
Abstract. In the last two decades, it has been established that a
single universal probability distribution function, known as the
Tracy ±Widom (TW) distribution, in many cases provides a
macroscopic-level description of the statistical properties of
microscopically different systems, including both purely math-
ematical ones, such as increasing subsequences in random per-
mutations, and quite physical ones, such as directed polymers in
randommedia or polynuclear crystal growth. In the first part of
this review, we use a number of models to examine this
phenomenon at a simple qualitative level and then consider the
exact solution for one-dimensional directed polymers in a ran-
dom environment, showing that free energy fluctuations in such
a system are described by the universal TW distribution. The
second part provides detailed appendix material containing the
necessary mathematical background for the first part.

1. Introduction

Everyone is familiar with the Gaussian distribution function.
Whenever we are dealing with a system containing indepen-
dent random parameters, its macroscopic characteristics
(according to the central limit theorem) are described by the
Gaussian distribution. This kind of universal behavior is
trivial, and not very interesting. On the other hand, each
nontrivial system usually requires individual consideration,
and although there are many universal macroscopic proper-

ties among microscopically different systems (e.g., critical
indices of second-order phase transitions), it has never been
observed until very recently that a universal function (different
from the Gaussian one) would describe the macroscopic
statistical properties of a whole class of nontrivial random
systems.

Originally, Tracy and Widom [1] considered a rather
specific mathematical problem, the distribution function of
the largest eigenvalue of N�N Hermitian matrices (the
Gaussian unitary ensemble, GUE) in the limit N!1.
Presently, many years after that paper,, we have a rather
comprehensive list of various systems (both purely mathema-
tical and physical) whose macroscopic statistical properties
are described by the same universal Tracy±Widom (TW)
distribution function. These systems are: the model of the
longest increasing subsequences (LIS) [2], zero-temperature
lattice directed polymers with geometric disorder [3], the
polynuclear growth (PNG) system [4], the oriented digital
boiling model [5], the ballistic decomposition model [6], the
longest common subsequences (LCS) [7], the one-point
distribution of solutions of the KPZ equation [8] (which
describes the motion of an interface separating two homo-
geneous bulk phases) in the long-time limit [9, 10], and finite-
temperature directed polymers in random potentials with
short-range correlations [11±14]. We note that directed
polymers in a quenched random potential have been the
subject of intense investigations during the past three
decades (see, e.g., [15]). Diverse physical systems such as
domain walls in magnetic films [16], vortices in superconduc-
tors [17], wetting fronts on planar systems [18], or Burgers
turbulence [19] can be mapped to this model, which exhibits
numerous nontrivial features deriving from the interplay
between elasticity and disorder.

In the introductory part of this review, we discuss three
random statistical systems at a simple qualitative level: the
combinatorial model of the longest increasing subsequences
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(Section 1.1), the polynuclear crystal growth model (Section
1.2), and one-dimensional directed polymers in a random
potential (Section 1.3). In addition, in Section 1.4, the main
ideas of the replica method (to be used in solving the problem
of directed polymers) are described, and in Section 1.5, we
finally define the TW distribution function and study its main
properties.

Sections 2 and 3 are devoted to the exact solution of the
one-dimensional directed polymer problem. In particular, in
Section 2, the main ideas of this solution and its methodolo-
gical tools are described. Section 3 contains a formal
derivation of the TW distribution function for free energy
fluctuations in one-dimensional directed polymers with the
d-correlated random potential. The second part of this review
contains several technical appendices where all the necessary
mathematical machinery used in the previous sections is
collected.

1.1 Combinatorics
We start with a purelymathematical `toy' model, which, as we
see in what follows, is closely related to the physical problems
of polynuclear crystal growth and one-dimensional directed
polymers. This combinatorial problem deals with statistical
properties of the longest increasing subsequences under
random permutations of N positive integers f1; 2; . . . ;Ng
[20]. For an arbitrary permutation of these integers, we find
all possible increasing subsequences, and let lN denote the
length of the longest one. As an example, we consider the case
N � 11 and take an arbitrary permutation,

f3; 5; 10; 1; 9; 6; 8; 4; 7; 11; 2g : �1:1�

This permutation contains several different increasing sub-
sequences (f3; 5; 10; 11g, f1; 9; 11g, and so on); the longest
among them are f3; 5; 6; 7; 11g and f3; 5; 6; 8; 11g. In other
words, lN � 5 for this particular permutation. A simple
graphical representation of this permutation problem is
shown in Fig. 1. There, the set of 11 dots inside the 12� 12

square represents permutation (1.1): to each integer on the x
axis we associate one and only one integer on the y axis (for
x � 1, this is y � 3, for x � 2, this is y � 5, and so on).
Various increasing subsequences are represented by all
possible directed paths connecting the origin �0; 0� with the
upper-right corner �12; 12� of this square and passing over the
dots inside the square. A directed pathmeans that only `right-
and-up' moves are allowed in going from one dot to another.
For example, from the point �6; 6�, we can jump only to �7; 8�,
�9; 7�, and �10; 11�. In other words, when going from the
origin to the upper-right corner �12; 12�, both x and y
coordinates can only increase at each step. In terms of these
rules, the longest increasing subsequence is represented by a
directed path that goes over the maximum possible number of
dots. We note that the longest increasing subsequence for a
given permutation is not necessarily unique. In the considered
example, there are two longest subsequences: f3; 5; 6; 7; 11g
and f3; 5; 6; 8; 11g.

Considering all the N! possible permutations of N
numbers, we find that the length lN is a random variable.
Assuming that all permutations are equiprobable, the
problem is to find the distribution function of the random
quantity lN.

It turns out that for largeN, the average size of the longest
increasing subsequence, lN, is proportional to

����
N
p

, namely,
lN � 2

����
N
p

[21].Moreover, in the limitN!1, the quantity lN
is self-averaging: limN!1 lN=

����
N
p � 2 (in other words, the

distribution function of the random variable lN=
����
N
p

shrinks
to the d-function in the limit N!1).

At the qualitative level, it is easy to understand why the
typical value of lN must be proportional to

����
N
p

. Indeed, for
largeN, a generic permutation of the numbers f1; 2; . . . ;Ng in
terms of thematrix shown in Fig. 1 is represented by a uniform
distribution ofN dots inside theN�N square. Therefore, the
density of the dots is proportional to 1=N and, accordingly,
the typical distance between neighboring dots must be
proportional to

����
N
p

. This means that the typical number of
dots on a path running from the �0; 0� corner to
�N� 1;N� 1� and having the length of the order of N must
be of the order of N=

����
N
p � ����

N
p

.
However, the main interest in this system is not the

average value lN itself but the statistics of the fluctuations of
lN around its mean 2

����
N
p

. This problem turned out to be quite
nontrivial, and it was shown only recently that in the limit of
largeN, the fluctuations of lN scale asN 1=6 (which ismuch less
than the mean 2

����
N
p

). In other words, the random variable lN
can be represented for large N as [2, 22]

lN ' 2
����
N
p
�N 1=6 s ; �1:2�

where the random quantity s � 1 is introduced that is
described as N!1 by a universal N-independent distribu-
tion function PTW�s�, called the Tracy±Widom distribution:

lim
N!1

Prob

�
lN ÿ 2

����
N
p

N 1=6
� s

�
� PTW�s� : �1:3�

1.2 Polynuclear crystal growth
The above mathematical toy model is actually equivalent to
the physical model of crystal growth occurring due to
randomly located nucleation centers. This is the so-called
model of polynuclear crystal growth, which describes the
growth of two-dimensional crystal monolayers in 2� 1
dimensions.
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Figure 1. Geometrical representation of permutation (1) for N � 11. The

dotted line corresponds to the longest increasing subsequence

f3; 5; 6; 7; 11g.
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We return to Fig. 1, where the randomly distributed N
dots are now assumed to represent the nucleation centers. In
this model, the crystal monolayers grow in the vertical
direction (toward the reader) in accordance with the follow-
ing rules. From each nucleation center, we draw a monolayer
level step as a straight line in the horizontal direction to the
right and in the vertical direction up, until this line meets with
another line starting from another center. In this way, we
obtain monolayer `terraces,' which mount from the lower-left
to the upper-right corner of the square (see Fig. 2).

It is easy to understand that for a given (random)
configuration of the nucleation centers, the number of
terraces hN is equal to the size of the longest increasing
permutation lN in the combinatorial problem considered in
Section 1.1. Depending on the random configurations of the
nucleation centers inside theN�N square, the number hN of
monolayer terraces is a random quantity, and in the limit
N!1, its statistics is described by the TW distribution,
Eqn (1.3) [5]. Presently, the study of various modifications of
the above PNG-type model of crystal growth is a vast field of
research (see, e.g., [23]). It is also interesting to note that the
existence of the TW distribution in PNG-like systems was
quite recently confirmed experimentally [24].

1.3 Directed polymers
It is clear that when the system size in the above examples is
large, then the presence of the underlying `microscopic' lattice
is not essential. Therefore, instead of considering the problem
in terms of permutations, as in Section 1.1, we can introduce a
homogeneous distribution of dots inside a continuous square
(Fig. 3).We introduce the `time' axis that goes from the origin
(the lower-left corner) and runs along the diagonal to the
upper-right corner of the square. A directed polymer is then a
line that starts at the origin and arrives at the upper-right
corner by hopping over the dots randomly scattered over the
square so as to follow the `time' direction. Only those hops are
allowed under which the time coordinate of the path
increases. For a given random configuration of the dots, we

have to choose the path that contains the maximum number
of dots, which we call the polymer `length.' In this formula-
tion, the problem looks somewhat different from the problem
in Section 1.1. It can be shown, however, that in the limit of
large time t and large N, these two problems become
equivalent [22].

Let the length of the diagonal of the square be equal to t.
Instead of the total number N of dots, we can take the
independent parameter of the problem to be equal to the
density of dots r, assuming that it remains constant as t!1.
We then express the length l�t� of an ordered polymer (i.e., the
number of dots through which it passes) as a function of time
(the square size) t. By definition, r � 2N=t 2. Because we
consider the problem with a constant density r � 1, it follows
that t / ����

N
p

. In this setting, themean of l�t� is proportional to
t (instead of

����
N
p

in the combinatorial problem), and the
typical fluctuations around this mean scales as t 1=3 instead of
N 1=6, and instead of Eqn (1.3), the statistics of fluctuations of
the directed polymer length is given by

lim
t!1 Prob

�
l�t� ÿ ������

2r
p

t

t 1=3
� s

�
� PTW�s� : �1:4�

In other words, in the thermodynamic limit t!1, all the
three systems considered above are equivalent, which does
not look very surprising if we compare Figs 1±3.

In statistical physics, the problem of directed polymers is
set up somewhat differently. We introduce a square lattice in
which the discrete `time' axis, t � 1; 2; . . . ;L, is now horizon-
tal (Fig. 4). The vertical direction is described by a discrete
parameter f � 0;�1;�2; . . . ;�M. At each lattice site �f; t�,
we place independent random quantities V�f; t� described by
the Gaussian distribution

P�V� �
Y
f; t

���������
1

2pu

r
exp

�
ÿ 1

2u
V 2�f; t�

�
: �1:5�

The parameter u defines the typical strength of the
random potentials V�f; t�. According to Eqn (1.5),
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Figure 2. (2+1)-dimensional crystal terraces with `nucleation centers'

corresponding to the permutation model in Fig. 1.

t

Figure 3.Directed path running over randomly distributed dots.
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V�f; t� � 0 and

V�f; t�V�f 0; t 0� � u df;f 0 dt;t 0 : �1:6�

A directed polymer is here a path that starts at the origin
�t � 0,f � 0� and goes over the lattice sites to the right end of
the system, t � L. At each time step t! t� 1, the polymer
trajectory f�t� can deviate up or down by one step or may not
deviate at all: f�t� 1� � f�t� � s�t� 1�, where s � �1; 0.
Assuming that the polymer is a kind of elastic string, we can
introduce the `elastic' (positive) energy / �f�t� 1� ÿ f�t��2
for every polymer deviation. In this way, for a given trajectory
f�t�, we can introduce the notion of its energy

H
�
f�t�� �XLÿ1

t� 1

�
1

2

�
f�t� 1� ÿ f�t��2 � V

ÿ
f�t�; t�� : �1:7�

For given random values of the potential V�f; t�, this
expression contains two competing contributions: the elastic
energy terms try to make the trajectory as horizontal as
possible, while the second (random) term forces the trajec-
tory to deviate in the search for themost negative values of the
random potential V�f; t�. The optimal trajectory f��t� is
determined by a minimum of the energy, Eqn (1.7):

E�L� � min
f�t�

(XLÿ1
t� 1

�
1

2

�
f�t� 1� ÿ f�t��2 � V

ÿ
f�t�; t��) :

�1:8�
Being a function of the random potential V�f; t�, this
quantity is also random, and can be considered an analog of
the random length of the directed polymers in the previous
example shown in Fig. 3. An essential difference between the
two quantities is that in this last case, the elastic terms are
absent altogether, while the (negative) contribution of the
potential energy is associated with a fixed energy V0 carried
by the dots, which [unlike the Gaussian random potentials
V�f; t�] are geometrically random. Another important differ-
ence is that, unlike the directed polymer in Fig. 4, which is
defined by local wandering over the lattice (with one-step
deviations only), the trajectory in Fig. 3 can jump any distance
from dot to dot, not necessarily between the nearest
neighbors. Therefore, a priori, there is no reason to expect
that these two quantities, E�L� in Eqn (1.8) and l�t� in the
example in Fig. 3, would have the same statistical properties.
But if we suppose that in the thermodynamic limit
t � L!1, these two types of models become equivalent
due to some profound reasons that are not yet fully under-
stood, then it follows that the energy in (1.8) must depend on
the system size as E�L� ' f0 L � L1=3s, where f0 is the usual
bulk (self-averaging) energy density and the random quantity

s � 1 must be described by the L-independent universal TW
distribution function PTW�s�.

The system described by Hamiltonian (1.7) is the usual
one-dimensional statistical model with quenched disorder.
That its ground state energy E�L� is proportional to the
system sizeL can be explained in a very simple way. Indeed, to
find the global minimum of energy (1.7), we can in the first
approximation use an algorithm that is local in time. At each
time step, among the three possible options (`up,' `horizontal,'
and `down'), we always choose the one yielding the smallest
value of the random potential V�f; t� (in this approximation,
we neglect the presence of the trajectories that choose a locally
unfavorable option to gain amore favorable energy globally).
In this way, the second term in Eqn (1.7) provides the
contribution that is proportional to ÿ ���

u
p

L [and not
������
uL
p

, as
it would be for an arbitrary trajectory f�t�]. Because the
contribution of the first (elastic) term in Eqn (1.7) is also
proportional toL, we find that the leading contribution to the
energy of the optimal trajectory is E�L� ' ÿ�const�L, and,
moreover, we can be sure that this contribution is negative,
because the energy of the optimal trajectory in the absence of
a random potential is zero (it is just a straight horizontal line),
while the presence of a random potential can only decrease
the energy. On the other hand, the fact that finite-size
corrections in this system are of the order L1=3 (and not L1=2,
as is usually the case) is a highly nontrivial phenomenon,
which is very difficult to explain in simple terms.

In terms of the standard statistical mechanics, the lattice
model in Eqns (1.7) and (1.8) is essentially a zero-temperature
system, because for a given realization of the random
potential, we only account for the trajectory that is the global
minimum. It is clear that the search for the global minimum is
a highly nontrivial task because the algorithms that are local
in time are insufficient. On the other hand, as it often
happens, life can be made easier by considering a more
general (i.e., more complicated) problem. We introduce a
temperature T into the system, and hence, in addition to the
fluctuations due to the random potential, we also consider
thermal fluctuations produced by the trajectories away from
the global energy minimum. In other words, instead of the
global minimum energy E�L� in Eqn (1.8), we now consider
the free energy:

F�L;T � � ÿT ln

"X
f�t�

exp

�
ÿ 1

T
H
�
f�t���# ; �1:9�

where the expression under the logarithm is the partition
function in which the summation ranges over all trajectories
starting at the origin. In the case where the global minimum
trajectory is unique (which is usually the case in a large
system), the energy defined in Eqn (1.8) is obtained by taking
the zero temperature limit of the free energy:
E�L� � limT!0 F�L;T �.

The lattice model defined by Eqns (1.7) and (1.9) is
sufficiently simple for numerical investigations (see, e.g.,
[25]) which, in particular, provide conclusive evidence that
the free energy fluctuations do indeed scale as L1=3. On the
other hand, a problem defined on a lattice is quite difficult for
analytic studies. Because we are mainly interested in the
thermodynamic limit L!1, it is natural to expect that the
lattice becomes irrelevant at large scales (in the continuum
limit). Passing to the continuum limit in Hamiltonian (1.7) is
straightforward. Assuming that the lattice spacing tends to
zero and replacing the finite differences in the elastic term

f

0
L

fL

Figure 4.Directed polymer on a square lattice.
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with the gradient, we obtain

H
�
f�t�� � � L

0

dt
�
1

2

�
df�t�
dt

�2
� V

ÿ
f�t�; t�� ; �1:10�

where, as before, the random potentialV�f; t� is described by
the Gaussian distribution. In the continuous limit, instead of
discrete relation (1.6), we obtain

V�f; t�V�f 0; t 0� � u d�fÿ f 0� d�tÿ t 0� : �1:11�

The partition function of this system is now expressed as a
path integral:

Z �
� �1
ÿ1

dfL

� f�L��fL

f�0�� 0

D�f�t�� exp ÿÿbH�f�� ; �1:12�

where b � 1=T is the inverse temperature and the integration
is over all trajectories starting at the origin f�t � 0� � 0 and
having free boundary conditions at t � L. In this way, instead
of the lattice trajectories in Fig. 4, we have continuous
trajectories, as in Fig. 5. The continuous model thus defined
eventually yields to theoretical analysis.

First of all, we can note that in the absence of the random
potential in Hamiltonian (1.10), the system describes simple
thermal diffusion. Indeed, the probability that the trajectory
arrives at the pointf�L� � fL at the time t � L is given by the
partition function

Z0�fL� �
� f�L��fL

f�0�� 0

D�f�t�� exp(ÿ 1

2T

� L

0

dt
�
df�t�
dt

�2)
:

�1:13�
Simple Gaussian integration [with the proper choice of
the integration measure, which is an arbitrary normal-
ization factor for the partition function in (1.13) or (1.12)]
leads to

Z0�fL� �
1������������

2pTL
p exp

�
ÿ f2

L

2TL

�
: �1:14�

It follows that the typical deviation hf 2
Li1=2 of the trajectory

due to thermal fluctuations increases as
����
T
p

L1=2 (and
vanishes in the zero-temperature limit).

The picture becomes much more complicated in the
presence of a random potential. It is natural to assume that
the elastic energy and the energy due to the random potential
must be of the same order. For a given value of the typical
deviation fL, the contribution of the elastic term, and hence
the total energy of the system, must be of the order of f 2

L=L.
Thus, if we assume that the free energy fluctuations of this

system scale as L1=3 in the presence of disorder (which is now
established without a doubt; see, e.g., [26±29]), then we
conclude that the typical value of trajectory deviations due
to the action of the random potential must increase as
fL � L2=3, which is much faster than the pure thermal
diffusion scaling L1=2.

Our central problem in what follows is to study statistical
properties of the model defined by Eqns (1.10) and (1.11). It
turns out that despite essential differences in the definition of
this system and the models discussed in Sections 1.1±1.3, all
these models not only exhibit the same scaling with the
parameter L but are actually equivalent in the thermody-
namic limit L!1. The central result proved in the next
sections is that in the limit L!1, the free energy of the
system can be represented as

F � f0L� c L1=3 f ; �1:15�

where f0 is the linear free energy density and
c � �1=2��b 2u2�1=3. The random quantity f � 1 [just like the
quantity s in Eqns (1.2)±(1.4)] is described by the universal
TW distribution function (see Section 1.5).

1.4 Replica method
The replica method is widely used in studies of systems with
quenched disorder (see [30, 31]). For simplicity, we consider
the model of directed polymers described by Hamiltonian
(1.10) and restrict ourself to zero boundary conditions:
f�0� � f�L� � 0. The partition function of a given sample
described by Hamiltonian (1.10) is

Z�V � �
� f�L�� 0

f�0�� 0

D�f�t�� exp ÿÿbH�f;V �� : �1:16�

On the other hand, the partition function is related to the total
free energy F �V � as

Z�V � � exp
ÿÿbF �V �� : �1:17�

The free energy F �V � depends on a specific realization of
the random potential and is therefore also a random
variable. Taking the Nth power of both sides of (1.17) and
averaging over realizations of the random potential, we
obtain

ZN�V � � Z�N;L� � exp
ÿÿbNF �V �� ; �1:18�

where the quantity in the left-hand side is called the replica
partition function. Substituting the free energy in the form
F � f0L� c L1=3 f from Eqn (1.15) and redefining the replica
partition function,

Z�N;L� � ~Z�N;L� exp �ÿbN f0L� ; �1:19�

we obtain

~Z�N;L� � exp �ÿlNf � ; �1:20�

where we introduce the new parameter l � bcL1=3. The
averaging in the right-hand side of (1.20), which involves
the random quantity f, can be represented in terms of its
distribution function PL� f � (which depends on the system
size L in general). In this way, we arrive at the following
general relation between the replica partition function
~Z�N;L� and the distribution function of the free energy

f

0
L

fL

Figure 5. Continuous elastic string in a random potential, Eqn (1.10).
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fluctuations PL� f �:
~Z�N;L� �

� �1
ÿ1

df PL� f � exp �ÿlN f � : �1:21�

Of course, the most interesting object is the thermo-
dynamic limit distribution function P�� f � � limL!1 PL� f �,
which is expected to be a universal quantity free of any
parameters. The above equation is readily seen to be a
bilateral Laplace transform of PL� f �, and, formally at
least, it allows restoring this function via the inverse Laplace
transform of the replica partition function ~Z�N;L�. For this,
we have to first compute ~Z�N;L� for an arbitrary integer N
and then, if possible, perform an analytic continuation of
this function from integer to arbitrary complex values of N.
In this approach, unfortunately, the analytic continuation is
often a rather dubious operation [32, 33]. The classic
example of this situation is provided by the Derrida random
energy model [34], in which Z�N� increases as exp �N 2� at
large N, and it turns out that there are many different
distributions yielding the same values of Z�N� but providing
different values for the average free energy of the system. In
our present system of directed polymers with Hamiltonian
(1.10), the situation is even worse because, as we see in what
follows, the replica partition function increases here as
exp �N 3� at large N, and in this situation its analytic
continuation from integer to noninteger N is ambiguous. (In
order that the analytic continuation of a function Z�N� from
integer to arbitrary values of N be unambiguous, Z�N� must
increase not faster than exponentially as N!1.) It turns
out, however, that in our present case, it is possible to bypass
the problem of the analytic continuation if, instead of the
distribution function P�� f �, we study its integral representa-
tion

W�x� �
�1
x

df P�� f � ; �1:22�

which expresses the probability of finding a value of a random
variable f greater than a given number x. Formally, the
functionW�x� can be defined as

W�x� � lim
l!1

X1
N� 0

�ÿ1�N
N!

exp �lNx� ~ZN

� lim
l!1

X1
N� 0

�ÿ1�N
N!

exp �lNxÿ lNf �

� lim
l!1

exp
�ÿ exp

ÿ
l�xÿ f ��� � y� fÿ x� : �1:23�

Thus, the probability function W�x� can be computed in
terms of the replica partition function ~Z�N;L� by summing
over all positive integer values of the replica parameter N:

W�x� � lim
l!1

X1
N� 0

�ÿ1�N
N!

exp �lNx� ~Z�N;L� : �1:24�

Of course, keeping in mind that ~Z�N;L� increases as exp �N 3�
for large N, we see that the above series is not entirely
innocuous. Here, in accordance with the troubles conserva-
tion law, instead of an analytic continuation problem, we are
facing a formally divergent series. Nevertheless, it is shown in
Section 3 that this sign alternating divergent series can be
regularized in the standard way (similarly to the formally
divergent sign alternating series

P1
k�0�ÿ1�kak � �1� a��ÿ1�

which at jaj > 1 is defined as the analytic continuation from

the region jaj < 1). This eventually allows us to prove that the
thermodynamic limit function W�x� in Eqn (1.24) can be
expressed in terms of the universal Tracy±Widom distribu-
tion function, which is considered in the next subsection.

1.5 Tracy±Widom distribution function
Originally, the Tracy±Widom distribution function was
derived in studying statistical properties of the Gaussian
unitary ensemble (GUE) of random Hermitian matrices [1].
Let Gi j be an N�N complex Hermitian matrix whose
elements are independent random quantities with the Gaus-
sian distribution

P�G� � BN exp

�
ÿ 1

2
Tr �G2�

�
; �1:25�

where BN is a normalization constant. The joint probability
density of N eigenvalues fl1; l2; . . . ; lNg of such matrices is
well known to be given by [35]

P�l1; l2; . . . ; lN� � CN

YN
i 6� j

jli ÿ ljj2 exp
�
ÿ
XN
i� 1

l2i

�
; �1:26�

where CN is a normalization constant. Using this result,
we can calculate various averaged characteristics of the
eigenvalue statistics. The simplest is the average density of
the eigenvalues r�l;N� � �1=N �PN

i� 1hd�lÿ li�i, where
the averaging h. . .i is performed with probability distribu-
tion (1.26). Using the symmetry of this distribution under
permutations of the eigenvalues, we represent it as

r�l;N � �
�YN
i� 2

� �1
ÿ1

dli

�
P�l; l2; . . . ; lN� : �1:27�

It can be shown [35] that in the limitN!1, r�l;N� is the so-
called Wigner semicircle:

r�l;N � �
��������������������������������
2

Np2

�
1ÿ l2

2N

�s
: �1:28�

In other words, in the limit of large N, the eigenvalues lie
within the interval

�ÿ �������
2N
p

< l <
�������
2N
p �

. This is one of the
central results of the random matrix theory. In particular,
this result reveals that on average, the maximum eigenvalue
lmax is equal to

�������
2N
p

. But this eigenvalue is a random
quantity in and of itself, and we can address the question
of the full probability distribution of the largest eigenvalue
lmax. This distribution can be computed in terms of the joint
probability density, Eqn (1.26). Introducing the standard
notation of the random matrix theory, we define the function
F2�s� � Prob

�
lmax < s

�
that gives the probability that lmax is

less than a given value s (in this notation, the functions F1�s�,
F2�s�, and F4�s� respectively denote the probability distribu-
tions of the largest eigenvalues in the Gaussian orthogonal
ensemble (GOE), Gaussian unitary ensemble (GUE), and
Gaussian symplectic ensemble (GSE) [36]). By definition,
therefore,

F2�s� �
�YN
i� 1

� s

ÿ1
dli

�
P�l1; l2; . . . ; lN� �

� s

ÿ1
dlPTW�l� :

�1:29�
Just this problemwas solved by Tracy andWidom in 1994 [1].
They showed that for large N, the typical fluctuations of lmax
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around its mean
�������
2N
p

scale as Nÿ1=6, namely [cf. Eqn (1.2)],

lmax �
�������
2N
p

� 1���
2
p

N 1=6
s ; �1:30�

where the random quantity s � 1 is described by the N-
independent distribution PTW�s� � dF2�s�=ds. The function
F2�x� has the explicit form

F2�s� � exp

�
ÿ
�1
s

dt �tÿ s� q 2�t�
�
; �1:31�

and, accordingly,

PTW�s� � d

ds
F2�s� � exp

�
ÿ
�1
s

dt �tÿ s� q 2�t�
� �1

s

dt q 2�t� ;
�1:32�

where q�t� is the solution of the PainleveÂ II equation,1

q 00 � tq� 2q 3 ; �1:33�
with the boundary condition q�t! �1� � Ai �t�. The
function PTW�s� is plotted in Fig. 6. We note that the
asymptotic tails of this function are strongly asymmetric.
While its right tail coincides with the Airy function
asymptotic form PTW�s! �1� � exp

�ÿ�4=3�s 3=2�, the
left tail exhibits a much faster decay, PTW�s! ÿ1� �
exp

�ÿ�1=12�jsj3�.
2. Directed polymers
and one-dimensional quantum bosons

Explicitly, the replica partition function in Eqn (1.18) of the
system described by Hamiltonian (1.10) is given by

Z�N;L� �
YN
a� 1

�fa�L�� 0

fa�0�� 0

Dfa�t�

� exp

"
ÿb
� L

0

dt
XN
a� 1

�
1

2

�
qtfa�t�

�2 � V
�
fa�t�; t

��#
:

�2:1�

Because the random potential V�f; t� has a Gaussian
distribution, the disorder averaging �. . .� in the above
equation is very simple:

exp

�
ÿb
� L

0

dt
XN
a� 1

V
�
fa�t�; t

��

� exp

"
b 2

2

�� L

0

dt dt 0
XN

a; b� 1

V
�
fa�t�; t

�
V
�
fb�t 0�; t 0

�#
: �2:2�

Using definition (1.11), we find

Z�N;L� �
YN
a� 1

� fa�L�� 0

fa�0�� 0

Dfa�t�

� exp

"
ÿ 1

2
b
� L

0

dt
�XN

a� 1

�
qtfa�t�

�2
ÿ bu

XN
a; b� 1

d
�
fa�t� ÿ fb�t�

��#
: �2:3�

We note that the second term in (2.3) contains formally
divergent contributions proportional to d�0� (due to the
terms with a � b). In fact, this is just a manifestation of the
fact that the model in Eqns (1.10) and (1.11) is ill-defined at
short distances and requires a proper lattice regularization.
Of course, the corresponding lattice model in (1.6) and (1.7)
contains no divergences, and the above terms with a � b
produce the irrelevant constant �1=2�Lb 2uNd�0� (where the
lattice version of the delta-function is the Kronecker symbol,
which has a finite value). Because the lattice regularization
has no impact on the continuous long-distance properties of
the considered system, this term is omitted in what follows.

Introducing the replica Hamiltonian

HN�ff� � 1

2

� L

0

dt

 XN
a� 1

�
qtfa�t�

�2ÿ bu
XN
a 6� b

d
�
fa�t� ÿ fb�t�

�!
;

�2:4�
which describes N scalar fields ff�t� � ff1�t�; . . . ;fN�t�g,
we obtain the standard expression for replica partition
function (2.3):

Z�N;L� �
YN
a� 1

� fa�L�� 0

fa�0�� 0

Dfa�t� exp
ÿÿbHN�ff�

�
; �2:5�

According to the above definition, this partition function
describes the statistics of N elastic strings fa�t� with a two-
body attracting potential and with zero boundary conditions.
To reformulate the above problem in terms of one-dimen-
sional quantum bosons, instead of the above replica partition
function (2.5), we introduce a more general object,

C�x; t� �
YN
a� 1

� fa�t�� xa

fa�0�� 0

Dfa�t� exp
ÿÿbHN�ff�

�
; �2:6�

which describes N trajectories fa�t� all of which start at zero
�fa�0� � 0� but end at t � t at arbitrary points fx1; . . . ; xNg.
It is easy to show that instead of calculatingC�x; t� as a path
integral, as in (2.6), we can obtain it as a solution of the linear
differential equation

qtC�x; t� � 1

2b

XN
a� 1

q2xaC�x; t� � 1

2
b 2u

XN
a 6� b

d�xa ÿ xb�C�x; t�
�2:7�

0.5

0.4

0.3
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0.1

ÿ6 ÿ4 ÿ2 0 2

Figure 6. Tracy±Widom distribution function PTW�x�, Eqn (1.32).

1 There exist six PainleveÂ differential equations, discovered about a

hundred years ago [37] (see, e.g., [38]). It is proved that the general

solutions of the PainleveÂ equations are transcendental in the sense that

they cannot be expressed in terms of any of the previously known

functions, including all classical special functions. At present, the

PainleveÂ equations have many applications in various parts of modern

physics, including statistical mechanics, plasma physics, nonlinear waves,

quantum field theory, and general relativity.
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with the initial condition

C�x; 0� �
YN
a� 1

d�xa� : �2:8�

It can easily be seen that Eqn (2.7) is the imaginary-time
SchroÈ dinger equation

ÿqtC�x; t� � ĤC�x; t� �2:9�

with the Hamiltonian

Ĥ � ÿ 1

2b

XN
a� 1

q2xa ÿ
1

2
b 2u

XN
a 6� b

d�xa ÿ xb� : �2:10�

We here have the system of N Bose particles of mass b
interacting via the attractive two-body potential ÿb 2ud�x�.
The original replica partition function, Eqn (2.5), is then
obtained from the time-dependent wave function C�x; t� of
the system of bosons at the instant t � L at the point
x1 � x2 � . . . � xN � 0:

Z�N;L� � C�0;L� : �2:11�

Historically, the main interest in studies of such systems
was devoted to quantum bosons with repulsion [which
corresponds to u < 0 in Hamiltonian (2.10)]. This was
largely because in the case of repulsive interactions, the free
energy of the system of N particles reveals the `correct'
extensive free energy F / N. The eigenfunctions of N-boson
Hamiltonian (2.10) with repulsion were derived by Lieb and
Liniger in 1963 [39] (for the details, see Appendix A and
Refs [40, 41]). The system of attractive bosons �u > 0�
remained much less studied. This was largely because this
system has a `wrong' thermodynamic limit behavior,
F / ÿN 3, and hence `collapses' as N!1. Moreover, as
we see in what follows, the structure of the eigenstates of
such a system with arbitrary N is much more complicated
compared to the case of repulsion. The spectrum and some
properties of the eigenfunctions for attractive bosons were
derived by McGuire [42] and Yang [43] in the 1960s (see also
Ref. [44, 45]). The detailed structure of these wave functions,
the proof of their orthogonality, and the calculation of their
normalization are described in Appendix B.

The generic eigenstate of the system of N attracting
bosons consists of M �14M4N� `clusters' fOag
�a � 1; . . . ;M� of bound particles. Each cluster is character-
ized by the momentum qa of its center-of-mass motion and by
the number na of particles contained in it (the integer
parameters na are constrained by

PM
a�1 na � N). Correspond-

ingly, the eigenfunction C �M�q; n �x1; . . . ; xN� of such a state is
characterized by M continuous parameters q � �q1; . . . ; qM�
and M integer parameters n � �n1; . . . ; nM� [see Appendix
B.2, Eqn (B.27)]. The energy spectrum of such states is

EM�q; n� � 1

2b

XM
a� 1

naq
2
a ÿ

k 2

24b

XM
a� 1

�n 3
a ÿ na� ; �2:12�

where

k � b 3u : �2:13�

Thus, a time-dependent solution C�x; t� of SchroÈ dinger
equation (2.7) with initial conditions (2.8) can be represented

in the form of a linear combination of the eigenfunctions
C �M�q; n �x� [see Appendix B.4, Eqn (B.50)]:

C�x; t� �
XN
M� 1

X
n

0
� 0
Dq C �M�q; n �x�C �M�

�
q; n �0� exp

�ÿEM�q; n� t
�
;

�2:14�

where summations over the integer parameters na and
integrations over the momenta qa are performed in a
restricted subspace [see Eqns (B.42)±(B.45) and (B.51)],
which reflects the symmetry of the eigenfunctions C �M�q; n �x�
under permutations of q1; . . . ; qM and n1; . . . ; nM. Corre-
spondingly, according to Eqn (2.11), we have the replica
partition function of the original directed polymer problem
[see Appendix B.4, Eqn (B.59)]

Z�N;L� �
XN
M� 1

1

M!

� YM
a� 1

� �1
ÿ1

dqa
2p

X1
na � 1

�
d

�XM
a� 1

na; N

�
� ��C �M�q; n �0�

��2 exp
�ÿEM�q; n�L

�
; �2:15�

where, due to the symmetry of the function f �q; n� �
jC �M�q; n �0�j2 exp �ÿEM�q; n�L� under arbitrary permutations
of all its M pairs of arguments �qa; na�, integrations over the
M momenta qa can be extended to the whole space RM, and
summations over the na are bounded by the only constraintPM

a�1 na � N (for simplicity, due to the presence of the
Kronecker symbol d

ÿP
a na; N

�
, summations over the na are

extended to infinity).

3. Solution of the one-dimensional problem
of directed polymers

Using the explicit form of the wave functions C �M�q; n �x�,
Eqn (B.27), the expression in Eqn (2.15) for the replica
partition function can be represented as [see Appendix B.4,
Eqns (B.61) and (B.62)]

Z�N;L� � exp �ÿbNL f0� ~Z�N; l� ; �3:1�

where f0 � �1=24�b 4u 2 ÿ �1=bL� ln �b 3u� is the linear (self-
averaging) free energy density [cf. Eqn (1.19)] and

~Z�N;L� � N!

� �1
ÿ1

dq

2pkN
exp

�
ÿ L

2b
Nq 2 � k 2L

24b
N 3

�
�N!

XN
M� 2

1

M!

� YM
a� 1

X1
na � 1

� �1
ÿ1

dqa
2pkna

�

� d

�XM
a� 1

na; N

�YM
a<b

��qa ÿ qb ÿ �ik=2��na ÿ nb�
��2��qa ÿ qb ÿ �ik=2��na � nb�
��2

� exp

�
ÿ L

2b

XM
a� 1

naq
2
a �

k 2L

24b

XM
a� 1

n 3
a

�
: �3:2�

The first term in the above expression is the contribution of
the ground state �M � 1� and the other terms �M5 2� are the
contributions of excited states.

The terms cubic in na in the exponential of Eqn (3.2) can
be linearized with the help of the Airy function, using the
standard relation (see Appendix C)

exp

�
1

3
l3n 3

�
�
� �1
ÿ1

dy Ai�y� exp �ln� : �3:3�
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Redefining the momentum as qa �
ÿ
bk=L

�1=3
pa and introdu-

cing the new parameter

l�L� � 1

2

�
L

b
k 2

�1=3

� 1

2
�b 5u 2L�1=3 ; �3:4�

we obtain

~Z�N; l� � N!

�� �1
ÿ1

dy dp

4plN
Ai�y� exp �lN�yÿ p 2��

�N!
XN
M� 2

1

M!

�YM
a� 1

X1
na � 1

�� �1
ÿ1

dya dpa
4plna

Ai �ya�

� exp
�
lna�ya ÿ p 2

a �
��

�
YM
a<b

��l�na ÿ nb� ÿ i� pa ÿ pb�
��2��l�na � nb� ÿ i� pa ÿ pb�
��2 d

�XM
a� 1

na; N

�
: �3:5�

After shifting the integration variables as ya ! ya � p 2
a , we

obtain a sufficiently compact expression,

~Z�N; l� � N!

�� �1
ÿ1

dy dp

4plN
Ai�y� p 2� exp �lNy�

�N!
XN
M� 2

1

M!

"YM
a� 1

X1
na � 1

�� �1
ÿ1

dya dpa
4plna

�Ai�ya � p 2
a � exp �lnaya�

#

�
YM
a<b

��l�na ÿ nb� ÿ i� pa ÿ pb�
��2��l�na � nb� ÿ i� pa ÿ pb�
��2 d

�XM
a� 1

na; N

�
: �3:6�

Now, using the Cauchy double alternant identityQM
a<b�aa ÿ ab��ba ÿ bb�QM

a;b�1�aa ÿ bb�

� �ÿ1�M�Mÿ1�=2 det
�

1

aa ÿ bb

�
a; b�1;...;M

; �3:7�

where aa � pa ÿ ilna and ba � pa � ilna in our case, we
express the product in Eqn (3.6) in the determinant form:YM
a<b

��l�na ÿ nb� ÿ i� pa ÿ pb�
��2��l�na � nb� ÿ i� pa ÿ pb�
��2

�
"YM

a� 1

�2lna�
#
det

�
1

lna ÿ ipa � lnb � ipb

�
a; b�1;...;M

: �3:8�

Substituting the expression for the replica partition function
~Z�N; l� in the definition of the probability function (1.24), we
can sum over N using the Kronecker symbol, which ensures
that only the value N �PM

a�1 na contributes. The result is

W�x�� lim
l!1

(
1�

X1
M�1

�ÿ1�M
M!

"YM
a�1

�� �1
ÿ1

dya dpa
2p

Ai �ya� p 2
a �

�
X1
na�1
�ÿ1�naÿ1 exp ÿlna�ya � x��#

� det

�
1

lna ÿ ipa � lnb � ipb

�)
: �3:9�

It is easy to see that this expression is an expansion of the
Fredholm determinant det �1ÿ K̂ � (see [46] andAppendix D)
with the kernel

K̂ � K
��n; p�; �n 0; p 0��

�
� � �1
ÿ1

dy Ai �y� p 2��ÿ1�nÿ1 exp ÿln�y� x���
� 1

lnÿ ip� ln 0 � ip 0
: �3:10�

Using the exponential representation of this determinant, we
obtain

W�x� � lim
l!1

exp

�
ÿ
X1
M� 1

1

M
Tr K̂M

�
; �3:11�

where

Tr K̂M �
"YM
a� 1

�� �1
ÿ1

dya dpa
2p

Ai �ya � p 2
a �

�
X1
na � 1

�ÿ1�naÿ1 exp ÿlna�ya � x��#

�
h
�ln1 ÿ ip1 � ln2 � ip2��ln2 ÿ ip2 � ln3 � ip3� . . .

. . . �lnM ÿ ipM � ln1 � ip1�
iÿ1

: �3:12�

Substituting

1

lna ÿ ipa � lna�1 � ipa�1

�
�1
0

doa exp
�ÿ�lna ÿ ipa � lna�1 � ipa�1�oa

�
; �3:13�

in the above expression, we can easily perform the summation
over the integer na. Taking into account that

lim
l!1

X1
n� 1

�ÿ1�nÿ1 exp �lnz� � lim
l!1

exp �lz�
1� exp �lz� � y�z� ; �3:14�

we obtain

lim
l!1

Tr K̂M �
YM
a� 1

�� �1
ÿ1

dya dpa
2p

�1
0

doa Ai �ya � p 2
a �

� y�ya � xÿ oa ÿ oaÿ1� exp
�
ipa�oa ÿ oaÿ1�

�
; �3:15�

where o0 � oM by definition. Shifting the integration
variables as ya ! ya ÿ x� oa � oaÿ1 and oa ! oa � x=2,
we obtain

lim
l!1

Tr K̂M �
YM
a� 1

�1
0

dya

� �1
ÿ1

dpa
2p

�
�1
ÿx=2

doa Ai �ya � p 2
a � oa � oaÿ1� exp

�
ipa�oa ÿ oaÿ1�

�
:

�3:16�

Using the Airy function integral representation and taking
into account that it satisfies the differential equation
Ai 00�t� � tAi�t�, we can easily prove the following integral
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relations (see Appendix C):�1
0

dy

� �1
ÿ1

dp

2p
Ai �y� p 2 � o� o 0� exp �ip�oÿ o 0��

� 2ÿ1=3
�1
0

dy Ai �21=3o� y� Ai �21=3o 0 � y�

� Ai �21=3o�Ai 0�21=3o 0� ÿAi 0�21=3o�Ai �21=3o 0�
oÿ o 0

: �3:17�

Redefining oa ! oa2
ÿ1=3, we find

lim
l!1

Tr K̂M �
��

. . .

�1
ÿx=22=3

do1 do2 . . . doM

� KA�o1;o2�KA�o2;o3� . . .KA�oM;o1� ; �3:18�

where

KA�o;o 0� � Ai �o�Ai 0 �o 0� ÿAi 0 �o�Ai �o 0�
oÿ o 0

�3:19�

is the so-called Airy kernel. This proves that in the thermo-
dynamic limit, the probability functionW�x� in (1.22) is given
by the Fredholm determinant

W�x� � det �1ÿ K̂A� � F2

�
ÿ x

22=3

�
; �3:20�

where K̂A is the integral operator defined on the semi-infinite
line �ÿx=22=3;1� with Airy kernel (3.19). The function
commonly denoted as F2�s� is just the Tracy±Widom
distribution function (see Appendix D). It can be shown to
admit the explicit representation

F2�s� � exp

�
ÿ
�1
s

dt �tÿ s� q 2�t�
�
; �3:21�

where the function q�t� is the solution of the PainleveÂ II
equation q 00 � tq� 2q 3 with the boundary condition
q�t! �1� � Ai�t�. We note that in accordance with
Eqns (1.22), (1.32), and (3.20), P��x� � 2ÿ2=3PTW�ÿ2ÿ2=3x�.

4. Conclusions

The first breakthrough in the studies of one-dimensional
directed polymers in a random potential was due to the
work of Kardar [29], in which the problem was reduced to
an N-particle system of quantum bosons with an attractive
two-body interaction. Because of the focus on the properties
of the system in the thermodynamic limit, it seemed initially
that considering only the contribution of the ground state,
whose energy was well known, would suffice.

Indeed, for any number of particles N > 1, the contribu-
tion of the excited states in the limit L!1 is exponentially
small compared to that of the ground state. In the framework
of this approach, it has been demonstrated that the free
energy fluctuations increase as L1=3, while the typical value
of the polymer deviation scale increases as L2=3 which,
notably, was in perfect agreement with numerical studies.

But more detailed investigations demonstrated that the
above approach contains serious pathologies. In particular, it
turned out that the second cumulant of free energy

ÿ
F 2 ÿ F

2�
is identically zero! This is possible only in two cases: either the
quantity F is not random (which contradicts the fact that its

fluctuations scale as L1=3) or the distribution function of F is
not positive definite (which, of course, makes no physical
sense). A simple mathematical analysis demonstrated that
the origin of this pathology is hidden in the replica's `magic
operations': on the one hand, all the calculations are
performed under the assumption that the parameter N (the
number of particles) is integer, but on the other hand, in the
thermodynamic limit L!1, the relevant values of N that
define the physical properties of the original random system
are in the region N! 0. In other words, the replica method
assumes an analytic continuation of the result obtained for
arbitrary integersN to the regionN! 0. The problem is that,
first, such an analytic continuation is not always unambig-
uous (see [33, 34]) and, second, any approximations in the
calculations of the replica partition function are quite risky as
regards the region N! 0.

In the problem under consideration, the neglected con-
tributions that are exponentially small at integers N > 1 turn
out to be essential in the region N! 0, which defines the
properties of the free energy distribution function P�� f � �
limL!1 PL� f �. In other words, the problem is that the two
limits, L!1 and N! 0, do not commute [47, 48].

Nevertheless, the approximation in which the excited
states of the N-body bosonic system are neglected turned
out to be applicable to the calculation of the left tail of P�� f �
(i.e., the asymptotic behavior of this function as f! ÿ1).
Assuming the universal scaling L1=3 of the free energy
fluctuations, it was possible to show that the left tail of
P�� f � is given by the asymptotic form of the Airy function,
P�� f! ÿ1� � exp

ÿÿ�2=3�j f j3=2� [49].
The form of the right tail of this distribution function,

P�� f! �1� � exp
�ÿ�const� f 3�, was first derived in terms

of the optimal fluctuation approach in [50±52], where it was
demonstrated that both (left and right) asymptotic forms of
the free energy distribution function P�� f � for directed
polymers are consistent with the Tracy±Widom distribution
[1], which was known by that time to describe statistical
properties of many other systems [2±7].

The TW distribution for directed polymers in a random
medium with local correlations was first derived in terms of
the distribution of solutions of the KPZ equation [9, 10],
which, in particular, describes the domain wall growth and
which is equivalent to the present system. Almost simulta-
neously, the exact solution of the one-dimensional directed
polymer problem was also found in terms of the replica
method, which involved summation over the whole spectrum
of excited states in the corresponding N-particle quantum
boson system [11±14]. That calculation allowed deriving the
full free energy distributions and proving that it coincides
with the TW distribution function. Tracy±Widom function
(3.21) (see also Fig. 6) was originally derived in a purely
mathematical problem, as the probability distribution of the
largest eigenvalue of an N�N random Hermitian matrix in
the limit N!1 [1].

Amazingly, it gradually turned out that this function
describes statistical properties of numerous random systems
in physics, which may or may not be similar to one another.
Here, we have not some particular instances of coincident
properties but a universal distribution function free of any
parameters. It is therefore valid to say that we here deal with a
kind of `superuniversality' applicable to the entire class of
random systems.

In this review, we have described the exact solution of the
problem that had remained unsolved for almost thirty years.
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We stress that this solution was obtained in terms of the
replica method. This is a very rare case where the solution of a
nontrivial problem is found without using the heuristic
`replica magic' operations quite typical for this method,
which usually leads one to think that the `replica method'
and the `exact solution' are two absolutely incompatible
things. Having found the exact solution may cause the feeling
of regret because we must stop here and abandon the subject,
which does take courage and resoluteness. But on the other
hand, the methodology and the created mathematical
technique could be used for solving numerous other pro-
blems still awaiting their solutions.

Appendix A
Quantum bosons with repulsive interactions

A.1 Eigenfunctions
The eigenstate equation for an N-particle system of d-
interacting one-dimensional quantum bosons is

1

2

XN
a� 1

q2xaC�x� �
1

2
k
XN
a 6� b

d�xa ÿ xb�C�x� � ÿbEC�x� �A:1�

(where k � b 3u). Due to the symmetry of the wave function
under permutations of its arguments, it is sufficient to
consider it in the sector

x1 < x2 < . . . < xN �A:2�

and at its boundary. Inside this sector, thewave functionC�x�
satisfies the equation

1

2

XN
a� 1

q2xaC�x� � ÿbEC�x� ; �A:3�

which describes N free particles, and its general solution is a
linear combination of N plane waves characterized by N
momenta fq1; q2; . . . ; qNg � q. Integrating Eqn (A.1) over the
variable �xi�1 ÿ xi� in a small interval around zero (such that
jxi�1 ÿ xij < E! 0) and assuming that the other variables
fxjg (with j 6� i; i� 1) belong to sector (A.2), it is easy to show
that the wave function C�x� must satisfy the boundary
conditions

�qxi�1 ÿ qxi � k�C�x�
���
xi�1�xi�0

� 0 : �A:4�

The general expression for a function satisfying both
Eqn (A.3) and boundary conditions Eqn (A.4) can be written
as

Cq1...qN�x1; . . . ; xN� � C �N�q �x�

� C

�YN
a<b

�
qxaÿ qxb� k

��
det
�
exp �iqc xd�

�
�c; d ��1;...;N ; �A:5�

whereC is a normalization constant to be fixed later. Because
the wave function is a linear combination of plane waves, it
clearly satisfies Eqn (A.3). To demonstrate that it also
satisfies boundary conditions (A.4), we verify this for i � 1
for simplicity. According to Eqn (A.5), the wave function
C �N�q �x� can be represented in the form

C �N�q �x� � ÿ�qx2 ÿ qx1 ÿ k� ~C �N�q �x� ; �A:6�

where

~C �N�q �x� � C

�YN
a� 3

�
qx1 ÿ qxa � k

��
qx2 ÿ qxa � k

��

�
� YN

34 a<b

�
qxaÿ qxb� k

��
det
�
exp �iqc xd�

�
�c; d��1;...;N : �A:7�

It can be easily seen that this function is antisymmetric with
respect to the permutation of x1 and x2. Substituting
Eqn (A.6) in Eqn (A.4) (with i � 1) yields

ÿ��qx2 ÿ qx1�2 ÿ k 2
�

~C �N�q �x�
���
x2 � x1

� 0 : �A:8�

Given the antisymmetry of the left-hand side of (A.8) under
the permutation of x1 and x2, the above condition is indeed
satisfied at the boundary x1 � x2.

Because the eigenfunction C �N�q �x� satisfying Eqn (A.1)
must be symmetric under the permutations of its arguments,
function (A.5) can be easily continued outside the sector in
(A.2), to the entire space of variables fx1; x2; . . . ; xNg 2 RN,

C �N�q �x� � C

�YN
a<b

�ÿiÿqxa ÿ qxb
�� ik sgn �xa ÿ xb�

��
� det

�
exp �iqc xd�

�
�c; d ��1;...;N ; �A:9�

where, by definition, the differential operator qxa acts only on
the exponential terms and not on the sgn �x� functions in the
prefactor and we have redefined the normalization factor as
iN�Nÿ1�=2C! C for further convenience. Explicitly, the
determinant in (A.9) can be written as

det
�
exp �iqc xd �

�
�c; d ��1;...;N �

X
P

�ÿ1��P� exp
�
i
XN
a� 1

qpaxa

�
;

�A:10�

where the summation ranges over the permutations of N
momenta fq1; q2; . . . ; qNg over the N particles fx1; x2; . . . ;
xNg and �P� denotes the parity of the permutation. In this way,
eigenfunctions (A.9) become

C �N�q �x� � C
X
P

�ÿ1��P�

�
�YN

a<b

�ÿiÿqxaÿ qxb
�� ik sgn �xaÿ xb�

��
exp

�
i
XN
a� 1

qpaxa

�
:

�A:11�
Taking the derivatives, we obtain

C �N�q �x� � C
X
P

�ÿ1��P�
�YN

a<b

�
qpa ÿ qpb � ik sgn �xa ÿ xb�

��

� exp

�
i
XN
a� 1

qpaxa

�
: �A:12�

It is evident that the wave functions C �N�q �x� are antisym-
metric with respect to permutations of the momenta
q1; . . . ; qN. Finally, substituting the expression for eigenfunc-
tions (A.5) [which is valid in sector (A.2)] in Eqn (A.3), we find
the energy spectrum

E�q� � 1

2b

XN
a� 1

q 2
a : �A:13�

March 2011 Universal randomness 269



A.2 Orthonormality of the wave functions
We now show that the above eigenfunctions with different
momenta are orthogonal to each other. We consider two
functions C �N�q �x� and C �N�q

0�x� assuming that

q1 < q2 < . . . < qN ; �A:14�
q 01 < q 02 < . . . < q 0N :

Using representation (A.11), we find the overlap of these two
functions as

C �N�
�

q 0 �x�C �N�q �x� �
� �1
ÿ1

dNx C �N�
�

q 0 �x�C �N�q �x�

� jC j2
X
P;P 0
�ÿ1��P���P 0 �

� �1
ÿ1

dNx

(�YN
a<b

�
i
ÿ
qxa ÿ qxb

�
ÿ ik sgn �xa ÿ xb�

��
exp

�
ÿi
XN
a� 1

q 0p 0axa

�)

�
(�YN

a<b

�ÿiÿqxa ÿ qxb
�� ik sgn �xa ÿ xb�

��

� exp

�
i
XN
a� 1

qpaxa

�)
: �A:15�

Integrating by parts leads to

C �N�
�

q0 �x�C �N�q �x�

� jC j2
X
P;P 0
�ÿ1��P���P 0 �

� �1
ÿ1

dNx exp

�
ÿi
XN
a� 1

q 0p 0axa

�

�
�YN

a<b

�ÿiÿqxa ÿ qxb
�ÿ ik sgn �xa ÿ xb�

�
� �ÿiÿqxa ÿ qxb

�� ik sgn �xa ÿ xb�
��

exp

�
i
XN
a� 1

qpaxa

�
�A:16�

or

C �N�
�

q 0 �x�C �N�q �x�

� jC j2
X
P;P 0
�ÿ1��P���P 0 �

� �1
ÿ1

dNx exp

�
ÿi
XN
a� 1

q 0p 0axa

�

�
�YN

a<b

�ÿ�qxa ÿ qxb�2 � k 2
��

exp

�
i
XN
a� 1

qpaxa

�
: �A:17�

Taking the derivatives and integrating, we find

C �N�
�

q 0 �x�C �N�q �x�

� jC j2
X
P;P 0
�ÿ1��P���P 0 �

�YN
a<b

��qpa ÿ qpb�2 � k 2
��

�
� �1
ÿ1

dNx exp

�
i
XN
a� 1

�qpa ÿ q 0p 0a�xa
�

� jC j2
X
P;P 0
�ÿ1��P���P 0 �

�YN
a<b

��qpa ÿ qpb�2 � k 2
��

�
� YN
a� 1

�2p� d�qpa ÿ q 0p 0a�
�
: �A:18�

Because the momenta are confined to sectors (A.14), it can be
easily seen that the only nonzero contribution to this
expression is given by terms with coincident permutations of
the momenta, P � P 0, and all these contributions are equal.
Because the total number of permutations isN!, we obtain the
orthogonality condition of the eigenfunctions in the form

C �N�
�

q 0 �x�C �N�q �x�

� jC j2N!

�YN
a<b

��qa ÿ qb�2 � k 2
���YN

a� 1

�2p� d�qa ÿ q 0a�
�
:

�A:19�
Hence, for this set of functions to be orthonormal, the
normalization constant must be given by��C�q���2 � 1

N!
QN

a<b

��qa ÿ qb�2 � k 2
� : �A:20�

The proof of the completeness of this set is given in
Ref. [41]. We note that the above eigenfunctions of problem
(A.1) are an orthonormal set for any sign of the coupling
parameter k, i.e., for both the repulsive, k < 0, and attractive,
k > 0, cases. But this set is complete only in the case of
repulsion, while in the case of attractive interactions, k > 0, in
addition to solutions (A.11), which describe the continuous
free particle spectrum, there also exists a family of totally
different discrete solutions describing bound states of the
particles. A detailed mathematical description of these states
is given in Appendix B.

Appendix B
Quantum bosons with attractive interaction

B.1 Ground state
The simplest example of a bound eigenstate defined by
Eqn (A.1) (with k > 0) is the wave function with all the N
particles bound into a single `cluster':

C �1�q �x� � C exp

�
iq
XN
a� 1

xa ÿ 1

4
k
XN
a; b� 1

jxa ÿ xbj
�
; �B:1�

whereC is a normalization constant (to be defined below) and
q is the momentum of the free center-of-mass motion.
Substituting this function in Eqn (A.1), it is easy to verify
that this is indeed an eigenfunction of our problem, and the
energy of this state is given by

E � ÿ 1

2b

XN
a� 1

�
iqÿ 1

2
k
XN
b� 1

sgn �xa ÿ xb�
�2
: �B:2�

Because the value of E in (B.2) is independent of the order of
particles, we assume for simplicity that they are ordered as
indicated in Eqn (A.2). Then, substituting the well-known
relations

XN
b� 1

sgn �xa ÿ xb� � ÿ�N� 1ÿ 2a� ; �B:3�

XN
a� 1

a � 1

2
N�N� 1� ; �B:4�

XN
a� 1

a 2 � N

6
�N� 1��2N� 1� �B:5�
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in Eqn (B.2), we obtain

E � N

2b
q 2 ÿ k 2

24b
�N 3 ÿN� � E1�q;N � : �B:6�

The normalization constant C is defined by the orthonor-
mality condition

C �1�
�

q 0 �x�C �1�q �x� �
� �1
ÿ1

dx1 . . . dxN C �1�
�

q 0 �x�C �1�q �x�

� �2p� d�qÿ q 0� : �B:7�

Substituting Eqn (B.1) here yields

C �1�
�

q 0 �x�C �1�q �x� � jC j2
� �1
ÿ1

dx1 . . . dxN

� exp

�
i�qÿ q 0�

XN
a� 1

xa ÿ 1

2
k
XN
a; b� 1

jxa ÿ xbj
�

� jC j2N!

� �1
ÿ1

dx1

� �1
x1

dx2 . . .

. . .

� �1
xNÿ1

dxN exp

�
i�qÿ q 0�

XN
a� 1

xa � k
XN
a� 1

�N� 1ÿ 2a�xa
�
;

�B:8�
where we used the relation

1

2

XN
a; b� 1

jxa ÿ xbj � ÿ
XN
a� 1

�N� 1ÿ 2a�xa �B:9�

for the particles ordered in accordance with (A.2). Integrating
first over xN and then over xNÿ1, and proceeding until x1, we
find

C �1�
�

q 0 �x�C �1�q �x� � jC j2N!

�YNÿ1
r� 1

1

r
��Nÿ r�kÿ i�qÿ q 0��

�
�
� �1
ÿ1

dx1 exp
�
iN�qÿ q 0�x1

�
� jC j2N!

�YNÿ1
r� 1

1

r�Nÿ r�k
�
�2p� dÿN�qÿ q 0��

� jC j2 Nk
N!kN

�2p� d�qÿ q 0� : �B:10�

According to Eqn (B.7), this defines the normalization
constant

C �
������������
kNN!

kN

r
� C �1��q� : �B:11�

We note that the eigenstate described by wave function (B.1)
exists only in the case of attraction, k > 0; otherwise, this
function is divergent at infinity and is therefore not normal-
izable.

We note that wave function (B.1) can also be derived from
the general expression for the eigenfunctions, Eqn (A.12), by
introducing (discrete) imaginary parts for the momenta qa.
We assume again that the particle positions are ordered
according to Eqn (A.2), and define the particle momenta as

qa � qÿ i

2
k�N� 1ÿ 2a� : �B:12�

Substituting this in Eqn (A.12), we obtain

C �1�q �x1 < x2 < . . . < xN�

/
X
P

�ÿ1��P�
 YN

a<b

��
qÿ i

2
k�N� 1ÿ 2Pa�

�

ÿ
�
qÿ i

2
k�N� 1ÿ 2Pb�

�
ÿ ik

�!

� exp

�
iq
XN
a� 1

xa � k
2

XN
a� 1

�N� 1ÿ 2Pa�xa
�

/
X
P

�ÿ1��P�
 YN

a<b

�
Pb ÿ Pa � 1

�!

� exp

�
iq
XN
a� 1

xa � k
2

XN
a� 1

�N� 1ÿ 2Pa�xa
�
: �B:13�

Here, it can be easily seen that due to the presence of the
product

QN
a<b�Pb ÿ Pa � 1�, only the trivial permutation

Pa � a makes a nonzero contribution to the sum over
permutations (if we permute any two numbers in the
sequence 1; 2; . . . ;N, we can always find two numbers a < b
such that Pb � Pa ÿ 1). Therefore,

C �1�q �x1 < x2 < . . . < xN�

/ exp

�
iq
XN
a� 1

xa � k
2

XN
a� 1

�N� 1ÿ 2a�xa
�
: �B:14�

Taking relation (B.9) into account, we recover wave function
(B.1), which is symmetric with respect to itsN arguments and
can therefore be easily extended outside sector (A.2). Finally,
substituting (B.12) in the general expression for the energy
spectrum, Eqn (A.13), we obtain

E � 1

2b

XN
a� 1

�
qÿ i

2
k�N� 1ÿ 2a�

�2
: �B:15�

By simple summation [using Eqns (B.4) and (B.5)] we recover
Eqn (B.6).

B.2 Eigenfunctions
The general eigenfunction of the system of N attractive
bosons is characterized by N parameters fqag �a � 1; 2; . . . ;
N�, which may have imaginary parts. To describe the general
structure of these parameters, it is convenient to group them
intoM �14M4N� `vector' momenta,

q a
r � qa ÿ i

2
k �na � 1ÿ 2r� ; �B:16�

where qa �a � 1; 2; . . . ;M� are the continuous (real) para-
meters and the discrete imaginary components of each
`vector' are labeled by r � 1; 2; . . . ; na. The integers na must
satisfy the constraintXM

a� 1

na � N : �B:17�

Therefore, an eigenstate is characterized in general by
parameters of three types: the discrete number M
�14M4N� that defines the number of `vector' momenta,
the set of M integer parameters fn1; n2; . . . ; nMg � n (which
are the numbers of imaginary components of each
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`vector'), and the set of M continuous real momenta
fq1; q2; . . . ; qMg � q.

The general expression for the eigenfunction is given in
Eqns (A.9)±(A.12). To understand the structure of the
determinant of the N�N matrix exp �iqaxb�, which defines
this wave function, theNmomenta qa in (B.16) can be ordered
as follows:

fqag � fq a
r g

� fq 1
1 ; q

1
2 ; . . . ; q 1

n1
; q 2

1 ; q
2
2 ; . . . ; q 2

n2
; . . . ; qM

1 ; q
M
2 ; . . . ; qM

nM
g :

�B:18�

By definition,

det
�
exp �iqa xc�

�
�c; d ��1;...;N �

X
P

�ÿ1��P� exp
�
i
XN
a� 1

qpaxa

�
;

�B:19�
where the summation ranges over all permutations of N
complex momenta fqag, Eqn (B.18), over the N particles
fx1; x2; . . . ; xNg, and �P� denotes the parity of the permuta-
tion. For a given permutation P, a number-a particle is
assigned the momentum component q

a�a�
r�a� . The particles

assigned the momenta with the same a (having the same real
part qa) are said to belong to a cluster Oa. For a given
permutation P, the particles belonging to the same cluster
are therefore numbered by the `internal' index r � 1; . . . ; na.
Hence, according to Eqn (A.11),

C �M�q; n �x�

� C �M�q; n

X
P

�ÿ1��P�
�YN

a<b

�ÿi�qxa ÿ qxb� � ik sgn �xa ÿ xb�
��

� exp

�
i
XN
c� 1

q
a�c�
r�c� xc

�
; �B:20�

where C
�M�
q; n is the normalization constant to be defined later.

Substituting Eqn (B.16) here and taking the derivatives, we
obtain

C �M�q; n �x�

� C �M�q; n

X
P

�ÿ1��P�
YN
a<b

��
qa�a� ÿ ik

2

�
na�a� � 1ÿ 2r�a���

ÿ
�
qa�b� ÿ ik

2

�
na�b� � 1ÿ 2r�b���� ik sgn �xa ÿ xb�

�
� exp

�
i
XN
c� 1

qa�c�xc � k
2

XN
c� 1

ÿ
na�c� � 1ÿ 2r�c��xc� : �B:21�

The pre-exponential product in the above equation
contains two types of factors: pairs of points �a; b� that
belong to different clusters �a�a� 6� a�b�� and pairs of points
that belong to the same cluster �a�a� � a�b��. In the second
case, the product Pa over the pairs of points belonging to a
cluster Oa reduces to

Pa /
Y

a<b2Oa

�
r�b� ÿ r�a� ÿ sgn �xa ÿ xb�

�
: �B:22�

Similarly to the ground-state wave function in (B.13) and
(B.14), it is easy to see that due to the presence of this
product in the summations over the `internal' permutations
r�a� (inside the cluster Oa), only one permutation makes a
nonzero contribution. To prove this statement, we first note
that the wave functionC �M�q; n �x� is symmetric under permuta-

tions of its N arguments fxag, and it therefore suffices to
consider the case where the positions of the particles are
ordered in the simplest way, x1 < x2 < . . . < xN. The
particles fxakg �k � 1; 2; . . . ; na� belonging to the same
cluster Oa are then also ordered, xa1 < xa2 < . . . < xana
(where a1 < a2 < . . . ana ). In this case,

Pa /
Yna
k<l

�
r�l� ÿ r�k� � 1

�
: �B:23�

It is evident that the above product is nonzero only for the
trivial permutation r�k� � k [indeed, if we permute any two
numbers in the sequence 1; 2; . . . ; na, we can always find two
numbers k < l such that r�l� � r�k� ÿ 1]. In the case of the
trivial permutation,

Pa /
Yna
k<l

�
lÿ k� 1

�
: �B:24�

Including the values of all these `internal' products of clusters
into the redefined normalization constantC

�M�
q; n , we obtain the

wave function (B.21) in the form

C �M�q; n �x� � C �M�q; n

X
P

0�ÿ1��P�
YN
a<b

a�a� 6� a�b�

��
qa�a� ÿ ik

2
na�a�

�

ÿ
�
qa�b� ÿ ik

2
na�b�

�
� ik

ÿ
r�a� ÿ r�b� ÿ 1

��

� exp

�
i
XN
c� 1

qa�c�xc � k
2

XN
c� 1

ÿ
na�c� � 1ÿ 2r�c��xc� ; �B:25�

where the product now ranges only over the pairs of particles
belonging to different clusters, and the symbol

P
P
0 means

that the summation is only over the permutations P in which
the `internal' indices r�a� are taken in the ascending order.

Using the symmetry of the wave function C �M�q; n �x� under
permutations of its arguments, we can easily continue
expression (B.25) outside the sector x1 < x2 < . . . < xN, to
the entire space RN. Using the relationX

a2Oa

ÿ
na � 1ÿ 2r�a��xa �Xna

k� 1

�na � 1ÿ 2k�xak

� ÿ 1

2

Xna
k; l� 1

��xak ÿ xal
�� �B:26�

(where xa1 < xa2 < . . . < xana ), we find the following suffi-
ciently compact representation for the wave functionC �M�q; n �x�
with arbitrary particle positions [cf. Eqn (B.20)]:

C �M�q; n �x�

� C �M�q; n

X
P

0�ÿ1��P�
YN
a<b

a�a� 6� a�b�

�ÿi�qxaÿ qxb� � ik sgn �xaÿ xb�
�

� exp

�
i
XM
a� 1

qa
Xna
c2Oa

xc ÿ k
4

XM
a� 1

Xna
c; c 0 2Oa

jxc ÿ xc 0 j
�
: �B:27�

We note that because the mutual positions of particles
belonging to different clusters can be arbitrary, the clusters
can overlap and `penetrate' one another. In other words, the
name `cluster' does not imply isolated, spatially compact
particle arrangements.
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Finally, to obtain the energy spectrum of the above
eigenstates, it suffices to substitute Eqns (B.16) and (B.17) in
Eqn (A.13). Simple summation [using (B.4) and (B.5)] then
leads to

EM�q; n� � 1

2b

XM
a� 1

Xna
r� 1

�q a
k �2

� 1

2b

XM
a� 1

naq
2
a ÿ

k 2

24b

XM
a� 1

�n 3
a ÿ na� : �B:28�

B.3 Orthonormality of the eigenfunctions
We define the overlap of two wave functions characterized by
two sets of parameters �M; n; q� and �M 0; n 0; q 0� as

Q
�M;M 0�
n; n 0 �q; q 0� �

� �1
ÿ1

dNx C �M
0��

q 0;n 0 �x�C �M�q; n �x� : �B:29�

Substituting Eqn (B.27) here, we obtain

Q
�M;M 0�
n; n 0 �q; q 0� � C �M�q; n C

�M 0��
q 0;n 0

X
P

0X
P 0

0�ÿ1��P���P 0 �

�
� �1
ÿ1

dNx

 YN
a<b

a 0 �a� 6� a 0 �b�

�
i�qxa ÿ qxb� ÿ ik sgn �xa ÿ xb�

�!

� exp

�
ÿi
XM 0

a� 1

q 0a
Xn 0a
c2O 0a

xc ÿ k
4

XM 0

a� 1

Xn 0a
c; c 0 2O 0a

jxc ÿ xc 0 j
�

�
 YN

a<b
a�a� 6� a�b�

�
ÿi�qxa ÿ qxb� � ik sgn �xa ÿ xb�

�!

� exp

�
i
XM
a� 1

qa
Xna
c2Oa

xc ÿ k
4

XM
a� 1

Xna
c; c 0 2Oa

jxc ÿ xc 0 j
�
; �B:30�

where fOag and fO 0ag denote the clusters formed by the
respective permutations P and P 0. Integrating by parts, we
obtain

Q
�M;M 0�
n; n 0 �q; q 0� � C �M�q; n C

�M 0��
q 0;n 0

X
P

0X
P 0

0�ÿ1��P���P 0 �

�
� �1
ÿ1

dNx exp

�
ÿi
XM 0

a� 1

q 0a
Xn 0a
c2O 0a

xc ÿ k
4

XM 0

a� 1

Xn 0a
c; c 0 2O 0a

jxcÿ xc 0 j
�

�
 YN

a<b
a 0�a� 6� a 0�b�

�
ÿi�qxa ÿ qxb� ÿ ik sgn �xa ÿ xb�

�!

�
 YN

a<b
a�a� 6� a�b�

�
ÿi�qxa ÿ qxb� � ik sgn �xa ÿ xb�

�!

� exp

�
i
XM
a� 1

qa
Xna
c2Oa

xc ÿ k
4

XM
a� 1

Xna
c; c 0 2Oa

jxc ÿ xc 0 j
�
: �B:31�

We first consider the case where the integer parameters of
the two functions coincide, M �M 0, n � n 0, and assume in
addition that all these integer parameters fnag are distinct,
i.e., 14 n1 < n2 < . . . < nM.

In summing over the permutations in Eqn (B.31), we then
find two types of terms:

(a) `diagonal' terms in which the two permutations
coincide, P � P 0;

(b) `off-diagonal' terms in which the two permutations are
different, P 6� P 0.

The contribution of the `diagonal' terms is given by

Q �M;M��A�
n; n �q; q 0� � C �M�q; n C

�M��
q 0;n

X
P

0
� �1
ÿ1

dNx

� exp

�
ÿi
XM
a� 1

q 0a
Xna
c2Oa

xc ÿ k
4

XM
a� 1

Xna
c; c 0 2Oa

jxc ÿ xc 0 j
�

�
 YN

a<b
a�a�6�a�b�

�
ÿ�qxa ÿ qxb�2 � k 2

�!

� exp

�
i
XM
a� 1

qa
Xna
c2Oa

xc ÿ k
4

XM
a� 1

Xna
c; c 02Oa

jxc ÿ xc 0 j
�
: �B:32�

It is evident that all permutations a�a� in the above
equation make the same contribution, and it is therefore
sufficient to consider only the contribution of the `trivial'
permutation in (B.18). We let a0�a� denote the clusters
corresponding to this permutation. We can now redefine the
order of summation over the particles such that instead of the
`straight' summation over a � 1; 2; . . . ;N, the particles are
summed over two indices �a; r�: fxag ! fx a

r g �a � 1; . . . ;M;
r � 1; . . . ; na� indicating to which cluster a a given particle
belongs and what its `internal' cluster number r is. Due to the
symmetry of the integrand in Eqn (B.32) under permutations
of the particles inside clusters, it suffices to find the
contribution of the integration over the sectors
x a
1 < x a

2 < . . . < x a
na
. In this way, using relation (B.26), we

obtain

Q �M;M��A�
n; n �q; q 0� � C �M�q; n C

�M��
q 0; n
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�
"YM
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�
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� �1
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� �1
x a
1
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2 . . .

� �1
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naÿ1
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�#
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ÿi
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Xna
r� 1

x a
r �

k
2
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�na � 1ÿ 2r�x a
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�

�
 YM
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Ynb
r 0 � 1
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r
ÿ q

x
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r 0
�2 � k 2

�!

�exp
�
i
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a� 1

qa
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r� 1
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r �

k
2
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a� 1
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r� 1

�na � 1ÿ 2r�x a
r

�
; �B:33�

where the factor N!=n1! . . . nM! is the total number of
permutations of M clusters containing n1; n2; . . . ; nM ele-
ments. Taking the derivatives, we obtain

Q �M;M��A�
n; n �q; q 0�� C �M�q; n C

�M��
q 0; n N!

 YM
a<b

Yna
r� 1

Ynb
r 0 � 1

�����qaÿ ik
2
na

�
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qb ÿ ik

2
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�
� ik �rÿ r 0 ÿ 1�

����2
!

�
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a� 1

(� �1
ÿ1

dx a
1

� �1
x a
1

dx a
2 . . .

� �1
x a
naÿ1

dx a
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� exp

�
i�qa ÿ q 0a�

Xna
r� 1

x a
r � k

Xna
r� 1

�na� 1ÿ 2r�x a
r

�)
: �B:34�
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Simple integrations over the particle coordinates x a
r yield [cf.

Eqns (B.8)±(B.10)]

Q �M;M��A�
n; n �q; q 0� � ��C �M�q; n

��2N!

 YM
a<b

Yna
r� 1

Ynb
r 0 � 1

�����qa ÿ ik
2
na

�

ÿ
�
qb ÿ ik

2
nb

�
� ik �rÿ r 0 ÿ 1�

����2
!

�
YM
a� 1

�
nak

�na!�2k na
�2p� d�qa ÿ q 0a�

�
: �B:35�

We now prove that the `off-diagonal' terms in Eqn (B.31),
in which the permutations P and P 0 are different, make no
contribution. Here, we can also choose one of the permuta-
tions, say P, to be the `trivial' one represented by Eqn (B.18),
with the clusters corresponding to this permutation again
denoted by a0�a�. In view of the symmetry of the wave
functions, it is sufficient to consider the contribution of the
sector x1 < x2 < . . . < xN. According to Eqn (B.31), we then
have

Q �M;M��B�
n;n �q; q 0� /

X
P 0

0�ÿ1��P 0 �
�
x1<...<xN

dNx

� exp

�
ÿi
XM
a� 1

q 0a
Xna
a2O 0a

xa ÿ k
4

XM
a� 1

Xna
a; b2O 0a

jxa ÿ xbj
�

�
 YN

a<b
a0�a�6�a0�b�

�
ÿi�qxa ÿ qxb� � ik sgn �xa ÿ xb�

�!

�
 YN

a<b
a 0�a�6�a 0�b�

�
ÿi�qxa ÿ qxb� ÿ ik sgn �xa ÿ xb�

�!

� exp

�
i
XM
a� 1

qa
Xna
a2O o

a

xa � k
2

XM
a� 1

Xna
a2O o

a

ÿ
na � 1ÿ 2r�a��xa� :

�B:36�

Here, the symbol fO o
a g denotes the clusters of the trivial

permutation a0�a�. Because P 0 6� P, some of the clusters O 0a
must be different fromO o

a . As an illustration, we consider the
particular case of N � 10 particles, with three clusters with
the respective numbers of particles n1 � 5 (denoted by the
symbol `') , n2 � 2 (denoted by the symbol `�'), and n3 � 3
(denoted by the symbol `4'):

Here, in the permutation a 0�a�, the particle a � 4 belongs
to the cluster a � 3 [and not to the cluster a � 1 as in the
permutation a0�a�], and the particle a � 8 belongs to the
cluster a � 1 [and not to the cluster a � 3 as in the
permutation a0�a�]. We now inspect the structure of the
products in Eqn (B.36). Unlike the first product, which
contains no `internal' products among particles belonging to
the cluster Oo

1 , the second product does contain such
products. Moreover, the signs of the differential operators
qxa ÿ qxb in the second product are opposite to the `normal'

(original) ones in the first product. Due to these two
circumstances (the presence of the `internal' products and
the `wrong' signs of the differential operators), `off-diagonal'
contributions (B.36) vanish. Indeed, in the above example,
the second product contains the term

P 04; 5 �
�
ÿi�qx4 ÿ qx5� � ik

�
� exp

�
i
X3
a� 1

qa
Xna
a2O o

a

xa � k
2

X3
a� 1

Xna
a2O o

a

ÿ
na � 1ÿ 2r�a��xa�

�B:37�
(we recall that the particles in the clustersO o

a are ordered and,
in particular, x4 < x5). Taking the derivatives, we obtain

P 04; 5 /
�
ÿ
�
iq1 � k

2

ÿ
n1 � 1ÿ 2r�4��ÿ iq1

ÿ k
2

ÿ
n1 � 1ÿ 2r�5���� k

�
/ �r�4� ÿ r�5� � 1

� � 0 ; �B:38�

because r�a� � a in the first cluster.
It is easy to realize that the above example reflects the

general situation. Because we have so far assumed all the
cluster sizes na to be different for any permutation a 0�a�, we
can always find a cluster O o

a such that some of its particles
belong to the same cluster number a in the permutation a 0�a�,
whereas the others do not. It then suffices to consider the
contribution of the product of two neighboring points

P 0k; k�1 �
�
ÿi�qxk ÿ qxk�1� � ik

�
� exp

�
i
XM
a� 1

qa
Xna
a2O o

a

xa � k
2

XM
a� 1

Xna
a2O o

a

ÿ
na � 1ÿ 2r�a��xa� ;

�B:39�
where, in the permutation a 0�a�, the particle k belongs to the
cluster number a and the particle k� 1 belongs to some other
cluster. Taking the derivatives, we find

P 0k; k�1 /
�
r�k� ÿ r�k� 1� � 1

� � 0 ; �B:40�

because r�a� is the `internal' particle number in the clusterO o
a ,

where r�k� 1� � r�k� � 1 [cf. Eqns (B.22)±(B.24)].
Therefore, the only nonzero contribution to the overlap,

Eqn (B.29), of two wave functions C �M�q 0; n�x� and C �M�q; n �x�
(having the same number of clusters M and characterized by
the same set of integer parameters 14 n1 < n2 < . . . < nM)
comes from `diagonal' terms (B.35):

Q �M;M�
n; n �q; q 0� � ��C �M�q; n

��2N!
YM
a� 1

�
nak

�na!�2k na

�

�
 YM

a<b

Yna
r� 1

Ynb
r 0 � 1

�����qa ÿ ik
2
na

�

ÿ
�
qb ÿ ik

2
nb

�
� ik �rÿ r 0 ÿ 1�

����2
!YM

a� 1

��2p� d�qa ÿ q 0a�
�
:

�B:41�

The case where some clusters have the same number of
particles na is somewhat more complicated. We consider the
overlap of two wave function C �M�q 0; n�x� and C �M�q; n �x� (which,
as before, have the same integer parameters M and n) such
that among the M integers n1; n2; . . . ; nM, there are two
equal ones, say, na1 � na2 (where a1 6� a2). In the eigenstate

Particle number a 1 2 3 4 5 6 7 8 9 10

Permutation a0�a�      � � 4 4 4
Permutation a 0�a�    4  � �  4 4
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�q 0; n�, these two clusters have the center of mass momenta
q 0a1 and q 0a2 , and in the eigenstate �q; n�, they have the
momenta qa1 and qa2 . We have seen that in summing over
the cluster permutations a�a� and a 0�a� in Eqn (B.31), a
nonzero contribution appears only if the clusters fOag of
the permutation a�a� totally coincide with the clusters fO 0ag
of the permutation a 0�a�. When all the na are different, this
is possible only if the permutation a�a� coincides with the
permutation a 0�a�. But if have na1 � na2 , then there are two
nonzero options. The first, as before, is given by the
`diagonal' terms with a�a� � a 0�a�, and this contribution is
proportional to d�qa1 ÿ q 0a1� d�qa2 ÿ q 0a2�. The second con-
tribution is given by such a permutation a 0�a� in which the
cluster O 0a1 [of the permutation a 0�a�] coincides with the
cluster Oa2 [of the permutation a�a�] and the cluster O 0a2 [of
the permutation a 0�a�] coincides with the cluster Oa1 [of the
permutation a�a�], while the other clusters of these two
permutations are the same, O 0a � Oa �a 6� a1; a2�. It is easy
to see that this last contribution is proportional to
d�qa1 ÿ q 0a2� d�qa2 ÿ q 0a1� �ÿ1�na1 . In fact, this situation with
two equivalent contributions is a consequence of the
symmetry of the wave function C �M�q 0; n�x�. This is evident
from the general expression for the wave function,
Eqn (A.9), where the permutation of any two momenta qa1
and qa2 belonging to the clusters of the same size na1 � na2
corresponds to a permutation of n columns of the matrix
exp �iqaxb� and produces the factor �ÿ1�na1 . Therefore, the
states that differ only in a permutation of momenta
belonging to equal-size clusters can be considered equiva-
lent. But if we deal with wave function overlaps only
between nonequivalent states, then we must restrict ourself
in the above case to the sector qa1 < qa2 ; q

0
a1 < q 0a2 . The

second contribution d�qa1 ÿ q 0a2� d�qa2 ÿ q 0a1� is then equal to
zero, andwe therefore return to the above result inEqn (B.41).

In general, therefore, an eigenstate �q; n� with M clusters
has to be described in a somewhat greater detail, by singling
out clusters of the same size. Namely, we assume that
among the M clusters, there are s1 clusters that have the
same size m1, s2 clusters that have the same size m2, and so
on. The eigenstate is then characterized by a number k,
14 k4M, of different-size clusters. Each such cluster size
mi is characterized by the `degeneracy' si indicating the
number of clusters of the same size mi. This can be
represented as

�q; n����q1;m1�; . . . ; �qs1 ;m1�|�����������������{z�����������������}
s1

; �qs1�1;m2�; . . . ; �qs1�s2 ;m2�|�����������������������{z�����������������������}
s2

; . . . ;

. . . ; �qs1�...�skÿ1�1;mk�; . . . ; �qs1�:::�sk ;mk�|���������������������������������{z���������������������������������}
sk

	
; �B:42�

where s1 � s2 � . . .� sk �M and all the k integers fmig are
supposed to be different:

14m1 < m2 < . . . < mk : �B:43�

For a given k,

XM
a� 1

na �
Xk
i� 1

simi � N : �B:44�

The states that differ only in a permutation of momenta
between clusters of the same size are considered equivalent.
Therefore, the orthonormality only has to be addressed for
nonequivalent states, whose momenta are confined to the

sectors

q1 < q2 < . . . < qs1 ;

qs1�1 < qs1�2 < . . . < qs1�s2 ; �B:45�
. . . . . . . . .

qs1�...�skÿ1�1 < qs1�...�skÿ1�2 < . . . < qs1�...�skÿ1�sk :

In this representation, we again recover the above result in
Eqn (B.41).

We finally consider the case where two eigenstates are
described by two different sets of integer parameters, n 0 6� n.
This case is quite simple: that the clusters of the two states are
different from each other means that in the summation over
the pairs of permutations P and P 0 in Eqn (B.31), there exist
no two permutations for which these two sets of clusters fOag
and fO 0ag coincide. This, according to the above analysis,
means that expression (B.31) then vanishes. We note that the
condition M 0 6�M automatically implies that n 0 6� n.

Thus, we have proved that

Q
�M;M 0�
n; n 0 �q; q 0� � ��C �M�q; n

��2d�M;M 0�
�YM

a� 1

d�na; n 0a�
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�2p�dÿqa ÿ q 0a�
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�
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�na!�2k na

�
�
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Yna
r� 1

Ynb
r 0 � 1

�����qaÿ ik
2
na

�
ÿ
�
qb ÿ ik

2
nb

�
� ik �rÿ r 0ÿ 1�

����2;
�B:46�

where the integer parameters fnag and fn 0ag are assumed to
have the structure represented in Eqns (B.42)±(B.44) and the
momenta fqag and fq 0ag of the clusters with equal numbers of
particles are restricted to sectors (B.45). According to
Eqn (B.46), the orthonormality condition defines the normal-
ization constant��C �M�q; n

��2 � 1

N!

� YM
a� 1

�na!�2k na

nak

�

�
YM
a<b

Yna
r� 1

Ynb
r 0 � 1

�����qaÿ ik
2
na

�
ÿ
�
qbÿ ik

2
nb

�
� ik �rÿ r 0ÿ 1�

����ÿ2:
�B:47�

B.4 Propagator
The time-dependent solution C�x; t� of the SchroÈ dinger
equation

b qtC�x; t� � 1

2

XN
a� 1

q2xaC�x; t� � 1

2
k
XN
a 6� b

d�xa ÿ xb�C�x; t�
�B:48�

with the initial condition

C�x; 0� �
YN
a� 1

d�xa� �B:49�

can be represented as a linear combination of the eigenfunc-
tionsC �M�q; n �x� in (B.27),

C�x; t� �
XN
M� 1

X
n

0
� 0
DqC �M�q; n �x�C �M�

�
q; n �0� exp

�ÿEM�q; n�t
�
;

�B:50�
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where the energy spectrum is given by Eqn (B.28). The
summations over the integer na are performed here in
terms of the parameters fsi;mig introduced in (B.42)±
(B.44):

X
n

0 �
XM
k� 1

X1
s1...sk � 1

X1
14m1...<mk

d

�Xk
i� 1

si;M

�
d

�Xk
i� 1

simi;N

�
;

�B:51�

where d�n; l � is the (discrete)Kronecker symbol.We note that
due to the presence of these Kronecker symbols, the
summations over mi and si can be extended to infinity. The
symbol

� 0Dq in (B.50) denotes integration over the M
momenta qa in the sectors described in (B.45).

The replica partition function Z�N;L� of the original
directed polymer problem is obtained from the wave func-
tion C�x; t� at zero boundary conditions:

Z�N;L� � C�0;L�

�
XN
M� 1

X
n

0
� 0
Dq ��C �M�q; n �0�

��2 exp �ÿEM�q; n�L
�
: �B:52�

According to Eqn (B.27), forM5 2, we have
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: �B:53�

Substituting the value of normalization constant (B.47) in this
expression, we obtain

��C �M�q; n �0�
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�B:54�

This expression can be somewhat simplified. Shifting the
product over r 0 in the denominator by 1, we obtain��C �M�q; n �0�

��2 � N!kNÿQM
a� 1 kna
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�B:55�

Redefining the product parameter r in the denominator as
r! na � 1ÿ r and replacing the obtained expression with its

complex conjugate, we obtain��C �M�q; n �0�
��2 � N!kNÿQM

a� 1 kna
�

�
YM
a<b

Q na
r�1
���qa ÿ �ik=2�na�ÿ ÿqb ÿ �ik=2�nb�� ik �rÿ 1���2Q na
r�1
��ÿqa ÿ �ik=2�na�ÿ ÿqb ÿ �ik=2�nb�� ik r

��2 :

�B:56�

Shifting the product over r in the numerator by 1; we finally
obtain��C �M�q; n �0�

��2 � N!kNÿQM
a� 1 kna

� YM
a<b

��qa ÿ qb ÿ �ik=2��na ÿ nb�
��2��qa ÿ qb ÿ �ik=2��na � nb�
��2 :

�B:57�
ForM � 1, according to Eqns (B.1) and (B.11),��C �1�q �0�

��2 � kNN!

kN
: �B:58�

Because the function f �q; n� � ��C �M�q; n �0�
��2 exp �ÿEM�q; n�L

�
in Eqn (B.52) is symmetric under permutations of all its M
pairs of arguments �qa; na�, the integrations over the M
momenta qa can be extended outside the sector defined in
Eqn (B.45), to the whole spaceRM. As a consequence, there is
no need to distinguish equal and different values of the na any
more, and the only remaining constraint is the one in
Eqn (B.17). We note that this kind of simplification holds
only for the wave function C�0; t� in (B.52), and not for the
general form of C�x; t� in (B.50), which contains N arbitrary
coordinates x1; . . . ; xN. Thus, instead of Eqn (B.52), we
obtain

Z�N;L� �
XN
M� 1

1

M!

� YM
a� 1

� �1
ÿ1

dqa
2p

X1
na � 1

�
d

�XM
a� 1

na;N

�
� ��C �M�q; n �0�

��2 exp �ÿEM�q; n�L
�
: �B:59�

With Eqns (B.28), (B.57), and (B.58), we obtain the following
sufficiently compact representation for the replica partition
function:

Z�N;L�

� N! kN

(� �1
ÿ1

dq

2pkN
exp

�
ÿ L

2b
Nq 2 � k 2L

24b
�N 3 ÿN �

�

�
XN
M� 2

1

M!

�YM
a� 1

X1
na � 1

� �1
ÿ1

dqa
2pkna

�
d

�XM
a� 1

na;N

�

�
YM
a<b

��qa ÿ qb ÿ �ik=2��na ÿ nb�
��2��qa ÿ qb ÿ �ik=2��na � nb�
��2

� exp

�
ÿ L

2b

XM
a� 1

naq
2
a �

k 2L

24b

XM
a� 1

�n 3
a ÿ na�

�)
: �B:60�

The first term in the above expression is the contribution of
the ground state �M � 1� and the other terms �M5 2� are
the contributions of excited states. After simple algebra, the
above replica partition function can be represented as

Z�N;L� � exp �ÿbNLf0� ~Z�N; l� ; �B:61�
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where

f0 � 1

24
b 4u 2 ÿ 1

bL
ln �b 3u� ;

and

~Z�N;L� � N!

(� �1
ÿ1

dq

2pkN
exp

�
ÿ L

2b
Nq 2 � k 2L

24b
N 3

�

�
XN
M� 2

1

M!

�YM
a� 1

X1
na � 1

� �1
ÿ1

dqa
2pkna

�
d

�XM
a� 1

na;N

�

�
YM
a<b

��qa ÿ qb ÿ �ik=2��na ÿ nb�
��2��qa ÿ qb ÿ �ik=2��na � nb�
��2

� exp

�
ÿ L

2b

XM
a� 1

naq
2
a �

k 2L

24b

XM
a� 1

n 3
a

�)
: �B:62�

Appendix C
Integral relations for the Airy function

The Airy function Ai �x� is the solution of the differential
equation

y 00�x� � x y�x� �C:1�

with the boundary condition y�x! �1� � 0. As x! �1,
this function tends to zero exponentially fast:

Ai �x! �1� ' 1

2
���
p
p

x 1=4
exp

�
ÿ 2

3
x 3=2

�
; �C:2�

and as x! ÿ1, it oscillates and tends to zero in accordance
with a power law:

Ai �x! ÿ1� ' 1���
p
p jxj1=4

sin

�
2

3
jxj3=2 � 1

4
p
�
: �C:3�

The Airy function can also be represented in the integral form

Ai �x� �
�
C

dz

2pi
exp

�
1

3
z 3 ÿ zx

�
; �C:4�

where the integration contour in the complex plane starts at a
point at infinity with the argument in the sector
ÿp=2 < y�ÿ� < ÿp=3 and ends at infinity with the argument
in the sector p=3 < y��� < p=2. Choosing y�ÿ� � ÿp=2� E
and y��� � p=2ÿ E, where the positive parameter E! 0 is
introduced just to ensure the convergence of the integration,
we can draw the integration contour in Eqn (C.4) along the
imaginary axes z � iy.

Similarly to the Hubbard±Stratonovich transformation
that involves a Gaussian function to linearize quadratic
expressions in the exponential,

exp

�
1

2
F 2

�
�
� �1
ÿ1

dx������
2p
p exp

�
ÿ 1

2
x 2

�
exp �Fx� ; �C:5�

the Airy function can be used to linearize cubic exponential
terms:

exp

�
1

3
F 3

�
�
� �1
ÿ1

dx Ai �x� exp �Fx� ; �C:6�

where F is assumed to be a nonnegative quantity. This
relation can be easily proved using integral representation
(C.4), in which the integration path coincides with the
imaginary axis z � iy and the quantity F is first taken to be
purely imaginary, F! iF. The integration over x then results
in the factor d�Fÿ y�. Further trivial integration over y yields
the result exp �ÿiF 3=3�. Performing the analytic continuation
in F back to real values F! ÿiF, we arrive at the left-hand
side of (C.6).

We prove two other integral relations with the Airy
function:

I1 �
� �1
ÿ1

dp Ai � p 2 � o1 � o2� exp
�
ip�o1 ÿ o2�

� �
� 22=3pAi

ÿ
21=3o1

�
Ai
ÿ
21=3o2

�
; �C:7�

I2 �
�1
0

dy Ai
ÿ
y� o1

�
Ai
ÿ
y� o2

�
� Ai

ÿ
o1

�
Ai 0
ÿ
o2

�ÿAi 0
ÿ
o1

�
Ai
ÿ
o2

�
o1 ÿ o2

: �C:8�

Using the integral representation of the Airy function in
Eqn (C.4), we obtain

I1 �
� �1
ÿ1

dp

�
�
C

dz

2pi
exp

�
1

3
z 3 ÿ p 2zÿ o1zÿ o2z� ipo1 ÿ ipo2

�
:

�C:9�

With z � z1 and ip � z2, this can be represented as

I1 � 2p
��
C

dz1 dz2

�2pi�2

� exp

�
1

3
z 31 � z1z

2
2 ÿ o1�z1 ÿ z2� ÿ o2�z1 � z2�

�
; �C:10�

where the integration contour C coincides with the imaginary
axis. Instead of z1 and z2, we introduce new integration
variables

z1 ÿ z2 � x ; �C:11�
z1 � z2 � Z ;

which yields

I1 � p
�
C

dx
2pi

�
C

dZ
2pi

exp

�
1

6
x 3� 1

6
Z 3ÿ o1xÿ o2Z

�
: �C:12�

Redefining x! 21=3x and Z! 21=3Z, we obtain

I1 � 22=3p
�
C

dx
2pi

exp

�
1

3
x 3 ÿ 21=3o1x

�
�
�
C

dZ
2pi

exp

�
1

3
Z 3 ÿ 21=3o2Z

�
� 22=3pAi

ÿ
21=3o1

�
Ai
ÿ
21=3o2

�
; �C:13�

which proves relation (C.7).
To prove relation (C.8), it suffices to take into account

that the Airy function satisfies differential equation (C.1).
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Substituting

Ai
ÿ
y� o

� � 1

y� o
Ai 00

ÿ
y� o

� �C:14�

in the left-hand side of Eqn (C.8), we find

I2 �
�1
0

dy
1

�y� o1��y� o2� Ai 00
ÿ
y� o1

�
Ai 00

ÿ
y� o2

�
� 1

o1 ÿ o2

�1
0

dy

�
1

y� o2
ÿ 1

y� o1

�
�Ai 00

ÿ
y� o1

�
Ai 00

ÿ
y� o2

�
� 1

o1 ÿ o2

�1
0

dy

�
Ai 00�y� o2�

y� o2
Ai 00�y� o1�

ÿAi 00�y� o1�
y� o1

Ai 00�y� o2�
�
: �C:15�

Substituting Ai 00�y� o2� � �y� o2�Ai �y� o2� in the first
term and Ai 00�y� o1� � �y� o1�Ai �y� o1� in the second,
we obtain

I2 � 1

o1 ÿ o2

� �1
0

dyAi 00�y� o1�Ai �y� o2�

ÿ
�1
0

dyAi 00�y� o2�Ai �y� o1�
�
: �C:16�

Simple integration by parts eventually yields

I2 � 1

o1 ÿ o2

�ÿAi 0�o1�Ai �o2� �Ai 0�o2�Ai �o1�
�
; �C:17�

which proves relation (C.8).

Appendix D
Fredholm determinant with the Airy kernel
and the Tracy±Widom distribution

In somewhat simplified terms, the Fredholm determinant
det �1ÿ K̂ � can be defined as follows (see, e.g., [46] for a
rigorous mathematical definition):

det �1ÿ K̂ �

� 1�
X1
n� 1

�ÿ1�n
n!

��
. . .

� b

a

dt1 dt2 . . . dtn det
�
K�ti; tj�

�
�i; j��1;...;n ;

�D:1�
where the kernel K̂ � K�t; t 0� is a function of two variables
defined in the region a4 �t; t 0�4 b. On the other hand, the
Fredholm determinant can also be represented in the
exponential form

det �1ÿ K̂ � � exp

�
ÿ
X1
n� 1

1

n
Tr K̂ n

�
; �D:2�

where

Tr K̂ n �
��

. . .

� b

a

dt1 dt2 . . . dtn K�t1; t2�K�t2; t3� . . .K�tn; t1� :
�D:3�

In this appendix, we reproduce the formal derivation of
Tracy and Widom [1] demonstrating that the function F2�s�
defined as the Fredholm determinant with the Airy kernel can

be expressed in terms of the solution of the PainleveÂ II
differential equation, namely

F2�s� � det �1ÿ K̂A� � exp

�
ÿ
�1
s

dt �tÿ s� q 2�t�
�
; �D:4�

where K̂A is the Airy kernel defined on the semi-infinite line
�s;1�

KA�t1; t2� � Ai �t1�Ai 0�t2� ÿAi 0�t1�Ai �t2�
t1 ÿ t2

�D:5�

and the function q�t� is the solution of the PainleveÂ II
differential equation

q 00 � tq� 2q 3 �D:6�

with the boundary condition q�t! �1� � Ai �t�.
We introduce a new function R�t� such that

F2�s� � exp

�
ÿ
�1
s

dt R�t�
�

�D:7�

or, according to definition (D.4),

R�s� � d

ds
ln
�
det �1ÿ K̂A�

�
: �D:8�

Here, the logarithm of the determinant can be expressed in
terms of the trace:

ln
�
det �1ÿ K̂A�

� � ÿX1
n� 1

1

n
Tr K̂ n

A

� ÿ
X1
n� 1

1

n

�1
s

dt1

�1
s

dt2

. . .

�1
s

dtn KA�t1; t2�KA�t2; t3� . . .KA�tn; t1� : �D:9�

Taking the derivative of this expression over s, we obtain

R�s� � ÿ
�1
s

dt �1ÿ K̂A�ÿ1�s; t�KA�t; s�

� ÿKA�s; s� ÿ
X1
n� 2

�1
s

dt1

�1
s

dt2

. . .

�1
s

dtnÿ1 KA�s; t1�KA�t1; t2� . . .KA�tnÿ1; s� : �D:10�

Substituting the integral representation of the Airy kernel,
Eqn (D.5),

KA�t1; t2� �
�1
0

dz Ai�t1 � z�Ai�t2 � z� ; �D:11�

after some simple algebraic transformations, we obtain

R�s��
�1
s

dt1

�1
s

dt2 Ai�t1�
ÿ
1ÿ K̂A

�ÿ1�t1; t2�Ai�t2� : �D:12�

Taking the derivative of this expression with respect to s and
applying the necessary algebraic transformations, we obtain

d

ds
R�s� � ÿq 2�s� ; �D:13�
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where

q�s� �
�1
s

dt
ÿ
1ÿ K̂A

�ÿ1�s; t�Ai �t� : �D:14�

It follows from Eqn (D.13) that

R�s� �
�1
s

dt q 2�t� : �D:15�

We introduce two more auxiliary functions,

v�s� �
�1
s

dt1

�1
s

dt2 Ai �t1�
ÿ
1ÿ K̂A

�ÿ1�t1; t2�Ai 0�t2� ;
�D:16�

p�s� �
�1
s

dt
ÿ
1ÿ K̂A

�ÿ1�s; t�Ai 0�t� : �D:17�

Taking derivatives of the above three functions q�s�, v�s�, and
p�s�, Eqns (D.14), (D.16), and (D.17), after straightforward
but cumbersome algebraic transformations, it can be shown
that the derivatives of these functions satisfy the following
three relations:

q 0 � pÿ Rq ; �D:18�
p 0 � sqÿ pRÿ 2qv ; �D:19�
v 0 � ÿpq : �D:20�

Taking the derivative of R 2 ÿ 2v and using Eqns (D.13) and
(D.20), it is easy to see that

d

ds
�R 2 ÿ 2v� � 2q � pÿ Rq� : �D:21�

On the other hand, multiplying both sides of (D.18) by 2q
yields

d

ds
q 2 � 2q � pÿ Rq� : �D:22�

Comparing Eqns (D.21) and (D.22) and taking into account
that all the above functions tend to zero as s!1, we obtain
the simple relation

R 2 ÿ 2v � q 2 : �D:23�

Finally, taking the derivative of Eqn (D.18) and using
Eqns (D.13), (D.18), (D.19), and (D.23), it is easy to show
that the second derivative of q�s� satisfies the equation

q 00 � 2q 3 � sq ; �D:24�

which is a special case of the PainleveÂ II differential equation
[37, 38, 53]. Thus, substituting Eqn (D.15) in Eqn (D.7), we
obtain Eqn (D.4) with q�s� being a solution of differential
equation (D.24). In the limit s!1, the function q�s�,
according to its definition (D.14), tends to zero, and
Eqn (D.24) then turns into the Airy function equation,
q 00 � sq. In this limit, therefore,

q�s! �1� ' Ai �s� � exp

�
ÿ 2

3
s 3=2

�
: �D:25�

On the other hand, it can be proved [54] that in the opposite
limit s! ÿ1, the asymptotic form of the solution of the
PainleveÂ equation (D.24) [whose right-tail asymptotic form is

given by the Airy function, Eqn (D.25)] is

q�s! ÿ1� '
�����������
ÿ 1

2
s

r
: �D:26�

The Tracy±Widom distribution function PTW�t� is related
to the above function F2�s� as follows. By definition, the
function F2�s� gives the probability that a random quantity t
described by the probability distribution functions PTW�t�
has a value less than a given parameter s:

F2�s� �
� s

ÿ1
dt PTW�t� : �D:27�

Taking the derivative of this relation and using (D.4), we find

PTW�s� � exp

�
ÿ
�1
s

dt �tÿ s� q 2�t�
� �1

s

dt q 2�t� ; �D:28�

where the function q�s� is a solution of differential equation
(D.24).

Substituting the two explicit asymptotic forms of q�s� as
s! �1 and s! ÿ1 in Eqn (D.28), we can estimate the
asymptotic behavior for the right and the left tails of the TW
probability distribution function PTW�s�:

PTW�s! �1� � exp

�
ÿ 4

3
s 3=2

�
; �D:29�

PTW�s! ÿ1� � exp

�
ÿ 1

12
jsj3
�
: �D:30�
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