
Abstract. The role of quantum effects in the theory of Langmuir
waves in a collisionless plasma is shown to be important for
flows of quantum particles resonantly interacting with plasma
oscillations and for plasma electromagnetic waves undergoing
resonant scattering.

1. Introduction. High-frequency waves
in a quantum plasma

The applicability of kinetic equations with a self-consistent
field (the Vlasov equation in the classical case, and theWigner
equation in the quantum case) for describing collisionless
plasma was substantiated by N N Bogoliubov in his famous
study [1]. The applicability condition in the case of electron
gas is reduced to the following:

e 2n 1=3 5 e0 ; �1:1�

where e is the electron charge, n is the electron concentration
(number density), e0 � mV 2

0 =2 is the average energy of
electron chaotic motion, m is the electron mass, and V0 is
the average electron velocity (for nondegenerate electron
Maxwellian gas, V0 � VT, where VT �

���������������
kBT=m

p
is the

thermal velocity; in the presence of degeneracy, V0 � VF,
where VF � �3p2�1=3�hn 1=3=m is the Fermi velocity, and T is
the temperature). For further convenience, we rewrite

inequality (1.1) using the gas parameter Z as

Z � �hoL

e0
4

�hoL

eF
�
�

e 2

hri eF

�1=2

5 1 ; �1:2�

where eF � mV 2
F=2 is the Fermi energy, oL �

�������������������
4pe 2n=m

p
is

the electron Langmuir frequency, and hri � nÿ1=3 is the
average distance between electrons. The smallness of para-
meter (1.2) must necessarily be taken into account when
considering quantum effects in a plasma.

The electromagnetic processes considered in this paper
are determined by the high-frequency dielectric response of a
plasma to an electromagnetic field. Therefore, we write out
here the known expressions for transverse and longitudinal
permittivities of electron quantum plasma [2] (see also [3]):
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e l�o; k� � 1ÿ o2
L

�
f �p�

�oÿ kv�2 ÿ o2
�h

dp :

Here, f �p� is the distribution function of plasma electrons
over their momenta p � mv, o and k are the frequency and
wave vector of electromagnetic perturbations in a plasma,
and o�h is the quantum frequency that determines the one-
particle oscillation frequency spectrum (the electron de
Broglie wave spectrum)1 of an electron with the momentum
�hk:

o�h � �hk 2

2m
: �1:4�

For nondegenerate equilibrium (Maxwellian) plasma, f �p� is
theMaxwell distribution function, and for degenerate plasma
it is the Fermi distribution. Anyway, the characteristic `width'
of the distribution function f �p� is determined by mV0.
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1 It makes sense to talk about such a wave here since the plasma electron

momentum changes by a multiple of �hk in interactions with an electro-

magnetic field.



For the case of a cold plasma considered here, we have
f �p� � d�p�; therefore, formulas (1.3) are reduced to

e tr�o; k� � 1ÿ o2
L

o2
; �1:5�

e l�o; k� � 1ÿ o2
L

o2 ÿ o2
�h

:

The structure of expressions (1.3) (the presence of differences
of squares in the denominators) suggests that formulas (1.5)
are correct only in the high-frequency limit when conditions

jo� o�hj4 kV0 �1:6�

are satisfied; these conditions should necessarily be taken into
account when analyzing the oscillation spectra of a quantum
plasma.

Expression (1.5) for high-frequency transverse permittiv-
ity does not contain a quantum term, and consequently the
spectrum of transverse electromagnetic waves is the same as
in the classical limit [2, 4]. The spectrum of longitudinal
waves, determined by zeros of the longitudinal permittivity
e l�o; k� � 0, is given by

o � �
������������������
o2

L � o2
�h

q
: �1:7�

It is exactly this formula that was given in Ref. [2] as a
spectrum of longitudinal quantum waves in a cold plasma.
However, the applicability conditions for formula (1.7) were
not specified in Ref. [2]. Let us find these conditions.

Substituting formula (1.7) into inequality (1.6), we reduce
it to �����������������������������

1�
�
1

4
Zk 2

�2
s

ÿ 1

4
Zk 2 4 k ; �1:8�

where k � kV0=oL is the dimensionless wavenumber, and Z is
the small gas parameter (1.2). Since function

��������������
1� x 2
p ÿ x

monotonically decreases from one to zero, inequality (1.8)
can be satisfied only for k5 1, i.e., when

kV0 5oL : �1:9�

Inequality (1.9), as an applicability condition for formulas
(1.5) and therefore for spectrum (1.7), holds for any value of
the gas parameter Z.2

Let us estimate, taking into account inequality (1.9), the
value of quantum correction to the spectrum (1.7). From
formula (1.9), we obtain the maximum wavenumber
kmax � oL=V0 that determines the maximum acceptable
value of quantum frequency (1.4): o�h;max� �hk 2

max=�2m�.
Therefore, since k5 kmax and inequality (1.2) is satisfied,
the following inequalities are true:

o�h

oL
5

o�h;max

oL
� 1

4
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5

�hkmax

2mV0
� 1

4
Z5 1 : �1:10�

Thus, the quantum correction to spectrum (1.7) is small
within the applicability limits of the collisionless plasma
approximation. Moreover, owing to the second inequality in
Eqn (1.10), the quantum correction in formula (1.7) is smaller

than the classical thermal correction disregarded in this
formula that de facto is an excess of precision.3

It should be noted that inequality (1.6) leading to inequal-
ity (1.9) is not a principal one since it merely signifies an
applicability condition for the cold plasma approximation in
the quantum theory, i.e., for formulas (1.5). Meanwhile, for
the applicability of general formulas (1.3), we need only
satisfy inequalities (1.2). From the structure of expressions
(1.3) we can see that the quantum contribution to the plasma
permittivities is always determined by frequency o�h, and the
thermal effects are determined by the value of kV0. Therefore,
it makes sense to estimate quantities entering Eqn (1.10)
without assuming that inequality (1.6) is satisfied. Lifting
the restriction on the value of wavenumber k, we arrive at

o�h

kV0
4

o�h

kVF
� hri

l
;

o�h

oL
� hri

2

Zl2
; �1:11�

where l � 2p=k is the wavelength of a Langmuir wave. For
Langmuir waves, due to quasineutrality violation in volumes
with large number of particles, the ratio hri=l is small by
definition. Therefore, the quantum correction to the Lang-
muir wave spectrum is smaller than the thermal correction
due to chaotic motions of plasma electrons, regardless of
inequality (1.6).

From the second estimate in Eqn (1.11) it follows that the
quantum frequency can, in principle, be larger than the
electron Langmuir frequency (because Z5 1). However, this
is not exactly so in aMaxwellian plasma. Indeed, owing to the
smallness of the ratio hri=l, inequality o�h < kVT holds but,
simultaneously, kVT < oL should be satisfied, because
otherwise Langmuir waves would not exist in a plasma due
to the strong Landau damping. Therefore, weakly damped
Langmuir waves are possible in aMaxwellian plasma only for
o�h < kVT < oL when the quantum effects are small. How-
ever, in a degenerate plasma where the Langmuir wave
damping is absent according to the classical theory also for
kVF > oL (the zero sound) there are possible cases where the
second ratio in Eqn (1.11) is not small. The quantum kinetic
theory of Langmuir waves in an electron plasma taking into
account electron thermal motions was developed in paper [5];
it was demonstrated there that quantum corrections to the
frequency spectra are indeed always small although they can
lead to qualitatively new effects (e.g., to the collisionless
damping of zero sound in a degenerate plasma).

We should note that oscillation spectra of electron plasma
were investigated in review paper [6] by using both the
quantum kinetic equation [2] and the quantum hydrody-
namic model [3]. However, the applicability conditions were
not specified for the results obtained in Ref. [6]. It seems to us
that many results of this work are beyond the applicability
limits. The first work where these conditions were specified
and that demonstrated when quantum effects can show
themselves in a cold plasma in the high-frequency range are
studies [7±9]. There, the quantum stimulated Cherenkov
emission of longitudinal and transverse electromagnetic
waves by electron beams in media and the quantum
stimulated scattering of electromagnetic waves on a beam
were investigated. Below, we discuss the results of this work.

2 Under some assumptions, it can be inferred that kinetic Vlasov and

Wigner equations may be applied even if inequality (1.2) does not hold. In

particular, this is done when considering electron gas in metals [2].

3 Taking into account chaotic electron motion gives, instead of expression

(1.7), spectrum o2 � o2
L � ak 2V 2

0 � bk 4V 4
0 =o

2
L � o2

�h, where a; b � 1 [2].

Owing to inequality (1.2), the quantum term here is small, even in

comparison with the term bk 4V 4
0 =o

2
L.
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A conjecture can be made on the structure of frequency
spectra for quantum Langmuir waves in the shorter wave-
length range where ratio hri=l is large and the self-consistent
field representation becomes incorrect. In this case, the
interaction of plasma electrons occurs only via collisions. If
the collisions are absent [because inequality (1.2) is fulfilled],
then the frequency of longitudinal quantum plasma oscilla-
tions is determined by the relationship

o � o�h : �1:12�
In contrast to collective Langmuir oscillations, the waves
specified by Eqn (1.12) are one-particle waves [2, 5].

2. Stimulated Cherenkov emission
of a nonrelativistic electron beam in a plasma.
Three-wave process involving quantum waves

It would seem to follow from an analysis of inequalities (1.2)
and (1.6) that quantum effects appear as small insignificant
corrections in the plasma theory (at least for a cold electron
plasma). In reality, that is not exactly so. For example, there is
known a well-observed quantum effect [2] in an electron
plasmaÐ the diamagnetism of free electron gas, determined
by the quantity

o2

k 2c 2
�e l ÿ e tr�o=k!0 �2:1�

that describes the electron contribution to the static
(magnetic) permeability. When calculating Eqn (2.1), the
large terms of classical origin are cancelled, and the remain-
ing quantum terms become appreciable. An analogous
situation takes place in the processes of stimulated Che-
renkov emission of longitudinal plasma oscillations by an
electron beam and stimulated resonant scattering of a
transverse electromagnetic wave on longitudinal oscillations
of electron density in a plasma. In the dispersion equations
describing these processes, large classical terms are cancelled
when the resonant conditions are satisfied, and quantum
effects can become substantial in the remaining small terms,
thus contributing significantly to the process development
times (increments or growth rates).

Let us consider the excitation of longitudinal oscillations
in a dense cold electron plasma by a nonrelativistic mono-
energetic beam. We shall describe the dense plasma as a
classical one, and the electron beam, taking into account its
low density, as a quantum one. In these conditions, the
dispersion relation for the beam±plasma interaction or,
equally, that for the stimulated Cherenkov emission of
longitudinal plasma waves by an electron beam is written
out as [7]

e l�o; k� � 1ÿ o2
Lp

o2
ÿ o2

Lb

�oÿ ku�2 ÿ o2
�h

� 0 : �2:2�

Here, u is the velocity of beam electrons, andoLb andoLp are
the Langmuir frequencies of beam and plasma electrons,
respectively. Let us clarify that the left-hand side of Eqn (2.2)
stands for the longitudinal permittivity of the beam±plasma
system. In particular, the beam contribution to the permittiv-
ity is obtained from the second formula in Eqn (1.5) by
substituting oL ! oLb and o! oÿ ku. The latter substitu-
tion takes into account the Doppler frequency shift owing to
electron motions. To simplify concrete formulas, we write

them out for the case of perturbations propagating along the
beam direction, i.e., at ku � ku; we shall not do that in general
formulas.

In the single-particle approximation, oLb ! 0, we find
from relation (2.2) the known quantum condition for the
Cherenkov resonance between an electron and a longitudinal
wave [10]:

o � ku� o�h : �2:3�

Condition (2.3) with the `minus' sign represents the condition
for Cherenkov emission, and with the `plus' sign is the
quantum condition for Cherenkov absorption. We note
that, in the plasma theory, stimulated emission of a beam is
described as some resonant beam instability [10]. For
instability to be developed, the dispersion relation describing
it with respect to frequency o has a complex solution with
Imo > 0.

When analyzing dispersion relation (2.2), we assume that
the strong inequality is fulfilled, viz.

oLp 4oLb : �2:4�

Substitutingo � oLp into formula (2.3), we obtain the single-
particle Cherenkov resonance points for the beam and the
plasma wave:

k1; 2 � mu

�h

�
1�

�����������
1ÿ m

p �
;

�2:5�
k3; 4 � ÿmu

�h

�
1�

�����������
1� m

p �
;

where m is the important (for subsequent consideration)
quantum parameter defined as

m � �hoLp

mu 2=2
: �2:6�

The values of k1; 2 in Eqn (2.5) determine the wavenumbers
of emitted plasma oscillations, and those of k3; 4 are the
wavenumbers of plasma oscillations absorbed by beam
electrons. If inequality m > 1 is satisfied, resonances in the
points k1; 2 are absent. Since at resonances in the points k3; 4
there is no radiation emission (see below), inequality m > 1
is the stability condition for a low-density beam in a plasma,
which can also be justified by analyzing dispersion relation
(2.2) with respect to o: there are no complex roots for
m > 1. Therefore, we are interested here only in the case of
m < 1. Moreover, we suppose that this inequality is rather
strong. The physical meaning of inequality m < 1 as an
instability condition is that an electron loses energy �hoLp

during plasmon emission. But this is possible only if the
plasmon energy is less than the electron kinetic energy.
Thus, inequality m < 1 is the principal quantum electron
energy threshold for the Cherenkov beam instability
development in a plasma [7].

In the vicinity of the resonance points k1; 2, dispersion
relation (2.2), when inequalities (2.4) and m5 1 are fulfilled,
takes the form

do2�doÿ 2o�h1; 2� � 1

2
o2

LboLp ; �2:7�

where do � oÿ oLp is the complex instability increment,
and o�h1; 2 � �hk 2

1; 2=2m. If inequality jdoj4 2o�h1; 2 is satisfied,
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then from Eqn (2.7) follows the growth rate of the standard
classical beam instability in a plasma [4, 10]. We are not
interested here in this case. However, when the opposite
inequality takes place, it follows from Eqn (2.7) for the
growth rate of the instability:

do1; 2 � i

�
o2

LboLp

4o�h1; 2

�1=2

!
do1 � i

�
o2

Lb

o2
Lp

mu 2

2�hoLp

�1=2

oLp ;

do2 � i
1

4

�
o2

Lb

o2
Lp

2�hoLp

mu 2

�1=2

oLp :

8>>>><>>>>:
�2:8�

These instability increments are obviously purely quantum.
In the classical limit (when �h! 0), the growth rate do1

increases and becomes the rate of the classical beam
instability in a plasma, while the rate do2 vanishes.

Notice that resonance conditions (2.3) are similar in form
to those for the anomalous and normal Doppler effects [11,
12]:

o � ku� O ; �2:9�

where O is the eigenfrequency of electron oscillations. In an
external magnetic field, for example, O is the electron
cyclotron frequency, and oH � eB=mc, where B is the
external longitudinal magnetic field induction.4 For a high-
density beam, we haveO � oLb. For the case considered here,
O is the quantum frequency o�h. Thus, the quantum beam
instabilities in a plasma are analogous to beam instabilities
under the conditions of the anomalous Doppler effect or
instabilities of the collective stimulated Cherenkov effect type
[10]. It is to such a case that the instability is realized only at
the resonance points k1; 2, since they are indeed in the
anomalous Doppler effect range. There is no instability at
resonance in the normal effect range (points k3; 4).

Consider now the applicability of results obtained in this
section. Notice that conditions (1.1) and (1.2) also hold in the
case under consideration. As for condition (1.6), it gives,
together with the condition for the quantum instability
regime, the following:

o�h1; 2 4 jdo1; 2j4 k1; 2V0 ; �2:10�

where V0 is the thermal spread of the beam electron
velocities.5 For instability at the wavenumber k1 � oLp=u,
taking into account increment (2.8), we obtain from inequal-
ities (2.10):

m 3 4
o2

Lb

o2
Lp

4 m
V 2

0

u 2
; �2:11a�

and for instability at the wavenumber k2 � 2mu=�h, inequal-
ities (2.10) are reduced to the following:

14 m 3 o2
Lb

o2
Lp

4
V 2

0

u 2
: �2:11b�

Both inequalities (2.11) can be satisfied. Therefore, the
quantum Cherenkov beam instability in a plasma can be
realized well, albeit for a very small beam density and a large
plasma density.

It might seem that the statement on the possibility of the
quantum Cherenkov beam instability in a plasma contradicts
the above results showing that Langmuir waves, including the
electron beam Langmuir waves, can be described without
accounting for quantum effects, since their contribution is
small. But, for the beam instability considered here, Lang-
muir waves are not at all excited in the beam; therefore, their
properties are not relevant in this case. To clarify what we
mean, let us write out the dispersion relation (2.2) as

�1� de lp��1� de lb� � de lpde
l
b ; �2:12�

where de lp and de lb are the plasma and beam electron
contributions, respectively, to the common longitudinal
permittivity, i.e., to the left-hand side of Eqn (2.2).

Being written in such a way, equation (2.12) explicitly
describes the interaction of plasma waves with the beam.
Equations 1� de lp � 0 and 1� de lb � 0 are, respectively, the
dispersion equations for Langmuir waves in a plasma and a
beam, which are not interacting with each other. For the
Cherenkov beam±plasma instability, we have o � oLp,
therefore 1� de lp � 0, and Langmuir waves are indeed
excited in the plasma; we describe these waves classically,
which fully agrees with the above results. It can be shown that
when the left inequalities in formulas (2.11) are satisfied [to be
more precise, for o2

Lb=o
2
Lp 5 m in the case (2.11a), and for

mo2
Lb=o

2
Lp 5 1 in the case (2.11b)], inequality jde lbj5 1 will be

fulfilled and therefore it makes no sense at all to talk about
Langmuir waves in the beam. The considered Cherenkov
beam instability is a single-particle one, and themanifestation
of quantum effects is due to the quantization of energy
transferred by a free beam electron to the classical plasma
wave, which can be justified by the following simple reason-
ing.

We write out the energy and momentum conservation
laws for an electron emitting a wave with the frequencyo and
wave vector k:

mu 2

2
� mu 0 2

2
� s0 ; mu � mu 0 � p0 ; �2:13�

where u 0 is the electron velocity after emission, and s0 and p0
are the energy and momentum of the emitted radiation
quantum (in our case, the plasmon with frequency
o � oLp). From the general wave theory we have
p0 � �k=o�s0. Then, eliminating u 0 from Eqn (2.13), we
obtain

o � kuÿ �s0=o�k
2

2m
: �2:14�

If we put s0 � �ho, we arrive at condition (2.3) with the minus
sign, i.e., at the quantum condition of the Cherenkov
emission.

The quantumCherenkov beam instability in a plasma can
also be alternatively interpreted [7]. In the electric field of a
plasma wave with the potential

j�t; r� � 1

2

�
A exp �ÿiot� ikr� � A� exp �iotÿ ikr�� ; �2:15�

4 Equation (2.2), with the substitution o�h ! oH, looks like a dispersion

relation for the beam±plasma interaction in the classical case when the

beam is magnetized, and the plasma is not magnetized [4].
5 When writing out condition (1.6) for the beam, we should make

substitution o! oÿ ku.
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the wave function of the beam electron has the following
structure:

c�t; r� � a0 exp �ÿio0t� k0r�
� aÿ exp

�ÿi�o0 ÿ o�t� i�k0 ÿ k�r�
� a� exp

�ÿi�o0 � o�t� i�k0 � k�r� : �2:16�

Here, o � oLp is the plasma wave frequency, and o0 �
�hk 2

0 =2m, �hk0 � mu. Representation (2.16) in the linear
approximation follows directly from the SchroÈ dinger equa-
tion for beam electrons. The first term in expression (2.16)
describes the de Broglie wave of an unperturbed electron, the
second term describes the de Broglie wave of an electron
that emitted a plasmon, and the third term stands for the de
Broglie wave of an electron that absorbed a plasmon (the
plasmon energy and momentum are �ho and �hk, respec-
tively). The quantum Cherenkov emission can be treated as
a decay process of the primary de Broglie beam wave into the
plasma wave and the secondary de Broglie wave with the
frequency o 0 � o0 ÿ o and wave vector k0 � k0 ÿ k [the
second term in Eqn (2.16)]. The decay conditions are
expressed in the form:

o0 � o� o 0 ; k0 � k� k0 : �2:17�

However, conditions (2.17) make physical meaning only
when every quantity there characterizes a real wave. In
particular, the secondary wave should be the real de Broglie
wave; therefore, the following dispersion relation should be
satisfied:

o 0 � �hk 0 2

2m
: �2:18�

Now, if we substitute relations (2.17) into formula (2.18) and
take into account the definitions of o0 and k0, we obtain
condition (2.3) with the minus sign, i.e., the quantum
resonance condition for the Cherenkov emission. Thus, the
Cherenkov radiation emission, from the quantum point of
view, is the resonant interaction process of three waves (three-
wave process), namely, two de Broglie waves of a free electron
and a plasma wave.6 It should be noted that there is no real de
Broglie wave with o � o�h (see footnote 1); we are dealing
here with some virtual wave determining the energy and
momentum portions [s0 and p0 in Eqn (2.13)] lost by a beam
electron in the emission process.

The inverse process of Cherenkov absorption can be
treated similarly as the merging (inverse decay), viz.

o0 � o � o 0 ; k0 � k � k 0 ; �2:19�

of a primary de Broglie wave and a plasma wave into the
secondary de Broglie wave described by the third term in
expression (2.16). Indeed, if we substitute Eqn (2.19) into
formula (2.18), we obtain condition (2.3) with the plus sign,
i.e., the resonance condition of the Cherenkov absorption.

Let us draw attention to differences in the approaches.
While the quantization of the radiation field is assumed in the
derivation of relation (2.14), in the approach based on the
wave interaction we have to do with a quantum electron

[formula (2.16)] and the field is not quantized. The result is the
same.

3. Stimulated Compton scattering in a plasma.
Four-wave process involving quantum waves

Let us now turn to the discussion of the stimulated Compton
scattering of a transverse electromagnetic wave on electrons
of cold plasma (or an electron beam), accompanied by the
generation of quantum waves. In the classical theory, this
process is described in the linear approximation by the known
dispersion equation for a three-wave decay of an incident
electromagnetic wave (with frequency o1, and wave vector
k1) into a scattered transverse wave (frequency o, and wave
vector k) and a longitudinal Langmuir wave [4]:

�
1� de l�o1 ÿ o; k1 ÿ k���k 2 ÿ o2

c 2
e tr�o; k�

�
� 1

4
�k1 ÿ k�2 o

2

o2
1

�k� VE�2
k 2c 2

de l�o1 ÿ o; k1 ÿ k� : �3:1�

Here, VE � eE1=mo1, where E1 is the incident wave ampli-
tude. According to equation (3.1), the plasma ismodulated by
the beat wave at frequencyo1 ÿ owith wave vector k1 ÿ k. It
turns out that Eqn (3.1) takes place in the quantum case as
well, where e tr and 1� de l � e l are defined by formulas (1.5)
(for a beam, oÿ ku in the function e l should be taken as a
variable instead of o).

Below, we restrict ourselves to the high-frequency case
where frequencies o1 and o significantly exceed the electron
Langmuir frequency, and the plasma is transparent to
electromagnetic waves, i.e., e tr and e l are close to unity
[jde lj5 1, similar to the case of Eqn (2.12)]. Then dispersion
equation (3.1) is reduced to the form [9]

o2 ÿ k 2c 2 � 1

4

o2
L�e1e�2�k1 ÿ k�2V 2

E��o1 ÿ o� ÿ �k1 ÿ k�u�2 ÿ �h 2�k1 ÿ k�4=4m 2
;

�3:2�

where e1 and e are the unit polarization vectors for incident
and scattered electromagnetic waves.

The condition for the resonant wave scattering, given by
the zeros of the denominator on the right-hand side of
Eqn (3.2), is given by

�o1 ÿ o� ÿ �k1 ÿ k�u � � �h�k1 ÿ k�2
2m

: �3:3�

Let us analyze formula (3.3) for the particular case of
u � 0Ð the scattering on electron gas. With an accuracy up
to the quantum term (that we assume to be small), we see that
o � o1. Therefore, condition (3.3) can be written out as

o � o1 � o1
�ho1

mc 2
�1ÿ cos y� ; �3:4�

where y is the scattering angle (the angle betweenwave vectors
k and k1). Condition (3.4) with the minus sign represents the
known condition for the Compton scattering of light.

At the resonance point, we look for a solution of Eqn (3.2)
(at u � 0) in the form

o � kc� do � o1 � O�h � do ; O�h � o1
�ho1

mc 2
�1ÿ cos y� :

�3:5�6 Instead of the plasma wave, there can be a wave of any nature satisfying

the resonance condition (2.3).
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Substituting Eqn (3.5) into Eqn (3.2), we obtain the following
equation for the increment do:

do2�do� 2O�h� � 1

4

~V 2
E

c 2
o2

Lo1�1ÿ cos y� : �3:6�

Here, we introduced the notation ~V 2
E � V 2

E�e1e2�2 to shorten
subsequent expressions. It is reasonable to compare this
equation with analogous equation (2.7). If inequality
jdoj4 2O�h is fulfilled, then from equation (3.6) follows the
standard classical plasma instability increment due to the
stimulated Thomson scattering of light. We are not interested
here in that case. But when the opposite inequality is satisfied,
we obtain from Eqn (3.6) the following expression for the
instability increment [9]:

do � i
1

2

~VE

c
oL

�
mc 2

2�ho1

�1=2

: �3:7�

Increment (3.7) is obviously a pure quantum in nature. It
characterizes the quantum plasma instability due to the
stimulated Compton scattering of light. In the classical limit
(for �h! 0), increment (3.7) increases and converts into the
classical Thomson scattering increment.

When calculating increment (3.7), we took the upper
(minus) sign in equation (3.6). If we take the plus sign in the
quantum limit in Eqn (3.6) [and, therefore, in formula (3.4)],
we obtain do2 > 0, which means the absence of instability.
This is understandable because o > o1 in this case, and
scattering with increasing frequency on a stationary electron
is impossible. It is easy to see that the results obtained also
hold for the scattering on a beam, with the only difference
being that expression (3.4) becomes more complicated due to
the Doppler effect (see Ref. [9] for details).

The applicability conditions for the results obtained in
this section follow from inequalities O�h 4 jdoj4 jk1 ÿ kjV0

and reduce to the following [see Eqn (2.11a)]:�
�ho1

mc 2

�3

4
V 2

E

c 2
o2

L

o2
1

4
�ho1

mc 2
V 2

0

c 2
: �3:8�

These conditions are satisfied well for strong fields, when
VE 4V0, and for sufficiently high frequency o1 of the
incident wave.

The considered quantum effect of the stimulated Comp-
ton scattering can be interpreted as a resonant interaction
process involving electromagnetic waves and de Broglie
waves of a free electron. For that, we substitute the beat
wave frequency o1 ÿ o and wave vector k1 ÿ k instead of o
and k into decay conditions (2.19), since the electronmoves in
the field of two electromagnetic wavesÐ incident and
scattered. Then, we obtain the following resonance condi-
tions:

o0 � o1 ÿ o � o 0 ; k0 � k1 ÿ k � k0 : �3:9�

By substituting next conditions (3.9) into formula (2.18), we
arrive at condition (3.3) with the plus sign, i.e., the quantum
Compton scattering condition. Thus, the Compton scattering
effect comprises the resonant interaction of four wavesÐ two
electromagnetic and two de Broglie.

4. Conclusion

From the above analysis, we can conclude the following:
(1) When describing Langmuir waves in a gas plasma,

quantum effects always lead to small corrections, at most
comparable to corrections due to the thermal motion of
plasma electrons. Quantum effects are important for the
resonant interactions of free plasma electrons with electro-
magnetic waves of various natures. Here, the quantization of
electromagnetic energy transferred to electrons in the inter-
action process is substantial.

(2) For the propagation of a low-density beam in a dense
electron plasma, development of the quantum Cherenkov
beam instability becomes possible.When increasing the beam
density, the quantum instability converts into the standard
classical single-particle stimulated Vavilov±Cherenkov effect.
The quantum Cherenkov beam instability comprises a three-
wave decay process of the de Broglie beam electron wave into
a Langmuir plasma wave and another de Broglie wave.

(3) For the propagation of an intense high-frequency
electromagnetic wave in a plasma, the quantum effect of its
Compton scattering on plasma electrons is realized. Its
classical analogue is the stimulated Thomson scattering
effect taking place in the lower-frequency range. The
quantum Compton effect comprises the resonant four-wave
interaction of two electromagnetic waves and two de Broglie
waves of free plasma electrons.
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