
Abstract. The energy and dispersion characteristics of a dipole
spin wave in a ferrite ± dielectric ±metal structure are calcu-
lated. An analysis of spin wave dispersion characteristics with
extreme points demonstrates how fundamental relationships
among the propagation constant, phase and group velocities,
Poynting vector, and power flux manifest themselves when the
wavenumber changes near these points. A comparison of mag-
netostatic approximation results with calculations using Max-
well's equations shows the inadequacy of the magnetostatic
approximation formulas currently used for calculating the
Poynting vector and power flux of dipole spin waves. A correct
alternative is proposed.

1. Introduction

Wave processes or waves propagating in various media and
structures, while different in nature, havemuch in common [1,
2]. Thus, the propagation, reflection, and refraction of
wavesÐ processes that are all governed by energy and
momentum conservation lawsÐcan generally be described
within the common physical, terminological, and interpretive
framework, and there is a fundamental relationship for any
wave between changes of its dispersion and energy character-
istics (that is, between the magnitudes and signs of such wave
parameters as the propagation constant, phase velocity,
group velocity, and electromagnetic energy flux). Generally,

however, it is impossible to find an example of the structure
which alone could illustrate all aspects of this relationship,
because structures for which the wave dispersion relation
exhibits extrema are quite rare in nature (unlike those for
which a wave is either forward or backward over its entire
range of existence).

One such rare case is illustrated by anisotropic ferrite
structures that allow for the effective excitation and subse-
quent propagation of (electromagnetic type) dipole spin
waves, i.e., waves of the ferrite magnetization precession
about an external stationary uniform magnetic field [3±6]. In
particular, the ferrite±dielectric±metal (FDM) structure has a
unique property at certain values of its parameters, which is
that the dispersion curve of a dipole spin wave propagating
through such a structure has one or two extreme points (see,
for example, Refs [7, 8]), providing a convenient example to
illustrate all aspects of the interrelation between the disper-
sion and energy characteristics of the wave.

Because dipole spin waves have phase velocities much less
than the speed of light, and so can be treated magnetostati-
cally (i.e., by neglecting terms on the order of about q=qt in
Maxwell's equations), they are standardly referred to as
magnetostatic waves (MSWs) [3]. The properties of MSWs
have been well studied for a number of structures and are
reviewed in detail elsewhere [3±6].

The magnetostatic approximation is a particularly well-
suited theoretical framework for MSWs in which the group
and phase velocities are noncollinear because, in this case,
Maxwell's equations for a medium with the magnetic
permeability described by a second-order tensor are rather
difficult to solve analytically. Without downplaying the
results obtained in the magnetostatic approximation, it
should be noted that, because of its unjustified use (even for
geometries that can be treated by Maxwell's equations), a
number of important fundamental problems have been left
virtually unaddressed. Further still, it turned out that the
magnetostatic solutions for some of these problems are
inadequate for describing the properties and characteristics
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of dipole spin waves. For example, multiple attempts [5, 6, 9,
10] at calculating the Poynting vector in the magnetostatic
approximation (in which the electric component of the
superhigh-frequency (SHF) field of an MSW is left out of
consideration) have produced expressions which, as shown
below, lead to a wrong assessment of MSW energy distribu-
tion in some ferrite structures.

In contrast, using Maxwell's equations to examine the
characteristics of MSWsÐat least for geometries amenable
to the analytical solution of the boundary problemÐallows
the investigation of fluxes, energy distribution, and SHF field
lines for an MSW, adding considerable general insight into
wave propagation in anisotropic media. In particular,
calculations of the MSW Poynting vector and power flux
that we perform in this paper for the FDM structure shed
light on a question of fundamental importance for wave
physics: whether passing through the points of extremum
that arise in theMSWdispersion curve for the FDMstructure
means simultaneous changes in the direction of the wave
energy flux and in the character of the wave (the latter
meaning a change from a forward to a backward wave or
vice versa). While at first glance the answer is obviously
positive, calculations with the formulas given in Refs [4,
æ 5.1], [6, æ 6.1], and [9, 10] show it is not. Below, we will also
consider reasons why the magnetostatic calculation of MSW
energy characteristics leads to incorrect results.

2. Dispersion relation
for a surface magnetostatic wave
in a ferrite±dielectric±metal structure

As will be seen from the discussion that follows, using
Maxwell's equations to examine MSW energy characteristics
is most advantageous when dealing with the FDM structure.
There has been much work on the derivation of the MSW
dispersion relation from Maxwell's equations and on MSW
dispersion in various ferrite structures [5, 11±18], so below we
only briefly formulate a similar problem for an FDM
structure (following mainly Ref. [17]) and present relations
necessary to derive expressions for theMSW Poynting vector
and power fluxes.

Let us firstly consider MSW propagation through the
infinite plane-parallel structure shown in Fig. 1, which
consists of a ferrite plate 2 of thickness s, and a nonmagnetic
dielectric layer 3 of thickness w adjacent to an ideally
conducting metal plane 4. We introduce a Cartesian coordi-
nate system whose associated unit vector triad is fx0; y0; z0g,
and which is oriented in such a way that the x-axis is normal
to the plate plane, and the z-axis is along a constant uniform
magnetic field H0 which magnetizes the plate to saturation.
We use the respective notations e2 and m2

$
for the relative

permittivity and the relative permeability tensor of plate 2 and
assume the latter to be given by [5]

m2
$ �

m in 0
ÿin m 0
0 0 1

������
������ ; �1�

where

m � 1� oM oH

o2
H ÿ o2

; �2�

n � oM oH

o2
H ÿ o2

; �3�

oH � gH0, oM � 4pgM0, o � 2pf, g is the gyromagnetic
constant, 4pM0 is the ferrite saturation magnetization, and
f is the electromagnetic vibration frequency. The relative
permittivity of dielectric 3 is e3, and the relative permittivity
and the relative permeability of the half-space (e1 and m1) are
unity, as is the magnetic permeability m3 of the dielectric.

The electromagnetic field in each of the media should
satisfyMaxwell's equations which, using complex amplitudes
[inverse Fourier transforms multiplied by exp �iot�], are as
follows:

rot hj � i
o
c
ejej ;

rot ej � ÿi o
c
mjhj ; �4�

div �ejej� � 0 ;

div �mjhj� � 0 ;

where hj and ej are the respective complex amplitudes of the
high-frequency magnetic and electric field vectors, ej and mj
are the medium parameters (i.e., j � 1, 2, or 3), and c is the
speed of light in vacuum.

We will be concerned with the wave characteristics along
the y-axis, so, assuming the problem to be uniform along the
z-axis, we set q=qz � 0 in equations (4). The system (4) then
breaks up into two subsystems: the first of these describes TE
waves, including MSWs in the structure under study, and the
second describes TH waves which will not be considered here
(for more detail on TH wave solutions see Ref. [18]). For
example, Eqn (4) yields the following set of equations for a TE
wave propagating through the ferrite layer:

qh2y
qx
ÿ qh2x

qy
� i

o
c
e2e2z ;

qe2z
qy
� ÿi o

c
�mh2x � inh2y� ; �5�

qe2z
qx
� i

o
c
�ÿinh2x � mh2y� ;

where e2z, h2x, and h2y are the projections of the vectors e2 and
h2 onto the respective coordinate axes. Set of equation (5) is
solved for the components e2z of the field and reduced to a
Helmholtz wave equation. Equations (4) also readily yield
wave equations for the e1z and e3z components in the half-

y

z

x

x � w

x � ÿs

H0

4

3

2

1

0

Figure 1. Geometry of the problem: 1, vacuum half-space; 2, ferrite plate;

3, dielectric layer, and 4, perfectly conducting metal.
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space and the dielectric. Thus, the ejz field components satisfy
the equation

q2ejz
qx 2
� q2ejz

qy 2
� q 2

j ejz � 0 ; �6�

for each of the media � j � 1; 2; 3�; here, q 2
1 � k 2

0 ,
q 2
2 � k 2

0 e2m?, q
2
3 � k 2

0 e3, k0 � o=c, and m? � �m 2 ÿ n 2�=m.
The solutions satisfying equation (6) can be written for

each medium as

e1z � C exp �ÿikyy� k1xx� ;
e2z � exp �ÿikyy�

�
A exp �k2xx� � B exp �ÿk2xx�

�
; �7�

e3z � exp �ÿikyy�
�
F exp �k3xx� � G exp �ÿk3xx�

�
;

where A, B, C, F, G are arbitrary constants, and the wave
vector components kjx and ky are related by the following
equation

k 2
jx � k 2

y ÿ q 2
j : �8�

Using system (5) and its analogs for the half-space and the
dielectric layer, it is an easy matter to express the magnetic
field components hjx and hjy via ejz, and then using Eqn (7) to
obtain the following expressions for hjx and hjy:

h1x � C
ky

k0
exp �ÿikyy� k1xx� ;

h2x � 1

k0m?

�
A

�
ky ÿ n

m
k2x

�
exp �k2xx�

� B

�
ky � n

m
k2x

�
exp �ÿk2xx�

�
exp �ÿikyy� ; �9�

h3x � ky

k0

�
F exp �k3xx� � G exp �ÿk3xx�

�
exp �ÿikyy� ;

h1y � ÿiC k1x
k0

exp �ÿikyy� k1xx� ;

h2y � i

k0m?

�
A

�
n
m
ky ÿ k2x

�
exp �k2xx�

� B

�
n
m
ky � k2x

�
exp �ÿk2xx�

�
exp �ÿikyy� ; �10�

h3y � i
k3x
k0

�
G exp �ÿk3xx� ÿ F exp �k3xx�

�
exp �ÿikyy� :

Satisfying the continuity boundary conditions for the
tangential components of the vectors e and h at the
boundaries x � ÿs and x � 0, and taking the component e3z
equal to zero at the metal boundary x � w, we arrive at the
following system of equations

C exp �ÿk1xs� � A exp �ÿk2xs� � B exp �k2xs� ;
A� B � F� G ;

F exp �kx3w� � G exp �ÿkx3w� � 0 ; �11�
ÿ k1xm?C exp �ÿk1xs� � A

�
n
m
ky ÿ k2x

�
exp �ÿk2xs�

� B

�
n
m
ky � k2x

�
exp �k2xs� ;

k3xm?�Gÿ F � � A

�
n
m
ky ÿ k2x

�
� B

�
n
m
ky � k2x

�
:

Taking the determinant of the set of equations obtained
for the constants A, B, C, F, and G equal to zero yields the
following dispersion relation�

k2x ÿ n
m
ky ÿ m?k1x

�
�
�
m?k3x ÿ

�
k2x � n

m
ky

�
tanh �k3xw�

�
exp �ÿ2k2xs�

�
�
k2x � n

m
ky � m?k1x

�
�
�
m?k3x �

�
k2x ÿ n

m
ky

�
tanh �k3xw�

�
� 0 ; �12�

which, after some rearrangements, can be rewritten as�
m 2
?k1xk3x �

n 2

m 2
k 2
y ÿ k 2

2x �
n
m
m?ky�k3x � k1x�

ÿ m?k2x�k1x ÿ k3x� coth �k2xs�
�
exp �ÿ2k3xw�

� m 2
?k1xk3x ÿ

n 2

m 2
k 2
y � k 2

2x ÿ
n
m
m?ky�k3x ÿ k1x�

� m?k2x�k1x � k3x� coth �k2xs� � 0 : �13�

If two media 1 and 3 in Fig. 1 may be considered vacuum,
then, setting k3x � k1x, e3 � e1 � 1, and accounting for
relationship (8), expression (13) reduces to�

m?k
2
1x ÿ

1

m
k 2
y � k 2

0 e2 � 2
n
m
kyk1x

�
exp �ÿ2k3xw�

� m?k
2
1x �

1

m
k 2
y ÿ k 2

0 e2 � 2k2xk1x coth �k2xs� � 0 : �14�

The dispersion relation for a ferrite plate in free space can
be obtained from Eqn (14) by assuming w!1 (which leads
after simplification to formula (9) of Ref. [18]).

At w � 0, i.e., for a ferrite±metal (FM) structure, equa-
tion (14) also takes quite a simple form

k2x coth �k2xs� � n
m
ky � m?k1x � 0 : �15�

Positive and negative values of ky in Eqns (12)±(15)
correspond to wave propagation in the �y and ÿy direc-
tions, respectively.

All the solutions of equations (12)±(15) may be condition-
ally classified into two types.

The first describes a wave in which the propagation
constant ky can by several orders of magnitude be greater
than k0, and for which the smaller the ratio k0=ky, the closer
the wave dispersion relation to its counterpart calculated
magnetostatically (similar to the calculationsmade inRef. [18]
for a ferrite plate in free space). It is waves corresponding to
this solution which we will refer to as MSWs. The second
solution is a wave for which ky is only a few times (depending
on the values of e2 and e3) larger than k0 (the magnetostatic
approximation does not produce such solutions). Surface
waves corresponding to this solution are not discussed
below because their properties are virtually identical to
those of waves arising in an ordinary dielectric plate (see, for
example, Ref. [15] for a description of such waves propagat-
ing through the FD structure).
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It is readily seen that the solutions of equations (12)±(15)
may include not only a surface wave, for which k2x and k3x are
real and the wave amplitude in the ferrite and dielectric layers
is exponential in x, but also bulk wave solutions, for which
one of the propagation constants k2x and k3x or simulta-
neously both become imaginary (this follows from the fact
that upon the replacement k3x ! ik3x in Eqn (12) or
k2x ! ik2x in Eqns (13)±(15), all terms in these equations
either remain real or become imaginary). This should be
taken into account when deriving the Poynting vector; in
particular, writing these expressions in the general form
should not be preceded by calculating the real part of the
vector product of the electric and magnetic fields.

3. MSW Poynting vector and power fluxes
in a ferrite±dielectric±metal structure

As is known, the average value of the Poynting vector (i.e., the
time-averaged electromagnetic energy flux density) P is
defined by

P � c

8p
Re �eh�� ; �16�

where the symbol � denotes from here on a complex
conjugate.

Using expressions (7), (9), (10) for the electromagnetic
field components, it can be shown that the only real and
nonzero component of the Poynting vector for anMSW in an
FDM structure is its y-component:

Pjy � c

8p
Re �ejzh �jx� : �17�

Substituting expressions (7) and (9) for the components ejz
and hjx into formula (17) yields

P1y � cky

8pk0
jC j2 exp �2k1xx� ; �18�

P2y � c

8pk0m?
Re

�
jAj2

�
ky ÿ n

m
k2x

�
exp �2k2xx�

� jBj2
�
ky � n

m
k2x

�
exp �ÿ2k2xx�

� AB �
�
ky � n

m
k2x

�
� BA �

�
ky ÿ n

m
k2x

��
; �19�

P3y � cky

8pk0
Re
� jF j2 exp �2k3xx� � jGj2 exp �ÿ2k3xx�

� FG � � GF �
�
: �20�

Using system (11), relations (18)±(20) for the Poynting
vector components and relations (7), (9), (10) for the SHF
field components can be expressed in terms of (any) one of the
five independents coefficients A, B,C, F,G. For this purpose,
let us express, for example, B, C, F, G in terms of A:

B � Ax exp �ÿ2k2xs� ;
C � A�x� 1� exp �k1xsÿ k2xs� ; �21�
G � Ab ;

F � ÿG exp �ÿ2k3xw� � ÿAb exp �ÿ2k3xw� � AZ ;

where

x � k2x ÿ �n=m�ky ÿ m?k1x
k2x � �n=m�ky � m?k1x

; �22�

Z � 1� x exp �ÿ2k2xs�
1ÿ exp �2k3xw� ; �23�

b � 1� x exp �ÿ2k2xs�
1ÿ exp �ÿ2k3xw� : �24�

As calculations showed, for MSW type solutions the
components k2x and k3x are real for ky 4 k0, whereas the
components k2x and k3x become imaginary for ky close to k0
(a similar change in k2x and k3x for the FD structure is shown
in Fig. 3 in Ref. [15]), with the result that x, Z, b, the
coefficients B, C, F, G, and all field components ejz, hjx, hjy
become complex. Therefore, relations (18)±(20) for different
ranges of ky values produce different expressions for the y-
components of the Poynting vector and corresponding power
fluxes. Because our concern here is with the energy character-
istics of MSWs, for which ky 4 k0, the components k2x and
k3x, the quantities x, Z, b, and the coefficients B, C, F, G are
real, so that from expressions (18)±(20), using formulas (21),
the MSW Poynting vector components are given by

P1y � P0y�x� 1�2 exp �ÿ2k2xs� 2k1x�x� s�� ; �25�

P2y � P0y

m?
exp �ÿ2k2xs�

(�
1ÿ nk2x

mky

�
exp

�
2k2x�x� s��

� x 2

�
1� nk2x

mky

�
exp

�ÿ2k2x�x� s��� 2x

)
; �26�

P3y � P0y

�
Z 2 exp �2k3xx� � b 2 exp �ÿ2k3xx� � 2bZ

�
� P0y

�
Z exp �k3xx� � b exp �ÿk3xx�

�2
; �27�

where

P0y � ckyjAj2
8pk0

: �28�

The totalMSWpower fluxPwill be the sumof power flux
contributionsPj from all media � j � 1; 2; 3�, each of which is
obtained by integrating the corresponding y-components of
the Poynting vector Pjy over the x and z coordinates:

P �
X3
j� 1

Pj �
� 1

0

� ÿs
ÿ1

P1y dx dz

�
� 1

0

� 0

ÿs
P2y dx dz�

� 1

0

� w

0

P3y dx dz : �29�

Because the structure under study is uniform along the z-
axis, the integration with respect to z is formal and reduces to
multiplying by the length of a unit region, whereasPj has the
meaning1 of the power flux through the jthmedium along the
y-axis per unit length of the structure along the z-axis.
Substituting expressions (25)±(27) for the y-component Pjy

of the Poynting vector into formula (29) and performing
integration, we obtain the following expression for the partial

1 The physical meaning of a partial flow Pj is defined more precisely in

Section 6.
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fluxPj � j � 1; 2; 3�:

P1 � P0y exp �ÿ2k2xs�
2k1x

�x� 1�2 ; �30�

P2 � P0y exp �ÿ2k2xs�
2k2xm?

(�
1ÿ nk2x

mky

��
exp �2k2xs� ÿ 1

�
� x 2

�
1� nk2x

mky

��
1ÿ exp �ÿ2k2xs�

�� 4xk2xs

)
; �31�

P3 � P0y

2k3x

�
Z 2
�
exp �2k3xw� ÿ 1

�
� b 2

�
1ÿ exp �ÿ2k3xw�

�� 4bZk3xw
�

� P0yb
2 exp �ÿ2k3xw�

2k3x

� �exp �2k3xw� ÿ exp �ÿ2k3xw� ÿ 4k3xw
�
: �32�

4. Variation of MSW dispersion
and energy characteristics
in a ferrite±dielectric±metal structure

There is a fundamental relationship that characterizes
changes in the dispersion and energy characteristics of any
wave and which is particularly manifested in the propagation
of a surface MSW (SMSW) in an FDM structure. As is
known, this structure exhibits a unique feature in that its
dispersion curve may have one or two points of extremum
(where the derivative qo=qky changes sign), indicating that
the wave changes its character at these points (from a forward
wave for one range of values of the propagation constant ky to
a backward wave for another). At the same time, it is known
that for the same sign of ky, forward and backward waves
should carry energy in opposite directionsÐ that is, depend-
ing on the character of the wave, the total energy flux will
have different signs in intervals of the values of ky separated
by the points of extremum. The theoretical and experimental
confirmation of this relationship between wave dispersion
and energy characteristics is of fundamental significance for
the physics of waves.

Let us now consider how the dispersion and energy
characteristics of an SMSW in the FDM structure vary
with the parameters of the latter. We will simplify our
calculations by assuming that the dielectric layer 3 in the
FDM structure displayed in Fig. 1 is a vacuum gap
�e3 � 1�, and plate 2 is yttrium iron garnet (YIG), a ferrite
which is most effective in exciting and propagating MSWs.
For a YIG plate of thickness s � 10 mm, a saturation
magnetization 4pM0 � 1750 G, and an external magnetic
fieldH0 � 300Oe, the dispersion curve f �ky� for an SMSW in
an FDM structure varies with vacuum gap w as shown in
Fig. 2. Curves f �ky� for an FDM structure always lie between
curve 1, the SMSW dispersion curve for the FM structure
(which corresponds to w � 0), and curve 4, the SMSW
dispersion curve for a ferrite plate in free space (which
corresponds to w!1), and have the feature that for the
range 0 < w < w1 the function f �ky� has a single point of
extremum (see Fig. 2, curve 2), for the range w1 < w < w2 it
has two points of extremum (see Fig. 2, curve 3), and for
w2 < w <1 it has no extrema [ f �ky� for this case is not
plotted in Fig. 2].

The variation of the total and partial fluxes calculated by
formulas (29)±(32) is shown in Fig. 3 for the case (Fig. 3a) in
which the dispersion curve f �ky� for an FDM structure has a
single extremum and is described by curve 2 in Fig. 2, and for
the case (Fig. 3b) in which this curve shows two points of
extremum and is described by curve 3 in Fig. 2.

As seen from Fig. 3, the total flux P behaves in exact
correspondence with how its associated dispersion relation
does: for those ky where f �ky� has extrema, P�ky� passes
through zero, with the total fluxP and the wave propagation
constant ky (phase velocity) having the same sign for those
ranges of ky values where the wave is forward (i.e., where the
dot product of the wave vector and the group velocity has a
positive sign, kyV � ky qo=qky > 0 [19, 20]); on the other
hand, for those ranges of ky values where the wave is
backward �kyV � ky qo=qky < 0�, the total flux P and the
wave propagation constant ky (phase velocity) have the
opposite signs. 2 In cases where the dispersion curve has no
extrema and describes a forward wave [as is the case for
dependences f �ky� described by curves 1 and 4 in Fig. 2], the
total fluxP is always positive (flux changes corresponding to
these dispersion curves are not shown in Fig. 3). This
relationship between the dispersion and energy characteris-
tics is a fundamental property which characterizes the
propagation not only of an MSW in an FDM structure, but
also of any electromagnetic waves in anisotropic or dielectric
media. While there has been considerable theoretical work on
the propagation of MSWs in an FDM [7 ±13], no investiga-
tion of this relationship has been undertaken.

It should be noted that of the three terms P1,P2, andP3

that determine the total flux P, fluxes P1 and P3 in vacuum
always have the same sign as the propagation constant ky
which, in accordance with Eqn (28), determines the sign of the
amplitude of the MSW energy characteristics P0y (i.e., if
ky > 0, then P1 > 0 and P3 > 0). However, the flux P2 in
the ferrite layer changes its sign in amore complicated way: at
w � 0, P2 and ky have the same sign; as w!1, P2 and ky
have opposite signs, and for intermediate gap widths w, P2
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Figure 2.MSWdispersion curves f �ky� for an FDM structure for different

vacuum gaps: 1, w � 0 (i.e., FM structure); 2, w � 10 mm; 3, w � 15:5 mm,
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number of structures dispersion curves have extreme points at negative ky.
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can have either positive or negative sign depending on where
ky is.

3 We recall here that the negative values of a partial flux
appearing in one of the layers of the structure are character-
istic not only of a ferrite layer but also of, for example, a
plasma layer, as shown in Ref. [21].

To better understand the physics behind the above-
described variation of the total and partial fluxes, let us
consider how the Poynting vector Py and its determinant
superhigh-frequency electric and magnetic fields ez and hx
vary over the cross section of the structure. The normalized
Pjy�x�, ejz�x�, and hjx�x� dependences calculated from
formulas (7), (9), (25)±(27) at the frequency f � 3100 MHz
are shown in Fig. 4. In a free �w!1� ferrite plate, the wave
is localized near one of the plate's surfaces (Fig. 4a), where all
three quantities Py, ez, and hx have maxima. As this surface is
approached sufficiently closely by a metal plane (to within
about a few ferrite plate thicknesses), the maxima of the SHF
field ez and the values of Py steadily shift toward the opposite

surface (Fig. 4b) because, as is known, on an ideally
conducting surface ez � 0 (and hence Py � 0). If the metal
plane is adjacent to the surface of the ferrite plate (at w � 0),
ez and Py are zero here, and have their maxima near the
opposite surface. The quantities ez and Py behave in this way
not only for f � const but for ky � const, as well. As for the
properties of the wave itself, the factors determining whether
the wave will be forward or backward for the given structure
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peculiarities, frequency, and the value of ky are the para-
meters of the exponential functions that describe Py: the total
area under the curve Py�x� in Fig. 4 (i e., the flux P) will be
positive (the forward wave) or negative (the backward wave)
depending on how sharply or smoothly the exponentials fall
off.

Importantly for the subject under discussion, the results
described above received experimental support from an
earlier work [17]. This work proved that there is a relation-
ship between the energy and dispersion characteristics of an
MSW in an FDM structure: not only were forward and
backward MSWs corresponding to the rising and falling
portions of the dispersion curve observed in this work, but it
was also shown how using the variation in the phase±
frequency characteristic of the transmission coefficient can
help to distinguish a forward from a backward wave.
Reference [17] was also able to investigate MSW character-
istics in an FDM structure by using a YIG plate with a
dielectric and a metal screen located at one side, and an
exciting and a receiving transducer at the other (such
measurements were not possible for YIG films because one
side of a YIG film is adjacent to the substrate on which the
film was grown).

5. Whether the magnetostatic approximation
can be used in describing the energy
characteristics of a magnetostatic wave

It might seem on the first glance that the results described
above are, first, trivial and unquestionable, and, second,
simpler to obtain in the magnetostatic approximation (as
Refs [4, æ 5.1], [6, æ 6.1], and [9, 10] suggest).

We will show below what errors arise when using the
magnetostatic approximation to study the energy character-
istics of an MSW. For this purpose, we will try to use
magnetostatic calculations to obtain dependences similar to
those plotted in Figs 3 and 4.

Let us solve a boundary value problem for the FDM
structure of Fig. 1 usingMaxwell's equations in the magneto-
static approximation:

rot h � 0 ; �33�
div b � 0 : �34�

Introducing the magnetostatic potential C for each medium
� j � 1; 2; 3�, so that

hj � gradCj ; �35�

and using the respective expressions b2 � m2
$
h2 and b1; 3 � h1; 3

for magnetic induction inside and outside the ferrite plate, we
obtain the following equations for the potential inside �C2�
and outside �C1; 3� the plate:

m
�
q2C2

qx 2
� q2C2

qy 2

�
� q2C2

qz 2
� 0 ; �36�

q2C1; 3

qx 2
� q2C1; 3

qy 2
� q2C1; 3

qz 2
� 0 : �37�

The continuity of the potential C and of the normal
component bx of the magnetic induction at the interfaces,
combined with the requirement that this component vanish at
the surface of the metal, leads to the following boundary

conditions:

C1 � C2 at x � ÿs ;
C2 � C3 at x � 0 ;

qC3

qx
� 0 at x � w ; �38�

m
qC2

qx
� in

qC2

qy
� qC1

qx
at x � ÿs ;

m
qC2

qx
� in

qC2

qy
� qC3

qx
at x � 0 :

We assume for each of the media the following form for
the solution which describes an MSW propagation in the
plane of the structure and satisfies Eqns (36) and (37):

C1 � C exp �ÿikyyÿ ikzz� k1xx� ;
C2 � exp �ÿikyyÿ ikzz�

�
A exp �k2xx� � B exp �ÿk2xx�

�
;

C3 � exp �ÿikyyÿ ikzz�
�
F exp �k3xx� � G exp �ÿk3xx�

�
;

�39�
where A, B, C, F, and G are arbitrary constants, and k1x, k2x,
k3x, ky, and kz are wave vector components along the
coordinate axes (of which k1x, k2x, and k3x are positive). By
substituting expressions (39) into Eqns (36) and (37), the
relationships between the wave vector components are found
to be

k1x �
����������������
k 2
y � k 2

z

q
;

k2x �
����������������
k 2
y �

k 2
z

m

s
; �40�

k3x � k1x :

Substituting expressions (39) into Eqn (38), we obtain the
system of equations

C exp �ÿk1xs� � A exp �ÿk2xs� � B exp �k2xs� ;
A� B � F� G ;

F exp �k3xw� ÿ G exp �ÿk3xw� � 0 ; �41�
k1x
m

C exp �ÿk1xs� � A

�
n
m
ky � k2x

�
exp �ÿk2xs�

� B

�
n
m
ky ÿ k2x

�
exp �k2xs� ;

k3x
m
�Fÿ G� � A

�
n
m
ky � k2x

�
� B

�
n
m
ky ÿ k2x

�
;

which, when solved, yields the following dispersion relation
(see, for example, a table in Ref. [22]) for MSW propagation
in an FDM structure:

m 2k 2
2x ÿ n 2k 2

y � k 2
1x � 2mk1xk2x coth �k2xs�

� �m 2k 2
2x ÿ n 2k 2

y ÿ k 2
1x � 2nk1xky� exp �ÿ2k1xw� � 0 :

�42�
Assuming wave propagation along the y-axis (to make the

problem similar to that of Sections 2±4) and setting kz � 0,
equation (42) can be written out using formulas (40) as

m? �
1

m
� 2 coth �kys� �

�
m? ÿ

1

m
� 2

n
m

�
exp �ÿ2kyw� � 0 :

�43�
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To describe the energy characteristics of an MSW in the
magnetostatic approximation, the proposal to use the well-
known vector analysis identity

div �eh�� � h� rot e� e rot h� �44�

has been made [4, æ 5.1], [6, æ 6.1], and [9, 10]. Because
rot h � 0, rot e � ÿik0b, and h � gradC [see Eqns (33), (4),
and (35), respectively], identity (44) yields

div �eh�� � ÿik0h�b � ÿik0 gradC �b : �45�

Bearing in mind that div b � 0 [see Eqn (34)], Eqn (45) can be
rewritten as

div �eh�� � ÿik0 div �C �b� ; �46�

which, in accordance with the conclusions of Refs [4, æ 5.1], [6,
æ 6.1], and [9, 10], implies that

�eh�� � ÿik0C �b ; �47�

meaning that the Poynting vector (16) for each of the media
� j � 1; 2; 3� can be written out as

Pj � ÿ o
8p

Re �iC �j bj� : �48�

The immediate point here is that the passage from
Eqn (46) to Eqn (47) is incorrect because two vectors can
be different even if they have the same divergence (as is
obviously the case for the vectors xx0 � yy0 � zz0 and
5xx0 ÿ 4yy0 � 2zz0). Using the exponential functions
describing the coordinate dependences of the vectors e and
h, it is an easy matter to construct an example of such vectors:

1

kx
exp �kxxÿ ikyyÿ ikzz� x0

� 1

iky
exp �kxxÿ ikyyÿ ikzz� y0

� 1

ikz
exp �kxxÿ ikyyÿ ikzz� z0 ;

2

kx
exp �kxxÿ ikyyÿ ikzz� x0

ÿ 4

iky
exp �kxxÿ ikyyÿ ikzz� y0

� 7

ikz
exp �kxxÿ ikyyÿ ikzz� z0 :

We thus see that formula (48) obtained from formula (47)
is also incorrect.

Let us, however, forget this error for a while and look at
what the calculations using formula (48) yield. Notice that in
the case of the y-propagating MSW we are considering, the
only Poynting vector component which takes real values is
Pjy � ÿoRe �iC �j bjy�=8p. Figure 5 shows the results obtained
from formula (48) for the normalized dependences C�x�,
by�x�, and Py�x� for a ferrite plate in a free space �w!1�
(Fig. 5a) and for the FM structure �w � 0� (Fig. 5b), all
produced for the same media parameters used in calculations
with Maxwell's equations in Section 4. 4 Comparing Figs 4c

and 5b, it is seen that, unlike Py�x� calculated for an FM
structure using Maxwell's equations (Fig. 4c, curve 1), the
similar Py�x� dependence evaluated using formula (48)
(Fig. 5b, curve 1) does not vanish at x � 0 (at the boundary
with the metal), nor doC�x� and by�x� determining Py. Other
findings were that the Py�x� calculated via formula (48) for
intermediate gap widths w (in particular, for w � 10 and
15.5 mm) always has a maximum at the boundary x � 0, and
that the total flux P�ky� evaluated with formula (29) using
these Py�x� does not change sign at dispersion extrema. For
example, P�ky� does not change sign in the range
0 < ky < 2000 cmÿ1 for w � 10 mm, even though a change
of sign should be seen for ky � 570 cmÿ1 as is the case for the
similar P�ky� dependence in Fig. 3a [Py�x� and P�ky�
dependences are not shown in the figures]. To avoid errors
in our computations, we also calculated in the magnetostatic
approximation the dependence hx�x� (Fig. 5b, curve 3), which
proved to be identical to the similar dependence evaluated
using Maxwell's equations (Fig. 4c, curve 3).

The above results indicate that formula (48) is inade-
quate for calculating MSW energy characteristics. Still, let
us here briefly describe an experiment that provides further
support for this conclusion. Details aside, the difference4 Because by is imaginary, Fig. 5 shows the dependence Re �by�x��.
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Figure 5. Variation of the time-averaged electromagnetic energy flux
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between Py�x� calculated from formula (48) and Maxwell's
equations lies in the fact that as the metal screen approaches
the MSW-localizing surface of the ferrite plate (i.e., the
surface whereat Py�x� has a maximum), calculations via
formula (48) show that the wave remains localized near this
surface, whereas computations based on Maxwell's equa-
tions give evidence that it changes localization by moving to
the opposite surface of the plate. Thus, if an MSW localized
near one of the surfaces of the ferrite plate encounters a
metalized region on its way, then Maxwell's equations imply
that, moving to the other surface, the wave will travel an
additional distance equal approximately to the ferrite plate
thickness, thus acquiring an additional phase incursion. If a
grid of metallic strips is placed perpendicular to the wave's
propagation direction and if a thicker plate is used, the
additional phase incursion due to surface-to-surface `transi-
tions' will become measurably large.

Experiments that demonstrated this phase incursion are
described in Ref. [17]. The basic idea of work [17] is to
compare the results of two following experiments. In the
first of them, the ferrite plate had exciting and receivingMSW
transducers placed on its surface and what was measured was
how the phase of the transmission coefficient changed
between them as the grid of metallic strips was smoothly
brought closer to the ferrite surface located between the
transducers. The second experiment differed only in the
employment of a metal screen rather than a grid of strips.
Thus, if the MSW indeed made `transitions' from one surface
to the other, the phase incursions related to the length of each
structure would be strongly different for these two experi-
mentsÐas indeed they were found to be in Ref. [17] (so much
different that they have even opposite signs) (see Ref. [17] for
more details). Notice that if Py were determined by formula
(48), there would be only a slight phase incursion difference
between these two experiments.

We have thus proved that formula (48) is incorrect and,
hence, so are the results it produces.

The question, however, remains whether MSW energy
characteristics can be calculated by treating the problem in
the magnetostatic approximation. The answer is YES,
provided only that calculations are made with formula (16)
which, for our problem, reduces to formula (17). As already
noted, the SHF component hx entering into formula (17) is
virtually the same whether calculated magnetostatically
(Fig. 5b, curve 3) or using Maxwell's equations (Fig. 4c,
curve 3). What remains to be done is to find the SHF field
component ez that enters into formula (17). Clearly, because
the first equation of system (4) assumed the form rot h � 0,
it is of no use for finding ez, leaving the second equation in
the system for this purpose. For the ferrite layer, for
example, noting the z-uniformity �q=qz � 0�, we obtain the
following equation [analogous to the second equation in
system (5)]:

qe2z
qy
� ÿi o

c
�mh2x � inh2y� � ÿi o

c
b2x : �49�

Noting that all MSW characteristics, including the ez
component, vary with y as exp �ÿikyy�, equation (49) is
readily integrated to yield

e2z � k0
ky

b2x � k0
ky
�mh2x � inh2y� : �50�

For SHF components ejz in a vacuum � j � 1; 3�, we obtain by
analogy that

ejz � k0
ky

bjx � k0
ky

hjx : �51�

Taking account of Eqns (50) and (51), expression (17) for Pjy

may be rewritten as

Pjy � o
8pky

Re �bjxh �jx� �
Vph

8p
Re �bjxh �jx� ; �52�

where Vph is the MSW phase velocity in an FDM structure.
The curve Pjy�x� calculated using formula (52) for various

values of w is identical to its analog in Fig. 4 calculated from
Maxwell's equations. That this should be so becomes obvious
when one compares formulas (17) and (52): both ez and bx
vanish at the metal surface, and this is exactly what
determines the behavior of Py�x� [it is also worth noting that
the calculated results from formula (48) are not identical to
those from formulas (17) and (52) because neither C nor by
entering into formula (48) is equal to zero at the metal
surface]. It is also clear that the total flux P and partial
fluxesPj calculated in accordance with formula (29) based on
relationship (52) will be nearly identical to their counterparts
calculated using Maxwell's equations, with the accuracy of
this coincidence (as with other magnetostatic calculations)
increasing with a decrease in the ratio k0=ky (see Ref. [18] for
more details).

We have thus shown that when applying the magneto-
static approximation, the Poynting vector should also be
calculated by formula (16), with the necessary components
of the field e determined from the second equation of the
system (4). The only thing to remember is that, because in
such a treatment the first equation in system (4) takes the form
rot h � 0, the permittivities of the ferrite and its surrounding
dielectrics will be left out of account (which can be of little
significance if they are small), so one should use Maxwell's
equations if accurate computations are needed. Notice also
that formula (52) is not universal: it holds only for the special
case of an MSW propagating perpendicular to a uniform
magnetic fieldH0 in a tangentially magnetized structure (with
one or twometal screens or `magnetic walls' [22]). In addition,
one should not, when treating a problem magnetostatically,
identifyC�x�, the magnetic potential distribution in the cross
section of the structure, with Py�x�, the MSW energy density
distribution (such an analogy is often drawn in ferrite
structure studies): from a comparison of Fig. 4c and Fig. 5b
it is seen that the distributions C�x� and Py�x� may differ
considerably.

6. The physical meaning
of total and partial power fluxes

Let us return, however, to the results obtained in Section 4. By
looking at how the total �P� and partial �Pj� fluxes vary as a
function of the propagation constant ky, it should be pointed
out that the P1 and P3 fluxes in vacuum are always positive,
whereas the P2 flux in the ferrite plate may be positive or
negative, depending on the particular range of ky values (see
Fig. 3). The question that often arises here is, does this mean
that the latter case produces a situation in which the energy
transfer direction is different for vacuum and ferrite. Were
such a change observed for one flux in a vacuum, it would be
possible to establish experimentally when and where the

March 2011 On the relationship between magnetostatic wave energy and dispersion characteristics in ferrite structures 289



energy is transferred there, whereas such measurements are
impossible within the ferrite plate.

We will therefore try to use logical reasoning to find the
answer. We begin by noting that when calculating the total
fluxP, the only reason why the integral over x was written as
the sum of three integrals was a convenience.More than three
would do as well. For example, let us divide the integral over
the ferrite layer fromÿs to 0 into two regions, from ÿs toÿx0
and from ÿx0 to 0, and let x � ÿx0 correspond to that plane
in the ferrite layer where Py�x� passes through zero (such a
point, x � ÿx0, can be seen in Figs 4a and b). Integrating in
this new way, for example, for the case in Fig. 4a and
reasoning about the signs of the new partial fluxes P21 and
P22, is it valid to conclude that it is not the flux in the whole of
the ferrite plate but only theP22 flux (obtained by integrating
from ÿx0 to 0) that is negative? Or can the limits of
integration in the ferrite layer in, for example, the case of
Fig. 4b be chosen such that the integral overmost of the ferrite
plate thickness is zero, but will this imply that the energy flux
is not at all present in that part of the plate?

Thus, it is easily seen that when determining the wave
energy propagation direction, only the magnitude and sign of
the integral as a whole or, in other words, of the total flux P
are physically meaningful (irrespective of the number of
regions into which the integration is divided). Clearly, this
general conclusion applies not only to an MSW in an FDM
structure but also to waves of another nature propagating in
any other structure.

Another often asked question may be stated as follows: Is
there any physical meaning to partial fluxes? A possible
answer is this: the physical meaning of partial fluxes is similar
to their mathematical meaning in the sense that it is
determined by the proportion of wave energy in a given
region of integration; however, to avoid errors in choosing
arbitrary (although possibly convenient) integration intervals
(as in Fig. 4b, where the integral over most of the ferrite plate
thickness may prove to be nearly zero), these intervals should
be taken sufficiently small or, one can say, it is more
convenient in this context to analyze the behavior of the
original (integrand) flux density P in the cross section of the
structure. It is this dependence which provides complete
insight into how the time-averaged energy flux density is
distributed in a structure (medium). Still, the case in which the
limits of integration for calculating the total flux coincide
with the boundaries of a component media should be given
special consideration. In this case, if the Poynting vector is
positive (or negative) throughout the range of integration,
then knowing partial fluxesmeans knowingwhich proportion
of power is localized in the corresponding medium (i.e., layer
of the structure).

7. Conclusion

The energy characteristics of a dipole spin wave whose
dispersion curve in a ferrite±dielectric±metal structure pos-
sesses extrema have been calculated and analyzed to demon-
strate the manifestation near these points of fundamental
relationships among such wave parameters as the propaga-
tion constant, phase velocity, group velocity, Poynting
vector, and electromagnetic energy flux. It is shown, in
particular, that in this structure the total power flux P and
the dispersion curve f �ky� change in a related way: for those
values of the propagation constant ky for which f �ky� has an
extremum, the flux P is zero, with the flux P and the phase

velocity of the wave (the propagation constant) having the
same sign for those intervals of ky where the wave is forward
(i.e., where the dot product of the wave vector and the group
velocity is positive, kyV � ky qo=qky > 0), and having
opposite signs for those intervals of ky where the wave is
backward (i.e., where kyV � ky qo=qky < 0). The validity of
these findings is confirmed by previous experimental work.

The study of these relationships using Maxwell's equa-
tions shows that calculating the Poynting vector P in a ferrite
structure using the formula P � ÿoRe �iC �b�=8p (where C
is the magnetic potential, and b is the magnetic induction
vector) obtained in earlier work [4, æ 5.1; 6, æ 6.1; 9, 10] leads to
incorrect results because the relationships described above do
not manifest themselves in this case. In describing dipole spin
waves in the magnetostatic approximation, one should
calculate the Poynting vector by the well-known formula
P � cRe �eh��=8p, determining the SHF éeld e from Max-
well's equation rot e � ÿiob=c.

The work was supported in part by the Higher School
Research Potential Development grant No. 2. 1. 1 /1081.
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