
Abstract. Research is reviewed on the identification and con-
struction of physical systems with chaotic dynamics due to
uniformly hyperbolic attractors (such as the Plykin attraction
or the Smale±Williams solenoid). Basic concepts of the mathe-
matics involved and approaches proposed in the literature for
constructing systems with hyperbolic attractors are discussed.
Topics covered include periodic pulse-driven models; dynamics
models consisting of periodically repeated stages, each de-
scribed by its own differential equations; the construction of
systems of alternately excited coupled oscillators; the use of
parametrically excited oscillations; and the introduction of
delayed feedback. Some maps, differential equations, and sim-
ple mechanical and electronic systems exhibiting chaotic dy-
namics due to the presence of uniformly hyperbolic attractors
are presented as examples.

1. Introduction

One scientific area that has been rapidly developing in recent
years is the study of complex dynamics and chaos in nonlinear
systems [1±13].

An object of any physical nature is referred to as a
dynamical system if its state at an arbitrary moment of time
evolves from its initial state according to a certain rule
established for this system. Notably, this definition does not
exclude the possibility of chaotic behavior of the system,
when the time dependence of observable quantities resembles
a random process. The basic property of dynamical chaos is
the exponential sensitivity to small perturbations, which
makes it impossible to predict the state at times greater than
a certain characteristic scale, which is logarithmically depen-
dent on errors in the prescribed initial conditions (`the
predictability horizon'). Chaos is encountered in systems of
different natures, including mechanics, fluid dynamics, radio
physics and electronics, laser physics and nonlinear optics,
chemical kinetics, and biomedical objects.

In the state space of systems with dissipation, chaos is
associated with the presence of a strange attractor. Approxi-
mately 40 years ago, a special kind of such attractors, called
uniformly hyperbolic, was introduced inmathematical studies.
They are encountered in systems that fall into the so-called
class of systems with axiom A and make up a subject of the
hyperbolic theory associated with the names Anosov, Alek-
seev, Smale,Williams, Sinai, Plykin,Ruelle, Pesin,Newhouse,
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and others [14±25]. The chaotic nature of dynamics on
uniformly hyperbolic attractors has been given a rigorous
mathematical substantiation. Uniformly hyperbolic attrac-
tors demonstrate the property of structural stability: the
structure of their phase space and characteristics of their
dynamics are insensitive to variations of parameters and
functions in the governing equations. At that time, it was
expected that uniformly hyperbolic attractors would be
pertinent to numerous physical situations related to chaos.
But with the accumulation of concrete examples it has
become apparent that they do not fit the narrow framework
of the early hyperbolic theory. Therefore, uniformly hyper-
bolic attractors have been regarded as a purely academic
representation of chaos, of no direct relevance to actual
systems. The efforts of mathematicians have turned toward
the development of generalizations that would be applicable
to broader object classes. For example, the notions of
quasihyperbolic, nonuniformly hyperbolic, and partly
hyperbolic attractors and quasi-attractors were introduced
[2, 19, 25±28].

The question of whether it is possible to propose physical
systems whose dynamics would be governed just by the
presence of a uniformly hyperbolic attractor appeared to
have been abandoned for a long time and had remained
unclarified until recently. In courses and reviews on nonlinear
dynamics, such attractors are typically exemplified by models
with a discrete time in the form of geometrical constructions
explained on a qualitative level, for example, with the help of
graphical images. Certainly, for a physicist, this is nothing
more than a starting point. First and foremost, besides
geometrical constructions, it is desirable to have examples
based on explicitly written equations that would allow the use
of computational techniques for analyzing dynamics and
computing characteristics that are relevant for potential
applications. Certain physical systems naturally admit a
description in terms of discrete time, and it would be
worthwhile to explore whether hyperbolic attractors are
realized in them. Further, it is important to take a step
toward continuous systems, because they are primarily
interesting for physics and technology. It is desirable to
formulate how the dynamics on a hyperbolic attractor can
be implemented by combining structural elements known in
the context of oscillation theory and its ramifications
(oscillators, coupled systems, or feedback circuits). Finally,
the models proposed in this way should be implemented as
functioning devices, for example, in electronics, mechanics, or
nonlinear optics, and their technological application should
be drafted, together with substantiation of the advantages
against possible alternative solutions.

Beginning from the classic work of Andronov and his
school [29, 30], rough or structurally stable systems are
considered to be of primary concern in the theory of
oscillations and are regarded as very relevant from a
practical standpoint. It seems that this same attitude should
be expected to systems with structurally stable uniformly
hyperbolic chaotic attractors. The absence of concrete
physical examples is in obvious incongruity with this
statement. From the methodological standpoint, the situa-
tion resembles that observed in the early 20th century with
respect to limit cycles, before their role as a mathematical
representation of auto-oscillations was established. In a
similar vein, hyperbolic chaotic attractors should find their
place as representation of phenomena in actual systems. This
will, on the one hand, favor applications of the hyperbolic

theory, developed by mathematicians, to the description of
real-world phenomena, and on the other, complete the theory
with physical relevance. This review aims at discussing the
results obtained in this area.

2. Dynamical systems

The notion of a dynamical system is used if there is a set of
variables, called dynamical, that fully determine the instanta-
neous state and a rule that enables predicting the system state
at any subsequent moment of time if the initial state is given.
The set of all possible states forms the phase space, whose
dimension N is defined by the number of variables needed to
specify a state. The time evolution of a state corresponds to
motion of a point in this space along its phase trajectory or
orbit. Systems with continuous time and systems with discrete
time are considered. They are respectively referred to as flows
and cascades in the mathematical literature.

The description of systems with continuous time relies on
differential equations of the form dx=dt � f �x�, where x is an
N-dimensional state vector and f is a vector function. By
virtue of the existence and uniqueness theorem for solutions
of differential equations, we can uniquely determine the states
at subsequent, as well as preceding, instants of time given a
system state at a certain instant of time. In other words, the
state evolution can be followed both forward and backward
in time.

If the function in the right-hand side of the differential
equation explicitly depends on time, the system dx=dt �
f �x; t� is called nonautonomous. In this case, to fully define
the state, we need to specify, in addition to the vector x, the
instant of time to which the vector x is related. Therefore, the
augmented space with dimension N� 1 is introduced, which
is referred to as the augmented phase space in this context. In
this review, when addressing nonautonomous systems, we
assume only a periodic dependence of functions f on time.

Systems with discrete time are defined with the help of a
map that describes the transformation of a state in a single
time step, xn�1 � g�xn�, where x is the state vector and g is a
vector function. The phase trajectory then reduces to a
discrete sequence of points.

Both system classes, with continuous and discrete time,
are closely related. The transition from the former to the latter
is enabled through the construction known as the Poincar�e
section. A section of the phase space of a system with
continuous time is selected such that phase trajectories
repeatedly intersect it.1 In this case, a function can be
introduced that establishes a correspondence between an
arbitrary point in the section and the point at which the
trajectory passing through the original point intersects the
section surface once again. This function defines the Poincar�e
map. If the coefficients of differential equations are smooth
functions of dynamical variables, then the map represents a
diffeomorphism, i.e., is defined by a continuously differenti-
able function having a uniquely defined inverse function,
which is also continuously differentiable.

For a nonautonomous system whose right-hand side
varies with a time period T in the respective differential
equation, the standard way of constructing the Poincar�e
map is to consider the system dynamics stroboscopically,
following its states xn at time instants t � t0 � nT. This
corresponds to taking sections of the augmented phase

1 More precisely, a hypersurface of codimension one is understood here.
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space by the family of planes t � t0 � nT and defining the
map from one plane to the next one, with the number
incremented by one.

The reconstruction of a system with continuous time from
a given invertible map is called the suspension.2

In order to distinguish between regular and chaotic
dynamics on a quantitative level, the Lyapunov exponents
are used. We assume that there is a trajectory staying in a
finite domain of phase space and a neighboring trajectory
slightly differing from the first one due to a small difference in
its initial conditions. As long as the perturbation remains
small, the time evolution of the state difference vector is
described (up to an unimportant amplitude factor) by the
relation ~x � exp �li t�, where li is a Lyapunov exponent. Each
trajectory has a set of N exponents li, i � 1; . . . ;N (the phase
space dimension), which is called the Lyapunov exponent
spectrum. A positive exponent implies that a neighboring
trajectory is moving away from the given orbit, and a negative
one implies that the trajectories are approaching each other.

The procedure of numerically computing Lyapunov
exponents [6, 11, 31] consists in solving the system of
equations dx=dt � f �x� that define the motion along a
given trajectory together with N sets of equations, linearized
with respect to this trajectory, for the perturbation vectors,
d~x=dt � f 0�x� ~x, where f 0�x� is the matrix derivative of a
vector function. For systems with discrete time, accordingly,
iterations of the map xn�1 � g�xn� are taken together with
iterations of the linearized maps ~xn�1 � g 0�xn� ~xn. In the
process of computation, the vectors ~x are made orthogonal
by the Gram±Schmidt procedure and are normalized to a
fixed norm. The Lyapunov exponents are obtained as slopes
of the lines that approximate the accumulated sums of
logarithms of ratios of vector norms before and after normal-
ization.

There is a distinction between conservative and dissipative
systems. Conservative systems are characterized by their
ability to keep a `memory' of their initial state. For example,
oscillations of a pendulum preserve the amplitude set by the
initial perturbation in the absence of friction. In contrast,
`memory loss' is inherent in dissipative systems, such that in a
system evolving on its own over a long time interval, the
regime of dynamics becomes independent of the initial state.
Examples are provided by a pendulum in the presence of
friction or an electronic generator of periodic auto-oscilla-
tions.

An attractor in the phase space of a dissipative system is
an object that corresponds to a sustained regime of dynamics.
The simplest example of an attractor is provided by a stable
equilibrium state. Another simple example is a stable limit
cycle, a closed phase trajectory that serves as a mathematical
representation of periodic auto-oscillations.

The spectrum of Lyapunov exponents is understood as
the spectrum of a typical trajectory on the attractor. The
presence of at least one positive Lyapunov exponent in the
spectrum signals that the attractor is chaotic. The sum of allN
exponents must be negative. For autonomous systems with
continuous time, an attractor different from an attracting
fixed point must have a zero Lyapunov exponent in its

spectrum, which is associated with a perturbation represent-
ing a shift along the phase trajectory.

Strange attractors exhibit a fractal structure. If the
spectrum of Lyapunov exponents is known, the attractor
fractal dimension can be estimated by the Kaplan±Yorke
formula [6, 11, 32]

D � m�
Pm

i�1 li
jlm�1j ;

where the number m is determined from conditions
Sm �

Pm
i�1 li > 0, Sm�1 < 0.

3. Interpretation of dynamics in terms of phase
fluid and simple examples of hyperbolic
attractors

We consider an ensemble composed of a large number of
similar noninteracting dynamical systems that differ only by
their initial conditions. In the phase space, this ensemble is
represented by a cloud of points, which changes its size and
shape as the points move according to the dynamical
equations of the individual system. In dissipative systems,
the volume of the cloud decreases and eventually `condenses'
on an attractor (or, possibly, several attractors).

Chaotic dynamics occur when the cloud of representing
points undergoes repeated transformations of dilation,
folding, and contraction. As an illustration, we consider a
dissipative version of the so-called baker map [6, 11] (Fig. 1).
We take a unit square on the plane (x, y) and deform it such as
a baker rolls pastry, assuming that its horizontal size increases
twofold and its vertical size reduces threefold. The total area
decreases, which manifests the dissipative nature of the map;
the `pastry' in this case should be conceived of as a
compressible substance. Next, we cut the pastry into two
halves and place the halves one above the other, aligning them
with the top and bottom sides of the unit square and leaving a
gap between them. After multiple repetitions, we obtain a
system of horizontal strips, their number increasing as 2n (n is
the number of iterations), and their total width decreasing
proportionally to �2=3�n. Notably, the dynamics of an
individual pastry particle is chaotic.3 The attractor repre-
sents an object occurring in the limit of infinitely many
iterations. It has the structure of a Cantor set in its transverse

2 The suspension is usually understood as a flow system for which the

required map is realized over a time that is independent of the initial state.

This is associated with constructing a system of differential equations with

coefficients that are periodic in time. In the more general case of a system

for which the map of a given form represents the Poincar�e map, the term

special flow is used.

y
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Figure 1.Geometric illustration of the action of a dissipative baker map.

3 For an individual `pastry' particle, the evolution of coordinates (x, y)

with respect to the discrete time n is described by the equations xn�1 � 2xn
and yn�1�1=3yn for xn 4 1=2 and xn�1 � 2xn ÿ 1 and yn�1�1=3yn � 2=3
for xn > 1=2. To deduce that its dynamic is chaotic, we represent the

initial value of x as a number in binary notation, for instance, as

0.0110010110111... One step of evolution implies a shift in this sequence

one position to the left, discarding the leftmost digit. The digit 0 or 1 in the

first position after the binary point shows whether the particle is in the left

or right half of the unit square at this instant of time. For an initial

condition taken arbitrarily, we obtain an arbitrary sequence of zeros and

ones in binary notation such that the representing point goes into the left

and right halves of the square in a random sequence.
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sections. We note that the pastry density is distributed along
the strips uniformly.

Despite its simplicity, the baker map illustrates many
intrinsic features of chaotic attractors, for example, the
presence of a transverse Cantor structure and the combina-
tion of stability, in the sense that the representing points
approach the attractor, and instability, in the sense that they
scatter along the fibers of the attractor.

Cutting the pastry in this construction is admittedly
dissatisfying. We may try to avoid it, assuming that after
being rolled out, the pastry is not cut but folded such that it
fits the unit square once again. In this case, at the first steps of
the iterations, we can also see the formation of a layered
structure. But in the limit of a large number of iterations, we
do not obtain a uniform distribution along the fibers, nor
even a distribution approaching the uniform one! The
substance has a tendency to accumulate at fold locations,
forming singularities in its density distribution. The cause
stems from the fact that in the vicinity of bends, the direction
of contraction coincides with the vertical tangent at the
boundary of the pastry piece and a domain of increased
density emerges as it is rolled out. In a nonlinear dissipative
system, this might eventually be associated with nonhyper-
bolic chaos or the condensation of the cloud on regular
attractors (fixed points and cycles).

The hyperbolic chaos corresponds to a situation where the
transformation of a cloud of representing points in phase space,
comprising longitudinal dilation and transverse contraction, is
carried out uniformly, without discontinuities or localized
regions of increased density.

That the attractors with such properties are possible
follows from considering a number of appropriate, elabo-
rately constructed examples. In the process of construction, a
domain in the phase space called absorbing is identified,
together with the evolution rule in a discrete time, such that
this domain be mapped into itself in one map iteration. The
attractor is then obviously located inside the absorbing
domain.

The first example is the Smale±Williams attractor [1±24],
which is given by a map in three-dimensional space. We
consider a torus-shaped domain. Regarding it as an elastic
doughnut-shaped roll, we stretch it along its length and
compress it in the transverse direction, fold it to form a
double loop, and put it inside the original torus (Fig. 2). To
ensure that the construction just obtained fits there, we have
to assume that the transverse direction is compressed more
than twofold. At each iteration, the total volume is reduced
(dissipation), while the number of loops is doubled. In the
limit, as the number of loops tends to infinity, the so-called
solenoid emerges with a Cantor structure in its transverse
section.4 An essential point here is that the angular coordinate

j is doubled (see Fig. 2). A generalization of this construction
is achieved by folding such that a loopwithM turns is formed,
which corresponds to the map jn�1 �Mjn (mod 2p) for the
angular coordinate. ForM5 2, this map is referred to as the
dilating circle map or the Bernoulli map.

The DA attractor (Derived from Anosov) proposed by
Smale is defined through a two-dimensional map on the
surface of a torus [14, 17, 19, 20]. The starting point is the
Anosov map pn�1 � pn � qn and qn�1 � pn � 2qn (mod 1),
where j � 2pp and y � 2pq are angular coordinates on the
torus. The phase space can be conveniently represented by
unrolling the torus into a unit square (Fig. 3). The Anosov
map is conservative and has a saddle-type fixed point at the
origin, with stable and unstable directions determined by the
vectors a1��1;W � and a2��ÿW; 1�, whereW�� ���5p � 1�=2.

To ensure the presence of an attractor, it is suggested to
modify the map and make it dissipative through surgery in a
small neighborhood of the fixed point. The modification is
performed such that the motion along the unstable direction
undergoes no changes, but the fixed point becomes repelling
along the orthogonal direction, such that saddle points S1 and
S2 form in its proximity (Fig. 3b). Outside the region subject
to surgery, the map preserves its form.

The absorbing domain is the whole torus surface except
the cut-out vicinity of the origin. As a consequence of
iterations, the cut-out part is stretched parallel to the vector
a1 and simultaneously contracted along the orthogonal
direction a2 such that sprouts turn into narrow strips aligned
with the unstable direction. Because the slope is given by an
irrational number, these strips cover the torus densely
(Fig. 3c). In this way, a transverse Cantor structure
characteristic of a hyperbolic attractor is formed. A particu-

in the theory of dynamical systems in yet one more context, as a

nonchaotic attractor at a critical point where bifurcations of period

doubling according to Feigenbaum [33] accumulate. (In this last case, the

formation of each new level of fractal structure is associated with doubling

the time scale, and not with the iterative step, as it is for the Smale±

Williams attractor.)

j

a b c d

Figure 2. An absorbing torus-shaped domain in a three-dimensional phase space (a), the result of its transformation after two iterations (b, c), and the

Smale±Williams solenoid appearing after multiple map iterations (d).
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Figure 3. (a) Illustration of the action of the Anosov hyperbolic map, also

called the Arnold cat map, on points of a unit square that represents an

unrolled torus. (b) Schematics explaining the modification of the map in

the neighborhood of a fixed point, which makes up the essence of Smale

surgery, needed to pass to the map with a DA attractor. (c) The portrait of

the attractor in a unit square.

4 The solenoid as a mathematical object was introduced by mathemati-

cians Vietoris and van Dantzig [19]. It appears as a chaotic attractor in

studies by Smale [14] and Williams [15]. Interestingly, the solenoid is met
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lar variant of such an attractor is described in Ref. [34],
dedicated to computer illustrations of the hyperbolic theory
objects.

A Plykin attractor [17, 19, 20, 35] occurs in a special two-
dimensional map on a plane. Figure 4a shows a domain
composed of three semidisks with small semicircular cuts. It is
hatched by lines showing two fields of directions prescribed in
this domain.We define themap so as to arrive at the picture in
the right panel of Fig. 4a as a result of the map action on the
points of the given domain. The fields of directions coincide
with the original ones upon applying the map, dilation occurs
along one of them, and contraction occurs along the other
one. This ensures the hyperbolic nature of the attractor.

Currently, it is known that in a finite planar domain with
three or more holes, many hyperbolic attractors can be
constructed differing in design [15, 36, 37]. They are referred
to as Plykin-type attractors. One of the modifications, of
special interest for the subsequent presentation, is illustrated
in Fig. 4b. Plykin-type attractors can also be considered on a
sphere. Mapping from the plane to the sphere or back
corresponds to a transformation of variables given by the
stereographic projection, which is known from elementary
geometry. The minimum number of holes needed on a sphere
for enabling a uniformly hyperbolic attractor is four.5

4. Basic concepts of the hyperbolic theory

It is appropriate to begin an introduction to the hyperbolic
theory by discussing a fixed saddle-type point. Figure 5a
shows a pendulum and its phase portrait on the plane (j, _j),
where j is the angle from the vertical and _j is the
instantaneous angular velocity. The pendulum may oscillate
around its lower equilibrium position j � 0, but we are
currently interested in the unstable equilibrium, j � p. In
the phase space, it corresponds to saddle point A located at
the intersection of curves called separatrices. Under a small
perturbation, the representing point leaves the equilibrium
position along the unstable separatrix U. On the other hand,
let a precisely computed momentum be imparted to the
pendulum in its lower equilibrium position such that the
pendulum reaches the upper equilibrium and comes to rest
there. In this case, the representing point follows the curve S
called a stable separatrix. The saddle point regarded as a
phase trajectory is hyperbolic. (The terminology derives from
the fact that the phase trajectories in a local neighborhood of
the saddle look like hyperbolas.)

A general saddle trajectory with similar properties can be
considered (Fig. 5b).

A trajectory is called hyperbolic if at each of its points, two
subspaced can be defined in the vector space of all possible
infinitesimally small perturbations (the tangent space): a
subspace of vectors VS such that their norm exponentially
decreases as they evolve forward in time and a subspace of
vectors VU whose norm exponentially decreases backward in
time. In flow systems, for trajectories distinct from fixed
points, there is, additionally, a neutral subspace that
corresponds to perturbations along a trajectory that neither
increase nor decrease on average. An arbitrary vector of a
small perturbation must admit a decomposition into a linear
combination of vectors belonging to the above subspaces.

A set of points that approach a given trajectory in the
course of evolution is called the stable manifold of this
trajectory. Similarly, the unstable manifold is the set of points
approaching the given trajectory for the evolution backward
in time. For hyperbolic orbits, these are true manifolds, i.e.,
smooth curves, surfaces, or hypersurfaces, which is a state-
ment of a special theorem.

Hyperbolic saddle trajectories can occur in the phase
space for both conservative and dissipative systems, but in
this review, we consider only the dissipative case.

A uniformly hyperbolic chaotic attractor is an attracting
object in the phase space of a dissipative system composed
exclusively of saddle trajectories, such that the phase space has
a similar structure in local neighborhoods of all these
trajectories. For all trajectories on the attractor, the mani-
folds must have the same dimension. Intersections between
the stable and unstable manifolds are allowed only at finite
angles (tangential contact is forbidden).

For the Smale±Williams attractor, the stable manifolds
correspond to the family of meridional sections of a torus
with planes j � const (see Fig. 2). The unstable manifold for
any point on the attractor represents a fiber of a solenoid

a b

Figure 4. The absorbing domain of an attractor and the result of its transformation under the map for two variants (a and b) of the Plykin attractor.
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Figure 5. The concept of a saddle hyperbolic trajectory. (a) A pendulum
and its phase portrait containing the fixed saddle-type point A. (b) The
structure of phase space in the vicinity of the general type of a saddle
trajectory. Letters S and U respectively label the stable and unstable
manifolds.

5 This agrees with the previous statement. Indeed, if the center of the

projection (mapped to infinity by the stereographic projection) is placed

inside one of the holes on the sphere, then we obtain an attractor localized

in a finite domain with just three holes in the planar geometry.
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passing through this point, while taken as a whole it coincides
with the attractor proper. For a DA attractor, the stable
manifolds are one dimensional, as are the unstable ones. The
unstable manifolds are stretched along a vector a1, while the
stable ones are stretched along a vector a2 orthogonal to a1.
For a Plykin-type attractor, the stable manifolds are
associated with families of lines along which the phase
volume is contracted (see Fig. 4). The unstable manifolds
extend along the second family of lines that corresponds to
directions of dilation.

5. The contents and conclusions of the
hyperbolic theory

We turn to a brief survey of the hyperbolic theory [14±24]. For
simplicity, we consider systems with discrete time (maps). The
results can be extended to systems with continuous time by
passing to the description in terms of the Poincar�e maps.

We begin by discussing axiom A, a proposition formu-
lated by Smale, which (augmented by the requirement of strict
transversality) allows segregating a class of structurally stable
systems among dynamical systems of an arbitrary finite
dimension.

A point in the phase space of a dynamical system is called
wandering if it has a neighborhood such that a trajectory
emanating from this point never returns to that neighborhood
after a certain instant of time. From a physical standpoint,
such dynamics correspond to transient processes. All other
points are classified as nonwandering. Axiom A for a system
with discrete time, defined in terms of a diffeomorphism g,
assumes, first, that the set of nonwandering points NW is
hyperbolic and, second, that the periodic points of the map g
form a dense subset in NW. The last statement means that in
an arbitrarily small neighborhood of the set NW, there
necessarily exists a point of some periodic orbit that belongs
to the same set.6 The hyperbolicity is understood as explained
above: we assume that the linear space of perturbation vectors
is composed of subspaces VU and VS corresponding to
exponential dilation and contraction of vectors as they
evolve with time.7 The condition of strict transversality
requires that the positions of stable and unstable manifolds
relative to each other be structurally stable for an arbitrary
pair of points belonging to the setNW, i.e., only intersections
at a finite angle are allowed (tangential contacts are
forbidden).

For systems with axiom A, a theorem on spectral
decomposition, proved by Smale [2, 14], is valid. It states
that the set of nonwandering points can be represented as a
union of finitely many nonintersecting invariant sets Bi

having the transitivity property (i.e., each such set includes a
trajectory that visits an arbitrarily small vicinity of any point
in the set), which are called basic or locally maximum sets. For
various particular systems, such setsmay be stable or unstable
fixed points, periodic orbits, or nontrivial attracting, repel-
ling, or saddle invariant sets. The definition of a locally
maximum set assumes that it is represented as an intersection
of images of a certain neighborhood containing it, obtained

by iterating the map forward and backward in time. This can
be likened to the definition of an attractor as the intersection
of images of an absorbing domain in iterations in direct time,
and such an attractor may emerge as a particular case of the
basic set. Further, each basis set can be represented as a union
of a finite number ki 5 1 of nonintersecting subsets Xi; y

visited sequentially in a certain order in map iterations.
Each set Xi; y is the invariant set for the map applied ki times.

Uniformly hyperbolic Plykin and Smale±Williams attrac-
tors or the DA attractor are basic sets of model dynamical
systems with axiom A for which k � 1 (i.e., they cannot be
further decomposed into components). In this review, we
restrict ourself to attractors of this kind and do not consider
the case k > 1. Moreover, unless specially mentioned, only
attractors with one-dimensional unstable manifolds are
considered.

A criterion of hyperbolicity exists that has been proved
on the level of a mathematical theoremÐthe cone criterion
[16, 17, 20, 22, 23], which can be tested in numerical
simulations.

Let the dynamics in discrete time be defined by a smooth
map �x � f �x�. The cone criterion requires that for some
choice of a constant g > 1 for each point x on the trajectory
in the space of vectors of infinitesimal perturbations (tangent
space), the expanding and contracting cones can be defined
(Fig. 6). The expanding cone is the set of infinitesimal
perturbation vectors whose norm increases by a factor g > 1
or greater as a result of applying the map �x � f �x�. The
contracting cone is the set of vectors whose norm increases by
a factor g or greater under the action of the inverse map
~x � fÿ1�x�. Bearing in mind the smooth dependence of all
objects considered here on the position of a point in the phase
space, we can speak about fields of expanding and contracting
cones. These cones should be invariant in the sense that for
every point x on a given trajectory, the image of the expanding
cone must be inside the expanding cone defined for the image
point, and the pre-image of the contracting cone must be
inside the contracting cone defined for the pre-image point.

What consequences can be deduced from the hyperbolic
nature of an attractor?

Instability. The fact that an attractor is composed of
unstable manifolds implies that the motion on the attractor
is sensitive to small initial perturbations, which is the main
attribute of dynamical chaos. Indeed, two representing
points, being slightly displaced relative to each other along
the unstablemanifold, move apart as time progresses. As long
as the perturbation remains small, it increases on average
according to an exponential law, jjDxjj � exp �Ln�, where n is
the discrete time andL > 0 is the largest Lyapunov exponent.

6 One particular subclass of systems with axiom A is exemplified by

Anosov systems, such as the Arnold cat map, whose specificity is that their

sets of nonwandering points occupy the whole phase space.
7 Situations when one of the subspaces, VU or VS, is an empty set are not

excluded, which, in particular, allows structurally stable systems with

simple nonwandering sets like fixed points or periodic orbits to be included

in the framework of the picture based on axiom A.

DfDfÿ1

x~x � fÿ1�x�

�x � f�x�

Figure 6. Clarification of the hyperbolicity criterion. For a point x, the

image of the expanding cone is located inside the expanding cone defined

for the image point �x � f�x�, while the pre-image of the contracting cone is

located inside the contracting cone for the pre-image point ~x � fÿ1�x�.Df

andDfÿ1 are matrix derivatives of the direct and inverse maps that define

the transformation of perturbation vectors in one forward or backward

step.
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If unstable manifolds are one-dimensional, the spectrum of
Lyapunov exponents contains a single positive value, with the
others being negative. We stress that for the maps, all
Lyapunov exponents of a uniformly hyperbolic attractor are
separated from zero. Indeed, for individual trajectories on an
attractor, the perturbation vectors belonging to expanding
cones defined at points of these trajectories correspond to
positive exponents. Because the degree of expansion is
bounded from below by a constant g > 1, the positive
Lyapunov exponent cannot be smaller than L�min � ln g.
This is true for all trajectories that belong to the attractor,
and hence the estimate is also valid for an exponent that
pertains to the attractor as a whole. Analogously, negative
Lyapunov exponents associated with vectors that belong to
contracting cones are bounded from above by the constant
Lÿmax � ÿ ln g.

Markov partitions and symbolic dynamics. Because a
structure formed by stable and unstable manifolds is present
in the neighborhood of an attractor, the domain comprising
the attractor can be partitioned into a finite number of
nonintersecting single-connected subdomains whose bound-
aries follow along lines or surfaces that correspond to these
manifolds. If certain conditions are satisfied [2, 16, 17, 10, 13,
24] (in particular, the images of boundary segments that go
over stable manifolds must reappear at boundaries of the
same type under the action of the map), this partition, called
the Markov partition, can be used as a basis of the complete
description of the motion on an attractor in terms of symbolic
dynamics.

Denoting each element of the partition by a certain
symbol (a letter), we encode a trajectory as a sequence of
these symbols in the order the respective domains are visited.
For specific attractors, these sequences can be subjected to
certain limitationsÐ `grammar rules'Ð that can be explicitly
represented in terms of a graph with a finite number of
vertices and directed edges. Associated with the graph is its
adjacency matrix, whose elements are 0s and 1s, with the (i, j )
entry equal to 1 if an edge goes from node i to node j and 0
otherwise. Figure 7 illustrates Markov partitions and graphs
for the Smale±Williams attractor and a Plykin-type attractor.
These graphs apparently indicate that a transition from each
vertex to any other vertex is possible in a finite number of
steps along the directed edges. In addition, more than one
edge emerges from some of the vertices.8 This implies that in
the process of constructing a symbolic sequence, the transi-
tion from such a vertex can be chosen at random from the
existing alternatives. Any code obtained in this manner
necessarily corresponds to a trajectory on the attractor for
some choice of the initial conditions. The trajectory demon-
strates chaotic behavior, visiting the partition domains as
dictated by the given random sequence. The behavior can be
interpreted as a Markov chain [38]Ða random process with
discrete time and a finite discrete set of states associated with
symbols of an alphabet or elements of a partition (which is the
origin of the term `Markov partition').

The set of trajectories belonging to a hyperbolic attractor
is in a one-to-one correspondence with the set of infinite
sequences composed of letters of a finite alphabet that respect
the grammar rules. It has the power of the continuum. The set

of periodic orbits on an attractor corresponds to periodic
symbolic consequences and has the power of a countable set.
As the period of periodic orbits P increases, their number Np

increases exponentially as NP � exp �hTP�, where hT > 0 is
called the topological entropy [39, 40]. It is interpreted as a
complexity measure for the set of trajectories of a dynamical
system.

Clearly, the possibility of providing the full symbolic
description of trajectories on a uniformly hyperbolic attrac-
tor allows treating dynamical process in the context of ideas
inherited from information theory and coding. This may be
important from the standpoint of using systems with such
attractors in applications involving information processing
and communications.

Structural stability [2, 14±23] of a uniformly hyperbolic
attractor is inferred from the fact that dilation and contrac-
tion in the phase space always occur along directions that
form a nonzero angle. In terms of stable and unstable
manifolds, this corresponds to their transversal (not tan-
gent) mutual position at intersection. If the parameters or
functions involved in the definition of dynamical systems are
varied (which is sometimes expressed as `wiggling the
system'), then, owing to the transversal intersections of the
manifolds, the topology of the space partition does not
change up to this point, as long as wiggling is not excessively
strong. This is related, among other things, to the system of
lines and surfaces used in constructing the Markov partition;
hence, the symbolic dynamics are preserved without changes.

A more precise formulation is as follows: as long as weak
wiggling is considered in the class of functions continuous
together with their first derivatives (functions of the C1 class
according to the accepted terminology), the system admits a
transformation to the original state via changes of variables
that are one-to-one and continuous in both directions, i.e., the
system remains topologically equivalent to the original system.

Lyapunov exponents are determined from the equations in
variations obtained as a linearization of the original equa-
tions near a trajectory that belongs to the attractor. The
procedure involves the application of the differentiation
operation. As a result, the Lyapunov exponents are generally
not invariant under the change of variables, which is typically
not smooth. Nevertheless, because of structural stability,
certain conclusions can be drawn concerning their behavior
under small wiggling. As long as the attractor remains
uniformly hyperbolic and preserves its structure of stable
and unstable manifolds, the numbers of positive and negative
exponents cannot change. Moreover, they both certainly
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Figure 7. TheMarkov partition and pictures of graphs that define allowed

transitions for Smale±Williams (a) and Plykin (b) attractors.

8 In this case, the adjacency matrix has the transitivity property (which

means that being raised to some sufficiently high power, it gives a matrix

all of whose entries are nonzero) and the attractor, as stated, has a unique

transitive component.
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remain bounded from zero. Arguably, even a stronger
conjecture is valid: for small wiggling of the system, the
variation of at least the positive Lyapunov exponent is also
small. This finds support in the numerical data for models
with uniformly hyperbolic attractors discussed in Sections 7±
9. But the author is unaware of rigorous mathematical results
that can be referred to in this context.

Due to structural stability, trajectories on a uniformly
hyperbolic attractor exhibit the property of shadowing, which
is manifested in the fact that if an arbitrary weak perturbation
(including a time-dependent one) is applied to the system, for
any phase trajectory of the system, a trajectory of the original
unperturbed system can be selected such that the two
trajectories stay close to each other during their entire
evolution in time. This pertains, in particular, to systems
affected by noise of a limited intensity. This remarkable
result, obtained in due time by Kifer [41], bears witness that
the dynamic stochasticity dominates, in a certain sense, over
the stochasticity related to small random external perturba-
tions.

Existence of an absolutely continuous invariant measure of
Sinai±Ruelle±Bowen [2, 42±44]. We return to the interpreta-
tion of dynamics as the evolution of a cloud of representing
points in phase space. Supposing that at the initial instant of
time the ensemble is characterized by a `good' distribution
function (continuous anddecaying sufficiently fast toward the
ends), we ask the question: What is the character of the
distribution as time progresses? It can be easily verified that
even in the simplest situations, the distributions emerging in
the limit t!1 can be singular, like, for example, Dirac's
delta function in the case of a stable equilibrium state. A
generalization that embraces both smooth and nonsmooth
distributions can be obtained by invoking the mathematical
concept of measure. Specifying a measure means establishing
a correspondence between a subset of the phase space (not
arbitrary but belonging to a sufficiently broad class of
measurable sets) and some nonnegative number, additionally
demanding that certain conditions be satisfied (for example,
that a disjoint union of measurable sets have the measure
equal to the sum of the measures of the parts).

We consider a phase trajectory on an attractor and make
an agreement that the measure associated with any domain is
equal to the relative fraction of time the representing point
spends there in the limit of infinite observation time. For
uniformly hyperbolic attractors, the measure constructed in
this manner turns out to be the same for typical trajectories; it
is the so-called Sinai±Ruelle±Bowen measure. It is associated
with the distribution of phase fluid along the attractor fibers,
i.e., on unstable manifolds, such that the substance is
distributed smoothly along the fibers, ensuring that the
distribution density is free of local singularities. The term
absolutely continuous invariant measure is used in the mathe-
matical literature.

Motion on a uniformly hyperbolic attractor has the
properties of ergodicity and mixing [2, 16±23]. 9 The ergodi-
city means that as it evolves in time, a typical trajectory on the
attractor visits any neighborhood of an arbitrary point on the
attractor. This implies the equivalence of time averaging and
averaging over the invariant measure and allows applying a
statistical approach to the analysis of stationary dynamical
regimes. Themixing property, which is stronger, ismanifested

in the fact that the cloud of representing points corresponding
to some element of the phase space spreads with time over the
whole attractor after a sufficiently long time. In the frame-
work of the statistical method, the mixing property allows
describing the approach of an ensemble of systems to the state
that corresponds to a stationary invariant distribution. The
mixing property is also associated with the decay of correla-
tions: the correlation function computed for a signal spawned
by dynamics on a uniformly hyperbolic attractor in a system
with discrete time decays exponentially. (For systems corre-
sponding to the suspension of diffeomorphisms with uni-
formly hyperbolic attractors, the question about mixing and
correlation decay in continuous time requires special analysis
in each particular case because it depends on the character of
the distribution of return times into the Poincar�e section.)

Metric entropy of Kolmogorov and Sinai [45, 46]. We
consider all possible n-symbol `words' encountered in the
symbolic coding of trajectories on an attractor and for each of
them determine the probability of their occurrence pi. The
probability pi can be interpreted as the Sinai±Ruelle±Bowen
measure for the set of points in the phase space related to
trajectories that at the preceding n steps visited the elements of
the Markov partition denoted by the respective symbols. We
determine the sum Sn �

P
pi log pi over all words allowed by

the grammar, divide it by n, and take the limit as n!1. The
quantity hKS � ÿ lim n!1 Sn=n is called the metric entropy or
the Kolmogorov±Sinai entropy. As can be seen from its
definition, the metric entropy can be interpreted as the
amount of information generated by the dynamics on the
attractor per unit time. Notably, the definition invokes an
invariant measure defined on the attractor. The positivity of
hKS serves as a criterion of the chaotic nature of the attractor.
The entropy hKS is related to the topological entropy by the
inequality hT 5 hKS. The result proved in [47] establishes a
relation between the Kolmogorov±Sinai entropy and the
spectrum of Lyapunov exponents: The Kolmogorov±Sinai
entropy is equal to the sum of positive Lyapunov exponents
hKS �

P
Li>0

Li.

6. Work related to the search for uniformly
hyperbolic attractors

At the beginning of the 1970s, Ruelle and Takens proposed a
concept according to which the transition to chaos governed
by a parameter, such as the Reynolds number in fluid
dynamics, proceeds through the excitation of a small number
of oscillatory motion components and that this transition
stems from the appearance of a strange attractor [48]. In the
context of this review, we emphasize that the authors of
Ref. [48] meant not just a strange attractor in the broad sense
of this word, as used currently, but precisely a uniformly
hyperbolic attractor. The mathematical theorem underlying
the concept is formulated in application to three situa-
tions [49]: for diffeomorphisms on (1) a two-dimensional
compact manifold, (2) a two-dimensional torus, and (3) a
compact manifold of dimension m5 3. In case 1, it is proved
that a map having a hyperbolic attractor can be found
arbitrarily close to the identity map in the class C1 (of
functions with the first derivative). In case 2, an analogous
statement is true, but in the sense of closeness in the class C2

(of functions with two derivatives), and in case 3, in the class
of infinitely differentiable functions C1.

As follows from the analysis of the proof, constructions 1
and 2 bear an absolutely unphysical character because

9 To simplify formulations, the attractors containing a single transitive

component are meant.
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defining the map involves functions of a complex structure at
small scales in the phase space. The authors rely on the
existence of a two-dimensional map with a hyperbolic
attractor as a known fact when conducting the proof in all
three cases; therefore, this approach can hardly be helpful in
searching for particular examples.

One of the most famous systems in the context of complex
dynamics and chaos is the Lorentz model [50], which is
described by the system of equations _x�s�yÿ x�,
_y�rxÿ yÿ xz, _z � ÿbz� xy, where s, r, and b are para-
meters (the classical Lorentz attractor is realized for s � 10,
r � 28, and b � 8=3). An essential step in explaining the
qualitative side of chaotic dynamics is the construction of a
simplifiedmodel,theso-calledgeometricLorentzattractor[21].
The computer proof by Tucker [51] of the chaotic nature of
the Lorentz attractor with the help of a rigorously substan-
tiated computer procedure serves as a sort of concluding
research result.

The Lorentz attractor is identified as a quasihyperbolic or
singular hyperbolic because it includes a special trajectory (an
unstable manifold of a fixed point located at the origin).
Therefore, the Lorentz attractor does not exhibit structural
stability in its common sense, and although its Markov
partition can be constructed, this cannot be done with a
finite alphabet. The question of whether the system can be
modified such that the attractor becomes uniformly hyper-
bolic is answered positively in [52], but only on the level of
geometrical construction. The model considered is similar to
the geometric model of the Lorentz attractor, in which a fixed
point experiences a bifurcation that is similar to a saddle-node
one. Before the bifurcation, there is a pair of unstable fixed
points, one of which corresponds by its nature to the fixed
point in the Lorentz model and has one unstable and two
stable directions, and the other has two unstable and one
stable direction. As a parameter is varied, the points approach
each other, coalesce at bifurcation, and disappear. In this
case, the Lorentz attractor is realized at the parameter values
on one side of the bifurcation point. On the other side,
because of the disappearance of the fixed points, one of two
variants is realized, depending on the structure of the vector
field in remote domains visited by the trajectories. The first
variant consists in the emergence of nonhyperbolic dynamics,
and the second in the appearance of a Plykin-type attractor in
the Poincar�e map.

Because the Lorentz model is relevant for a number of
physical systems, the version with a hyperbolic attractor is
likely to be applicable to certain modifications of these
systems.

An approach to constructing a two-dimensional map
with a Plykin-type attractor in terms of explicit formulas was
proposed in [53], where the question of the degree of the
polynomials representing such a map was addressed. In fact,
an example considered there involves functions that are
compositions of polynomials through the 9th degree, and
hence the resulting representation contains polynomials of a
very high order (greater than 105). The author of Ref. [53]
argues, however, that the lower bound on the order of
polynomials that specify a map containing the Plykin
attractor is equal to 7.

The Plykin attractor can be obtained starting from theDA
attractor of Smale [20, 54]. The first step consists of
introducing an additional symmetry, such that the image of
the attractor is composed of four copies of the original
attractor (as in the left part of Fig. 8). For this, taking the

map pn�1�pn � qn � f � pn; qn�, qn�1�pn�2qn � g� pn; qn�
obtained via surgery, we expand the definition domain to
the square with side 2, and let this square represent an
unrolled torus. This implies that the quantities p and q are
assumed to be defined modulo 2, while the functions f and g
are chosen as previously, i.e., their arguments are regarded as
defined modulo 1. We now perform steps 1±4 (see Fig. 8). We
take the upper or the lower half of the square (step 1). Viewing
the picture as drawn on a transparent film, we fold it along the
vertical middle line and glue along the left, top, and bottom
edges (step 2). Because of the symmetry, the fibers of the
attractor are connected accurately and correctly when glued.
Further, we inflate the obtained square `envelope' like a
balloon, turning it into a sphere (step 3). Because the 2� 2
square represents an unrolled torus, the variable transforma-
tion should be expressible in terms of a doubly periodic
function of the complex variable Z � p� iq with periods 2
and 2i, like the elliptic Weierstrass function } [55]. Namely,
the transformation to the Cartesian coordinates x, y, z of
points on a unit sphere is defined by the relations x� iy�
2}�Z�=ÿ1���}�Z���2� and z�ÿ1ÿ��}�Z���2�=ÿ1���}�Z���2�. Per-
forming one more transformation of variables, we can pass
from the sphere to a plane (step 4).10 This results in amapwith
the attractor shown in Fig. 4b. The analytic representation of
the map is rather cumbersome. In practice, it is certainly
simpler to follow the iterations in the variables p and q, and
use the above changes of variables for mapping the coordi-
nates on the plane. The image of the attractor on the plane is
shown in the right part of Fig. 8. The question about
suspension in the framework of this construction is far from
trivial, as was discussed in the thesis by Hunt [54], and an
explicit transition to a system with continuous time was not
performed.

Hunt's thesis [54] implements an alternative approach to
constructing the suspension to a Plykin attractor. A system is
defined in terms of differential equations in two variables,
_x � f��x; y; t� and _y � g��x; y; t�, where f� and g� are con-
tinuously differentiable functions, periodic in their argument
t. They are defined differently at the three stages that make up
the full period over which the right-hand sides change in time.
The mathematical relations vary from one phase space
domain to another and contain numerous smoothing func-
tions introduced in an artificial way (for a detailed description
and explanation, see Refs [54, 56]). The hyperbolicity of an
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Figure 8. Illustration of transformations that allow passing from a DA

attractor on a torus (left) to a Plykin attractor (right): 1Ð selection of a

rectangle that makes up half of a square, 2Ð folding it, 3Ðpassing to a

sphere using transformations in terms of the Weierstrass function, and

4Ðpassing to the plane using a transformation of variables.

10 Interestingly, the correspondence between points on a sphere and a

torus, used in the reasoning above, was employed in cartography: it

underlies the Guyou projection through which Earth's surface is mapped

on a plane in the form of a periodically repeating picture that corresponds

to unrolling the torus.
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attractor in this model admits a rigorous mathematical
substantiation, but the entire construction is so cumbersome
that it is hardly reproducible in a physical device. The Hunt
system was used in [56] to elaborate on computational
methods of analyzing the dynamics on a hyperbolic attrac-
tor. The authors present and discuss the results of computer
simulations of the dynamics and also mention and correct a
technical error in a program contained in Hunt's work.

In [54, 57], the hyperbolic nature of the dynamics was
established for a mechanical system involving the hinge
mechanism discussed previously in a popular-science article
[58] (Fig. 9). The ends of three identical rods are attached to
three joints fixed at the vertices of an equilateral triangle,
enabling the rods to rotate freely. Each rod on its other end
hosts a movable joint through which it is attached to one of
three other rods. These are connected together through a
movable joint. Owing to the presence of constraints, only two
of the angular variables that specify the instantaneous
position of the rods are independent, i.e., the motion in the
configuration space is constrained to a two-dimensional
manifold. Topologically, it represents a genus-three surface
(a pretzel with three holes, or triple torus). In the absence of
friction and external forces, the motion is inertial and its
kinetic energy is conserved. The kinetic energy is expressed as
a quadratic form in the generalized velocitiesÐ time deriva-
tives of local coordinates on the two-dimensional manifold.
This quadratic form, whose coefficients depend on the
relation between the length and masses of the construction,
defines a metric on the two-dimensional manifold, and the
motion follows the geodesic lines of this metric. By searching
through variants, a set of parameters has been identified such
that the metric is everywhere characterized by negative
curvature. In this situation, as is well known, hyperbolic
chaos in its conservative version occurs. The authors of
Ref. [57] argue that by adding dissipation and a negative
feedback mechanism, a system with a hyperbolic attractor
can be obtained; however, the research that would demon-
strate such an attractor on the level of computer-aided
modeling or in experiment is lacking thus far.

It was noted in [59] that a hyperbolic attractor is
realizable in the Hindmarsh±Rose model of the neuron.
This model is described by an autonomous system of third-
order equations _x�yÿ x 3�3x 2 ÿ z, _y�1ÿ5x 2 ÿ y, and
_z�m

�
4�xÿ x0� ÿ zÿ d

�
, where d, m, and x0 are parameters

[60]. For fixed m and x0 (for example, m � 0:003 and
x0 � ÿ1:6), the model is capable of demonstrating various
regimes depending on the parameter d. In the domain d < d1,
slow auto-oscillations, or burst activity according to the
accepted terminology, are realized; in the domain d > d2,

fast periodic oscillations are observed, referred to as spike
generation. In the intermediate range, d1 < d < d2, the spikes
are present on the burst background, and it is precisely this
interval of parameters where nontrivial dynamical phenom-
ena are possible. The authors of Ref. [59] start with a formal
generalized form of equations _x � X�x; z� and _z �
m
�
Z�x� ÿ zÿ d

�
, where x is a two-dimensional vector and

the functionsX�x; z� andZ�x� are specified only to the degree
necessary to justify the proposed qualitative arguments.
According to the analysis, in the domain of transition from
the periodic spike generation to burst activity, a situation
might occur where a two-dimensional Poincar�e map is
defined on a disk with three `holes,' paving the road to the
Plykin attractor. These results are interesting because they
are, in a certain sense, obtained for the model of natural
origin, and are indicative of a possible role of hyperbolic
dynamics in neuronal networks. Admittedly, no specific
research that would elaborate on the explicit form of the
equations and demonstrate a hyperbolic attractor via numer-
ical simulation has been proposed yet.

The possibility of the occurrence of the Smale±Williams
attractor in the context of the so-called blue sky catastrophe
was substantiated in [61, 62]. In its simplest form, the blue sky
catastrophe is encountered in a three-dimensional autono-
mous system. There is a saddle±node periodic orbit in the
phase space at the moment of bifurcation, and the system
departs from it along trajectories forming a `tube' that
narrows and, spiraling, approaches the same saddle-node
orbit from the opposite side. Upon shifting to one side with
respect to the parameter, the saddle-node cycle is replaced by
a pair of limit cycles: one is unstable, and the other
corresponds to a stable auto-oscillating regime. Upon
shifting to the other side, the saddle-node cycle vanishes,
leaving an agglomeration formed by loops of the spiraling
trajectory, which represents a part of the attracting limit cycle
that had emerged instead of a `tube.' For the initial angular
coordinatej, the trajectory, having completed the path along
the tube, returns to the saddle-node cycle with the angular
coordinate whose expression contains the term mj in the
general case. For three-dimensional systems, only the m � 0
orm � 1 cases can occur, but beginning from dimension four,
the integer numberm can be arbitrary. In particular, ifm � 2,
the toroidal domain in a section in the vicinity of the saddle-
node cycle on its unstable side transforms on return into a
folded loop, such that the bifurcation is accompanied by the
appearance of the Smale±Williams attractor.

Examples pertaining to the blue sky catastrophe in the
literature were limited until recently to systems with a three-
dimensional phase space [63±65], in which the transition to
the Smale±Williams attractor is impossible. A system of
fourth-order differential equations allowing such an attrac-
tor was recently proposed in Ref. [66] (see also Section 9.2).

An amusing example illustrating that it is possible to
deform a cloud of representing points without discontinuities
and local compactions, as required for a hyperbolic attractor,
is offered by the machine for stretching and folding sugar
taffy (taffy-pulling machine). The rotational motion of
transverse rods enforces continuous stretching and folding
of taffy from treacle and sugar, accompanied by formation of
a fine transverse fiber structure.11 In [67], a mathematical
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Figure 9. Mechanical system: the hinge mechanisms of Thurston and

Weeks with chaotic dynamics (a) and a trajectory in the three-dimensional

space (y1, y2, y3) obtained in numerical simulations for lengths and masses

l � 41=40, l0 � 7=40,m � 9=100,M � 13=100,M0 � 1=5, andm0 � 0 (b).

11 The reader may find pictures and movies illustrating the operation of

such a machine on the Internet; the keywords needed for the search are

`taffy-pulling machine.'
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model is proposed in the form of a map that describes the
dynamics of a substance subjected to transformations.
Notably, such a machine cannot be regarded as a variant of
the physical implementation of a hyperbolic attractor in the
sense implied in the context of this review. Indeed, it does not
belong to low-dimension dynamical systems but pertains to
deformations of a continuous medium, and the map of the
relevant type derives from the description of displacements of
separate elements. This is the dynamics of a real substance in
physical space, and not the dynamics of phase fluid in its
phase space.

In can be assumed that some of the approaches listed here
may appear useful in delineating directions in the further
search for physically realizable systems with hyperbolic
attractors.

7. The Smale±Williams solenoid
in the problem of particle motion on a plane
under pulse-periodic action

There are numerous physical systems for which the descrip-
tion of their dynamics in terms of discrete time appears
intuitive and highly natural. This pertains, for example, to
mechanical systems when motion forced by a sequence of
periodic pulses is considered and a map dealing with the state
change between two subsequent pulses is derived. In
particular, the maps by Zaslavsky, H�enon, and Ikeda came
to be known in this context [3, 11, 69, 70].

We turn to a problem involving a map with the Smale±
Williams hyperbolic attractor [71, 72]. We consider the
motion of a unit mass particle on the plane (x, y) in the
presence of friction proportional to velocity. Let the motion
occur in the potential field U�x; y� � ÿ�1=2� m�x 2�y 2��
�1=4� m�x 2�y 2�2, which has the rotational symmetry with
respect to the origin and a minimum on the unit circle. We
assume that an additional forcing field is applied for a short
time interval periodically with a period T, such that the
particle gains a momentum P�x; y� � �Px�x; y�; Py�x; y��
whose direction and amplitude depend on the instantaneous
particle position. Setting the friction coefficient to unity for
simplicity, we write the equations

�x� _x � mx�1ÿ x 2 ÿ y 2� � Px�x; y�
X1
n�ÿ1

d�tÿ nT � ;

�y� _y � my �1ÿ x 2 ÿ y 2� � Py�x; y�
X1

n�ÿ1
d�tÿ nT � :

�1�

The spatial distribution of the forcing field P�x; y� is
selected from the following consideration. We assume that
there is a ring of particles at rest on a unit circle, with
coordinates x � cosj and y � sinj. Following a stimulus
from the force field, each particle initially characterized by an
angle j acquires the momentum with components Px�x; y�
and Py�x; y�, which leads to a change in the particle
coordinates with time. In the absence of a potential field, the
particle comes to rest at the point with the coordinates

x 0 � x� Px�x; y� ; y 0 � y� Py�x; y� : �2�

We require that the particles be again arranged over the unit
circle but such that the cycle around the original circle
corresponds to two or three cycles for the new arrangement,
i.e., that the angular coordinate undergoes the transforma-
tion j 0 �Mj (mod 2p), whereM � 2 or 3. For this, the new

particle coordinates must be expressed as

x 0 � cosj 0 � cosMj ; y 0 � sinj 0 � sinMj ; �3�

and the functions characterizing the distribution of the
forcing field should be chosen such that

Px�x; y� � x 0 ÿ x � cosMjÿ cosj ;

Py�x; y� � y 0 ÿ y � sinMjÿ sinj : �4�

Using the relation between the Cartesian and angular
coordinates on the unit circle, x � cosj and y � sinj, and
some trigonometric formulas, we can show that the desired
result is obtained by setting

Px�x; y� � 2x 2 ÿ xÿ 1 ; Py�x; y��2xyÿ y for M � 2 ;

�5�
Px�x; y� � 4x 3 ÿ 4x ; Py�x; y��ÿ4y 3 � 2y for M � 3 :

�6�

(We note that the pulse force field is potential in the second
case. Its x and y components are functions of only the
respective coordinate. This can be considered an advantage
of this version of the model from the standpoint of its
implementation.)

We assume the parameter m to be sufficiently small such
that the displacement in the potential field U�x; y� for the
characteristic time associated with the action is small. On the
other hand, we select the time interval between the pulses T to
be sufficiently large such that the particle can approach the
minimum of the potential field. These conditions are not too
restrictive and it is sufficient if they hold in some rough
approximation.

Having specified the initial state just before the nth pulse,
xn � fx; _x; y; _ygt�nTÿ0, and integrating equations (1) over the
period T, we can determine the state before the next pulse.
Accordingly, the description of the dynamics is reduced to
considering the four-dimensional map xn�1 � f�xn�.

A topological property of the particle ensemble under the
transformation, namely, the emergence of a configuration
encircling the origin two or three times, is essential for the
implementation of the Smale±Williams attractor. Contrac-
tion in the transverse direction in the phase space is ensured by
friction and the action of potential fields owing to which the
particlemoves toward the unit circle, where the potential has a
minimum. Unlike in the classical Smale±Williams construc-
tion, the attractor in this case is embedded in a four-
dimensional, not three-dimensional, space.

Illustrations obtained by numerically solving the equa-
tions of motion are shown in Fig. 10a±c for M � 2 and in
Fig. 10d±f forM � 3, for the pulse field distributions defined
by expressions (5) and (6). The portraits of the attractors in
the projection on the (x, y) plane in a stroboscopic section that
corresponds to the instant just before the next pulse are shown
in Fig. 10a and d; the magnified insets help visualize the
transverse fractal structure of the attractors. The apparent
correspondence with the Smale±Williams solenoid is obvious.
Shown is the iteration diagram for the angular coordinate
j � arg�x� iy� computed just before the next pulse. As can
be seen, the map of the angular coordinate is of the same
topological type as the Bernoulli map: the single path along
the circle for the preimage corresponds to the twofold
(Fig. 10b) or threefold (Fig. 10e) cycle for the image. Also
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shown are plots of the Lyapunov exponents as functions of
the parameter m for a fixed period of pulse repetition. As can
be seen, for a wide range of m, the largest exponent of the
stroboscopic map, L1, stays almost constant, and is in good
agreement with the estimate L1 � ln 2 for the first case
(Fig. 10c) and L1 � ln 3 for the second (Fig. 10f). This is in
line with the values of exponents for the one-dimensional
Bernoulli map, which approximately describes the dynamics
of the angular coordinate. The other Lyapunov exponents are
negative. The estimates of the fractal dimension of the
attractors depicted in Fig. 10a and d respectively give
D � 1:328 and D � 1:47.

8. Uniformly hyperbolic attractors in differential
equations with piecewise right-hand sides
continuous in time

One way of designing a nonautonomous system whose
stroboscopic map contains a uniformly hyperbolic attractor
consists in enforcing its time evolution to follow a sequence
of periodically repeating stages, such that the governing
differential equations are defined differently at each stage.
Such an approach was used in [54] to construct the
suspension to a Plykin-type attractor. A simpler model with
an attractor of the same type is considered in Section 8.1.

It should be remembered that a Plykin-type attractor can
be regarded as located on a plane or a sphere because of the
correspondence between points of the sphere and of the
plane via the stereographic projection. In Section 8.1, we
analyze the dynamics determined by a certain sequence of
continuous transformations on a sphere, which ensures the
presence of a Plykin attractor [73, 74]. In Section 8.2, we
demonstrate how such dynamics can be implemented in a
nonautonomous system of coupled oscillators [75].

8.1 A dynamical system with a Plykin-type attractor
We construct a dynamical system whose instantaneous states
correspond to points on the unit sphere and are specified by
variables x, y, and z subject to the condition x 2 � y 2 � z 2 � 1
(Fig. 11a). The role of `holes' that are necessary for a Plykin

attractor to exist is played by neighborhoods of points labeled
as A, B, C, and D in the figure. We let N and S denote the
northern and southern poles. We consider a sequence of
continuous transformations performed one after another,
each of a unit duration in time, and obeying the differential
equations given below.

I. Shift along parallels, i.e., displacement of representing
points on the sphere frommeridians NABS and NCDS along
parallels to an equidistant meridional circle:

_x � ÿexy 2 ; _y � ex 2y ; _z � 0 : �7�
II. Differential rotation around the z axis with an angular

velocity that linearly depends on z such that points on parallel
BC stay at rest and those on parallel AD are rotated through
180�:

_x � p
�

z���
2
p � 1

2

�
y ; _y � ÿp

�
z���
2
p � 1

2

�
x ; _z � 0 : �8�

III. Shift to the equator, i.e., displacement of representing
points along circles centered on the x axis on the sphere from
the large circle ABCD to the equator:

_x � 0 ; _y � eyz 2 ; _z � ÿey 2z : �9�

IV.Differential rotation around the x axis with an angular
velocity that linearly depends on x such that the plane section
orthogonal to the x axis and containing point C stays at rest
and the section containing point B turns through 180�:

_x � 0 ; _y � ÿp
�

x���
2
p � 1

2

�
z ; _z � p

�
x���
2
p � 1

2

�
y : �10�

Intuitively, it seems rather plausible that such a sequence
of transformations generates a flow on the sphere that forms a
layered structure characteristic of Plykin attractors. We
mention the symmetry inherent in the problem: stages I and
II differ from III and IV only by the permutation of x and z.

Differential equations for each of the stages can be solved
analytically. As a result, we obtain the map for the full period
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Figure 10. Portraits of attractors in a stroboscopic section (a, d). Iteration diagrams for the angular coordinate obtained by numerically solving the

equations (b, e). The dependence of four Lyapunov exponents on the parameter m (c, f). The results are given for system (1), with the distribution of the

pulse force field specified by expressions (5) (diagrams a±c) and (6) (diagrams d±f). For the first series of diagrams, T � 5, and for the second, T � 8. The

plots in diagrams a and b correspond to m � 0:44, and the plots in diagrams d and e correspond to m � 0:22.
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as a system of maps that correspond to all four stages:

xn�1 � f�
ÿ
fÿ�xn�

�
; f��x�

�

�z

y exp �e=2�x 2 � y 2�� cos �p=2��z ���
2
p � 1�����������������������������������������������������������������������������������������������������������������

cosh e�x 2�y 2�� e�y 2ÿx 2� �e�x 2�y 2��ÿ1sinh e�x 2�y 2�
q
� x exp �ÿe=2�x 2 � y 2�� sin�p=2��z ���

2
p � 1�����������������������������������������������������������������������������������������������������������������

cosh e�x 2�y 2�� e�y 2ÿx 2� �e�x 2�y 2��ÿ1sinh e�x 2�y 2�
q

y exp �e=2�x 2 � y 2�� sin�p=2��z ���
2
p � 1����������������������������������������������������������������������������������������������������������������

cosh e�x 2�y 2��e�y 2ÿx 2� �e�x 2�y 2��ÿ1sinh e�x 2�y 2�
q
� x exp �ÿe=2�x 2 � y 2�� cos�p=2��z ���

2
p � 1����������������������������������������������������������������������������������������������������������������

cosh e�x 2�y 2��e�y 2ÿx 2� �e�x 2�y 2��ÿ1sinh e�x 2�y 2�
q

0BBBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCCA

:

�11�

Wenote that point C serves as an (unstable) fixed point on the
map and points A, B, andD form an unstable cycle of period 3
(A! D! B! A).

Figure 11a depicts the attractor of map (11) on the sphere
for e � 0:77. We mention that the attractor shows the
characteristic transverse fractal structure, looking as if it
were composed of strips each containing the strips of the
next level. The Lyapunov exponents of the attractor for the
selected parameters are found to be L1�0:959 and
L2�ÿ1:141, and the dimension of the attractor according
to the Kaplan±Yorke formula is DL � 1� L1=jL2j�1:841.

The description of the dynamics can be reformulated such
that the instantaneous states are represented by points on the

plane. For this, perform the variable transformation

W � X� iY � xÿ z� iy
���
2
p

x� z� ���
2
p ; �12�

which corresponds to the stereographic projection with the
projection center at point C. (This point stays inside the `hole'
during all stages, and hence the attractor image on the plane
occupies a finite domain.)

The equations that describe the dynamics in continuous
time take the following form in the variables X and Y:

_X � F�X;Y; t� ; _Y � G�X;Y; t� ; �13�
where

F�X;Y; t� � p���
2
p Y

�1ÿ X�2s2 ÿ �1� X�2s4
1� X 2 � Y 2

� eY 2

� �1� 2Xÿ X 2 ÿ Y 2��Xÿ 1� s1
�1� X 2 � Y 2�2

� �1ÿ 2Xÿ X 2 ÿ Y 2��X� 1� s3
�1� X 2 � Y 2�2

�
;

G�X;Y; t� � p���
2
p

� �Xÿ 1��1� 2Xÿ X 2 � Y 2� s2
2�1� X 2 � Y 2�

ÿ �X� 1��1ÿ 2Xÿ X 2 � Y 2� s4
2�1� X 2 � Y 2�

�
�

� eY
� �1� 2Xÿ X 2 ÿ Y 2��1� 2Xÿ X 2 � Y 2� s1

2�1� X 2 � Y 2�2

� �1ÿ 2Xÿ X 2 ÿ Y 2��1ÿ 2Xÿ X 2 � Y 2� s3
2�1� X 2 � Y 2�2

�
; �14�

sk�t� �
1; kÿ 14 tÿ 4

�
t

4

�
< k ,

0; tÿ 4

�
t

4

�
< kÿ 1; tÿ 4

�
t

4

�
5 k.

8>><>>:
Figure 11b displays the portrait of the attractor of the

system of differential equations (14) in the three-dimensional
augmented phase space.12 (The pattern invites associations
with rising clouds of smoke.) In the section by a horizontal
plane, there is an object shown separately in Fig. 11c. This is
none other than the attractor of map (11) in coordinates
defined in terms of transformation (12).

As follows from a thorough analysis of filament positions,
the attractor in the Poincar�e section belongs to the same type
as the attractor shown in Fig. 4b. The hyperbolic nature of the
attractor is confirmed by numerically verifying the cone
criterion [74] and by the analysis of positions of stable and
unstable manifolds in the Poincar�e section based on numer-
ical simulations [74, 75]. Figure 11d shows the Markov
partition of the absorbing domain containing the attractor.
The boundary between the partition domains is given by the
stable manifold of fixed point P. Comparing this diagram
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Figure 11. The attractor of map (11) for e � 0:77 on the unit sphere (a), the

attractor of differential equation system (14) in the augmented phase

space (b), the portrait of an attractor in the Poincar�e section in the plane

of variables X and Y (c), and the Markov partition of the absorbing

domain (d). The graph defining the grammar rules and notation of the

elements of the Markov partition are analogous to those in Fig. 7b. To

facilitate comparison, the direction of the horizontal axis in diagrams c

and d is inverted. (Animations showing the transformations on a sphere

and in a plane in continuous time can be found at http://

www.sgtnd.narod.ru/science/hyper/eng/index.htm.)

12 From a formal standpoint, it may seem that system (13) is not fully

satisfactory as a suspension because the equations contain time-discontin-

uous functions sk�t�. However, on the one hand, this does not hamper the

presence of a uniformly hyperbolic attractor in the stroboscopic map

which represents a composition of diffeomorphisms; on the other hand,

themodel allowsmodifications such that the dependence of coefficients on

time becomes smooth. In this case, due to to structural stability, the nature

of the attractor is preserved in a stroboscopic map (the respective

modification is suggested in Ref. [73]).
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with Fig. 7b, we once again see that this attractor and the one
of the Plykin type in Fig. 4b are topologically equivalent. The
partition domains are labeled with letters such that the
grammar rules for symbolic description of the dynamics
correspond to the graph in Fig. 7b.

8.2 A model with a Plykin-type attractor based on coupled
oscillators
We turn to a system of two auto-oscillating elements that
compensate their energy loss from a common source. The
system is defined by the equations

_a � 1

2
m
ÿ
1ÿ jaj2 ÿ jbj2� a ;

_b � 1

2
m
ÿ
1ÿ jaj2 ÿ jbj2� b ; �15�

where a and b are the complex-valued amplitudes and m is a
positive parameter. Clearly, the stationary regime of auto-
oscillations corresponds to the fulfillment of the condition
r � jaj2 � jbj2�1. If we regard the system states differing
only by their common phase as indistinguishable, i.e.,
consider states �a; b� and �a exp �if�, b exp �if�� equivalent,
then the states satisfying r � 1 can be associated with points
on the unit sphere, such that the relation to the coordinates x,
y, and z satisfying the condition x 2 � y 2 � z 2 � 1 is given by

x� iy � 2a �b ; z � jaj2 ÿ jbj2 : �16�

We modify model (15) to obtain a system of equations
whose coefficients periodically vary in time such that its
Poincar�e map representing states on the sphere contains the
same attractor as in Section 8.1. For this, we introduce a
sequence of continuous transformations on the sphere,
which, taken together, are equivalent to the transformations
considered above. To simplify the representation of equations
in terms of complex amplitudes, we assume that the process
evolves in six stages [75].

I. Shift along parallels:

_a � ÿiea Im �a �b�2 ; _b � ieb Im �a �b�2 : �17�

II. Differential rotation around the z axis:

_a � ÿ 1

4
ip
ÿ ���

2
p
ÿ 1ÿ 2

���
2
p
jaj2� a ;

_b � ÿ 1

4
ip
ÿ ���

2
p
� 1ÿ 2

���
2
p
jbj2� b : �18�

III. Rotation through 90� around the y axis:

_a � ÿ 1

4
pb ; _b � 1

4
pa : �19�

IV. Shift along parallels:

_a � ÿiea Im �a �b�2 ; _b � ieb Im �a �b�2 : �20�

V. Reversed differential rotation:

_a � 1

4
ip
ÿ ���

2
p
ÿ 1ÿ 2

���
2
p
jaj2� a ;

_b � 1

4
ip
ÿ ���

2
p
� 1ÿ 2

���
2
p
jbj2� b : �21�

VI. Reversed rotation around the y axis:

_a � 1

4
pb ; _b � ÿ 1

4
pa : �22�

The procedure is symmetric in the sense that the
transformations at stages I and IV are identical, while stages
II and III differ from V and VI only by the direction of
rotation.

Let the initial conditions for Eqns (17) at the instant
tn � nT correspond to a state vector Xn � �an; bn�. The
equations can be solved analytically at stages I±VI, with the
map then taking the explicit form

Xn�1 � F�
ÿ
Fÿ�X�

�
; F��X�

�

(
aD exp ���ip=4�� ���2p ÿ 1ÿ 2

���
2
p jaj2�������������������������������������������������������������

1� �jaj2 � jbj2��exp � m� ÿ 1�
q

� bD � exp ���ip=4�� ���2p � 1ÿ 2
���
2
p jbj2�������������������������������������������������������������

1� �jaj2 � jbj2��exp � m� ÿ 1�
q )

exp
m
2(

�aD exp ���ip=4�� ���2p ÿ 1ÿ 2
���
2
p jaj2�������������������������������������������������������������

1� �jaj2 � jbj2��exp � m� ÿ 1�
q

� bD � exp ���ip=4�� ���2p � 1ÿ 2
���
2
p jbj2�������������������������������������������������������������

1� �jaj2 � jbj2��exp � m� ÿ 1�
q )

exp
m
2

0BBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCA

;

�23�
where

D�a; b�� 1���
2
p
� jaj2jbj2 ÿ �a �b�2 tanh�2ejaj2jbj2�
jaj2jbj2 ÿ �ab ��2 tanh�2ejaj2jbj2�

�1=4
: �24�

The dynamics governed by Eqns (18)±(22) or map (24) is
unchanged when the phases of the oscillators are simulta-
neously shifted by the same constant, i.e., is invariant under
the transformation a! a exp �ic�, b! b exp �ic�. This
allows passing from two equations for two complex ampli-
tudes to three equations for real-valued variables by perform-
ing the change of variables in (16). In this representation, the
map is three-dimensional, the unit sphere represents an
invariant set, and the quantity r � x 2 � y 2 � z 2 tends to 1
as the number of iterations increases. On the unit sphere
r � 1, the map for the variables x, y, and z is just equivalent
to (11).

Figure 12a plots the time dependence of the amplitudes jaj
and jbj of two oscillators obtained by solving the differential
equations numerically. Small in amplitude and random in
phase, complex-valued a and b are taken as initial conditions,
and hence the plots correspond to a transient process of the
development of chaotic auto-oscillations. In their right part,
the dependences resemble realizations of a randomprocess, as
expected from the dynamics on a chaotic attractor. Their
local structure bears imprints of the specific character of the
dynamics composed of subsequent stages. In particular, the
horizontal intervals, the plateaus, correspond to stages I, II,
IV, and V of the evolution, during which the amplitudes jaj
and jbj remain constant. Figure 12b shows the attractor in the
stroboscopic section that corresponds to the time instants
tn � nT, T � 6. To visualize the transverse Cantor structure
inherent in the attractor, the coordinates Re�a �b�, Im�a �b�
are used for the presentation. The points are plotted in dark
color if the amplitude of the first oscillator exceeds that of the
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second at the given instant of time, and in light color
otherwise. As can be seen from formulas (16), this way of
presentation corresponds to a particular planar projection of
the image of the attractor from the sphere. It can be verified
that the attractor corresponds to that of the formal model
considered in Section 8.1 (see Fig. 11). Two Lyapunov
exponents for Poincar�e map (23) coincide with those for
map (11). Additionally, there is a zero exponent, related to
perturbations involving a phase shift in both oscillators by the
same value, and a negative exponent associated with the
approach of the trajectories to the invariant sphere.

A remark is due here. In a system of equations for
complex-valued amplitudes, the attractor cannot be directly
interpreted as a uniformly hyperbolic one because of the
presence of a neutral direction in the state space associated
with the common phase. It should be classed with partly
hyperbolic attractors [20, 26]. For the model considered here,
the remark is of a rather formal character because the
invariance under the phase shift is exact, and it is appropriate
to treat the states that differ from each other by their common
phase as indistinguishable. But in systems where the repre-
sentation in terms of slowly varying complex-valued ampli-
tudes serves only the goal of an approximate description, the
specific features of a partly hyperbolic attractor may become
noticeable. If corrections caused by deviations from the
approximate description remain small, we may assume that
the common phase experiences slow random walk, while the
dynamics of the other variables preserve their character as the
consequence of its inherent roughness.

Other situations are known in physics when states are
naturally associated with points on a unit sphere. Examples
are furnished by the representation of two-level systems, in
particular, spin-1/2 particles, on the Bloch sphere [76] or the
description of light polarization in terms of Stokes para-
meters [77]. It is not unlikely that performing some manipula-
tions with these systems would allow implementing dynamics
identified with a Plykin-type attractor.

9. Uniformly hyperbolic attractors in systems
of coupled oscillators with alternating excitation

It was noted in [78] that a hyperbolic attractor can be realized
in the system of two van der Pol oscillators, which alternately
activate owing to modulation of a parameter responsible for
the bifurcation leading to the birth of a limit cycle. The
generation of oscillations in the oscillator as it enters its
active phase is stimulated through the transfer of excitation
from its partner, which occurs such that the phase variable

increases twofold over the full excitation exchange cycle. The
idea of manipulating the phase in the process of excitation
exchange between alternately active partial oscillators proved
to be a useful general principle enabling construction of
examples of systems that realize the suspension of Smale±
Williams attractors, and also systems that demonstrate a
number of other phenomena with complex dynamics [79±83].

9.1 The Smale±Williams attractor in the system
of coupled nonautonomous van der Pol oscillators
The principal requirement enabling the realization of a
Smale±Williams attractor is the availability of a certain
angular variable j that is multiplied by two (or a larger
integer) in iterations of the Poincar�e map, whereas the phase
volume contracts along all other directions in the state space.
Let this variable be the phase of the oscillatory process. We
construct a nonautonomous system such that a map with the
required properties for the phase is realized over the period of
the coefficient variation in the equations.

We consider two coupled van der Pol oscillators with
frequencies o0 and 2o0, described by the equations

�xÿ
�
A cos

2pt
T
ÿ x 2

�
_x� o 2

0 x � ey coso0t ;

�yÿ
�
ÿ A cos

2pt
T
ÿ y 2

�
_y� 4o 2

0 y � ex 2 : �25�

The generalized coordinates x and y are related to subsystems
excited in turn due to enforced variation of the parameter
with the period T, the modulation depth being controlled by
the constant A. The coupling of the subsystems is character-
ized by the coupling parameter e. The effect of the first
oscillator on the second one is modeled with the term
proportional to the squared generalized coordinate, and
the effect of the second on the first is parameterized
through the term containing the product of the generalized
coordinate with the auxiliary basic signal with frequency o0.
The relation T � 2pN=o0, where N is an integer, is assumed
to be satisfied, with the implication that system (25) has
periodic coefficients.

We clarify the principle of system functioning. Let the first
oscillator have the phase j in its activity stage, with
x � cos�o0t� j�. The action of the first oscillator on the
second is determined by the second harmonic cos�2o0t� 2j�
with the phase 2j. This harmonic corresponds to the
frequency of the second oscillator and facilitates its excita-
tion in the transition to the active stage. Notably, the arising
oscillations acquire the same phase 2j (up to a constant).
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Figure 12. (a) Time dependences of the amplitudes jaj and jbj of two oscillators in the process of establishing the chaotic oscillation regime, obtained by

numerically solving differential equations (17)±(22). (b) Portrait of the attractor in a stroboscopic section with e � 0:77 and m � 1.
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In turn, when the second oscillator acts on the first one,
due to the combination of oscillations of y with the auxiliary
signal, a component with the frequency o0 with phase 2j
appears, which, being in resonance with the first oscillator,
provides a seed for the oscillations with this phase at the
oscillator next active stage.

Thus, both systems transfer the excitation from one to the
other in turn, and at sequential activity stages the phase of the
first oscillator, in the approximation considered here, is given
by the Bernoulli map

jn�1 � 2jn � const �mod 2p� : �26�

The additive constant occurs from the contributions to the
phase as the excitation is transferred fromone oscillator to the
other, and can be eliminated by adjusting the reference point
of j.

The process described above is indeed observed in
numerical simulations of the dynamics of system (25), for a
broad range of parameters.

Figure 13a shows time evolution of x and y obtained in
numerical integration. The system generates a signal in the
form of radio pulses following each other with the period of
parameter modulation, but the phase of the high-frequency
filling signal jumps chaotically between the pulses. Figure 13b
plots the map for the phase taken at the middle of the
excitation stage of the first oscillator, j � arg�x0 ÿ ix1�,
pertaining to the dynamics on the attractor, as obtained in
numerical simulations. It shows points (jn, jn�1) for a
sufficiently large number of periods T. As follows from the
figure, a single circle cycle for the preimage, i.e., variation of
the variable jn from zero to 2p, corresponds to two cycles for
the image jn�1.

For a more accurate description of the system dynamics
in discrete time, the system state at the instant tn � nT is

specified by four variables composing the vector xn ��
x�nT �; u�nT �; y�nT �; v�nT �	, where u�oÿ10 _x and
v�oÿ10 _y. The solution of Eqn (25) over the time interval
T with initial conditions xn provides the new vector xn�1,
which corresponds to the four-dimensional Poincar�e map

xn�1 � T�xn� : �27�

From a geometrical standpoint, the flow of trajectories in the
five-dimensional augmented phase space of the nonautono-
mous system fx; u; y; v; tg is dissected with four-dimensional
hypersurfaces t � tn � nT.

According to the computation results, the Lyapunov
exponents related to the Poincar�e map for the selected
parameters are

L1 � 0:6832; L2 � ÿ2:602; L3 � ÿ4:605; L4 � ÿ6:538:
�28�

The positive exponent L1, signaling the presence of chaos, is
close to the value ln 2 � 0:693, which is natural because of the
approximate description of the evolution of the phase
variable with one-dimensional map (26). The estimate of the
attractor dimension provided by the Kaplan±Yorke formula
is D � 1:263.

When map (27) is iterated in its four-dimensional space,
dilation occurs in the direction associated with the phase
featured by Eqn (26), and contraction occurs along the other
three directions. The absorbing toroid-shaped domain U can
be identified. One map iteration corresponds to the long-
itudinal dilation and transverse contraction of the object,
which is then put in the form of a double loop inside the initial
domain. This corresponds to the Smale±Williams construc-
tion, but in the four-dimensional space. Figure 13c depicts a
three-dimensional projection of four-dimensional objects,
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Figure 13. (a) Time dependence of variables x and y obtained by numerically solving Eqns (25) foro0 � 2p, T � 6,A � 5, and e � 0:5 (b) Diagram of the

map for those phases related to the middle of excitation stages of the first oscillator. (c) Absorbing domain and its image under the action of a Poincar�e
map in the three-dimensional projection of space fx0; x1; x2; x3g � fx=0:812; �uÿ 0:438x�=0:721; y� 0:042xÿ 0:22u; v� 0:218xÿ 0:029u� 0:118yg.
(d) Attractor of the system of coupled nonautonomous van der Pol oscillators in a projection on the phase plane of the first oscillator in the original

variables; to the right: the portrait of the attractor in the Poincar�e section on the plane (x0; x1).
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giving an idea of the mutual location of domainsU andT�U �.
The domain T�U � looks like a narrow band because of the
strong transverse contraction of the phase volume in the
process of evolution over one period.

The diagrams in Fig. 13d display images of the system
attractor. Shown in the left panel is the projection from the
augmented five-dimensional space on the phase plane of the
first oscillator in the variables (x, u). The attractor is
visualized through shadows of gray (the density of color is
defined by the relative frequency of visits of the representing
point to the respective image pixel). The points related to
the Poincar�e section, i.e., to the instants tn � nT, are plotted
in black. The nearest panel shows the portrait of the
attractor in the Poincar�e section on the plane (x0, x1) that
corresponds to the fragment inside the dashed parallelo-
gram. There is an obvious visual similarity with the Smale±
Williams attractor. The transverse Cantor structure of the
attractor is illustrated in the right diagrams in Fig. 13d with
the sequence of details with increased magnification. The
hyperbolic nature of the attractor is confirmed by numerical
computations based on the cone criterion [84, 85]. The
hyperbolic nature of the attractor of model (25) was
recently substantiated on the level of a computer-assisted
proof [86], similar to the earlier proof for the quasihyper-
bolic attractor of the Lorentz system in the well-known
work by Tucker [51].

Under the assumption that N � o0T=2p4 1, the pro-
blem can be reformulated with the help of the method of
slowly varying complex amplitudes, which reduces the
number of defining parameters. For this, we assume that
x � 2Re a�t� exp �io0t�, _x�ÿ2o0 Im a�t� exp �io0t�, y �
2Re b�t� exp �2io0t�, and _y � ÿ4o0 Im b�t� exp �2io0t�.
Inserting these in Eqns (25) and averaging over the period
of fast oscillations gives

_a � 1

2

�
aA cos

2pt
T
ÿ jaj2 aÿ i�eb

�
;

_b � 1

2

�
ÿ bA cos

2pt
T
ÿ jbj2 bÿ i�ea 2

�
; �29�

where �e � e=2o0. System (29) is analyzed in Ref. [87]. It is
shown there that the Smale±Williams attractor is realized in
the Poincar�e map for a broad range of parameters, which is
confirmed by testing the cone criterion in numerical simula-
tions, in particular, for A � 3, T � 10, and �e � 0:05.

As already mentioned, system (25) is constructed such
that the terms responsible for the coupling contain fre-
quency components that are in resonance with the oscillator
receiving the excitation. It is shown in [88] that the Smale±
Williams attractor may occur in a system with alternately
active oscillators, even for a nonresonant excitation trans-
fer. Indeed because the characteristic excitation time of the
partner oscillator is finite, the spectrum of the signal
involved in the transfer of excitation occupies some band
around its central frequency, with tails decaying on both
sides. For example, if the central frequency is 2o0 and the
frequency of the oscillator to be excited is o0, then, under
certain conditions, the presence of the signal at the tail of
the spectral distribution in the vicinity of the frequency o0

can facilitate the excitation transfer. Moreover, at the active
stage, the growth of oscillations follows an exponential law
if the bifurcation threshold is surpassed by a certain finite
increment. Admittedly, the limitations on the parameters of

the system become more stringent in this case.13 According
to the results of computations, in the system

�xÿ
�
A cos

2pt
T
ÿ x 2

�
_x� o 2

0 x � ey;

�yÿ
�
ÿ A cos

2pt
T
ÿ y 2

�
_y� 4o 2

0 y � ex 2 �30�

for the set of parametersT � 10,o0 � 2p, e � 0:5, andA � 6,
a Smale±Williams attractor can be observed in the Poincar�e
map, although the transfer of excitation from the second
oscillator to the first bears a nonresonant character. Figure 14
shows a diagram for phases at subsequent stages of activity of
the first oscillator, and also the image of the attractor in the
projection from the augmented phase space on the plane (x, _x)
and the portrait of the attractor in the Poincar�e section. The
Lyapunov exponents for the Poincar�e map in this regime are
L1 � 0:6808,L2 � ÿ3:625,L3 � ÿ8:326, andL4 � ÿ17:633,
while the estimate of the dimension with the Kaplan±Yorke
formula gives DKY � 1:188.

9.2 The Smale±Williams attractor in an autonomous
system
Several examples of autonomous systems featuring the
Smale±Williams attractor in the Poincar�e map were pro-
posed in [89]. We consider one of them, which is interesting
because its phase space dimension is just the minimum needed
for the existence of such an attractor.

We begin with a modified system of the `predator±prey'
type:

_r1 � 2

�
1ÿ r2 � 1

2
r1 ÿ 1

50
r 21

�
r1; _r2 � 2�r1 ÿ 1� r2 : �31�

We regard the nonnegative variables r1;2 as squared ampli-
tudes of two oscillators and write the equations for the
complex-valued amplitudes a1 and a2 such that the quantities
r1;2 � ja1;2j2 exactly satisfy Eqns (31). We assume the
frequency of oscillations to be specified by the parameter
o0. Additionally, we introduce coupling between the oscilla-
tors by adding a term containing the square of the complex-
valued amplitude a2 to the equation for the first complex-
valued amplitude, and a term with the first power of a1 to the
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Figure 14. (a) Diagram for the phases defined as j � arg�xÿ i _x=o0�, the
portrait of an attractor in the projection on the phase plane of the first

oscillator (b) and in the Poincar�e section (c) for the system of oscillators

coupled through a nonresonance mechanism of excitation transfer,

described by Eqns (30) for T � 10, o0 � 2p, e � 0:5, and A � 6.

13 Apparently, the resonance mechanism should be considered the

preferred one in relation to various physical applications (for example, in

microwave electronics, laser physics, or nonlinear optics) because reaching

a level in nonresonant excitation transfer above the noise backgroundmay

appear problematic.
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other equation.14 We have

_a1 � ÿio0a1

�
�
1ÿ ja2j2 � 1

2
ja1j2 ÿ 1

50
ja1j4

�
a1 � 1

2
e Im a 2

2 ;

_a2 � ÿio0a2 �
ÿja1j2 ÿ 1

�
a2 � eRe a1 :

�32�

Figure 15a presents the image of an attractor in the projection
on the plane of real-valued amplitudes of both oscillators for
o0 � 2p and e � 0:3.

The instantaneous system state is defined by two complex-
valued quantities a1 and a2, and hence the phase space has
dimension 4. We select the three-dimensional hypersurface
S � ja2j2 ÿ ja1j2 � 0 in the phase space and consider its
intersection by trajectories in the direction of increasing S. A
point in the section is defined by a three-dimensional vector,
and we therefore have a three-dimensional Poincar�e map.

In the stationary regime, as can be seen from the results of
the numerical solution of the equations, in particular from
Fig. 15a, the representing point repeatedly visits the vicinity
of the origin in the plane of ja1j and ja2j. Each such visit is
followed first by the excitation of the first oscillator, then by
the excitation of the second, then by the decay of oscillations
of the first, and finally by a slower decay of the second. The
activation of the second oscillator occurs because of the
action from its partner, owing to the added term in the
second equation; therefore, the second oscillator inherits the
phase of the first. Then, in the decay phase, the second
oscillator provides a seed signal for the first one when the
orbit passes in the vicinity of the origin. Because the
responsible term contains the square of the complex-valued
amplitude, the excitation transfer is accompanied by phase
doubling. (Here, a nonresonant mechanism occurs.) The
process is repeated in time. In every new cycle, the phase is
multiplied by 2 and the Bernoulli map should follow in a
certain approximation.

Figure 15b plots the map for the phase, drawn using the
results of a numerical solution of Eqns (32). The phase is
determined at the instant the trajectory hits the section
surface S � 0 as the argument of the complex-valued
amplitude a2. It can be seen from the figure that the desired
topological property is observed: one single cycle over the
circle for the preimage corresponds to two cycles for the

image. Because the Poincar�e map ensures contraction with
respect to other directions, the Smale±Williams attractor
obviously occurs in its three-dimensional space.

Figure 15c shows the portrait of the attractor in the
Poincar�e section in the projection on the phase plane of the
second oscillator. The attractor has a fine transverse fractal
structure, whose magnified detail is shown in the inset.

Computing Lyapunov exponents with the help of the
Benettin algorithm for model (32) leads to the results

l1 � 0:0918; l2 � 0:0000; l3 � ÿ0:982; l4 � ÿ1:330:
�33�

Taking the autonomous nature of the system into account, it
is natural to suppose that the exponent l2 is exactly zero.
According to the results of numerical simulations, the mean
period between the subsequent intersections of the Poincar�e
section is hT i � 7:248. In accordance with the approximation
based on the Bernoulli map, the largest Lyapunov exponent
must then be ln 2=hT i � 0:096. This is in reasonable agree-
ment with the value of l1 derived from numerical simulations.
The estimate of the attractor dimension based on theKaplan±
Yorke formula gives DL � 2� �l1 � l2�=l3 � 2:094.
Numerical simulations were carried out for the system of
equations (32) for the above values of the parameters. They
confirmed that the cone criterion is valid in the toroidal
domain containing the attractor of the Poincar�e map [90].

In our recent work [66], we suggested how to modify
system (32) such that it follows the scenario when the Smale±
Williams attractor occurs through the blue sky catastrophe,
in accordance with the theory of Shil'nikov and Turaev (see
Section 6). For this, it is necessary to modify the structure of
the nonlinear factor in the second equation and introduce a
parameter m such that the system becomes

_a1 � ÿio0a1 �
�
1ÿ ja2j2 � 1

2
ja1j2 ÿ 1

50
ja1j4

�
a1

� 1

2
e Im a 2

2 ; �34�

_a2�ÿio0a2 �
�
ja1j2 ÿ m� 1

2
ja2j2 ÿ 1

50
ja2j4

�
a2 � eRe a1 :

For the parameters chosen for the detailed analysis,
o0 � 2p and e � 0:5, two limit cycles in the phase space,
stable and unstable ones, are located in the domain where the
amplitude of the first oscillator ja1j is small, as long as m is less
than the critical value m0 � 3:144196. Figure 16a displays a
transient trajectory approaching the stable limit cycle. As the
parameter m increases, the limit cycles approach each other,
coalesce at m � m0, and disappear. After that, the attractor is
formed by the set of trajectories that concentrate at the
location of the pair of limit cycles that have just disap-
peared, such that the trajectories belonging to it repeatedly
go into the vicinity of the origin (Fig. 16b). After the
bifurcation, the dynamics consist of the excitation of the
first oscillator followed by the other, the decay of the
oscillations of the first oscillator, and the slower decay of the
other, repeating in sequence. Over the full cycle of the
excitation transfer between the oscillators, the phase is
doubled. This corresponds to the index m � 2 in the theory
of Shil'nikov and Turaev, and, consequently, to the birth of
the Smale±Williams attractor in the Poincar�e section. This is
illustrated by the plot of the map for the phase based on the
results of a numerical solution of the equations (Fig. 16c). The
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Figure 15. (a) Portrait of the attractor of system (32) in the projection on

the plane of real-valued amplitudes ja1j and ja2j. The interval of the

bisectrix corresponds to the section used to construct the Poincar�e map.

(b) Map for the phase j � arg a2 determined for the sequence of moments

when a trajectory belonging to the attractor intersects the section surface.

(c) Portrait of the attractor in a stroboscopic section. The parameters are

o0 � 2p and e � 0:3.

14 The particular choice of the form of these terms allows some ambiguity.

Here, they are specified so as to maintain correspondence with the form of

equations adopted in Ref. [89].
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phase is determined as Fn � arg a1�tn� at the instant the
trajectory intersects the section surface ja2j � 2:5 in the
direction of increasing ja2j.

Figure 16d plots the Lyapunov exponents as a function of
the parameter m in the interval that includes the bifurcation
point. In the left part of the plot, the largest exponent is equal
to zero, and the other three are negative. Here, the stable limit
cycle serves as an attractor, as in Fig. 16a. At the instant of
bifurcation, two exponents vanish. After the bifurcation, one
of them becomes positive and increases as m increases. The
second exponent stays equal to zero. The third and fourth
exponents are negative. It can be verified that the positive
exponent increases because of the reduction in the time the
beam of trajectories performs a cycle, which behaves as
hT i � � mÿ mc�ÿ1=2. TheLyapunov exponent for the Poincar�e
map L1 � l1hT i stays nearly constant and is close to ln2 (see
the inset in Fig. 16d), which agrees with the approximate
description of phase transformations by the Bernoulli map.

9.3 Parametric generator of chaos
From the standpoint of applying the principle of manipulat-
ing the phase in the process of excitation transfer between
partial oscillators, the class of systems with parametric
excitation seems to be a proper choice [91±93]. Systems of
this kind can be built on various physical basesÐ in
electronics, mechanics, acoustics, or nonlinear optics.

One widely used scheme of parametric generation
involves two oscillators that are coupled through a reactive
(dissipationless) element governed by a parameter varying in
time. The frequencies o1 and o2 of the oscillators and the
frequency o3 of parameter variation, or the pumping
frequency, are related as o1 � o2 � o3, which expresses the
condition of parametric resonance. Oscillations are generated
simultaneously in both partial oscillators. Their amplitudes
can be stabilized by adding a nonlinear resistive element to the
scheme.

We consider a system [94] composed of two such
subsystems, A and B (Fig. 17). Let the frequencies be chosen
such that o2 � 2o1 and o3 � 3o1 (the parametric resonance
condition is obviously satisfied). The oscillator with the
frequency o1 available in each subsystem is assumed to be
coupled via a quadratic nonlinear element to the oscillator
having the frequency o2 of the partner subsystem. By virtue
of the frequency selection, the effect of one oscillator on the
other is resonant on the second harmonic.

Let the pumping be switched on alternately in both
subsystems, such that the functioning of the setup consists in
alternating parametric excitation of the subsystems with a
subsequent decay in time intervals between the active stages.
At the beginning of a successive excitation stage in each of the
subsystems, the developing oscillations are triggered by the
signal from the partner subsystem on the second harmonic.
The excitation transfer is therefore each time accompanied by
the doubling of the oscillation phase. Over the full period of
pumping modulation, the oscillation phase is multiplied by 4,
which ensures chaos in the behavior of the sequence of phase
values. The system generates a signal in the form of pulses
following each other with the period of the pumping
modulation, while the phase of high-frequency filling jumps
chaotically from pulse to pulse.

Following the standard approach for parametric systems,
we turn to the description in terms of slowly varying
amplitudes [91±93]. We let the complex-valued amplitudes
of two oscillators of the first subsystem be denoted by A1 and
A2, and those of the second by B1 and B2. Taking the relation
between frequencies into account, we write the equations

_A1 � ÿKf�t�A �2 ÿ ieA �1B2 ÿ 1

2
aA1 ÿ 1

2
bA1jA1j2;

_A2 � ÿ 1

2
Kf�t�A �1 ÿ

1

4
ieB 2

1 ÿ
1

2
aA2 ÿ 2bA2jA2j2;

_B1 � ÿKg�t�B �2 ÿ ieB �1A2 ÿ 1

2
aB1 ÿ 1

2
bB1jB1j2;

�35�

_B2 � ÿ 1

2
Kg�t�B �1 ÿ

1

4
ieA 2

1 ÿ
1

2
aB2 ÿ 2bB2jB2j2:

The parameter e controls the nonlinear coupling between the
oscillators belonging to different pairs. The coefficients a and
b respectively characterize the linear and nonlinear dissipa-
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Figure 16. (a) Transient trajectory in the system of coupled oscillators (34)

for m � 3:14 and (b) the portrait of the attractor at m � 3:1442 in the

projection on the plane of amplitudes ja1j and ja2j. (c) Diagram for phases

of the first oscillator measured at the instants when the Poincar�e section is

crossed for m � 3:1442. (d) The dependence of the Lyapunov exponents of
system (34) on the parameter m. The inset in panel (d) shows the plot for the
largest exponent of Poincar�e map L1 � l1hT i. The other parameters are

o0 � 2p and e � 0:5.
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the elements of coupling with a quadratic nonlinearity. (b) Iteration

diagram for the phase on the activity stage of one of the subsystems and

(c) the portrait of the attractor in the Poincar�e section in a projection on

the plane of the complex-valued variable corresponding to the amplitude

of the first oscillator in the second subsystem, based on the numerical

solution of Eqns (35) with K � 1:393, e � 0:08, a � 0:6, b � 1:184, and
T � 40.
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tion. The parameter K determines the intensity of pumping at
the frequency o3 � o1 � o2 � 3o1, and the functions f�t�
and g�t� determine the slow dependence of the pumping
amplitude on time in the two subsystems; we assume that

f�t� � sin2
pt
T
; g�t� � cos2

pt
T
: �36�

Figure 17b shows the diagram for phases that correspond to
subsequent stages of excitation of the second system,
jn � argB1�nT �, constructed on the basis of numerical
integration of Eqns (35). (We emphasize that the phase
pertains to the active stage of the subsystem in question,
when its amplitude is certainly different from zero.) We note
that a single circle cycle for the preimage, i.e., the variation of
the phase jn from zero to 2p, corresponds to four circles for
the image jn�1. This implies that the map for the phase is
identified with the same topological class as the dilating map
of the circle jnew � 4jold.

Figure 17c shows the phase portrait of the attractor in the
Poincar�e section in a projection on the plane of dynamical
variables of the first oscillator of the second subsystem. The
inset magnifies the details of the fine transverse fractal
structure of the attractor. The full spectrum of Lyapunov
exponents for the attractor is

l1 � 0:03456; l2 � ÿ0:1320; l3 � ÿ0:2247;
l4 � ÿ0:5220; l5 � ÿ0:6826; l6 � ÿ0:9012;
l7 � ÿ1:419; l8 � ÿ2:325: �37�

The presence of the positive exponent l1 quantitatively
confirms the existence of chaos. The other exponents are
negative. It then follows that an element of phase space
experiences dilation along a single direction and contraction
along all other directions in the phase space of the Poincar�ee
map. For the Poincar�e map, the Lyapunov exponents are
related to those in (37) as Lk � lkT. Hence, L1 � 1:382,
which agrees well with the value ln 4 � 1:3862 . . ., which
corresponds to an approximate description of the phase
variable evolution governed by the Bernoulli map.

The estimate of the attractor fractal dimension based on
Lyapunov exponents (37) and the Kaplan±Yorke formula
givesD � 1� L1=jL2j � 1:26 for the attractor in the Poincar�e
map (becauseL1 > 0 andL1 � L2 < 0). Correspondingly, for
the attractor of the original system embedded into the
augmented 9-dimensional phase space, the dimension
becomes D 0 � D� 1 � 2:26.

The nature of the mechanism underlying the system
functioning, as well as the numerical results confirming its
realization, provide rationale to conjecture that the observed
attractor is uniformly hyperbolic. Interpreting the action of
the Poincar�e map geometrically, we can imagine a toroid
(a direct product of a one-dimensional circle and a seven-
dimensional sphere) embedded into an eight-dimensional
space and relate a single iteration of the map with long-
itudinal dilation and transverse contraction of this object,
which is then embedded into the original domain as a four-
fold loop. At each step of this procedure, the number of loops
increases four times. In the limit, we obtain an attractor with
an infinite number of loopsÐa variant of the Smale±
Williams solenoid. Although the conjecture on the uniformly
hyperbolic nature of the attractor is in this case hypothetical,
the system considered here can be interesting in and of itself
because it offers the possibility of generating chaotic regimes

that are insensitive to the choice of parameters and character-
istics of the element in systems pertaining to radio engineering
and electronics, acoustics, and nonlinear optics.15

10. The possibility of implementing
a Smale±Williams-type attractor
in systems with delay

To implement the principle of phase manipulation in the
excitation transfer, we can consider systems with a delay [96±
98] as an alternative to systems based on oscillators excited
one after another. In this case, it suffices to have a single
oscillator that alternately stays in active or decaying regimes,
while the transfer of excitation between the stages, with an
appropriate phase transformation, is carried through the
delaying feedback circuit. From the standpoint of practical
realization, such systems can even be simpler than the
alternately excited oscillators. From the mathematical stand-
point, they are more complex because the presence of delay
formally implies that their state space is infinite dimensional.
An accurate mathematical analysis of attractors in such
systems, including rigorous verification of the hyperbolicity
hypothesis, constitutes a difficult problem calling for the
development of new approaches.

We consider a model system described by the equation
[96]

�xÿ
�
A cos

2pt
T
ÿ x 2

�
_x� o 2

0 x�ex�tÿ t� _x�tÿ t� coso0t :

�38�

Here, x is the dynamical variable of the van der Pol oscillator
with the working frequency o0, in which the parameter
controlling the bifurcation of the limit cycle birth slowly
varies in time with the period T and amplitude A, such that
the oscillator stays alternately in the regimes of excitation and
decay of oscillations. A term responsible for a delayed
feedback is added to the right-hand side of (38). It is given
by the product of the dynamical variable reduced by the time
interval t, its derivative, and an auxiliary signal at the
frequency o0. The parameter e determines the magnitude of
the delaying feedback. We assume that N � o0T=2p is an
integer, such that the external action on the system, including
the parameter modulation and auxiliary signal, is periodic.

The functioning of system (38) as a chaos generator can be
explained as follows. Owing to the periodic variation in the
parameter responsible for the onset of generation, the
oscillator is found in alternating regimes of excitation and
decay of oscillations. With an appropriate choice of the time
lag, for example, t � �3=4�T, we can create a situation where
at each activity stage, the seed for the developing self-
sustained oscillations is provided by the signal generated
during the previous activity stage. We suppose that the signal
has a certain phase j, i.e., x�t� � sin�o0t� j� and
_x�t� � cos�o0t� j�. Then the term in the right-hand side of
Eqn (38) contains a component at the basic frequencyo0 with

15 An example of a parametric chaotic generator comprising two coupled

oscillators with nonlinear dissipation and modulation of their Q-factors

was recently proposed in [94]. The dynamics are described by a non-

autonomous system of fourth-order equations. The presence of the

Smale±Williams attractor is shown for a four-dimensional Poincar�e
map. Additionally, the computer-assisted test of the cone criterion is

undertaken, confirming the hyperbolic nature of the attractor.
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the doubled phase. Indeed,

x�tÿ t� _x�tÿ t� coso0t � sin 2
�
o0�tÿ t� � j

�
coso0t

� 1

2
sin�o0tÿ 2o0t� 2j� � . . . ; �39�

where the dots denote nonresonant terms. Therefore, at the
new activity stage, the phase of oscillations its defined by that
of the resonant component of the seed signal, and at
subsequent stages of activity, we obtain the Bernoulli map
jn�1 � 2jn � const (mod 2p). If the phase volume is con-
tracted along all other directions of the state space, the
dynamics of this kind should correspond to the presence of
the Smale±Williams attractor for the map of the phase space
into itself over the period of external action.

Figure 18a plots the oscillations obtained by numerical
integration of Eqn (38), which corresponds to the motion on
the attractor. The chaos is manifested through the random
position of filling oscillations with respect to the envelope at
subsequent activity stages. Figure 18b presents the diagram
for phases determined at subsequent activity stages, showing
the agreement with the doubly dilating map of a circle.
Figures 18c and d show the portrait of the system attractor
in a projection from the infinite-dimensional state space on
the oscillator phase plane (x, _x), and the portrait of the
attractor in the Poincar�e section. The transverse fractal
structure can be distinguished in the second image. It is a
characteristic feature of the Smale±Williams attractor.

Speaking formally, the attractor has an infinite number of
Lyapunov exponents because of the infinite-dimensional
nature of a system with delay. From a practical standpoint,
it is sensible to limit ourself to considering a finite subset of
them, namely, the exponents that are largest in magnitude,
whose number suffices for determining the dimension
according to the Kaplan±Yorke formula. Computations
based on the Benettin algorithm, adapted to systems with
delay, lead to the following values of the exponents over the
period T for the chosen values of parameters:

L1 � 0:688; L2 � ÿ0:837; L3 � ÿ4:287: �40�
The only positive exponent of the attractor is numerically
close to ln 2 � 0:693 . . ., which agrees with the approximation

that resorts to the description of phase dynamics through the
Bernoulli map. The estimate of the dimension by theKaplan±
Yorke formula gives DKY � 1� L1=jL2j � 1:82 for the map
over the period. The dimension of the attractor as an object in
the augmented phase space is larger by one.

The mechanism of model functioning and numerical
results confirming its realization suggest the assumption that
the observed chaotic attractor is uniformly hyperbolic, or
more specifically is a Smale±Williams-type attractor
embedded into the infinite-dimensional state space of the
system with delay. Despite the hypothetical character of this
conjecture, the scheme of the chaos generator considered
above may have an independent interest because it offers a
framework for obtaining chaotic regimes insensitive to the
choice of parameters and constructive details in systems of
radio engineering and electronics, nonlinear optics, and other
areas.

Two more models of nonautonomous systems with delay,
exploiting the idea of phase manipulation for the generation
of chaotic dynamics, are considered in Refs [97, 98]. In
contrast to system (38), the presence of two delayed feedback
chains enables the resonance mechanism of transferring
excitation from the preceding stages of oscillator activity
without resorting to an auxiliary signal with the frequency
o0. It is supposed that attractors of these systems fit into the
class of partly hyperbolic [20, 26], because of a neutral
direction associated with a Lyapunov exponent that is close
to zero.

11. Realization of hyperbolic attractors
in electronic devices

As stated in the Introduction, the development of a physical
approach to hyperbolic attractors should result in the design
of functioning generators of chaos. Two examples of
electronic devices implemented thus far as laboratory setups
[99, 96] are considered below. A variant of the scheme of a
hyperbolic chaos generator in the microwave band based on
coupled drift klystrons, described in Ref. [100], can also be
mentioned alongside them.

11.1 Scheme based on coupled self-oscillators with
alternating excitation
Figure 19 shows the schematic of a device representing a non-
autonomous oscillatory system composed of two subsystems,
the van der Pol oscillators [99]. Each oscillator contains a
tuned circuit composed of a coil with inductance L1;2 and a
capacitor with capacitance C1;2, such that o0 � 1=

�����������
L1C1

p
,

2o0 � 1=
�����������
L2C2

p
. The negative resistance is provided by a

special element based on an operational amplifier. The
nonlinear conductivity that assures an increase in energy
loss with an increase in the oscillation amplitude is intro-
duced by an element composed of semiconductor diodes
(D1ÿD6, D7ÿD12), made of two branches transmitting
electric current in opposite directions and connected in
parallel. The field-effect transistor (T1;2) introduces a practi-
cally linear positive conductivity in the circuit, whose
magnitude is controlled by the voltage applied to the gate of
the transistor, which slowly varies in time, performing
oscillations with the period T � 2pN=o0, where N is an
integer. During half the period of this process, the first
oscillator is in the regime of oscillation generation, and the
second stays below the generation threshold, and vice versa
during the other half. The first oscillator acts on the second
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Figure 18. (a) Time dependence of the dynamical variable according to

numerical solution of Eqn (38). (b) Diagram illustrating the phase

transformation at sequential stages of the oscillator activity, found by

solving Eqn (38) numerically at o0 � 2p, T � 6, t � 3=4T, A � 5:5, and
e � 0:2. The portrait of the attractor of system (38) in a projection from the

infinite-dimensional state space on the oscillator phase plane (x, _x) (c), and
the portrait of the attractor in the Poincar�e section (d).
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one via the nonlinear quadratic element A1. In turn, the
second oscillator acts on the first one via the nonlinear
quadratic element A2 that mixes the incoming signal with an
auxiliary signal of the frequency o0. The functioning of the
system corresponds to the idea outlined at the beginning of
Section 9.1, and Eqns (25) can serve as a model, at least on a
qualitative level of analysis.

In the laboratory setup implementation, the capacitors
had the capacitance C1 � 20 nF and C2 � 5 nF, and the coil
inductances L1 and L2 were about 1 H. The working
frequencies of the oscillators were f1 � o0=2p � 1090 Hz
and f2 � 2f1 � 2180 Hz. The output voltage U1 and U2

from the first and second circuits could be fed to recording
devices (an oscilloscope or spectral analyzer) or registered
with a computer as a time series with the help of an analog-to-
digital converter. The functions _U1 and _U2 were obtained by
analog differentiation with the use of a standard differentiat-
ing circuit containing a capacitor, resistor, and operational
amplifier.

With the properly selected parameters in the system,
chaotic oscillations ensuing from alternating stays of the
oscillators in active regimes and the transfer of excitation

from one oscillator to another with the corresponding phase
transformation can be observed. Figure 19b shows the time
dependences of the variable voltage in the regime of chaotic
generation in both subsystems when the ratio of the
frequencies of slow parameter variation and the auxiliary
signal is N � 8. Plotting them was computer assisted and
based on time series stored in memory. These were obtained
through digitizing the voltage U1�t� and U2�t�. The sampling
frequency was 200 kHz, i.e., one period of the characteristic
generation frequencyo0 was covered with approximately 200
readings. Figure 19c depicts an iterative diagram for phases
obtained experimentally by computer-aided processing of a
two-component time series. One component corresponds to
the sampled signal U1 with the period of slow parameter
variation T � 2pN=o0 at time instants when the first
oscillator amplitude attained a maximum. The second
component was given by the derivative at the output of the
differentiating circuit at the same instants. The phase was
determined from the formula j � arg �U1 ÿ ioÿ10

_U1�. The
horizontal and vertical axes in the diagram correspond to the
values of phase at successive instants of sampling. The fact
that the phase map is topologically equivalent to a dilating
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Figure 19. Schematics of a setup based on two coupled subsystems, van der Pol oscillators with periodically varying parameters. (b) Typical realizations of

the time series of alternating voltage for the first (dark color) and second (light color) subsystems obtained in experimentwithN � 8. (c) Iteration diagram

for the phase of the first subsystem for N � 8. (d) Photo taken from the oscilloscope screen of the attractor portrait in a projection on the plane of the

dynamical variables of the first oscillator (U1; _U1) for N � 4. (e) Stroboscopic section of this attractor for the sequence of time instants separated by a

period T in time and corresponding to the maximum of the first oscillator amplitude.
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circle map should be considered a confirmation that the
realized attractor has the nature of a Smale±Williams
solenoid.

Figure 19d displays a photo of the phase portrait of an
attractor in the chaos generation regime, taken from an
oscilloscope screen. The inputs for the horizontal and
vertical ray deflection were respectively fed with alternating
voltage from the first subsystem U1�t� and the output signal
of the differentiating circuit, which is proportional to _U1�t�.
Figure 19e shows the portrait of the attractor in a strobo-
scopic section projected on the plane (U1, _U1), built by
processing the two-component time series corresponding to
the image of the Smale±Williams solenoid. The largest
Lyapunov exponent, assessed by processing the time series
using the technique inRef. [101] with the sampling periodT, is
L � 0:73, which is in agreement with the estimate L � ln 2
based on the Bernoulli map. The spectrum of oscillations is
continuous for both oscillators: it spans a range near the
frequency o0 for the first oscillator and near 2o0 for the
second.

Unfortunately, not all theoretical results discussed in
Section 9 can be tested experimentally. For example, it is
difficult to assess the full spectrum of the Lyapunov
exponents or to test the hyperbolicity by applying the cone
criterion. Nevertheless, bearing in mind the totality of the
results obtained, we can argue with a high degree of certainty
that the experiment deals with the same object as is considered
in the theoretical analysis, i.e., that the suspension of a Smale±
Williams attractor is realized in the nonautonomous oscilla-
tory system.

11.2 Scheme based on self-oscillators with delayed
feedback
The schematic of an electronic device with delayed feedback,
which implements the principle considered in Section 10, is
shown in Fig. 20a [96]. The self-oscillator described approxi-
mately by the van der Pol equation contains an LC contour,
an element with negative resistance based on the amplifier
DA1, and a nonlinear dissipative element composed of diodes
D1±D6. The principal oscillation frequency in the laboratory
setup, f � o0=2p, was 3 kHz.

The parameter controlling the excitation of self-oscilla-
tions is modulated by means of additional dissipation
provided by the circuit on the field-effect transistor VT1
controlled by the external signal A cos�2pt=T�. The period is
T � 6=f; the oscillator stays in the generation regime during
one half of the period and is below the generation threshold
during the second half. The excitation of oscillations with a
certain phase at the subsequent generation stage is ensured by
the arrival of the delayed feedback circuit signal from the exit
of multiplier DA3. In the feedback circuit, the signal under-
goes a quadratic transformation (multiplier DA2) and
differentiation by the standard differentiating circuit on
elements R1, C1, and DA4. The signal then passes through a
digital delayed circuit that provides the time delay 3T=4. As a
result of multiplication with an auxiliary signal at the
frequency o0, we obtain a signal with a frequency close to
that of self-oscillations and the phase doubled relative to that
at the instant t. This signal serves as a seed for the oscillator,
stimulating its excitation at the next activity stage.

The signal generated by a functioning setup (see the
oscillogram in Fig. 20b) was stored in digitized form with
the help of an analog-to-digital converter as a time series, and
was then used to construct the signal phasemap for the period

T (Fig. 20c). As can be seen, the map obtained in this way
belongs to the same topological class as the Bernoulli map,
which is indicative of the presence of the Smale±Williams
attractor. Figure 20d shows the portrait of the attractor
projected on the oscillator phase plane taken as a screenshot
from the oscilloscope. A stroboscopic map of the attractor in
Fig. 20e demonstrates an obvious visual similarity with the
Smale±Williams solenoid.

12. Conclusions

The material presented above is indicative of significant
progress in the main areas of the research program sketched
in the Introduction. It can be asserted that we now indeed
have particular examples of physically realizable systems with
chaotic dynamics to which the principles of hyperbolic theory
are applicable (systems with axiom A).

Several ways of designing systems with uniformly hyper-
bolic attractors are identified: using models with pulse
forcing; constructing dynamics as a set of stages replacing
each other in succession; and constructing systems from
oscillators that are excited alternately and prime each other
subject to the phase transformation described by a map with
chaotic dynamics. It is demonstrated how the principle of
parametric excitation and a delayed feedback can assist the
implementation of the hyperbolic chaos.

A set of particular systems is presented for which the
presence of a uniformly hyperbolic attractor is confirmed by
means of a computer-assisted test of the cone criterion or is
anticipated based on qualitative arguments. The majority of
systems considered here fall into the class of nonautonomous
systems featuring time-periodic dependence of parameters or
functions entering their equations. But there also exist
examples of autonomous systems with the Smale±Williams
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type of attractor in the Poincar�e map. Owing to the structural
stability property, these models admit certain modifications
without losing the hyperbolic character of their dynamics,
which allows designing new systems with uniformly hyper-
bolic chaos. Based on some of the proposed schemes, radio-
electronic setups have been implemented, enabling demon-
stration of the dynamics on a hyperbolic attractor in
experiment.

But the present discussion is limited to chaotic attractors
in artificial systems constructed in a goal-oriented way, and
not in systems of natural origin (where they are encountered
rarely, if at all). The line between the two is not rigorously
defined, of course. It should be kept in mind that the
van der Pol oscillator acknowledged currently as a universal
model in the theory of self-oscillations was initially applied
only in an artificial technical system, the vacuum tube
generator. Likewise, it can be hoped that models with
hyperbolic attractors will eventually find their area of
application in systems of natural origin, for example, in
neurodynamics. The above-mentioned study by Belykh and
coauthors [59] discussed the feasibility of a Plykin attractor in
the Hindmarsh±Rose model of the neuron. In the same
context, neurodynamics models with the blue sky cata-
strophe were considered in Ref. [64]. In that framework,
situations corresponding to the presence of a Smale±
Williams attractor can occur for the space dimension four or
higher.

The possibility of the physical realization of hyperbolic
chaos opens horizons for applications of a well-developed
mathematical theory and paves the way for comparative
studies of hyperbolic and nonhyperbolic chaos, including
computer-assisted research and experiment. Also interesting
and rich in content is the research area aimed at designing
complex systemsÐchains, lattices, and networks composed
of elements with hyperbolic chaos [102±104]. Presumably, the
models constructed with the goal of realizing hyperbolic
chaos will be useful in elucidating fundamental questions
still challenging the research community, such as the problem
of turbulence.

The question of diagnosing hyperbolic chaos in physical
experiments is interesting in and of itself. Although mathe-
matical techniques like the cone criterion seem less relevant in
this perspective, the problem does not look insurmountable.
At least in the case of the Smale±Williams attractor, the
construction of an iteration diagram for phases, which
demonstrates the correspondence with a dilating circle map,
offers a productive and convincing way of uncovering the
respective dynamics. This pertains to both computer simula-
tions and experiment.

Over the last 20 years, active research on applications of
chaotic signals in information±communication systems [105±
108] has ben carried out. Although arguments in favor of this
direction look convincing (larger information capacity of
signals, the possibility of controlling dynamics through
small perturbations, the diversity of ways the information
can be embedded in the signal, and rich possibilities of
encrypting for secure information transfer), it should also be
acknowledged that the expected advantages are not realized
to the full extent. A possible reason is that using signals
generated by nonhyperbolic attractors does not allow relying
on detailed theoretical explanations of the corresponding
dynamics. On the other hand, the hyperbolic attractors
benefit from the existence of a full, in a certain sense,
mathematical description of chaos. For example, a complete

listing of all trajectories belonging to an attractor is possible
by associating them with sequences of symbols of a finite
alphabet. It is therefore highly probable that the realization of
the advantages promised by information±communication
systems based on chaotic signals will see more progress
when incorporating the hyperbolic chaos.

Systems employing the principle of phase manipulation
[66, 78, 79, 87±89, 94±100] may be of special interest for
schemes of secure communication. Chaos is manifested in this
case in the irregular behavior of the phase in the generated
sequence of radio pulses. This invites implementation of
approaches that would ensure that the signal transfer in a
communication channel is much less susceptible to noise,
losses, and distortions than in the variants proposed thus far
[105±108]. (In this respect, we recall the advantages of
frequency and phase modulation over amplitude modulation
known in traditional radio engineering.)

When discussing possible technological applications of
systems with hyperbolic attractors, special attention should
be paid to their most important properties such as structural
stability or roughness.

The recent literature offers a broad discussion focused on
the problem of so-called robust chaos [109±11]. This involves
the dynamics such that no `periodicity windows' emerge as
the parameters are varied, while the dependence of the largest
Lyapunov exponent is a smooth function over a wide
parameter range. We stress that just such chaos is desirable
for applications, in particular, for communication systems,
random-number generators, or systems of information
encoding. To obtain chaos of this type, it is proposed to use
systems including elements with characteristics expressed in
terms of functions with discontinuous derivatives. In practice,
ideal slope breaks cannot be achieved, and hence fully
excluding periodicity windows in this fashion seems proble-
matic. In contrast, these properties of chaos emerge as natural
attributes in systems with uniformly hyperbolic attractors
because of the inherent structural stability.
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