
Abstract. Processes of mechanical interaction between systems
containing negative-mass bodies are considered, showing that
the laws of physics lead to no inconsistencies when applied to
such systems.

1. Introduction

Recently, an increasing number of papers have appeared that
explore phantom matter and its applications [1±9]. In this
connection, many misconceptions, sometimes called para-
doxes, have emerged, which are related to an inadequate
interpretation of the properties of such matter in the
approximation of the Newtonian mechanics. The appear-
ance of the perpetual motion machine of the third kind is one
such paradox (see, e.g., [10, 11]). This paradox is related to the
hypothetical possibility of an unlimited acceleration of two
gravitating bodies, one of which consists of phantom matter
and has a negative mass.

Here, we analyze the mechanics of systems contain-
ing negative-mass bodies. The aim of this paper is to
resolve inconsistencies in this issue and to show that at
least the Newtonian mechanics of phantom matter is in

agreement with the common knowledge and laws of
physics. Possible applications of the considered problem
are pointed out.

For positive masses, all calculations are carried out in [12].
Here, we make calculations accounting for negative masses.

In this paper, as in the classical Kepler problem, the
inertial mass is assumed to be equal to the gravitational
mass, in accordance with the equivalence principle.

2. Classical two-body Kepler problem

In the classical Kepler problem, the laws of motion of each of
two gravitating bodies with massesm1 andm2 are determined
in the center-of-mass system (CMS) by radius vectors r1
and r2:

r1 � m2r

m1 �m2
; r2 � ÿ m1r

m1 �m2
; m1r1 �m2r2 � 0 ; �1�

where r is the radius vector from the first body to the second
body, and the coordinate origin is in the center of inertia.

We assume that the bodies interact gravitationally with
the interaction energy

U�r� � ÿGm1m2

r
; �2�

where G is the gravitational constant.
The complete solution is determined by four parameters

(see [12]):
1) the reduced mass m � m1m2=�m1 �m2�;
2) the value a of the gravitational interaction of the bodies,

a � Gm1m2;
3) the conserved angular momentumof themoving bodies

L � r� p �p � m_r�; �3�

4) the conserved total energy of the bodies

E � p2

2m
ÿ a

r
: �4�
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The energy parameter E determines the trajectory type: an
ellipse (forE < 0) or a hyperbola (forE > 0), and the value of
L (together with E) determines the eccentricity of the orbit e.

From the methodical standpoint, care should be taken to
avoid errors when inserting negative values (which are always
positive in the classical case) into a radicand or taking them
out of a radicand.

The effective potential has the form

Ueff�r� � L 2

2mr 2
ÿ a

r
: �5�

Because the results are independent of the sign of the angular
momentum L, we hereafter assume a positive value of the
ratio l � L=m.

The integral of the trajectory is written as

j �
�

l

r 2

�
2E

m
� 2a

mr
ÿ l 2

r 2

�ÿ1=2
dr : �6�

We introduce the eccentricity squared

e 2 � 1� 2Eml 2

a2
: �7�

The different cases are shown in Figs 1±3. We note that for
m1 �m2 < 0, the eccentricity can only be larger than unity
�e2 > 1� [see (4)]. This case corresponds to Fig. 3a, b.

Setting x � l=r > 0, we rewrite (6) in the form

j � ÿ
�

dx�����������������������������������������������
2E=m� 2ax=� ml � ÿ x 2

q
� ÿ

� ��
ea
ml

�2

ÿ
�
xÿ a

ml

�2�ÿ1=2
dx : �8�

It follows that a solution exists only for e 2 > 0.
The trajectory equation is obtained in the form

j�x� ÿ const � ÿarcsin
�
xÿ a=� ml ���ea=� ml ���

�
; �9�

or, by introducing the specific radius as r0 � l 2j m=aj, we
obtain

r0
r
� sign

�
a
m

�
ÿ e sinj � sign�m1 �m2� ÿ e sinj: �10�

It then follows that for m1 �m2 < 0, the eccentricity must be
e > 1.

Instead of (5), we introduce the normalized effective
potential ~Ueff:

~Ueff�r� � r 20
2r 2
ÿ sign�m1 �m2� r0

r
; Ueff�r� � a 2

ml 2
~Ueff�r� :
�11�
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Figure 2. Trajectories (a, b) of the reduced mass m < 0 (thin line), the mass m1 � 3 (thick line), and m2 � ÿ1 (dots); (c) plot of ~Ueff�r=r0�.
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Figure 1. Trajectories (a, b) of the reduced mass m > 0 (thin line), the mass m1 � 3 (thick line), and m2 � 1 (dots); (c) plot of ~Ueff�r=r0�.
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For a positive total mass, the dimensionless effective
potential ~Ueff has a local minimum and trajectories can be
ellipses if ~Ueff < 0. This corresponds to the orbital stability
for these masses, although the effective potential Ueff has a
local maximum (and has no minimum) for m < 0. This is a
characteristic feature of a negative reduced mass.

3. Classification of interactions with negative
masses

Clearly, in contrast to the classical situation (see Fig. 1), there
can be only three different cases if negative masses are
involved.

(1) The reducedmass is negative, m < 0, and a < 0, i.e., the
masses have different signs and their sum is positive (see
Fig. 2). Both bodies lie along one radial line on one side of the
center of inertia (which is at the coordinate origin). In the
limit casem2 ! ÿm1, the bodies are removed to infinity from
the center of inertia. Both finite (e < 1) and infinite (e > 1)
trajectories are possible.

(2) The reduced mass is negative, m < 0, and a > 0, i.e.,
both masses are negative (Fig. 3a). This case corresponds to
the interaction of two negative masses and infinite motions
with e > 1.

(3) The reduced mass is positive, m > 0, and a < 0, i.e., the
masses have different signs but their sum is positive (Fig. 3b).
This case is similar to the dynamics of two charges of the same
sign in electrodynamics and corresponds to infinite motions
with e > 1.

According to formula (9), the first case (see Fig. 2) is
equivalent to the classical Kepler problem in the field of
attraction, and it can therefore be reduced to the classical case
(see Fig. 1). It corresponds tom1 > 0,m2 < 0, andm1 > jm2j.
The option of an elliptic orbit (Fig. 2a) is then the only
possible one in the proposed classification (with negative
masses).

4. The equivalence of elliptic trajectories
for test masses moving in the gravitational field
of masses with opposite signs

We consider two pairs of masses: (m; m�) and (m; mÿ). We
assume that e < 1,m > 0,m� > 0,mÿ < 0, andm�mÿ > 0.
These cases are shown in Fig. 1a and Fig. 2a.

We address the question: under what conditions does the
elliptic trajectory of the mass m in the first case (the

interaction of m with m�) coincide with that of the mass m
in the second case (the interaction of m with mÿ)?

Clearly, this is possible for equal eccentricities e and
parameters r0m (the radii r0 corresponding to the mass m).
According to (1) and (7), two equations must be satisfied:

2E�m��l��2
�a��2 � ÿ 2Eÿmÿ�lÿ�2

�aÿ�2 () E��l��2
m��m�m��

� ÿ Eÿ�lÿ�2
mÿ�m�m ÿ� ; �12�

m�r�0
m�m�

� ÿ mÿrÿ0
m�mÿ

() m��l��2
�m�m��2 � ÿ

mÿ�lÿ�2
�m�mÿ�2 ;

�13�
where the superscripts `�' and `ÿ' stand for the correspond-
ing cases. In addition to (12) and (13), we must equate the
angular momenta of the mass m on these trajectories:
L�m � Lÿm (or l�m � lÿm ). Then, taking into account that
p�m � p�m� � 0 in the CMS and using relations (1), we obtain

L� � m�l� � r�m p�m � r�m� p
�
m� � p�m �r�m ÿ r�m��

� ml�m

�
1� m

m�

�
; �14�

l� � l�m

�
m�m�

m�

�2

; lÿ � lÿm

�
m�mÿ

mÿ

�2

: �15�

Hence, after taking (12) and (13) into account, we find the
necessary condition in the form

�m�m��2
�m��3 � ÿ�m�mÿ�2

�mÿ�3 �16�

or �
E�

Eÿ

�2

� ÿm�

mÿ
: �17�

We suppose that we wish to imitate the motion of the mass m
around the massm� by the motion around the mass mÿ. We
assume that the parameters related to the positive mass are
known from observations and the mass mÿ is unseen. We
express all the parameters related to the negative mass in
terms of these parameters.
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Figure 3. Trajectories (a, b) of the reduced mass m1 (thin line), the mass m2 (thick line) and m (dots); (c) plot of ~Ueff�r=r0�.
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We set

x � m�

m
; y � mÿ

m
: �18�

It follows from (16) that

F�x; y� � �1� x�2
x 3

y 3 � y 2 � 2y� 1 � 0 : �19�

The roots of Eqn (19) for a given x give the answer to the
question posed.

We find an approximate solution of Eqn (19) for large x.
An elementary application of the perturbation theory for
roots of Eqn (19) yields

x4 1 ; y1 � ÿ x

�1� x�2=3
; y2 � ÿ1ÿ 1� x

x 3=2
;

y3 � ÿ1� 1� x

x 3=2
: �20�

The first two roots do not satisfy the condition for an elliptic
orbit: m�mÿ > 0. The third root, y3, corresponds to the
necessary conditions.

Graphical solutions of Eqn (19) for some x are shown in
Fig. 4. For a given value of mÿ, we can then obtain
expressions for (13) and (17) using equations for iÿ and Eÿ.

But all these considerations can be valid only if we do not
see the real trajectories of the second mass. It also should be
borne in mind that different trajectories for all possible m
correspond to different masses mÿ.

These considerations can be interesting for the astro-
physics of wormholes or their remnants [13], because
wormhole entrances can have negative masses. Possibly,
similar ideas can be used in the analysis of the nature of
dark matter.

5. Acceleration of conventional bodies
by negative-mass bodies

We calculate the possible deviation of the velocity of a body
due to its interaction with another body.We consider the case
of infinite trajectories (e > 1), because in the case of finite
(elliptic) trajectories, no infinitely large values can be
obtained in Newtonian mechanics (as we see below).
Clearly, in this case, the difference between the velocities of
the body reaches a maximum between the perihelion and the
infinitely remote point. At these points, the corresponding
squares of the body momentum are p 2

p and p 2
1.

According to (4), (7), and (10), we have

2mE � p 2
1 � p 2

p ÿ
2ma
rp
� �e 2 ÿ 1� a

2

l 2
; �21�

r0
rp
� sign�m1 �m2� � e ; �22�

r0 � l 2m
a

sign�m1 �m2� : �23�

Hence, we obtain the necessary relation

p 2
p

p 21
� e� sign�m1 �m2�

eÿ sign�m1 �m2� : �24�

The case where sign�m1 �m2� � 1 corresponds to classical
motion (decelerating as the body recedes to infinity), and
therefore the analysis gives nothing new.

The case where sign�m1 �m2� � ÿ1 corresponds to
acceleration as the body recedes to infinity. In this case,
1 < e � 1 corresponds to high accelerations. According to
(21) and (24), we obtain

p 2
1 � 4

�
eÿ 1

e� 1

�
a 2

l 2
� 4

p 2
pa

2

p 21l 2
�25�

as e! 1.
We here consider the nonrelativistic case v5 c. Setting

rg � 2Gjm1 �m2j=c 2, we obtain 4a 2=�m 2l 2� � r 2g c
4=�r 2pv 2

p �,
where using (25) for essentially nonrelativistic velocities, we
find

v 2
p

c 2
5

v 21
c 2
� rg

rp
5 1 ;

v 2
1
v 2p
� c 2rg
v 2p rp

5
c 2

v 2p
: �26�

Considering the perihelion as the initial point of the trajectory
and treating vp as a perturbation of the initial state at rest, we
find that the masses are not accelerated endlessly, but up to
some limit determined by this perturbation according to
formula (26).

Inequality (26) bounds the value of the possible accelera-
tion in Newtonian mechanics with negative masses.

Above, we did not consider the special case where
m1 � ÿm2, m! �1. This case is degenerate and must be
considered as one of the limits

m1 �m2 > 0 ; m1 ! ÿm2

or

m1 �m2 < 0 ; m1 ! ÿm2 :

In both cases, as follows from (26), it is impossible to reach
an unlimited acceleration (in principle); furthermore, reach-
ing maximum velocities v1 already requires not only equal
masses of the bodies (in absolute values) but also a superfine
tuning of the initial conditions. These requirements reduce the
probability of such a (noncritical) situation to zero.

6. Collision of two bodies

We now consider the collision of two masses with arbitrary
(including sign) masses. This problem is solved in the general
form in [12]. The final result for an elastic collision has the
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Figure 4. The plot of F�x; y� for x � 100 (thin curve), x � 9 (thick curve),

and x � 1 (white dots).
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form (in the CMS)

v 01 �
m2jv1 ÿ v2j
m1 �m2

v 01
v 01
; v 02 �

ÿm1jv1 ÿ v2j
m1 �m2

v 01
v 01
: �27�

Here, subscripts `1' and `2' denote the particle numbers and
primed quantities correspond to a moment after the collision.

In the laboratory frame, denoting the corresponding
velocities by V, we obtain an analog of (27) in the form

V 01 �
m2jV1 ÿ V2j
m1 �m2

v 01
v 01
�m1V1 �m2V2

m1 �m2
;

V 02 �
ÿm1jV1 ÿ V2j

m1 �m2

v 01
v 01
�m1V1 �m2V2

m1 �m2
: �28�

SettingV1 � 1,m2 � 1, andV2 � 0 for clarity, we can express
the dependences V 01�m1� and V 02�m1� for a head-on collision
(Fig. 5).1

Similarly to theKepler problem, no contradictions appear
here.

7. Conclusion

The study presented in this paper shows that in the New-
tonian treatment of the interaction of two bodies, including
bodies with negative masses, no contradictions or paradoxes
emerge.

The ideas considered here are of interest for the astro-
physics of wormholes or their remnants, as well as for possible
applications to the analysis of dark matter.
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