
Abstract. Multipole expansions of the magnetic field of a
spatially restricted system of stationary currents and those for
the potential function of such currents in an external magnetic
field are studied using angular momentum algebraic techniques.
It is found that the expansion for the magnetic induction vector
is made identical to that for the electric field strength of a
neutral system of charges by substituting electric for magnetic
multipole moments. The toroidal part of the multipole expan-
sion for the magnetic field vector potential can, due to its
potential nature, be omitted in the static case. Also, the poten-
tial function of a system of currents in an external magnetic
field and the potential energy of a neutral system of charges in
an external electric field have identical multipole expansions.
For axisymmetric systems, the expressions for the field and
those for the potential energy of electric and magnetic multi-
poles are reduced to simple forms, with symmetry axis orienta-
tion dependence separated out.

1. Introduction

A simple way of obtaining the multipole expansion of the
electrostatic field potential j of a system of charges
distributed over a finite spatial domain with a volume
density r�r� is well known (see, for instance, Refs [1, 2]).
To do this requires substituting into the expression for the

field potential

j�r� �
�
r�r 0� dr 0
jrÿ r 0j �1�

the expansion of the kernel of integral operator (1) in a series
of Legendre polynomials Pl�x�:

1

jrÿ r 0j �
X1
l� 0

r 0 l

r l�1
Pl�n n 0� ; �2�

where r � rn, r 0 � r 0n 0, jnj � jn 0j � 1, and employing the
summation theorem for spherical functions Ylm�n�:

Pl�n n 0� � 4p
X
m

1

2l� 1
Y �lm�n 0�Ylm�n� : �3�

Expansion (2) is valid for r 0 < r (otherwise the positions of r 0

and r should be interchanged on the right-hand side), so that
sufficiently far away from the field sources, where this
condition is already fulfilled, we obtain as a result of this
substitution the expansion of the potential (1) in a multipole
series (the multipole expansion):

j�r� �
X1
l� 0

Xl
m�ÿl

�������������
4p

2l� 1

r
Qlm

Ylm�n�
r l�1

�
X1
l� 0

jl�r� : �4�

Here, the electric 2 l-polemoment of the system of chargesQlm

is defined in the following way:

Qlm �
�������������
4p

2l� 1

r �
r lr�r�Y �lm�n� dr : �5�

For a given l, the set of �2l� 1� quantities Q �lm, which are
transformed as spherical functions Ylm under rotations of the
coordinate system, makes up, according to the conventional
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terminology [3, 4], an irreducible l-order tensor, with the
scalar Q00 coinciding with the charge of the system, Q �1m
coinciding with the spherical components of its dipole
moment

d �
�
rr�r� dr ; �6�

andQ �2m being expressed in terms of the tensor components of
the system's quadrupole moment [1].

The first terms in multipole expansion (4) (the field of a
point charge, the fields of a dipole and a quadrupole) are easy
to obtain without using expansion (2), which is based on the
notion of a generating function for Legendre polynomials. All
one has to do is to expand jrÿ r 0jÿ1 in a Taylor series in terms
of the components of vector r 0 and substitute the result in the
integrand of expression (1) [1, 2]. In higher orders in r 0=r,
however, it is difficult to separate out irreducible tensors (5) in
expansion coefficients in this way. We are also reminded that
the multipole expansion of the potential is especially useful
away from the system of charges constituting the field
sources, where series (4) converges rapidly and the field of
the system is primarily determined by its first nonvanishing
term.

In magnetostatics, it is usual practice to restrict oneself to
the first� rÿ2 term of the expansion of the vector potential in
considering a field at large distances from the system of
currentsÐ that is, to the field of the magnetic dipole, which
is expressed in terms of the magnetic (magnetic dipole)
moment of the system (see, for instance, Refs [1, 2]). And
although it is implied that the multipole expansion, similar to
expansion (4), of the vector potential of the magnetic field
does exist, to our knowledge it has not been adduced in the
literature. To avoid misunderstanding, we emphasize that the
expansion of the vector potential given, for instance, in
Ref. [5] may not be termed a multipole. It is obtained simply
by substituting the expansion of jrÿ r 0jÿ1 in a Taylor series in
terms of the components of r 0 into the expression for the
vector potential of a magnetic field, which differs from
expression (1) in that r is replaced by j=c, where j is the
current density, and c is the speed of light in vacuum. This
gives rise to a series for the vector potential whose coefficients
(termed the magnetic multipole moments by the authors of
book [5]) are not irreducible tensors. Furthermore, as will be
evident from our subsequent discussion, this series contains
an infinite number of terms (they are expressed in terms of the
so-called toroidal moments of the system) which are potential
and may therefore be omitted.

The aim of the present work is to show that multipole
expansions in magnetostatics do exist, i.e., the magnetic field
of a system of currents, as well as the potential energy of this
system in an external magnetic field, may be represented in
the form of series whose coefficients are irreducible tensors
dependent on the distribution of the currents. The well-
known results of electrostatics would thereby be generalized
to the case of magnetostatics.

The author was impelled to write these notes upon
attentively reading review [6], which analyzes at length the
multipole expansion of field potentials in the radiation
theory and introduces toroidal multipole moments of a
system, which play, along with electric and magnetic multi-
pole moments, an important part in higher orders of the
long-wavelength approximation. In the limiting case of zero
radiation frequency, it is possible to obtain from formulas in

Ref. [6] the multipole expansion of the vector potential of the
magnetic field of stationary currents expressed in terms of
spherical vectors. In doing so, the toroidal part of the series
resulting in the static case turns out to be potential (see
Section 2.2 below) and does not make a contribution to the
multipole expansion of magnetic induction vector B. The
latter expansion may be derived by a similar passage to the
limit from the expression for B adduced in the well-known
book by M Rose [7], although in the application of his
results to the radiation theory Rose, owing to certain
inaccuracies, lost the contribution from toroidal moments,
as rightly noted in Ref. [6]. Our further analysis showed that
the multipole expansion in magnetostatics may be derived in
a simpler wayÐby direct generalization of the method
employed in electrostatics (see Section 2.1). In this case,
advantage is taken of the mathematical apparatus of the
algebra of angular momentum, and in particular of irredu-
cible tensors, which is widely applied in atomic and nuclear
physics [3, 4], with the fields of magnetic multipoles being
automatically expressed not in terms of spherical vectors
butÐequivalentlyÐ in terms of tensor products of irredu-
cible tensors, which turns out to be more convenient in some
cases.

We also considered the multipole expansions of the
potential energy of a system of charges or currents in an
external field. The expansion of the potential energy of a
system of charges in a series in terms of multipole moments is
given in Ref. [1], so that it only remained for us carry this
result to completion by expressing the coefficients of this
series in terms of the derivatives of the potential of the
external electric field. In the case of the potential energy of a
system of currents in an external magnetic field, all the work
had to be done from the beginning to the end. It turned out in
doing so that the resultant multipole expansion of the
potential function of currents is identical to the multipole
expansion of the energy of an electrically neutral system of
charges in an external electric field (like the multipole
expansions of the electric field strength of a system of charges
and of the vector B of a system of currents) and is obtained
from it by replacing the electric multipole moments with the
magnetic ones and replacing the electric field strength with
the magnetic induction vector B.

Lastly, considered in Section 4 are axisymmetric systems.
The apparatus of irreducible tensors turns out to be highly
effective here and permits representing the resultantmultipole
expansions in a compact invariant form with an explicit
dependence on all vector quantities which define the field of
the multipole or its energy in an external field.

2. Series expansion of the field
of a system of currents

2.1. Multipole series for the vector potential.
Magnetic multipole moment
To find the multipole expansion of the vector potential A�r�
of a system of stationary currents distributed over a finite
spatial domain with density j�r�, we substitute expansions
(2), (3) into the solution of the vector Poisson equation
written in the form of a volume potential [compare with
expression (1)] [1, 2]

A�r� � 1

c

�
j�r 0� dr 0
jrÿ r 0j :

168 M Ya Agre Physics ±Uspekhi 54 (2)



As a result of this substitution, we obtain the following series
for the vector potential

A�r� � 1

c

X
l;m

4p
2l� 1

��
r 0 l j�r 0�Y �lm�n 0� dr 0

�
Ylm�n�
r l�1

�
X1
l� 0

Al�r� : �7�

In the case of constant currents, one has�
j�r� dr � 0 ; �8�

this result, in view of the current stationarity condition and
zero normal component of vector j on the surface limiting the
domain where j 6� 0, namely

div j � 0 ; jn

���
S
� 0 ; �9�

is easily verified by substituting the vector �ar� j, a � const,
into the integral identity of theGauss±Ostrogradsky theorem.
Expansion (7) therefore begins with the l � 1 term, i.e., with
the field of the magnetic dipole. The main problem consists in
the fact that the coefficients (integral expressions) of series (7)
defined by the distribution of currents are not irreducible
tensors.

To separate out irreducible tensors in series (7), which are
defined by the current distribution of the system, i.e., to
transform this expansion of the vector potential to the
multipole expansion, we take advantage of the apparatus of
angular momentum algebra. In what follows we shall use
several conventional definitions and designations utilized in
this apparatus [3], which are given here for the convenience of
the reader. The spherical components of arbitrary vector a,
which form an irreducible tensor of rank one, are expressed in
terms of its Cartesian components in the following way:

a0 � az ; a�1 � � 1���
2
p �ax � iay� :

Irreducible tensors (tensor products of irreducible tensors) of
ranks L � jlÿ l 0j; jlÿ l 0j � 1; . . . ; l� l 0 are formed with the
use of Clebsch±Gordan coefficients CLM

lml 0m 0 from two irredu-
cible tensors Alm and Bl 0m 0 of ranks l and l 0, respectively,
according to the rule

fAl 
 Bl 0 gLM �
X
m;m 0

CLM
lml 0m 0AlmBl 0m 0 : �10�

From two tensors it is possible at l � l 0 to form a scalar (an
irreducible tensor of rank zero) proportional to the scalar
product of the two tensors, which will be designated by
parentheses:

�Al Bl� �
X
m

�ÿ1�mAl;ÿmBl;m � �ÿ1�l
������������
2l� 1
p fAl 
 Blg00 :

�11�
Notice also that the irreducible zero- and first-rank tensors
composed of two vectors are proportional to their scalar and
vector products, respectively:

fa
 bg0 � ÿ
1���
3
p ab ; fa
 bg1 �

i���
2
p a� b : �12�

Using designation (11), we write out the expression for the
spherical components of vectors Al, which enter in expansion
(7), in the following way:

�Al�m �
4p�ÿ1�l
c
������������
2l� 1
p 1

r l�1

�
r 0 ljm

�
Yl�n 0� 
 Yl�n�

	
00
dr 0 : �13�

To rearrange expression (13) to the desired form, one might
expand with the help of Clebsch±Gordan coefficients the
direct product of irreducible tensors jmYlm 0 �n 0� in terms of
irreducible tensors fj
 Yl�n 0�gJM, and then represent the
integrand of expression (13) as the sum of irreducible
tensors composed of these tensors and Ylm 0 �n�. The same
result will be obtained if the coupling scheme of angular
momenta in the integrand of expression (13) is changed with
a standard technique [3, 4]. Then, upon calculation of the
6j-symbols emerging when changing the coupling scheme,
one finds that

jm
�
Yl�n 0� 
 Yl�n�

	
00
�
n
j
 �Yl�n 0� 
 Yl�n�

	
0

o
1m

�
X

J� l; l�1
�ÿ1�1�l�J

�������������������
2J� 1

3�2l� 1�

s n
fj
 Yl�n 0�

	
J

 Yl�n�

o
1m
:

In view of this identity, we obtain the desired representation
for vector Al (13):

�Al�m �
4p

c�2l� 1� ���3p 1

r l�1
X

J� l; l�1
�ÿ1�J�1 ��������������

2J� 1
p

�
��

r 0 l
�
j
 Yl�n 0�

	
J
dr 0 
 Yl�n�

�
1m

: �14�

The current distribution-dependent parameters which
define the potential Al�r� (14) are irreducible tensors of
ranks J � l; l� 1. In particular, A1�r� is expressed in terms
of irreducible tensors������

4p
3

r �
r
�
j
 Y1�n�

	
Jm

dr �
�
fj
 rgJm dr ; �15�

with J � 0; 1; 2. Using the identity�
jm1rm2

dr � ÿ
�
jm2

rm1
dr ;

which is easily substantiated, in view of conditions (9), with
the help of the Gauss±Ostrogradsky theorem, and the
symmetry property of the Clebsch±Gordan coefficients, it is
easy to verify [see definition (10)] that tensors (15) turn to zero
for J � 0 and 2. Furthermore, taking into account the second
of formulas (12), one finds that

A1�r� � 4p
3cr 2

��
r 0
�
j
 Y1�n 0�

	
1
dr 0 
 Y1�n�

�
1

� 1

cr 3

��
fj
 r 0g1 dr 0 
 r

�
1

is written in the well-known form of the potential of a
magnetic dipole field [1, 2]:

A1�r� � l� r

r 3
; �16�
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where

l� 1

2c

�
�r� j� dr �17�

is the magnetic dipole moment of the currents.
The potentials of the fields of higher-order multipoles

�l > 1� are defined, according to representation (14), by the
irreducible tensors�

r l
�
j
 Yl�n�

	
Jm

dr ;

where J � l; l� 1. We shall show that this tensor vanishes for
J � l� 1. This is most easily verified in the following way. Let
us introduce spherical vectors [7, 8]

YLlm�n� �
X
m1m2

CLm
lm11m2

Ylm1
�n�em2

; �18�

where the unit vectors em,m � 0;�1, which form the so-called
helical basis, are expressed in terms of the unit vectors ex, ey,
ez of the Cartesian coordinate system:

e0 � ez ; e�1 � � 1���
2
p �ex � iey� :

In view of definitions (10), (18) and considering that jm � jem,
the desired tensor may be written in terms of the spherical
vector:�

r l
�
j
 Yl�n�

	
l�1;m dr �

�
r l jYl�1; l;m�n� dr :

We next make use of the identity (see, for instance, Ref. [7])

H
ÿ
f�r�YLm�n�

� � ÿ ���������������
L� 1

2L� 1

r �
df
dr
ÿ L

r
f
�
YL;L�1;m�n�

�
���������������

L

2L� 1

r �
df
dr
� L� 1

r
f
�
YL;Lÿ1;m�n� : �19�

By putting L � l� 1, f�r� � r l�1 in it, we find that

r lYl�1; l;m�n� � Hf ; f �r� � r l�1������������������������������l� 1��2l� 3�p Yl�1;m�n� :

After this, with the aid of the Gauss±Ostrogradsky theorem
and conditions (9) obeyed by stationary currents, we arrive at
the conclusion that�

r l
�
j
 Yl�n�

	
l�1;m dr �

�
jHf dr �

�
S

f jn dS � 0 :

Thus, only two terms corresponding to J � l and lÿ 1 remain
in sum (14) which defines the potential Al for l > 1.

Let us introduce the 2 l-pole magnetic moment Mlm,
l � 1; 2; 3; . . . of the system of currents, which is defined in
such a way that

M �
lm �

i

c

������������������������������
4pl

�l� 1��2l� 1�

s �
r l
�
j
 Yl�n�

	
lm
dr

� ÿ i

c

������������������������������
4pl

�l� 1��2l� 1�

s �
r l jYllm�n� dr ; �20�

and the toroidal 2 l-pole moment Tlm, l � 1; 2; 3; . . . :

T �lm � ÿ
���������������������
4p=�l� 1�p
c�2l� 3�

�
r l�1

�
j
 Yl�1�n�

	
lm
dr

� ÿ
���������������������
4p=�l� 1�p
c�2l� 3�

�
r l�1 jYl; l�1;m�n� dr : �21�

From definitions (20), (21) it follows that

M �
lm � �ÿ1�mMl;ÿm ; T �lm � �ÿ1�mTl;ÿm

are irreducible lth-rank tensors, with [see expressions (12)]
M �

1m � mm, where l is the magnetic dipole moment (17), and
the vector potentialAl (14) for l > 1 is represented in the form

Al�r� � AM
l �r� � AT

lÿ1�r� : �22�

Here,

AM
l �r� �

�ÿ1�li
r l�1

��������������������
4p�l� 1�

3l

r �
M �

l 
 Yl�n�
	
1

�23�

is the vector potential of the magnetic 2 l-field, and

AT
lÿ1�r� �

�ÿ1�l�1
r l�1

�����������������������
4pl�2lÿ 1�

3

r �
T �lÿ1 
 Yl�n�

	
1

�24�

defines the potential of the field of the corresponding toroidal
moment. Notice that expression (22) also gives the correct
expression for vector A1 because in this case T �00 (21) turns to
zero together with tensor (15) at J � 0, the second term in
expression (22) vanishes, and the first one [see expression (23)]
gives the well-known expression (16) for the potential of a
magnetic dipole field.

Potentials (23) and (24) are also written out in an
equivalent form in terms of spherical vectors (18). In view of
definitions (10), (18) and the symmetry properties of Clebsch±
Gordan coefficients, one may verify by comparing the
spherical components of the vectors that

AM
l �r� � ÿ

i

r l�1

��������������������
4p�l� 1�
l�2l� 1�

s X
m

MlmYllm�n� ; �25�

AT
lÿ1�r� � ÿ

�������
4pl
p

r l�1
X
m

Tlÿ1;mYlÿ1; l;m�n� : �26�

It is in this form that these fields will enter into the multipole
expansion, when one passes to the static limit in the
expression for the vector potential of the field of a radiating
system [6], i.e., to the zero radiation frequency. In this case,
expression (20) for themagnetic multipolemoment, written in
terms of the spherical vector, coincides with the definition of
the magnetic multipole moment given in Ref. [6], upon
correction of an evident misprint in the multiplier. The
expression for the toroidal multipole moment in Ref. [6]
consists of two terms and, on the face of it, does not coincide
with expression (21). However, by invoking the technique of
angular momentum algebra and the properties of spherical
functions, it is possible to show that these expressions are
equivalent under current stationarity conditions (9). Here, we
do not adduce the corresponding substantiation, because in
Section 2.2 we shall show that the field (24), (26), being
potential, does not make a contribution to the magnetic
induction vector and, accordingly, the toroidal part of the
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vector potential in the static case may be omitted from the
multipole expansion.

So, our resultant multipole expansion of the vector
potential has the following form

A�r� �
X1
l� 1

Al�r� ;

where vectors Al are defined by expressions (22)±(24) or by
their equivalent expressions (22), (25), and (26).

2.2 Magnetic induction vector of a magnetic multipole
To find the multipole expansion of magnetic induction vector
B � rotA, we calculate the rotor of either of the two terms
which form the vector Al (22).

First of all, let us show that

rotAT
lÿ1�r� � 0 : �27�

This is most easily verified (see also Appendix 1) proceeding
from the representation of AT

lÿ1 in the form (26) and using
identity (19). We substitute L � lÿ 1 and f�r� � rÿl into this
identity to find that

1

r l�1
Ylÿ1; l;m�n� � 1�����������������

l�2lÿ 1�p H
�
1

r l
Ylÿ1;m�n�

�
;

whence there follows expression (27). Therefore, toroidal
moments and the corresponding fields of toroidal multipoles
do not make a contribution to the static magnetic field. This
result is discussed in Section 2.3 from an informal point of
view.

To calculate the rotor of vector AM
l written in the form

(25), it is possible to make use of the well-known representa-
tion (see, for instance, Refs [7, 8]) of a spherical vector

Yllm�n� � ÿ i r� HHYlm�n����������������
l�l� 1�p : �28�

Then, by applying identity (19) and considering that the
function Ylm�r�=r l�1 obeys the Laplace equation, it is easily
shown (see also Appendix 1) that

rot

�
1

r l�1
Yllm�n�

�
� ÿi

�����������������
l�2l� 1�p
r l�2

Yl; l�1;m�n� : �29�

With the aid of expressions (29) and (25), we find the
expression for the magnetic induction vector of the magnetic
2 l-field, written in terms of the spherical vectors:

Bl�r� � rotAM
l �r� � ÿ

�������������������
4p�l� 1�p
r l�2

X
m

MlmYl; l�1;m�n� : �30�

This result is also obtained in the correct passage to the static
limit in the corresponding formulas [7].

When definitions (18), (10) and the symmetry properties
of Clebsch±Gordan coefficients are taken into account, it
may be shown that field Bl (30) is also written out in the
equivalent form in terms of the irreducible tensor product of
two irreducible tensors:

Bl�n� � �ÿ1�
l

r l�2

�����������������������������������
4p�l� 1��2l� 1�

3

r �
M �

l 
 Yl�1
	
1
: �31�

It is shown in Appendix 1 how expression (31) may be derived
by direct calculation of the rotor of the vector potential of the
magnetic multipole field, represented in the form of expres-
sion (23).

In the case of magnetic dipole field B1, expression (31) is
easily reduced to the well-known form [1, 2]

B1 � 3n�n l� ÿ l

r 3
; �32�

where l is the system's magnetic moment (17). For this
purpose, it suffices to substitute into expression (31) the
spherical function in the form (see, for instance, Ref. [3])

Y2m�n� �
������
15

8p

r
fn
 ng2m

andM �
1 � l, with B1 written out as

B1 � ÿ
�����
15
p

r 3
�
l 
 fn
 ng2

	
1
;

and then apply the identity

�
l 
 fn
 ng2

	
1
�

����
3

5

r �
1

3
n2lÿ n�n l�

�
;

which is obtained by changing the coupling scheme of angular
momenta in the irreducible tensor ffl 
 ng0 
 ng1:�fl 
 ng0 
 n

	
1
� 1

3

�
l 
 fn
 ng0

	
1

�
���
5
p

3

�
l 
 fn
 ng2

	
1
;

and employ relations (12).
Thus, the multipole expansion of the magnetic induction

vector has the form

B �
X1
l� 1

Bl ;

where themagnetic 2 l-fieldBl is defined by expressions (30) or
(31), and the 2 l-pole magnetic moment Mlm is defined by
formula (20).

2.3 Magnetoelectrostatic analogies
It is well known that the expression for the field strength of an
electric dipole is similar in form to expression (32) for the
magnetic induction vector of a magnetic dipole and is
obtained from it by replacing the magnetic moment l (17)
with the dipole moment d (6) of the system of charges (see, for
instance, Refs [1, 2]). We will show that this analogy persists
in all the following terms of the multipole expansion.

The multipole expansion of the electrostatic field strength
of a system of charges is obtained from the corresponding
expansion of the field potential (4):

E � ÿHj �
X1
l� 0

El ; �33�

where El � ÿHjl, with

jl �
1

r l�1

�������������
4p

2l� 1

r X
m

QlmYlm�n� �34�
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being the electric 2 l-field potential. By calculating
H�Ylm�n�=r l�1� with the aid of identity (19), we find the
electric 2 l-field strength

El � ÿ
�������������������
4p�l� 1�p
r l�2

X
m

QlmYl; l�1;m�n� : �35�

For l5 1, El (35) is indeed obtained from expression (30) for
the magnetic induction vector of the magnetic 2 l-field by way
of formal replacement of the 2 l-pole magnetic moment Mlm

(20) with the electric one Qlm (5). Clearly, the vector El may
also be written in terms of the irreducible tensor product of
two irreducible tensors [compare with expression (31)]:

El � �ÿ1�
l

r l�2

�����������������������������������
4p�l� 1��2l� 1�

3

r �
Q �l 
 Yl�1�n�

	
1
: �36�

The first term E0 of multipole expansion (33) coincides
with the field of a point charge Q00, which is easily seen by
insertingY1m�n� �

��������������
3=�4p�p

nm into expression (36) for l � 0.
The remaining part of this series is identical to the multipole
expansion of vector B and passes into it by way of formal
change Qlm !Mlm. The identity of the structures of the
multipole expansions of the electric field strength E in
electrostatics and of the vector B in magnetostatics is not
accidental. Indeed, beyond the system of currentsÐ the field
sources, only where the multipole expansion is applicableÐ
the magnetic field obeys the system of equations

divB � 0 ; rotB � 0 ;

which permit introducing the scalar field potential c, such
that B � ÿHc, for which we obtain the Laplace equation, as
in electrostatics beyond the system of charges. The solution of
this equation decreasing for r!1 may be expanded in a
series in terms of spherical functions:

c�r� �
X
l;m

alm
Ylm�n�
r l�1

:

We next apply formula (19) to obtain

B � ÿHc � ÿ
X
l;m

������������������������������l� 1��2l� 1�p
r l�2

almYl; l�1;m�n� : �37�

The structural similarity between the series (37) and the
multipole expansion (33), (35) in electrostatics is evident. In
magnetostatics, only the term � 1=r 2 is missing from the
expansion of B on the strength of condition (8), and the
corresponding term� 1=r is missing from expansion (7) of the
vector potential A, so that the multipole expansions begin
with the l � 1 term. A comparison of the terms of series (37)
with Bl (30) shows that

alm �
�������������
4p

2l� 1

r
Mlm :

In summary, it should be noted that the considerations
outlined above provide one more informal way, which is
based on electromagnetostatic analogies, of ascertaining that
toroidal moments in magnetostatics do not make a contribu-
tion to the multipole expansion of the magnetic induction
vector. Indeed, the term � 1=r l�1 in the multipole expansion
of the vector potential is defined by two irreducible tensors

characterizing the distribution of currentsÐ the field sources:
by a tensor of rank lÐthe magnetic multipole momentÐ
and a tensor of rank �lÿ 1�Ðthe toroidal multipole moment
[see expressions (22)±(26)]. Meanwhile, from expression (37)
it follows that the term corresponding to � 1=r l�2 in the
multipole expansion of B is defined by only one tensorÐ the
tensor alm of rank l, i.e., toroidal moments may not enter into
the expansion of B.

3. Multipole expansions
of the energy of a system in an external field

In the derivation of themultipole expansion of the energy of a
system, it is assumed that there are no sources of an external
field (no external charges in the consideration of an electro-
static problem or, accordingly, no external currents in
magnetostatics) in the spatial domain where the system is
located. If the external field is, in addition, quasiuniform,
which is possible only under the assumption made here, the
multipole expansion represents, as is well known, a rapidly
converging series, and the energy of the system is sufficiently
accurately defined by its first nonvanishing term.

3.1 System of charges in an external electric field
The multipole expansion of the energy of a system of charges
in an external electric field might be obtained by substituting
into expression

U �
�
r�r�j�R� r� dr ; �38�

which defines this energy, the Taylor series expansion of the
potential j with the origin of expansion at some point R
inside the system:

j�R� r� �
X1
l� 0

1

l !
xi1xi2 . . . xil Hi1Hi2 . . .Hil j�R� : �39�

The first terms in the multipole expansion (the energy of a
point charge, the energy of a dipole, and the energy of a
quadrupole) are indeed easily found by way of this substitu-
tion [1, 2]. However, separating out irreducible tensorsÐ the
electric multipole momentsÐbecomes a difficult task in the
next terms of the series under this procedure. That is why use
is made of the following trick [1]. In the domain of the system
location, where there are no chargesÐ the sources of the
external fieldÐ the potentialj satisfies the Laplace equation,
and as the solution of this equation is regular for r! 0, it may
be expanded in a series in terms of spherical functions:

j�R� r� �
X
l;m

alm r lYlm�n� : �40�

We next substitute expansion (40) in expression (38), take
into account that Yl;ÿm � �ÿ1�mY �lm, and introduce electric
2 l-pole moments in accordance with definition (5) to
represent the energy of the system in the form of a series:

U �
X
l;m

�������������
2l� 1

4p

r
Qlm�ÿ1�mal;ÿm : �41�

Expansion (41) was obtained in a book by Landau and
Lifshitz [1], and it was therefore shown that the energy of a
system of charges is represented in the form of a series in terms
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of its multipole moments. To bring the multipole expansion
of the energy to its final form requires determining the
coefficients of this series, which will be done below.

Let us express the coefficients alm of series (40) in terms of
the derivatives of the potential j at pointR. For this purpose,
we note that this series may be considered as an equivalent
representation of series (39). Writing out the spherical
function Ylm�n� in terms of the irreducible tensor of rank l
composed of the unit vector n [3], we may represent the
product of r l and Ylm, which enters expression (40), as

r lYlm�n� �
��������������������
�2l� 1�!!

4pl !

r n
. . .
�fr
 rg2 
 r

	
3

. . .
 r
o
lm
: �42�

We also take into consideration that, as shown in
Appendix 2, the action of the differential operators which
appear in series (39) on the harmonic, i.e., obeying the
Laplace equation, function j may be represented in an
equivalent form

xi1xi2 . . . xil Hi1Hi2 . . .Hil j�R��
�n

. . .
�fr
 rg2 
 r

	
3
. . .
 r

o
l

�
n

. . .
�fH
 Hg2 
 H

	
3

. . .
 H
o
l

�
j�R�

�
X
m

�ÿ1�m
n

. . .
�fr
 rg2 
 r

	
3

. . .
 r
o
lm

�
n

. . .
�fH
 Hg2 
 H

	
3

. . .
 H
o
l;ÿm

j�R� : �43�

Substituting next expression (42) into expansion (40), sub-
stituting expression (43) into expansion (39), and equating in
the resultant expressions the coefficients of like components
of the irreducible tensors composed of vector r, one obtains
the sought representation for coefficients alm:

�ÿ1�mal;ÿm

�
�����������������������

4p
�2l� 1�!!l !

s n
. . .
�fH
 Hg2 
 H

	
3

. . .
 H
o
lm
j�R� :
�44�

The multipole expansion of the energy of a system of
charges in an external field is found by substituting expression
(44) into series (41):

U �
X1
l� 0

Ul ; Ul � 1����������������������
l !�2lÿ 1�!!p

�
�
Q �l
n

. . .
�fH
 Hg2 
 H

	
3

. . .
 H
o
l

�
j�R� : �45�

The first term in expansion (45) (here, we must put
�2lÿ 1�!! � 1 at l � 0), namely

U0 � Q00j�R� ;

defines the energy of a point charge in an external field. For
l5 1, the energy of the corresponding 2 l-field may also be
written out in terms of the strength E � ÿHj of the external
field:

Ul5 1 � ÿ 1����������������������
l !�2lÿ 1�!!p

�
�
Q �l
n�

. . .
�fH
 Hg2 
 H

	
3

. . .
 H
	
lÿ1 
 E

o
l

�
: �46�

The second termU1 (46) of multipole expansion (45) is the
well-known expression for the energy of a dipole with a dipole
moment d (6) in the external field [1, 2]:

U1 � ÿ�Q �1 E� � ÿdE : �47�

To bring the third term U2 to the well-known form of the
energy of a quadrupole in an external field, we notice that the
22-pole momentQ2m (5) is related to the quadrupole moment
tensor whose Cartesian components are [1, 2]

Di j �
�
3�xixj ÿ r 2di j� r�r� dr �48�

in the following way:

Q �2m �
1���
6
p

X
m1;m2

C 2m
1m11m2

Dm1m2
: �49�

Relation (49) is most easily obtained by substituting r 2Y2m�n�
in the form (42) into the integral of expression (5), which
defines the quadrupole momentQ �2m. In doing so, it should be
taken into account that on the strength of invariance of the
unit tensor di j the irreducible tensor of rank two composed of
its components evidently turns to zero. Tensor (48) is
symmetrical and has a zero trace, so that only one nonzero
irreducible tensor may be composed of itÐ second-rank
tensor (49). One may therefore introduce auxiliary tensors

qlm � 1���
6
p

X
m1;m2

Clm
1m11m2

Dm1m2
; q2m � Q �2m ;

q1m � 0 ; q00 � 0

and represent U2 (45) in the form

U2 � 1���
6
p

X
l;m

�ÿ1�lÿmql;ÿmfH
 Hglm j :

Next, using the symmetry property of the Clebsch±Gordan
coefficient and the relation inverse to that given by formula
(10), it is easy to bring U2 to the standard form [1, 2]:

U2 � 1

6

X
m1 ;m2

�ÿ1�m1�m2Dm1m2
Hÿm1

Hÿm2
j

� 1

6
DikHiHk j � ÿ 1

6
DikHiEk : �50�

3.2 System of currents in an external magnetic field
The role of the potential energy of a system of currents j in an
external magnetic field defined by the vector potential A is
played, as is well known, by the so-called potential function of
the currents [2], which is defined by the expression

V � ÿ 1

c

�
j�r�A�R� r� dr ; �51�

differing in sign from the energy of current interaction with
the external field. The multipole expansion for the potential
function V will be obtained in this section.

When the Taylor series expansion of the vector potential
with the origin at some point R inside the system, namely

A�R� r� �
X1
l� 0

1

l !
xi1xi2 . . . xil Hi1Hi2 . . .Hil A�R� ; �52�
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is substituted into expression (51), it is easy to find the
first term, corresponding to l � 1, of the multipole
expansion of the potential function, which is expressed in
terms of the magnetic dipole moment (17) of the system of
currents and the magnetic induction vector of the external
magnetic field [2]:

V1 � ÿlB : �53�
The term corresponding to l � 0 in expression (52) does not
make a contribution to this expansion on the strength of
condition (8). It is difficult to separate out in such a direct
manner the irreducible tensorsÐmagnetic 2 l-pole
momentsÐ in the following terms of the series. That is why
we generalize themethod employed in the previous section for
finding the multipole expansion of energy in electrostatics to
the case of vector field A.

On imposition of the gauge condition

divA � 0 ; �54�
the potential of the external magnetic field in the domain of
currents j, which is devoid of the sources of the external field
according to the foregoing assumption, obeys the Laplace
equation. The solutions of the vector Laplace equation,
regular as r! 0, are the vectors

r lYllm�n� ; r lÿ1Yl; lÿ1;m�n� ; and r l�1Yl; l�1;m �55�

proportional to the spherical vectors (18). The spherical
vectors Yllm�n�, l � 0; 1; 2; . . . ; m � 0;�1; �2; . . . ;�l,
l � l; l� 1 for l 6� 0, and l � 1 at l � 0 form, as is well
known [7], a complete orthonormal set on a unit sphere.
That is why the solution of the vector Laplace equation,
regular for r! 0, may be expanded in a series in terms of
vectors (55). In our case, this expansion is simplified. Indeed,
it is easy to show (see also Ref. [7]) by using the definition of
spherical vectors (18) and identity (19) that the divergence of
the first two vectors (55) turns to zero, while

div
ÿ
r l�1Yl; l�1;m�n�

� � ÿ �������������
l� 1

2l� 1

r
�2l� 3� r lYlm�n� :

Consequently, the third of vectors in Eqn (55) does not satisfy
the gauge condition (54) andmay not enter into the expansion
of the vector potential A:

A�R� r� �
X1
l� 1

Xl
m�ÿl

�
almr

lYllm�n� � blmr
lÿ1Yl; lÿ1;m�n�

�
: �56�

The second term under the summation symbol in
expression (56) is potential and, therefore, does not make a
contribution to either the magnetic field B � rotA or the
potential function (51) of currents. Its potentiality may be
verified by way of the direct calculation:

rot
ÿ
r lÿ1Yl; lÿ1;m�n�

� � 0

by applying the method described in Appendix 1, or on the
strength of identity (19), whence it follows that

r lÿ1Yl; lÿ1;m�n� �
H
ÿ
r lYlm�n�

������������������
l�2l� 1�p :

After that, it is easy to show with the aid of the Gauss±
Ostrogradsky theorem and conditions (9), which are obeyed

by a stationary current, that the indicated terms of series (56)
do not make a contribution to the potential function (51).
Next, substituting expansion (56) into integral (51), introdu-
cing magnetic 2 l-pole moments defined in accordance with
expression (20), and considering the identity

Yllm�n� � �ÿ1�1ÿmY �l; l;ÿm�n�

obvious for spherical vectors (18), we arrive at the following
series for the potential function of currents:

V � ÿ
X
l;m

i

������������������������������
�l� 1��2l� 1�

4pl

r
Mlm�ÿ1�mal;ÿm : �57�

Therefore, we have shown that the potential function (51) is
expanded in a series in terms of magnetic multipole moments;
to bring this expansion to its final form requires defining the
coefficients alm of series (57).

Let us express alm, which also are coefficients of series (56)
for the vector potential, in terms of the derivatives of the
components of the magnetic induction vector

B � rotA �
X
l;m

alm rot
ÿ
r l Yllm�n�

�
: �58�

The rotor of the first of vectors (55), which appears in
expression (58), may be calculated by a standard procedure
when the spherical vector is represented in the form (28), or by
applying the technique described in Appendix 1. The result
takes the form

rot
ÿ
r l Yllm�n�

� � i
�����������������������������
�l� 1��2l� 1�

p
r lÿ1 Yl; lÿ1;m�n� ;

so that expansion of vector B (58) will contain only vectors of
the second type in Eqn (55), which are, like the field B itself in
the domain of currents j, potential and solenoidal:

B�R� r� �
X
l;m

almi
�����������������������������
�l� 1��2l� 1�

p
r lÿ1 Yl; lÿ1;m�n� : �59�

Let us compare the expression for the spherical component
BM of vector (59) with the Taylor series expansion of this
component:

BM�R� r�

�
X1
l� 0

Xl�1
m�ÿ�l�1�

al�1;mi
�����������������������������
�l� 2��2l� 3�

p
r l
ÿ
Yl�1; l;m�n�

�
M

�
X1
l� 0

1

l !
xi1xi2 . . . xil Hi1Hi2 . . .Hil BM�R� :

In making this comparison, one should take into account that
the expression for the spherical component of a spherical
vector has, in accordance with its definition (18), the formÿ

Yl�1; l;m�n�
�
M
�
X
m1

Cl�1;m
lm11;ÿM�ÿ1�

MYlm1
�n� ;

and use representation (42) for r lYlm1
�n� and the following

identity (A.5) for the harmonic function BM:

xi1xi2 . . . xil Hi1Hi2 . . .Hil BM�R�

�
X
m1

�ÿ1�m1

n
. . .
�fr
 rg2 
 r

	
3

. . .
 r
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lm1

�
n

. . .
�fH
 Hg2 
 H

	
3

. . .H
o
l;ÿm1

BM�R� :
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As a result, we arrive at the system of equations for the
coefficients alm:

1

l !

n
. . .
�fH
 Hg2 
 H

	
3

. . .
 H
o
l;ÿm1

BM�R�

� i

���������������������������������
�l� 2��2l� 3�!!

4pl !

r X
m

al�1;m�ÿ1�Mÿm1Cl�1;m
lm11;ÿM : �60�

To find these coefficients, one should multiply equations (60)
by

Cl�1;m 0
l;ÿm11M

� Cl�1;ÿm 0
lm11;ÿM

and, on summation over m1 and M, form an irreducible
tensor on the left-hand side, and also make use of the
orthogonality condition for Clebsch±Gordan coefficients on
the right-hand side. As a result, the desired coefficients turn
out to be expressed in terms of the derivatives of the magnetic
field B:

�ÿ1�mal;ÿm � ÿi
�����������������������������������������������

4p
�l� 1��2l� 1�!!�lÿ 1�!

s
�
nn

. . .
�fH
 Hg2 
 H

	
3

. . .
 H
o
lÿ1

 B

o
lm
; �61�

where l � 1; 2; 3; . . . .
By substituting expression (61) into series (57), we find the

final expression for the multipole expansion of the potential
function of a system of currents in an external magnetic field:

V �
X1
l� 1

Vl ; Vl � ÿ 1����������������������
l !�2lÿ 1�!!p

�
�
M �

l

nn
. . .
�fH
 Hg2 
 H

	
3

. . .
 H
o
lÿ1

 B

o
l

�
: �62�

Here, it was taken into account thatMlm � �ÿ1�mM �
l;ÿm, and

the scalar product of two irreducible tensors was introduced
in accordance with definition (11). Clearly, expansion (62) is
analogous to the multipole expansion of the energy of an
electrically neutral system of charges in an external electric
field, with the potential function Vl of a magnetic 2 l-field
resulting from the expression for the energy of electric 2 l-field
(46) by way of the substitutions Qlm !Mlm, E! B. We
emphasize that this result is well known for the potential
function (53) of a magnetic dipole.

The potential function V2 (62) of a magnetic quadrupole,
namely

V2 � ÿ 1���
6
p ÿ

M �
2 fH
 Bg1

�
;

may also be represented in a form similar to expression (50): 1

V2 � ÿ 1

6
mikHiBk : �63�

In complete analogy with the electric quadrupole moment
tensor Dik (48), the magnetic quadrupole moment tensor mik,
whose spherical components are related to M �

2m by the
expression of the form (49)

M �
2m �

1���
6
p

X
m1;m2

C 2m
1m11m2

mm1m2
; �64�

is introduced into expression (63). An explicit expression for
the components of the symmetric tensor mik having a zero
trace is easy to find by taking advantage of the definition of
M �

2m (20). By substituting r 2Y2m�n� in the form (42) into
expression (20), changing the coupling scheme of angular
momenta, and employing the second of identities (12), one
brings the expression forM �

2m to the form (64), where

mik �
1

c

�ÿ�r� j�i xk � �r� j�k xi
�
dr : �65�

In concluding this section, it should be noted that the
coincidence of multipole energy expansions in electrostatics
and magnetostatics is not accidental. Indeed, the scalar
construction defining Ul (46) and Vl (62) is the sole scalar
which may be composed of an irreducible tensor of rank l
(2 l-pole moment) and the �lÿ 1�th-order derivatives of the
components of vector E orB, respectively. The coincidence of
the coefficients of the scalar products of the irreducible
tensors in expressions (46) and (62) is related to the definition
of electric andmagneticmultipolemoments. The latters are so
defined that the multipole expansions of the electric field E
and magnetic field B look similar (see Section 2.3). At the
same time, the energy (electric or magnetic) of interaction of
the two systems is, as is well known, symmetrical in the sense
that it may be calculated as the energy of system 1 in the field
of system 2 or, conversely, as the energy of system 2 in the field
of system 1 [2] (in particular, the energy of the interaction of
the 2 l1 -pole of system 1 with the external 2 l2 -field of system 2
must coincide with the energy of the 2 l2 -pole of system 2 in the
external 2 l1 -field of system 1). Therefore, the coefficient of
scalar products in expressions (46) and (62), which ensures
this symmetry, might only differ from �l !�2lÿ 1�!!�ÿ1=2 by a
factor equal for all l.

4. Axisymmetric systems

Let us assume that the distribution of charges or currents is
axisymmetric with the symmetry axis Z, whose direction is
defined by a unit vector k. In this case, both the multipole
expansions of the field of a system and the expansion of the
energy of the system in an external field are significantly
simplified. The irreducible tensor apparatus proves to be
highly effective for these systems and permits, in particular,
explicitly separating out the dependences on the symmetry
k-axis direction in all formulas.

4.1 Multipole moments of axisymmetric systems
From the definition of 2 l-pole electric (magnetic) moment
Qlm �Mlm� it follows that the set of its complex conjugate
quantities is transformed according to the irreducible repre-
sentation of the group of rotations having the dimension
2l� 1 and forms an irreducible tensor of rank l. Therefore,
the multipole moment (for definiteness we shall write out the
corresponding formulas for the electric moment Qlm) is
transformed under rotations of the coordinate system (CS)

1 Given in Ref. [6, Appendix 1] is the expression for V2 obtained by direct

expansion of the vector potential of an external field in a Taylor series:

V2 � ÿmikHiBk :

Themagnetic quadrupolemoment tensormik introduced by the authors of

Ref. [6] differs from mik (65) by the following factor:

mik � 1

3
mik :

Acomparison of these expressions with formula (63) shows that a factor of

1=2 was lost in Ref. [6].
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according to the law

Qlm �
X
M

QlMD
�l ��
Mm �g; b; a� ; �66�

where QlM are the components of the 2 l-pole moment in the
CS XYZ, and Qlm in the CS xyz, �g; b; a� are Euler's angles
specifying the orientation of the XYZ CS relative to the xyz
CS, and D

�l �
Mm is the matrix of finite rotations (Wigner's D

function) [9]. LetXYZ in expression (66) be the intrinsic CS of
our axisymmetric system, whose Z-axis coincides with the
symmetry axis, and let b and aÐthe polar and azimuthal
angles of the Z-axis in the xyz CSÐgive the k direction. We
shall also require expressions for the D function in some
special cases:

D
�l �
Mm�g; 0; 0� � exp �iMg� dMm ; �67�

D
�l �
0m �g; b; a� � D

�l �
0m �0; b; a� �

�������������
4p

2l� 1

r
Ylm�k� : �68�

The axial symmetry of the system signifies that the
multipole moment components QlM remain invariable under
CS rotation through an arbitrary angle g about the Z-axis,
and on the strength of transformation law (66) and formula
(67) we therefore obtain

QlM � QlM exp �igM� : �69�

The last relation shows that only the zero component of the
2 l-pole moment Ql 0 � Q

�k�
l is nonzero in the intrinsic CS:

QlM � Q
�k�
l dM0 : �70�

We substitute expression (70) into expression (66) and take
into consideration relationship (68) which links the D
function to the spherical function to determine the depen-
dence of Qlm on the orientation of the symmetry axis of the
system:

Qlm �
�������������
4p

2l� 1

r
Q
�k�
l Y �lm�k� : �71�

From formulas (5) and (20), which define electric and
magnetic multipole moments, it follows that

Q �lm � �ÿ1�mQl;ÿm ; M �
lm � �ÿ1�mMl;ÿm :

The zero components of these tensors are therefore real, and
in accordance with formula (71) one finds

Q �lm �
�������������
4p

2l� 1

r
Q
�k�
l Ylm�k� ; M �

lm �
�������������
4p

2l� 1

r
M
�k�
l Ylm�k� :

�72�
Formulas (72) define the multipole moments of an axisym-
metric system in an arbitrarily oriented CS whose origin is on
the system's symmetry axis. It can also be said that these
formulas establish the dependence of the multipole moments,
which are defined relative to a point lying on the symmetry
axis, on the orientation of this axis. In this case,Q

�k�
l andM

�k�
l

depend, generally speaking, on the position of the point
relative to which the multipole moments are defined.

Let us also discuss the case where the k-axis is no more
than a symmetry axis of order n, i.e., the charge (current)
distribution and with it the multipole moments remain
invariable under rotations through the angle gn � 2p=n

about this axis. In this case, according to expression (69), we
have

QlM � QlM exp

�
ÿ i2pM

n

�
;

so that fromQlM 6� 0 it follows thatM � 0;�n;�2n; . . . . For
a given l, it will be recalled,M � 0;�1;�2; . . . ;�l, making it
evident that for l < n only the zero component of the 2 l-pole
moment is nonzero in the intrinsic CS. As for an arbitrarily
oriented CS whose origin is located on the system's symmetry
axis, Qlm and Mlm are defined for l < n by expressions (72).
This result is evident for an electric or magnetic dipole �l � 1�
defined by vector d or l, respectively: the vector which
characterizes the system at a point lying on the symmetry
axis of even the lowest second order should be aligned with
this axis, i.e., it has only one nonzero component in the
intrinsic CS. Thus, when the system possesses a symmetry axis
of order n, the fields of the 2 l-pole of this and of an
axisymmetric system coincide for l < n; the same is true of
the interaction of a 2 l-pole with an external field.

By way of example, let us consider a symmetric toroidal
distribution of currents. The system comprises n similar
equidistant turns wound on a torus, which carry equal
currents (an n-fold symmetric toroid). In the limiting case of
n!1, we obtain a toroidal solenoid. For a finite n, the
system evidently possesses a symmetry axis of order n, which
coincides with the torus axis, so that MlM �M

�k�
l dM0 for

l < n, as shown above. In view of expression (28), meanwhile,
for a spherical vector it follows from definition (20) that

M
�k�
l �Ml 0 �

������������������������
4p=�2l� 1�p
c�l� 1�

�
r l�r� j�HYl 0�n� dr � 0 ;

because Yl 0�y;j� is independent of the j angle, with the
result that vectors r, j, and HYl 0 turn out to be coplanar. For
a toroid with a symmetry axis of order n, therefore, Mlm � 0
for l < n. For a magnetic dipole moment this result is
evident: the magnetic moment of each of the turns is
perpendicular to the plane of the turn, whereas the total
magnetic moment of the toroid should be directed along its
axis. It should be noted that the system under discussion
possesses nonzero toroidal multipole moments [6] [in the
static case they may be calculated by formula (21)].
However, they play no part in magnetostatics, making no
contribution to the multipole expansion of the magnetic
induction vector B (see Section 2.2). Hence, the multipole
expansion of the n-fold symmetric toroid field begins with a
magnetic 2 n-field, and B therefore decreases as 1=r n�2 for
long distances [see expressions (30), (31)]. For an axisym-
metric toroidal current �n!1�, all magnetic multipole
moments turn to zero and, accordingly, there is no magnetic
field outside of the system. The absence of a magnetic field
beyond a toroidal solenoid with an infinitely dense winding is
a well-known result, which is given in many textbooks on
general physics and substantiated with the aid of AmpeÁ re's
circuital law (the theorem on the circulation of a magnetic
induction vector).

4.2 Electric field of an axisymmetric system of charges
The potential of an electric multipole field is defined by
formula (34). Substituting into it the electric 2 l-pole moment
in the form of expression (71) and applying the summation
theorem for spherical functions (3), one finds the potential for
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the field of an axisymmetric 2 l-pole:

jl�r� �
Q
�k�
l

r l�1
Pl �kn� ; l � 0; 1; 2; . . . ; �73�

where

Pl�x� � 1

2 ll !

dl

dx l
�x 2 ÿ 1�l

is a Legendre polynomial.
The electric field strength may be found from formula

(73): El � ÿHjl. We nevertheless take advantage of the
previously derived general expression (36) for El and
substitute Q �lm (72) into it to find for an axisymmetric system:

El � �ÿ1�
l

r l�2
4p

�����������
l� 1

3

r
Q
�k�
l

�
Yl�k� 
 Yl�1�n�

	
1
: �74�

An irreducible tensor composed of two spherical functions is
referred to in the literature as a bipolar harmonic (BH) [3]. A
BH of rank one enters into expression (74). As shown in
Ref. [10], a BH of a given rank comprising spherical functions
of arbitrary ranks may be reduced to the simplest BHs of this
rank with spherical functions of the lowest possible rank. In
this case, the coefficients of expansion of the initial BH in
terms of these simplest BHs are expressed in terms of
Legendre polynomials (the summation theorem for spherical
functions may be considered as the simplest of reductions of
this kind). For the BH of interest, in particular, the reduction
formula has the form�

Yl�k� 
 Yl 0 �n�
	
1

� ÿ 1

4p

���������
3

lmax

s ��ÿ1�lP �1�l �x�k� �ÿ1�l
0
P
�1�
l 0 �x�n

�
; �75�

where

l 0 � l� 1 ; lmax � max �l; l 0� ; P
�1�
l �x� �

dPl�x�
dx

; x � kn :

In what follows, we shall require the formula of reduction of
yet another BH [10]:

�
Yl�k� 
 Yl�n�

	
1
� i�ÿ1�l�1

4p

�������������������
3�2l� 1�
l�l� 1�

s
P
�1�
l �x� k� n :

�76�

Identity (75) permits obtaining a relatively simple expression
for the field strength of the axisymmetric 2 l-pole (74):

El � Q
�k�
l

r l�2
�
P
�1�
l�1�kn�nÿ P

�1�
l �kn�k

�
; l � 0; 1; 2; . . . : �77�

By way of example we shall give the formulas which
expressions (73) and (77) reduce to in the special cases of
l � 1 and 2. To write down the results, we require explicit
expressions for the three simplest Legendre polynomials:

P1�x� � x ; P2�x� � 1

2
�3x 2 ÿ 1� ; P3�x� � 1

2
�5x 3 ÿ 3x� :

For l � 1, we have

j1 �
Q
�k�
1

r 2
kn ; E1 � Q

�k�
1

r 3
�
3�kn�nÿ k

�
:

In accordance with definition (5), Q
�k�
1 � Q10 coincides with

the z-component of the system's dipole moment (6) in the
intrinsic CS, and the formulas given here reproduce the well-
known expressions for the potential and field strength of a
dipole with the dipolemoment d � Q

�k�
1 k [1, 2]. Therefore, the

axial symmetry of the system in the case of a dipole field does
not lead to any simplifications. This is evidently due to the
following circumstance: in a CS, whose Z-axis is aligned with
the dipole moment vector d, only one of its components,
dz � Q10, is nonzero and, consequently, Q1M has the form of
expression (70) in the absence of symmetry, as well.

The potential and strength of the field of an axisymmetric
quadrupole are written out in the following form in view of
expressions (73) and (77):

j2 �
Q
�k�
2

2r 3
�
3�kn�2 ÿ 1

�
; �78�

E2 � 3Q
�k�
2

2r 4

n�
5�kn�2 ÿ 1

�
nÿ 2�kn�k

o
: �79�

The quantityQ
�k�
2 � Q20, which enters into these expressions,

is, according to definition (5), proportional to the z-
component of the system's quadrupole moment tensor Di j

(48) in the intrinsic CS (i.e., to the third principal value of this
tensor):

Q
�k�
2 � 1

2
Dzz : �80�

With regard to relationship (80), potential j2 (78) coincides
with the expression for the potential of the field of an
axisymmetric quadrupole, which was given in Refs [1, 2].

4.3 Magnetic field of an axisymmetric system of currents
The similarity between the multipole expansions of the
electric field strength and the magnetic induction vector was
discussed at length in Section 2.3. A simple comparison of
formulas (31) and (36) shows that the magnetic induction
vector Bl �l � 1; 2; 3; . . .� of the 2 l-field of an axisymmetric
system of currents should be defined by expression (77) in
which the component Q

�k�
l of the electric multipole moment

should be replaced by the corresponding component M
�k�
l of

the magnetic multipole moment [see formulas (72)]:

Bl �M
�k�
l

r l�2
�
P
�1�
l�1�kn�nÿ P

�1�
l �kn�k

�
:

In particular, the magnetic quadrupole field B2 is defined by
formula (79) with Q

�k�
2 replaced by

M
�k�
2 � 1

2
mzz ;

where, on the strength of relationships (49) and (64), the
relationship between M

�k�
2 and the principal z-value of the

magnetic quadrupole moment tensor mi j (65) duplicates
formula (80).

To find the vector potential of the magnetic multipole
field of an axisymmetric system, we substitute the 2 l-pole
magnetic moment in the form of formula (72) into the
expression for AM

l (23):

AM
l �

�ÿ1�l i
r l�1

4p

���������������������
l� 1

3l�2l� 1�

s
M
�k�
l

�
Yl�k� 
 Yl�n�

	
1
:
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We next apply the BH reduction formula (76) to arrive at the
final result

AM
l �

M
�k�
l

lr l�1
P
�1�
l �kn� k� n ; l � 1; 2; 3; . . . : �81�

Specifically, at l � 1 formula (81) reduces to the well-known
expression for the potential (16) of a magnetic dipole field
with a magnetic moment l�M

�k�
1 k. The vector potential of

an axisymmetric magnetic quadrupole is defined, according
to formula (81), by the expression

AM
2 �

3M
�k�
2

2r 3
�kn� k� n :

It should be emphasized that the vector potential AM
l (81)

is collinear with the vector product k� n for any multi-
polarity l.

4.4 Energy of an axisymmetric system in an external field
First, let us simplify expression (45) for the energy of an
electric multipole in an external field. By substituting the
electric 2 l-pole moment in the form of formula (72) into
expression (45) and, furthermore, expressing the corre-
sponding spherical function in terms of the irreducible
tensor composed of the unit vector k [see expression (42)],
we represent the energy of interaction between the
axisymmetric multipole and external field in the following
form

Ul � 1

l !
Q
�k�
l

��
. . . fk
 kg2 . . .
 k

	
l

� �. . . fH
 Hg2 . . .H
	
l

�
j�R� : �82�

For the differential operator acting on the harmonic
function j (the potential of the external field) in expression
(82), it is possible to take advantage of representation
(A.5), which permits writing Ul in its relatively simple
final form

Ul � 1

l !
Q
�k�
l ki1ki2 . . . kil Hi1Hi2 . . .Hil j�R�

� 1

l !
Q
�k�
l �kH�l j�R� : �83�

At l � 0, expression (83) reduces to the energy of a point
chargeQ

�k�
0 which is equal to the total charge of the system in

an external field:

U0 � Q
�k�
0 j :

For l5 1, Ul may also be written out in terms of the strength
of this field, E � ÿHj:

Ul � ÿ 1

l !
Q
�k�
l �kH�lÿ1�kE� : �84�

The potential and strength of the external electric field in
expressions (83) and (84) are taken at point R, which lies on
the system's symmetry axis, because the multipole moments
are defined relative to this point. Should the Z-axis be
directed along the system's symmetry axis defined by vector
k, expressions (83) for l5 1 and (84) would take on the

following form

Ul � 1

l !
Q
�k�
l

q lj
qz l
� ÿ 1

l !
Q
�k�
l

q lÿ1

qz lÿ1
Ez : �85�

At l � 1, expression (84) passes into the well-known expres-
sion (47) for the energy of a dipole with a dipole moment
d � Q

�k�
1 k in the field E, and the energy of an axisymmetric

quadrupole equals

U2 � 1

4
Dzz

q2j
qz 2

;

as follows from expression (85) in view of relation (80).
To summarize, we give the expression for the potential

function of an axisymmetric magnetic multipole in external
field B. A comparison of the above-derived general formulas
for the energy Ul (46) of an electric multipole and the
potential function Vl (62) of a magnetic multipole shows
that the desired expression may be obtained from expres-
sions (84) and (85) by a simple change of E! B, and
Q
�k�
l !M

�k�
l :

Vl � ÿ 1

l !
M
�k�
l �kH�lÿ1�kB� � ÿ

1

l !
M
�k�
l

q lÿ1

qz lÿ1
Bz ;

where l � 1; 2; 3; . . . .

5. Conclusions

The main findings of our investigation are represented by
formulas (23) or (25) for the vector potential, by formulas
(30) or (31) for the magnetic induction vector of a magnetic
multipole field, and by expression (62) for the potential
energy of a magnetic multipole in an external magnetic
field. The magnetic field of an arbitrary stationary system
of currents beyond this system is defined by a series, whose
individual terms represent the fields of magnetic multipoles,
and the potential energy of this system in an external
magnetic field is written out in the form of multipole
expansion (62). In this case, the magnetic 2 l-pole moment
is defined by an irreducible tensor of rank l (20). The
multipole expansions in magnetostatics are identical to the
multipole expansions for an electrically neutral system of
charges in electrostatics.

When estimating these results, there is no escape from
asking oneself the question: how could it happen that in this
seemingly well-elaborated area of classical electrody-
namicsÐmagnetostaticsÐ the problems of multipole
expansions remained unexplored down to the smallest
details? This is surprising, the more so as these expansions
are well known in electrostatics; an exception is provided,
perhaps, only by the foregoing expression (45) for the
potential energy of an electric multipole of arbitrary rank in
an external field. The reason supposedly lies with the
following fact: to completely investigate the multipole
expansions in magnetostatics calls, as we have seen, system-
atically use the powerful and at the same time elegant
mathematical apparatus based on the results of the theory of
representations of the group of rotationsÐ the irreducible
tensor apparatus. Although this apparatus has been
employed in classical and quantum theory of radiation for a
relatively long time (see Refs [7, 8] as well as Ref. [6]), the
employment of this mathematical apparatus in so simple a
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classical electrodynamics domain like magnetostatics has
most likely been regarded as inappropriate. Meanwhile, the
very notion of electric or magnetic multipole moment, whose
components form an irreducible tensor, is an organic part of
this apparatus.

It should be noted that finding the multipole expansion
of the field potential in electrostatics is a simpler task owing
to the scalar nature of this potential. And although the
mathematical apparatus of irreducible tensors is implicitly
employed in this case also, to obtain the expansion one needs
only to take advantage of the well-known properties of
spherical functions, as we briefly mentioned in the Introduc-
tion. That is why, the multipole expansion (4) of the
electrostatic potential is given even in textbooks. True,
when writing the general expression for the field strength of
an electric multipole, use should be made either of spherical
vectors [see expression (35)] or of the tensor product of
irreducible tensors [see expression (36)]. And it is precisely
these expressions (we have not encountered them in the
literature) that are required to make possible the identifica-
tion of the entire multipole series for the electric field
strength of an electrically neutral system of charges with
the multipole expansion of the magnetic induction vector of
a system of currents, and not to confine oneself to the
statement of the coincidence of the electric and magnetic
dipole fields.

In conclusion, I would like to emphasize that the
investigation performed in this work is not only of academic
significance. The multipole expansion of the magnetic field is
the solution to a magnetostatic problem, presented in the
form of a series. This series converges even at a finite
distance from the system of currentsÐ the field sourcesÐ
so that calculating the field requires, generally speaking, all
terms of this series. At long distances from the sources, the
multipole expansion is especially effective, because the series
converges rapidly, and to find the field it suffices, as a rule,
to limit oneself to the first nonvanishing term. The multipole
expansion of the potential function of currents embedded in
a quasiuniform external magnetic field is equally effective.
However, the first term in the multipole expansions is not
necessarily the dipole one. A system with a zero magnetic
dipole moment or a system with several zero higher-order
magnetic multipole moments is by no means exotic and is
not confined to the n-fold symmetric toroid discussed at the
end of Section 4.1. For example, it suffices to take a system
of currents consisting of two subsystems with antiparallel
magnetic dipole moments of equal magnitude (in the
simplest case, these are two plane-parallel magnet sheets,
i.e., two like plane-parallel turns with equal currents flowing
in the opposite directions) to obtain a system whose
magnetic properties are defined already by its magnetic
quadrupole moment. It is easy to conceive a system with
zero magnetic dipole and quadrupole moments, etc. And in
all such cases, the field of the system and its behavior in an
external magnetic field will be defined by the higher-order
terms of multipole expansions. Lastly, we note that the
magnetic effects of higher-order multipolarity may, in
principle, manifest themselves in the interaction of quantum
systems with one another, as well as with a nonuniform
external magnetic field. However, the relative magnitude of
these effects is rather low, and the feasibility of their
experimental examination calls for special consideration in
each specific case.

6. Appendices

6.1 Appendix 1
In the determination of the magnetic induction vector from
the vector potential expressed in terms of the spherical vectors
in the form of expressions (25), (26), one has to calculate the
rotor of vectorYLlm�n�=r l�1. We briefly explain the technique
of this calculation. At first we write, in view of the second of
formulas (12), the spherical rotor component in the form

rotv

�
1

r l�1
YLlm�n�

�
� ÿi

���
2
p �

H
 1

r l�1
YLlm�n�

�
1v

: �A:1�

We next make use of definitions (10), (18) and of identity (19)
for the gradient, and rearrange in a standard way [3, 4] the
resultant sum of the products of three Clebsch±Gordan
coefficients to obtain the product of a Clebsch±Gordan
coefficient and a 6j-symbol. Finally, expression (A.1) takes
on the following form

rot

�
1

r l�1
YLlm�n�

�
� ÿi �2l� 1� ����������������

6�l� 1�p
r l�2

l� 1 L 1

1 1 l

� �
YL; l�1;m�n� : �A:2�

When executing rearrangements it should be remembered
that the spherical component av of vector a may be written
out in the form of the scalar product aev. For L � lÿ 1, the
6j-symbol and with it the whole expression (A.2) turn to
zero, which corresponds to the potentiality of field (26) (see
Section 2.2). At L � l, expression (A.2) reduces, upon
calculation of the 6j-symbol, to formula (29) in the main
text.

We also show how it is possible to find the rotor of the
vectors having the forms (23) and (24). To this end, we
introduce the vector

RL � rot

�
aL 
 1

r l�1
Yl�n�

�
1

;

where the irreducible tensor aL of rank L is independent of r.
Employing the second of identities (12) and transposing the
factors in the irreducible tensor product with the form (10),
which is attended with the multiplication by �ÿ1�L�l�l 0 , we
represent RL as

RL � ÿi
���
2
p (

H

�
aL 
 1

r l�1
Yl�n�

�
1

)
1

� �ÿ1�L�li
���
2
p (

H

�

1

r l�1
Yl�n� 
 aL

�
1

)
1

:

On changing the coupling scheme of angular momenta in the
last expression, we arrive at

RL � i
���
6
p X

J

��������������
2J� 1
p J 1 l

1 L 1

� �

�
(�

H
 1

r l�1
Yl�n�

�
J


 aL

)
1

: �A:3�

Next, by employing identity (19), the spherical vector
definition (18), and the orthogonality condition for
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Clebsch±Gordan coefficients, we find the irreducible tensor�
H
 1

r l�1
Yl�n�

�
JM

� ÿ 2l� 1

r l�2

�������������
l� 1

2l� 3

r
Yl�1;M�n�dJ; l�1 ;

and substitute this formula into expression (A.3) to obtain the
final result:

RL � rot

�
aL 
 1

r l�1
Yl�n�

�
1

� ÿi
����������������
6�l� 1�p �2l� 1�

r l�2

� l� 1 1 l

1 L 1

� ��
Yl�1�n� 
 aL

	
1
: �A:4�

For L � lÿ 1, the 6j-symbol in expression (A.4), and with it
RLÿ1, turn to zero, which corresponds to the potentiality of
vector (24). Substituting L � l, al �M �

l into expression (A.4)
and calculating the 6j-symbol, one finds

rot

�
M �

l 

1

r l�1
Yl�n�

�
1

� ÿi
�����������������
l�2l� 1�p
r l�2

�
M �

l 
 Yl�1�n
	
1
;

with the result that the rotor of vector AM
l �r� (23) is written

out in the form of expression (31).

6.2 Appendix 2
Let us show that the harmonic function j, i.e., a function
which satisfies Laplace's equation, obeys the following
identity

xi1xi2 . . . xil Hi1Hi2 . . .Hil j �
�n

. . .
�fr
 rg2 
 r

	
3

. . .
 r
o
l

�
n

. . .
�fH
 Hg2 
 H

	
3

. . .
 H
o
l

�
j : �A:5�

To prove this, we first of all write out the operator which
appears on the left-hand side of expression (A.5) in terms of
the spherical components of the vectors:

xi1xi2 . . . xil Hi1Hi2 . . .Hil

�
X

m1;m2;... ;ml

�ÿ1�m1�m2�...�mlxm1
xm2

. . . xml
Hÿm1

Hÿm2
. . .Hÿml

:

�A:6�
We next invert relation (10), which defines the irreducible
tensor product of two irreducible tensors, to find that

xm1
xm2
�
X
l1;M1

Cl1M1

1m11m2
fr
 rgl1M1

;

and continue the same procedure to arrive at the relation

xm1
xm2

. . . xml

�
X

l1;M1 ; l2;M2;...; llÿ1;M

Cl1M1

1m11m2
Cl2M2

l1M11m3
. . .Cllÿ1M

llÿ2Mlÿ21ml

�
n

. . .
�fr
 rgl1 
 r

	
l2

. . .
 r
o
llÿ1M

: �A:7�

On substituting relation (A.7) into the right-hand side of
relation (A.6) and making use of the symmetry properties of
Clebsch±Gordan coefficients and of definition (10), we obtain
an equivalent representation of operator (A.6):

xi1xi2 . . . xil Hi1Hi2 . . .Hil �
X

l1; l2; ... ; llÿ1

�ÿ1�lÿllÿ1

�
X
M

�ÿ1�M
n

. . .
�fr
 rgl1 
 r

	
l2

. . .
 r
o
llÿ1;M

�
n

. . .
�fH
 Hgl1 
 H

	
l2

. . .
 H
o
lÿ1;ÿM

�
X

l1; l2;... ; llÿ1

�ÿ1�lÿllÿ1
�n

. . .
�fr
 rgl1 
 r

	
l2

. . .
 r
o
llÿ1

�
n

. . .
�fH
 Hgl1 
 H

	
l2

 H

o
llÿ1

�
: �A:8�

Let us now compare the Taylor series (39) with the
expansion of the harmonic function in a series (40). The
terms with a given l (the terms � r l ) in expressions (39) and
(40) should evidently coincide. We also take into considera-
tion that, as is easily shown, an irreducible tensor of rank l,
which depends only on the unit vector n, reduces, correct to a
factor, to the spherical function Ylm�n�. Therefore, the
irreducible tensors (composed of the vector r) with lower
intermediate momenta and final llÿ1 momentum than in
expression (42), which appear in expression (A.8), are
proportional to the spherical functions Yllÿ1 ;M�n�. For a
given l, however, in expression (40) there are no spherical
functions of lower rank than l (here, l is themaximumpossible
finite momentum in the irreducible tensors indicated).
Consequently, the action of operator (A.8) on the harmonic
function does reduce to that described by expression (A.5).
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