP.

Indeed, the radiation of accelerated probe charge induces
an intensity perturbation, and the intensity of the radiation
field, according to the ideology adopted by LP, should be
included in the uncertainty of measurement. During the
measurement time 7, the radiation propagates through a
distance on the order of ¢t. Hence, a domain £ ~ ¢t in size
should be considered to be the measurement domain, and this
domain is on the order of v ~ £3 in volume.

Apart from the indicated procedure of electric field
measurement, Landau and Peierls considered the measure-
ment of a magnetic field with the aid of a magnetic needle and
arrived at the following formula for the minimal uncertainty
of magnetic field measurement:*

/]
AHyin 1p = Vosrr (8)

This formula, like the previous one, is a special case of
formula (2) for v = £3, ¢ = cz.

Unlike the paper by LP, no specific intensity measuring
scheme is implied in the RPI-based approach, and the
parameters 7 and v, which enter into formulas (1) and (2),
are independent of each other. In particular, these formulas
do not imply that the dimension of the measurement domain,
which is on the order of £ ~ v!/3, equals ct.

In response to the work by Landau and Peierls, in 1933
Bohr and Rosenfeld [4] considered another class of measuring
models and obtained alternative formulas for the minimal
uncertainty of field strength measurements. Let us discuss the
difference between BR’s approach and that of LP.

It was assumed in BR’s paper that electric and magnetic
field measurements make use of a system of probe bodies with
large masses (so that their displacements are small) and high
charges and currents (for measuring electric and magnetic
fields, respectively). The field strength averaged over the
domain occupied by this system of bodies is estimated from
the motion of these probe bodies, resulting from the action of
the field. To eliminate the contribution from the intrinsic field
of the probe bodies to the average field under measurement,
advantage is taken of another system of closely located bodies
with charges and currents having opposite signs. However,
the positions of the bodies which make up the second,
auxiliary, system are fixed, i.e., remain invariable during
measurements.

An analysis of the measurement made with the aid of this
measuring scheme led to other formulas for the minimal
uncertainties of field strength measurements than in the
paper by LP. For an electric field (we do not consider a
magnetic field explicitly, but the conclusions are the same in
this case), this is the following:

h
AEmin BR ™ @ 5 (9)

where Q is the total electric charge of the system of probe
bodies, and / is the dimension of the domain in which they are
located.

4 When the electric and magnetic fields are simultaneously measured,
according to LP there emerges an additional inequality
AEAH > fic/(ct)*(Al)*, where Al is the distance between the probe
charge and the magnetic needle. This inequality does not introduce
additional limitations when A/ > ct.

Although Landau and Peierls considered a specific
measuring scheme, they believed that their formula (7)
gives a limitation of measurability, which may not be
overcome by way of selection of probe bodies. The
fundamental difference in formula (9) obtained by Bohr
and Rosenfeld consists in the fact that it permits making the
measurement error arbitrarily small by increasing the charge
Q of the system of probe bodies. On the face of it, the result
of Landau and Peierls concerning the existence of absolute
(independent of the measurement model) limitations on the
measurability of field strength may seem to be thereby
disproved.

The RPI method is phenomenological and yields a
limitation (1) on the field measurability, which is indepen-
dent of the measurement model selected (see Section 2). The
limitations obtained by this method should therefore be
absolute (true for any measuring scheme for a given volume
of the measurement domain). As shown above, formula (7)
from the LP paper constitutes a special case of the general
formula (1) obtained by the RPI method. It remains yet
unclear why do formulas (1) and (7) disagree with formula (9)
derived in the work by BR?

BR’s inferences about the minimal uncertainty of mea-
surement were different from the results of LP’s work (and
from the results obtained with the RPI method) because Bohr
and Rosenfeld adopted a different definition for the very
notion of measurement.

The same rigorous definition of measurement was
implicitly adopted in the LP work, which explicitly
appeared in the RPI method. Limitations (1) and (2) hold
true for any measuring schemes corresponding to this
definition. Adopted in the BR paper, which polemicized
LP’s conclusions, was a less restrictive definition of measure-
ment, which naturally led to looser limitations on the field
measurability.

What is the difference between these definitions of
measurement?

4.2 What does it mean to measure the field strength?

Let us discuss the definition problem for the notion of
measurement by the example of electric field strength
measurement (see also Ref. [8]). We begin with the approach
relying on restricted path integrals (RPIs) and then compare it
with the LP and BR approaches.

When calculating the uncertainty of measurements by the
RPI method (see Section 2), integration is performed only
over those field configurations which are compatible with the
measurement result.

Let us assume that a measurement is made of the field
strength and the result is expressed as E + AE. In this case,
every configuration which participates in the integration
describes a field with a strength no lower than E — AE and
no higher than E + AE at each point of the spatio-temporal
measurement domain Q.

This signifies that the quantity under measurement (in this
case, the electric field strength) corresponds to the result
obtained in the measurement at each point of the measure-
ment domain and throughout the period of measurement.
Only physical processes of such a kind which satisfy this
requirement are termed measurements under the RPI-based
approach. This defines more precisely the very notion of
‘measurement’, as it is perceived under this approach.

The measurement thus defined does not move out the
value under measurement beyond the limits of the measure-
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ment error. This measurement may be referred to as non-
perturbative up to the measurement error.’

In the calculation performed by Landau and Peierls,
measurement is, in fact, understood in the same way.
Indeed, the field measurement in the LP study is made by
way of observation of how a charged probe body moves in
this field. In this case, the field induced by the probe charge is
taken into account when estimating the uncertainty of
measurement.® If the field strength measurement yields the
E + AE result, this signifies that the total field strength (with
the inclusion of how this strength is distorted due to the
presence of the probe charge) does not go beyond the limits of
the interval (E — AE, E+ AE) in the measurement domain
throughout the measurement period.

Therefore, the measurement result £ + AE found with the
aid of the procedure described in the LP paper sets the limits
in which the true electric field strength (with the inclusion of
all factors involved in the measurement procedure) remains
throughout the spatio-temporal domain Q wherein the
measurement takes place. This corresponds to the definition
of measurement adopted in the framework of the RPI
method.

Thus, both LP’s calculation and the phenomenological
RPI-based approach rely on the same definition of measure-
ment, which we referred to as a measurement which is
nonperturbative up to the measurement error. It therefore
comes as no surprise that the results of calculations of the
minimal possible uncertainty of measurement under these
two approaches, formulas (1), (2) and (7), (8), respectively, are
also consistent with each other. They express (to an order of
magnitude) limitations on the field measurability, which are
true for any measurement understood in the sense indicated
above. These limitations are absolute in the sense that the
uncertainty of measurement is defined by the parameters 7, v
of the measurement domain and may not be done zero for
given values of these parameters.

In the work by Bohr and Rosenfeld [4], use is made of a
less restrictive definition of measurement. According to this
definition, measurement is made of the field averaged over
some domain, while inside this domain the field may strongly
depart from the average value (these departures cancel out on
averaging). The existence of such departures is evident even
from the description of the system of probe bodies. In the
measuring scheme employed in BR’s paper, an opposite
charge with a fixed position is located alongside any probe
charge. Because the charges are large, a strong field emerges
between these two charges (the probe charge and the
compensating one). By the definition of the quantity under
measurement, this field is disregarded in the estimation of the
uncertainty of measurement and may go far beyond the limits
of this uncertainty.

Therefore, the result E + AE of the electric field strength
measurement in the scheme of Bohr and Rosenfeld should
indicate the average value of the field strength, but the true
field (prior to averaging) is nonuniform, with the difference
between the maximal and minimal values of the field strength

> Nonperturbative measurement, or more precisely quantum nondemoli-
tion measurement, is that which does not perturb altogether the quantity
under measurement but perturbs only the observable one which is
canonically conjugate to the quantity being measured [11].

¢ By lowering the charge value (for finite dimensions of the probe body) it
is possible to decrease the contribution of the Coulomb field, but the
radiation field has to be taken into account, because it is generated by the
charge acceleration employed to estimate the field intensity.

being far greater than the AE value, which is adopted as the
uncertainty of measurement.” No wonder that the minimal
uncertainty of measuring field strength, according to BR’s
formula (9), lowers with increasing charge of the system of
probe bodies: the field induced by this charge inside the
measurement domain, which rises with increasing charge, is
not included in the uncertainty of measurement.

Bohr and Rosenfeld [4] therefore admit of such ways of
field strength measurement that perturb this field more
strongly during the measurement than is supposed by the
uncertainty of measurement. This definition admits of a
substantially broader class of measuring schemes than does
the rigorous definition adopted under the RPI method and in
LP’s work. That is why the limitations obtained by Bohr and
Rosenfeld turned out to be looser. Furthermore, under this
definition it turned out that there is no absolute limitation at
all: by way of raising the charge of the system of probe bodies,
the measurement error (9) can be made arbitrarily small, even
when the spatio-temporal domain in which the measurement
is made is fixed.

The conclusion that there is no absolute limit on field
measurability, which is a matter of principle for the work by
Bohr and Rosenfeld, is true for their broad interpretation of
the notion of measurement, but is not true for the more
rigorous definition which necessarily emerges under the RPI
approach and is adopted in LP’s work. Under this definition
of the notion of measurement, the absolute limitations of the
field measurability are given by formulas (1), (2).

5. Field measurability and near-field scanning
microscope

In this section we shall consider a somewhat unusual example
of the application of the foregoing formulas for the quantum
limitations on the measurability of the electromagnetic field.
It will be shown that these formulas may be employed in the
analysis of one of the types of optical microscopes which
overcome the diffraction limit of resolution. The case in point
is the so-called near-field microscope.® This is a scanning
optical microscope which determines the positions of density
inhomogeneities on a plane with an error smaller than the
wavelength of light.

The positions of the substrate molecules in an NFSM are
localized due to the fact that the electromagnetic field
produced by the probe interacts with substrate molecules in
a domain of size £ smaller than the wavelength characteristic
of this field. As a result, the position of the molecules relative
to the probe is determined with a resolution £ < 4, which goes
beyond the diffraction limit. We shall analyze one of the types
of such microscopes using the energy-time uncertainty
relation for an electromagnetic field. To do this, the process
occurring in the NFSM, whose purpose is to measure the
positions of molecules, will be interpreted as the measurement
(detection) of the electromagnetic field produced by the
probe.

7Incidentally, substantiation of the measurement procedure in BR’s paper
(as regards the issue of how the systems of probe bodies and compensating
bodies interact with the field) relies heavily on the linearity of the
electromagnetic field (the field induced by two sources is equal to the
sum of the fields induced by each of these sources). For a nonlinear field
(for instance, a gravitational field), the question is much more compli-
cated.

8 Two terms are used in English: near-field scanning optical microscope
(NSOM) and near-field scanning microscope (NFSM).
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5.1 Microscope with an error smaller than the wavelength
of light

As is commonly known, the resolution ¢ of an ordinary
optical microscope is limited by values on the order of the
wavelength 1 of light used in it. This is attributed to photon
diffraction, which is in essence a consequence of the
Heisenberg uncertainty relation. On the face of it, for this
reason the wavelength 1 sets the absolute limit for the
resolution of a microscope which operates by light. How-
ever, this is not so, and at present there exist scanning optical
microscopes which offer an uncertainty of measurement
much smaller than the wavelength, ¢ < /. In such a micro-
scope, light is delivered to the subject under investigation
(a substrate) via a thin probe, which may be positioned near
any point of the substrate with the aid of a special mechanical
device. All surface points of the material under study are
investigated by scanning, i.e., by displacing the probe
sequentially along all these points.

One way to achieve a smaller measurement error than the
wavelength is evident and involves making the probe—
substrate spacing and the aperture of the light-feeding
channel much narrower than A. Such a microscope is
schematized in Fig. 1. The electromagnetic radiation ema-
nates from a probe of smaller-than-wavelength diameter,
penetrates through a relatively thin substrate, and is
recorded on its opposite side. The recorded radiation
intensity is proportional to the substrate density at the point
to which the probe was brought (alternatively, it is possible to
record the radiation that reflects from the substrate and re-
enters the probe). The resolution of a microscope so designed
is approximately equal to the aperture of the probe due to the
geometry of the whole structure.

There is another type of high-resolution optical micro-
scope with a probe in the form of a needle with a very sharp
tip. In lieu of the aperture, the crucial role in the operation of
such a microscope is played by the near field of the radiation
emanating from the probe. It is limited to a small domain
about the probe tip, which is smaller in dimension than the
radiation wavelength. In this domain, the field is still void of
its typical wave character.

In microscopes of this type, the radiation emanating from
the very narrow region at the probe tip excites substrate
molecules located near the probe tip, while the resultant
radiation of these molecules (fluorescence) is detected by a
photomultiplier (Fig. 2). The resolution of this microscope is
determined by the dimension £ of the ‘activation domain’
about the probe, which is well known to be shorter than the
wavelength / of its emanating radiation.

The processes occurring in microscopes of this type were
analyzed in a recent paper by I S Osad’ko [12]. He showed that
the molecules located in the near-field zone (at a shorter-than-

i
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Figure 1. Geometrical way of providing high microscope resolution: the
field transmitted through a thin substrate is detected; the resolution is
determined by the aperture.

VAN

Figure 2. The principle of NFSM operation: a sharpened probe and a very
small ‘activation domain’ in which the field intensity produced by the
probe suffices to excite molecules (this domain is hatched); the radiation of
substrate molecules in this domain is detected, and the NSOM resolution
is determined by its size ¢, which is much shorter than 4.

wavelength distance from the probe tip) are excited much
more strongly than the molecules in the far-field zone. That is
why the photomultiplier will detect the fluorescence of the
molecules located in the near-field zone and will ‘overlook’
the very weak fluorescence of the molecules residing in the
far-field zone, although the radiation emanating from the
probe tip spans all of them. This results in a resolution which
may be tens of times higher than in conventional optical
microscopes.

Thus, a qualitative answer to the question about the cause
of high NFSM resolution (which overcomes the diffraction
limit) is quite simple: an NFSM harnesses for a ‘probe’ the
near field, which is not wave type in character, unlike the far
field. Molecules are excited in the near-field zone, which is
shorter than 1 in size and where the ordinary notion that the
substrate molecules interact with separate electromagnetic
field quanta (photons) is inapplicable. This is the reason why
neither the Heisenberg relation nor the laws of wave optics
may be applied to analyze NFSMs.

Therefore, the reason for the high resolution of NFSMs is
clear. This brings up the question: Is it possible to analyze it
proceeding from general quantum laws like the uncertainty
relation?

We shall show that an analysis of this kind is possible if the
NFSM operation is considered as a field intensity measure-
ment effected by exciting a molecule residing in this field
rather than a molecule position measurement with the aid of
the field (as a part of the measuring device, its ‘microsensor’).

5.2 NFSM operation as field measurement

Since our intention is to analyze the quantum limitations on
the measurements occurring in an NFSM, we should turn our
attention to the quantum theory of measurements. To do this
requires specifying what precisely is subjected to measure-
ment in this case, and what is the character of this
measurement (what information results from this measure-
ment). Initially, we make use of the fact that in the NFSM,
like in any system wherein quantum measurements are made,
there is a certain symmetry between the system that measures
and the system subject to the measurement. For this reason,
the process occurring in the NFSM may be interpreted in two
ways: as the measurement (of the position) of substrate
molecules with the help of the field, and as the measurement
of field (intensity) with the help of the molecules. Using the
latter interpretation, we shall discuss the specific features of
the field measurement resulting in this way.
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5.2.1 System under measurement and measuring system. In an
NFSM there are two physical systems: the field and the
substrate molecule, the former being usually considered as a
part of the measuring instrument (sensor), and the latter as
the system under measurement. When reasoning in the
framework of the quantum theory of measurements, we
should consider both of these subsystems as quantum
systems.

The interaction between these subsystems, as it always is
in a quantum measurement, leads to the quantum correlation
(entanglement) of their states [13]. In this case, the situation is
symmetric relative to these two quantum systems, and with
equal right we may treat the molecule as the sensor of the
measuring system, and the field as the system under
measurement. By considering next the correlation of the
states of these two quantum systems with the state of the
macroscopic part of the instrument, we can say that the state
of the instrument is indicative of the state of each of the two
quantum systems.

We shall explain this with the aid of quite general formulas
employed in the quantum theory of measurements, without
referring in detail to the specific case of an NFSM as a
measuring instrument.

The states of the molecule and the field will be denoted by
the letters yy and ¢, respectively, and the state of the
macroscopic part of the instrument by the letter @ (with the
corresponding subscript on each of these letters). Then, the
final state (after measurement) of the compound system
consisting of all subsystems is described by the formula®

¥ =S 00, (10)

1
in which the two subsystems, { and ¢, enter symmetrically.
When interpreting this formula it is valid to say (i) that the
result of the measurement of system s due to its interaction
with sensor ¢ is expressed in state @;, or (ii) that the result of
the measurement of system ¢ due to its interaction with
sensor ¥ is expressed in state @;.

By applying this reasoning to the case at hand we can say
that the NFSM photomultiplier measures the parameters of
the substrate molecule due to its interaction with the field;
however, with equal right we may believe that it measures the
parameters of the field due to its interaction with the substrate
molecule. In truth, the parameters of the states of both
subsystems are measured, which are correlated with the
instrument as well as with each other.

This offers a fresh possibility for analyzing an NFSM as a
measuring instrument. Specifically, for this purpose we may
employ quantum limitations on the measurability of the
electromagnetic field and, in particular, the energy—time
uncertainty relation for the field.

5.2.2 What is measured in an NFSM, and how? To correctly
apply the general formulas for quantum limitations on
measurements, we must specify what is measured in an
NFSM, and how.

The main purpose of the optical microscope is to
determine the positions of substrate density nonuniformi-
ties. This is done by scanning the probe position and
observing the fluorescence of substrate molecules for each

9 We represent the set of measurement results as a discrete set, which
enables a more lucid representation of the structure of the state, and in
doing so does not change the heart of the matter.

position of the probe. The fluorescence intensity increases
with the number of molecules that experience excitation, i.e.,
with the number of molecules that find themselves in the
activation zone (the domain in which the intensity of the
electromagnetic field suffices to excite molecules). The
microscope resolution is equal to the dimension ¢ of this
zone which does not go beyond the near-field zone [12], so
that certainly ¢ < /. The fluorescence intensity depends on the
number of molecules that find themselves in the activation
zone, i.e., on the density of substrate substance in this zone.
Let us consider the same process from a different
standpoint. The observation of the fluorescence of substrate
molecules will be considered as a signal about the detection of
the electromagnetic field exciting these molecules. When the
fluorescence is observed, this signifies that the field has been
detected in the domain of size £. The parameters of the field, in
particular, its intensity amplitude E, are a priori known and
remain invariable (because the probe structure is known, as
are the conditions for radiation emission from the probe).
That is why the presence of fluorescence is the signal that this
field has been detected in the domain of size £ near the probe.
The question we shall discuss below is: Is this mode of
electromagnetic field observation at variance with quantum
limitations on the measurability of this field? The parameters
required for this analysis are the volume v of the domain in
which the field detection takes place, the magnitude of
intensity E of the field which is to be detected in this
domain, and the measurement time t. These parameters will
be borrowed from Ref. [12].
In agreement with what was said in the foregoing, we
assume that the volume v to an order of magnitude equals
vl (11)
For the near-field intensity, we adopt the estimate given in
Ref. [12]:

d

where d is the dipole moment of the emission domain at the
probe tip. Accordingly, the field intensity in the domain v will
be estimated by order of magnitude as'®

d
Lastly, the field measurement time!! is taken to be equal to
the molecular excitation time. According to Ref. [12], it is
equal (by order of magnitude and under the assumption that
the finiteness of the energy level width may be neglected) to
L (14

T~ B
where p is the dipole moment of the molecule (corresponding
to the transition which takes place in its excitation).

Notice that we estimate the volume in which the field is
measured (detected) as the volume v of the whole molecular
activation domain. This is due to the fact that the molecule

10 To perform a more accurate calculation requires taking into account the
field nonuniformity in the activation zone, i.e., formula (12). This is
basically possible, but here we shall restrict ourselves to a crude estimate
(13), which would suffice for calculations accurate to the order of
magnitude.

I This term should not be understood literally in our case. This will be
discussed in greater detail in Section 5.4.
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position in the activation domain is not measured, so that the
detection of fluorescence signifies that the field is present in
the activation domain, i.e., somewhere in volume v.

Therefore, we are facing the problem of ascertaining that
the detection of field (13) in the domain of volume (11) during
the time period (14) does not contradict the general limita-
tions existing in quantum mechanics. We shall see that there is
no contradiction indeed, and in certain respects we shall
define more accurately the characteristics of the measure-
ment procedure occurring in NFSMs.

5.3 Analysis of near field detectability in an NFSM

To analyze the operation of an NFSM, we shall take
advantage of the energy-time uncertainty relation in the
form of relation (6) or (5).

The parameters characterizing the NFSM operation were
discussed in Section 5.2.2 with reference to review [12]. For
the subsequent discussion it is significant that the fluorescence
of substrate molecules permits detecting the probe-produced
field in the domain of volume v ~ ¢3, where ¢ is the dimension
of the near-field zone. In this case, the time expended for this
detection is t~ i/Ep (for more on this issue, see also
Section 5.4). So, the procedure of field detection is confined
to the 4-dimensional domain of volume tv ~ 7i¢3/Ep.

We shall apply the energy-time uncertainty relation
written in the form of relation (6) or (5) to the procedure
realized in an NFSM. The procedure may be referred to as the
procedure for detecting an electric field, because the magnetic
field in the near-field zone of the NFSM is much weaker than
the electric field [12] and the substrate molecules are excited
under the action of only the electric field. On the strength of
formula (5), for those parameters t, v that are characteristic of
NFSMs, the electric field is detectable if its strength satisfies
condition (4):

[ h [Ep
Ez Eobscrv ~ E ~ 673

Hence, we obtain the field observability condition in the form
P
E> iR (15)

It is evident that the near-field intensity (13) in the NFSM
satisfies the field detectability condition for

dzp. (16)

This inequality signifies that quantum limitations on the
detectability of an electromagnetic field (expressed in the
form of the energy—time uncertainty relation) permit detect-
ing the near field in an NFSM when the dipole moment of the
emission domain at the probe tip exceeds the molecular dipole
moment (which is, naturally, fulfilled under ordinary condi-
tions).!?

Let us now consider the case where the substrate thickness
a is smaller than the dimension ¢ of the zone of molecular
activation (Fig. 3). In this case, for a volume of the
measurement domain we must substitute a quantity on the
order of v~ af?. Then, tv ~ fial?/Ep, and the near field

12 By the detectability of the field is meant here its detection with a
sufficiently high efficiency. So, the observation of the radiation emitted by
molecules with a probability on the order of unity signifies that the field of
the given configuration exists in the given volume. When inequality (16) is
not fulfilled, this probability will become lower progressively with
decreasing d.

i /AN

Figure 3. Substrate of thickness a < £.

detectability condition becomes

d_ 1t
—> .

p T a

Inequalities (16), (17) may be replaced with a more
concrete statement that the signal-to-noise ratio'® for thick
and thin substrates assumes the forms

(17)

E} d E} da

~ — _— ~ — —

o (18)

2 ) 2
Eobserv N otz P Eobserv N lv~al?

respectively.

Recall that the volume v of the measurement domain in
the above calculation was taken to be equal to the volume ¢3
(or, to al? in the latter case) of the molecular activation
domain rather than to the volume of one molecule which
actually reacts to the existence of the field. This is because the
location of the molecule inside the activation domain is not
measured. That is why under the specific conditions which
correspond to the NFSM design the detection of molecular
radiation merely provides the information that the field has
been detected somewhere in the activation domain, i.e., in the
domain where one of the molecules could have become
excited. Outside this domain molecules cannot become
excited at all or, more properly, their excitation probability
is much lower, and we neglect it.

Consider a purely hypothetical situation (presently
impossible) wherein more exact information about the
position of precisely that molecule which reacted to the field
is available. This would imply that the NFSM structure has
been changed and one more microscope, whose resolution is
better than the resolution of the NFSM in its present-day
unchanged form, has been introduced into it. This, in turn,
would signify the acquisition of more exact information
about the state of the molecules and of the quantum field.
As a consequence, the minimal unavoidable uncertainties of
measurement of these quantum systems would also become
larger. To state it in different terms, this would be an entirely
different instrument, which is to be differently calculated
assuming a different value for the size of the measurement
domain.

5.4 Once more on the ‘measurement time’ in an NFSM
We shall explain below some features of the notion ‘measure-
ment time’ for an NFSM, and the relation of this notion to

13 By definition, we assume that the field is detectable (to be more precise,
the efficiency of its detection is high enough) when the signal-to-noise ratio
is greater than or on the order of unity. In this case, the term noise is used in
reference to the quantum uncertainty of measurements, which arises due
to unavoidable quantum fluctuations (the mechanism of their action
comprises the so-called dark current of a photomultiplier).
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what spatial domain should be considered as the measure-
ment domain. For definiteness, we shall consider only the case
of a thick substrate as in the first part of the previous section
(the case of a thin substrate is treated in a similar way with
somewhat different formulas leading to the same conclu-
sions).

Let ¢ be the dimension of the near-field zone, i.e., the
domain around the probe in which the probe radiation field
has the form Ex ~ d/ 3. For estimates accurate to an order of
magnitude, it may be assumed that its intensity in the near-
field zone is on the order of En ~ d/€3. According to Ref. [12],
the molecular excitation time in the near-field zone is
TN ~ fi/ Enp. We assume, as in the first part of the previous
section, that v ~ ¢3 to obtain the time of the molecular
excitation in the near-field zone:

(19)

N~ — .

pd

In the far-field zone, according to Ref. [12], the field
strength takes the form Eg ~ a’/)vrz. We consider a small
part of the far-field zone (nearest to the probe) with a size on
the order of 4 and reason in the same way to obtain the time of
molecular excitation in this zone:

(20)

Tp~— .

pd

Since ¢ < J, the excitation time in the far-field zone is much
longer than in the near-field zone:

TF A 3

L3N ( g) > 1.
What does this relation signify from the physical standpoint?
We consider this question in several stages, beginning with a
situation not always real but quite simple for understanding.

Let us assume that at a certain instant of time the
radiation from the probe is turned on and the photomulti-
plier begins to record the fluorescence of molecules. After
excitation, a molecule will return to the ground state as time
Tradiation Passes and in doing so will emit fluorescent radiation,
which will be recorded by the photomultiplier within a time
Tdetection- Attaining the highest microscope resolution requires
that all of these processes take place equally fast: Tragiation ~
Tdetection ™~ TN - Then, the duration T1 =1N + Tradiation + Tdetection
of the entire cycle (excitation, emission, detection) is on the
order of 7n. In the course of one cycle, the majority of
molecules in the near-field zone make a contribution to the
radiation emission and to the photomultiplier signal; how-
ever, on the strength of inequality (21) hardly any of the
molecules in the far-field zone have time even to become
excited. Evidently, the intensity of the signal recorded by the
photomultiplier will be proportional to the number of
molecules in the near-field zone. This permits estimating the
substrate density in the domain of size £ about the probe. That
is why, the near-field zone of size ¢ determines the microscope
resolution.

Usually, the measurement procedure lasts much longer
than the period T;. It is valid to say that the measurement is
performed continuously. Let us assume that the measurement
time 7'is nevertheless finite but is much longer than 7' ~ 1.
Then, each molecule in the near-field zone will manage to
become T/t times excited during this period and subse-

(1)

quently emit a photon, which will be recorded. On the
strength of relation (21), the number of excitation-emission-
detection cycles for every molecule in the far-field zone will be
many times smaller: T/t = (¢/2)(T/1x) < (T/1N).

This reasoning signifies that the probability of radiation
emission per unit time from the far-field zone (a small part of
the far-field zone, of size 2) is (¢/) times lower than the
probability of emission from the near-field zone. The far-field
zone layers which are more remote from the probe radiate
with progressively lower probability as the distance from the
probe increases. From the practical standpoint, it is valid to
say that the fluorescent radiation is emitted only from the
near-field zone. This is the reason why the microscope
resolution is determined by the dimension ¢ of the near-field
zone.

Therefore, in the unusual situation occurring in the
application of the energy—time uncertainty relation to the
analysis of an NFSM, the notion of ‘measurement time’ as it
enters into the general quantum limitations should not be
perceived literally. The measurement is performed continu-
ously, but it may be represented as a multiple repetition of one
measurement cycle. That which figures as the ‘measurement
time’ in the general formulas for field measurability is merely
some parameter characterizing continuous measurement,
which may be qualitatively characterized as the ‘duration of
one measurement cycle’.

6. Concluding remarks

In the quantum theory, the limitations on measurability are
most often characterized quantitatively by the Heisenberg
uncertainty relation or its analog pertaining to a different pair
of canonically conjugate observables. For certain types of
measurements, however, one has to use either a more
sophisticated form of the Heisenberg type uncertainty
relation or other relations which are substantially different
in form. Either of the examples is found in monograph [7]. In
particular, the action uncertainty principle applies for a
continuous measurement (i.e., a measurement which lasts in
time and whose result is expressed by a time function) (see
Refs [7, 9]).

In this paper, we considered formulas (1), (2) for the
minimal error in measuring electromagnetic field intensity,
which stem from the quantum nature of the field. These
formulas, whose special case was derived by Landau and
Peierls in 1931, were proved by the author in the general case
employing the restricted path integral method.

We discussed at length whether the aforementioned
limitations on field measurability are inherently absolute, as
believed by Landau and Peierls, or not, as considered by Bohr
and Rosenfeld (1933). We discussed this issue in detail and
showed that the limitations found by LP (like the more
general formulas (1), (2)) are indeed absolute in character
(i.e., are independent of the measuring scheme) if the rigorous
definition of measurement is adopted. This definition
supposes that the true field corresponds to the measurement
result (accurate to the uncertainty of measurement) through-
out the spatio-temporal domain in which the measurement
takes place. In contrast to LP, BR adopted a broad
interpretation of the notion of measurement to arrive, in the
framework of this definition, at looser limitations, which are
not inherently absolute.

Furthermore, in this paper we showed that the field
observability (detectability) condition following from formu-
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las (1), (2) is equivalent to the energy—time uncertainty
relation. Evidently, this is an additional indication of the
fundamental character of these formulas.

To illustrate how quantum limitations on the field
detectability operate in the situation where the Heisenberg
uncertainty relation is inapplicable, we analyze in the frame-
work of these limitations the operation of a near-field
scanning microscope (NFSM). For this purpose, the process
in the NFSM is represented as the detection of the field
radiated by the probe. We apply the energy—time uncertainty
relation in the form of expression (5) or (6) to analyze this
process and emphasize that the NFSM resolution, which
overcomes the diffraction limit, is consistent with the
limitations on electromagnetic field measurability in the
form of the energy—time uncertainty relation.
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