
Abstract. V G Veselago's results (Usp. Fiz. Nauk 179 689
(2009) [Phys. Usp. 52 649 (2009)]) on the electromagnetic
(EM) energy±momentum tensor in a medium are analyzed. It
is shown that Veselago's statements on the Abraham tensor are
wrong (this is not actually a tensor, and the Abraham force was
introduced into the theory as an artificial auxiliary device). In
discussing the EM energy±momentum tensor in a dispersive
medium, it seems to have escaped the author's attention that
the problem was resolved a long time ago: the electromagnetic
energy±momentum tensor for a dispersive isotropic medium at
rest is a symmetric 4-tensor which includes the Brillouin energy
density, the energy flux density (Umov±Poynting vector), the
momentum density (the Umov±Poynting vector divided by c 2),
and the Pitaevskii tension tensor. For a mechanically and
thermally equilibrium medium, it is shown that the spatial
components of the Polevoi±Rytov tensor which is discussed in
the analyzed paper cannot be interpreted as the field-dependent
part of the Pitaevskii total tension tensor, unless for quasimo-
nochromatic plane wave propagation. It is also shown that for
arbitrary (not necessarily zero) reflection, the force an EM
wave in an isotropic medium exerts on a solid can be expressed
in terms of an appropriate component of the Polevoi±Rytov
tension tensor.

1. Introduction

As noted by VE Pafomov [4, 5], electromagnetic waves with a
negative group velocity 1 exhibit interesting features in their
behavior. The formula describing the Doppler effectÐ that
is, the relation between the frequencyo of a wave emitted by a
source moving with velocity v and the frequencyo0 of a wave
from the same source at restÐcan be written in the form (see
Ref. [6, æ 48])

o0 � o���������������������
1ÿ v 2=c 2

p �
1� v cos y

vph

�
; �1:1�

where vph � ok=k 2 is the phase velocity of the wave, k is the
wave vector, y is the angle between the source velocity v and
the radiation propagation direction (i.e., the energy flux
density vector or the wave group velocity vgr), the upper sign
refers to the positive �vgr ""vph� group velocity, and the lower
sign refers to negative �vgr "#vph� group velocity. From
Eqn (1.1) it is seen that for a wave with a negative group
velocity the Doppler effect will be `reversed' relative to that
for a wave with a positive group velocity [4, 5].

The propagation direction of Cherenkov radiation is
obtained from Eqn (1.1) by setting o0 � 0, giving

cos y � � vph
v
: �1:2�

The angle between the radiation propagation direction and
the particle velocity is acute or obtuse, depending on whether,
respectively, the group velocity is positive �vgr ""vph� or
negative �vgr "#vph� (i.e., the Vavilov±Cherenkov effect will
be reversed [4, 5]).

The case of negative group velocity had been studied even
earlier by L IMandelstam [1; 2, p. 334; 3, p. 461] in connection
with the reflection and refraction of an electromagnetic wave
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1 In an isotropic medium, the group and phase velocities of the wave are

either in the same or in the opposite direction. We will assume, following

Refs [1; 2, p. 334; 3, p. 461], that the group velocity is positive (negative) in

the former (latter) case.



incident on a plane interface between two media. Let us take
the interface to be the xy plane, and the z-axis to be directed
from medium 1 to medium 2. Assume that a wave of
frequency o and wave vector k0 propagates undamped
through medium 1. The y-axis is chosen such that the
zx plane coincides with the plane of incidence �k0y � 0�, and
the x-axis is directed so as to satisfy the condition k0x 5 0.
(We specify that waves of frequency o in medium 1 have a
positive group velocity.) The uniform conditions in the plane
of the interface imply that the following relations hold for the
wave vectors of the incident �k0�, reflected �k1�, and refracted
�k2� waves:

k1x � k2x � k0x 5 0 ; k1y � k2y � k0y � 0 : �1:3�
According to the above-outlined conditions of the problem,
k0x � k1 sin y0 5 0, where y0 is the angle of incidence,
k0z � k1 cos y0 5 0, and k0 � k1, so that k1x � k1 sin y0,
k1z � ÿk0z, and the reflection angle y1 � y0. It will be
assumed that the damping of the refracted wave is also
negligible. Then the sign in the expression k2z �
��k 2

2 ÿ k 2
1 sin

2 y0�1=2 is determined from the requirement
that the energy of the refracted wave flow back from the
boundary into the depths of medium 2 or that the projection
of the group velocity of the refracted wave onto the z-axis be
positive, vgrz > 0. Therefore, if the group velocity of the wave
in medium 2 is positive �vgr ""vph ""k2�, then k2x; vgrx > 0,
vgrz; k2z > 0, and the refracted and incident rays lie on
different sides of the interface normal. If, on the contrary,
the wave group velocity in medium 2 is negative
�vgr "#vph ""k2�, then k2x; vphx > 0, vgrx < 0, vgrz > 0,
k2z; vphz < 0, and the refracted and incident rays lie on the
same side of the interface normal. Mandelstam termed the
former case `ordinary refraction'. As for the latter case, he
called it `unusual refraction'; most authors refer to the latter
case as `negative' refraction, and our suggestion [7] is
`reversed' refraction (in line with Refs [4, 5]).

Given that the electrodynamical properties of an isotropic
nongyrotropic frequency-dispersive media are characterized
by the dielectric e�o� and magnetic m�o� permeabilities, it is
the behavior of these functions e�o� and m�o� which
determines the sign of the group velocity of a wave of
frequency o. As noted in Ref. [8], a correct answer to this
problemwas first given inDVSivukhin's work [9]: a wave in a
medium propagates undamped only if (assuming the dielec-
tric and magnetic permeabilities are real-valued) the product
e�o� m�o� > 0, with

e�o�; m�o� > 0) vgr ""vph ; e�o�; m�o� < 0) vgr "#vph :
�1:4�

Notice, however, that Sivukhin later dismissed this result
to state instead (see Ref. [10, æ 64]): ``For electromagnetic
waves in isotropic media it can be shown that phase and
energy propagate in the same direction.'' V E Pafomov [4, 5]
later obtained conditions (1.4) by repeating the calculations
performedì in a very simple and transparent manner, unlike
Ref. [9]ì in the érst (1957) edition of Electrodynamics of
Continuous Media (see Ref. [11], æ 83), with the only
modiécation being lifting the original restrictions on the
signs of e�o� and m�o� [see Section 4 below, which reports
that e�o� and m�o� can assume negative values only if
dispersion is allowed for].

VGVeselago in Ref. [12] considers the well-known results
of S M Rytov [13] concerning the energy±momentum tensor

of a quasimonochromatic plane electromagnetic wave.
According to Ref. [13], the momentum density of the wave is
codirectional with the wave's phase (not group!) velocity.
This result led Veselago to conclude that, when incident on a
totally reflecting body, a wave of frequency o in a medium
with negative e�o� and m�o� does not repel, but rather attracts
the body.2

In his recent Physics±Uspekhi paper [15], Veselago
proceeds to address the general aspects of the electrody-
namics of continuous media in relation to the energy±
momentum tensor of the electromagnetic field. Most of the
statements in Ref. [15] disagree with the results of other
studies (including ours [16]) and are, as will be shown below,
erroneous.

At this point it is worth reminding ourselves of the exact
essence of the problem of the energy±momentum tensor of an
electromagnetic field in a continuous medium [17, æ 35].
Maxwell's equations for the éelds E, B, D, and H have the
form [11, æ 75]

divD � 4pr ext ; rotE � ÿ 1

c

qB
qt

;
�1:5�

divB � 0 ; rotH � 1

c

qD
qt
� 4p

c
j ext ;

where r ext and j ext are, respectively, the density and current
density of the external (relative to the medium under
consideration) charges. From Eqns (1.5) one rigorously
obtains the equation for the work the field does on the
external charges:

j extE � ÿ 1

4p

�
E
qD
qt
�H

qB
qt

�
ÿ divSP ; SP � c

4p
E�H ;

�1:6�
where SP is the Umov±Poynting vector, and the equation for
the force f ext � r extE� �1=c� j ext � B the field exerts on
external charges in the unit volume is written out as 3

r extEi � 1

c
�j ext � B�i � ÿ

1

4pc
q
qt
�D� B�i � s 0Mi

ÿ 1

8p

��
D

qE
qri
ÿ E

qD
qri

�
�
�
B

qH
qri
ÿH

qB
qri

��
; �1:7�

s 0Mi � qsM
i j

qrj
; sM

i j �
1

4p

�
�EiDj �HiBj� ÿ 1

2
di j�ED�HB�

�
;

where sM
i j is the Minkowski stress tensor.

Inmicroscopic electrodynamics �D�E,B�H�, Eqns (1.6)
and (1.7) are reduced to the equations which are equivalent to
the energy and momentum conservation laws (see Ref. [6,
æ 31ë33]):

j extE � ÿ qw
qt
ÿ divS ; f ext � ÿ qg

qt
� r 0 ; s 0i �

qsi j
qrj

;

�1:8�
w � 1

8p
�E 2 �H 2� ; S � SP ; g � 1

c 2
SP ;

�1:9�
si j � sji � 1

4p

�
�EiEj �HiHj� ÿ 1

2
di j�E 2 �H 2�

�
:

2 In Ref. [14], which reports the observation of the reversed Vavilov±

Cherenkov effect, the prediction of this effect is credited to Ref. [12]. In

actual fact, as noted above, the predictionwasmade byVEPafomov [4, 5].
3 Summation over all the twice repeating indices i; j; k; . . . � x; y; z is

assumed to be taken throughout.
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Here, w is the energy density, S is the energy density flux, g is
the momentum density, si j is the Maxwell stress tensor.
All these quantities combine into the energy±momentum
4-tensor Tab of the electromagnetic field �ra � �r; ict��:

Ti j � si j ; Tj 4 � ÿicgj ; T4 j � ÿ i

c
Sj ; T44 � w : �1:10�

Introducing the 4-force f ext
a � �f ext; i j extE=c�, equations

(1.8) become4

f ext
a � qTab

qrb
: �1:11�

Following Minkowski and introducing the 4-tensor of the
field, Fab � ÿFba: Fi j � ei jkHk, F4 j � ÿFj 4 � iEj, the energy±
momentum tensor of the field in a vacuum, Eqns (1.9) and
(1.10), takes the form

Tab � Tba � 1

4p

�
FagFgb ÿ 1

4
dabFgnFng

�
: �1:12�

In macroscopic electrodynamics, equations like (1.8)
cannot be obtained rigorously from Eqns (1.6), (1.7). Still, it
is believed (see Ref. [17, æ 35]) that equations equivalent to the
energyëmomentum conservation laws of the system `matter
plus éeld' do exist and have the following form [analogous to
Eqns (1.8) and (1.11)]:

j extE� fv � ÿ qw
qt
ÿ divS ; f ext � f � ÿ qg

qt
� r 0 ; �1:13�

qTab

qrb
� f ext

a � fa ; �1:14�

where �f; ifv=c� is the 4-force exerted by the field on the matter
(per unit volume), and v is the velocity of matter.

The following are the requirements which necessarily have
to be met when choosing the expression for Tab: (1) Tab must
really be a tensor in the sense that under all the transforma-
tions entering into the Lorentz group it must be transformed
in the same manner as the product of two 4-vectors; (2) in the
limiting case of no matter �f � 0,E � D, B � H�, Tab must be
identical to tensor (1.9), (1.10), or (1.12) of microscopic
electrodynamics; (3) equations (1.13) must not be inconsis-
tent with equations (1.6), (1.7) which rigorously follow from
Maxwell's equations; (4) expressions for the force, which are
determined from the two equations (1.13), must differ only in
the term which is perpendicular to the velocity v of the
medium (and does not contribute to the work fv), and (5)
the force f obtained from equations (1.13) must not be
inconsistent with the equations of motion of matter (i.e., the
hydrodynamics or elasticity theory equations).

In his 1908 paper [18], H Minkowski introduced two
4-field tensors, Fab � ÿFba and Hab � ÿHba (see Ref. [11,
æ 76], [17, æ 33]),

Fi j � ei jkBk ; F4 j � ÿFj 4 � iEj; �1:15�
Hi j � ei jkHk ; H4 j � ÿHj 4 � iDj ;

which allow Maxwell's equations (1.5) to be rewritten in
explicitly relativistic-invariant form as

qFab

qrg
� qFbg

qra
� qFga

qrb
� 0 ;

qHab

qrb
� 4p

c
j exta : �1:16�

In his studies [18, 19], Minkowski chose the energy±
momentum tensor of electromagnetic field in the form
analogous to expression (1.12) in microscopic electrody-
namics:

TM
ab �

1

4p

�
FagHgb ÿ 1

4
FgnHngdab

�
�1:17�

or, according to formulas (1.10) and (1.15), sM
i j in the

form (1.7) and

gM � 1

4pc
D� B ; SM � SP � c

4p
E�H ;

�1:18�
wM � 1

8p
�ED�HB� :

The tensor nature of TM
ab written in the form (1.17) is

obvious, as is the fact that, in microscopic electrodynamics
in the limit E � D, B � H, the tensor TM

ab reduces to the
form (1.12). It should be noted that constitutive equations
relating the fields E, D, B, H are not used in Eqn (1.17),
indicating that the Minkowski tensor is valid for any (not
necessarily isotropic) medium and for arbitrarily strong
fields.

Minkowski tensor (1.17), unlike the energy±momentum
tensor in microscopic electrodynamics, formula (1.12), is not
symmetric. M Abraham [20, 21] (see also Ref. [17, æ 35])
suggested a symmetric form for the energyëmomentum
tensor of an electromagnetic éeld, TA

ab, in a medium. In a
comoving frame of reference (relative to which the medium is
at rest) one has5

�sA
i j � �sA

ji �
1

2
��sM

i j � �sM
ji � ; �gA � 1

c 2
�SP ; �1:19�

�SA � �SP ; �wA � �wM :

The first two results of paper [15] refer to the Abraham
tensor TA

ab. These results are discussed in Sections 2 and 3
below.

2. The Abraham form
of the energy±momentum tensor

The first major result of Ref. [15] as formulated in its Abstract
is that ``the Abraham energy±momentum tensor is actually
not a tensor because of its lack of relativistic invariance'' (the
italics are ours), but in the body of the paper, the only
argument given to support this statement reads (p. 693): ``as
direct calculation shows.'' Dropping the italics above makes
the statement understandable, but as our `direct calculation'
will show, it is wrong. If the italicized words are also taken
into consideration, the statement can only be considered to be
due to some kind of misconception: the invariance property
can only be spoken of with regard to a zero-rank tensor,
which is a scalar.

An explicitly covariant form for the Abraham tensorÐ
i.e., one valid in any inertial reference frameÐwas obtained
in 1913 by R Grammel [22]. It can be found in, for example,
Wolfgang Pauli's book [17, æ 35] and is used in this form in
current studies (see, for example, Ref. [23]). Importantly,
however, this form involves the dielectric and magnetic

4 Summation over all twice repeating indices a; b; g; . . . � 1; 2; 3; 4 is

assumed to be taken throughout.

5 The quantities referring to the comoving coordinate system are marked

with vincula.
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permeabilities and, hence, implies that the éelds involved
are suféciently weak (compared to the internal atomic éeld)
and that the medium is isotropic. This may create the
impression that the Minkowski tensor TM

ab is, in a sense,
preferable to its Abraham counterpart. We will show below
that, similarly to the Minkowski tensor (1.17), the Abraham
tensor can also be written without invoking constitutive
equations.

Tensor (1.19) in the comoving reference frame can be
presented in the form

�TA
ab �

1

2
� �TM

ab � �TM
ba � � �Aab ; �2:1�

where, using Eqns (1.15) and (1.18), one has

�Ai j � �A44 � 0 ; �Aj 4 � �A4 j � i

8p
��D� �Bÿ �E� �H� j

� 1

8p
� �Hjk

�Fk 4 ÿ �Fjk
�Hk 4� : �2:2�

Let us compose the quantity

Aab � LagLbn �Agn ; �2:3�

where Lab are the Lorentz transformation coefficients in
passing from the comoving frame to the laboratory frame:

ra � Lab �rb ; �ra � Lba rb ; LagLbg � LgaLgb � dab : �2:4�

By substituting �Aab from Eqn (2.2) into Eqn (2.3) we obtain,
after a little algebra, the following expression

Aab � 1

8p
�La4Lbj � LajLb4�� �Hjg �Fg4 ÿ �Fjg �Hg4� : �2:5�

Using Eqn (2.4) and noting the antisymmetry of the 4-tensors
Fab andHab reduces Eqn (2.5) to the form

Aab � 1

8p
Lg4
�
La4�HbnFng ÿ FbnHng�

� Lb4�HanFng ÿ FanHng�
�
: �2:6�

Lorentz transformations for the case in which the comoving
frame has velocity v directed arbitrarily with respect to the
coordinate axes take the form (see Ref. [17, æ 4])

r � �r� gv�t� gÿ 1

v 2
v�v�r� ;

�2:7�
t � g

�
�t� v�r

c 2

�
; g � 1���������������������

1ÿ v 2=c 2
p :

From this and Eqn (2.4), it follows that La4 can be expressed
in terms of the 4-velocity ua:

La4 � ÿiua ; ua � g
�
v

c
; i

�
: �2:8�

From Eqns (2.6) and (2.8) we find that

Aab � Aba � 1

8p
ug
�
ua�FbnHng ÿHbnFng�

� ub�FanHng ÿHanFng�
�
: �2:9�

Because ua is a 4-vector, and Fab and Hab are 4-tensors, it
follows that Aab defined by formula (2.9) is a symmetric
second-rank tensor, and hence so is

TA
ab �

1

2
�TM

ab � TM
ba � � Aab : �2:10�

In the comoving reference frame, �TA
ab is written out in the

form of Eqn (1.19) or (2.1).
Thus, the Abraham energy±momentum tensor TA

ab is
indeed a tensorÐexactly as is the case with its Minkowski
counterpart TM

ab Ðthat is, both transform as the product of
two 4-vectors under any Lorentz group transformation.

In an attempt to explain the result of Ref. [15] concerning
the Abraham tensor, the authors of a letter to Physics±
Uspekhi [24] (written as a response to our work [16]) present
some calculations which, they believe, show that ``the
Minkowski tensor in any inertial frame of reference depends
in like manner on field components in the same frame,
whereas the Abraham tensor does not'' (the fields they
speak of are E, H, D, and B). In actual fact, the Abraham
tensor TA

ab (2.10) has the same form in all inertial reference
frames [as has theMinkowski tensor (1.17)]. However, unlike
the Abraham tensor TA

ab (2.10), the Minkowski tensor TM
ab

(1.17) does not contain the velocity of the mediumÐas do
not, by the way, Maxwell's equations (1.5) or (1.16) for the
four fieldsE,H,D, andB. It is apparently the independence of
the Minkowski tensor (1.17) of the velocity of the medium
which, in Veselago's view, is the advantage of TM

ab over the
Abraham tensor TA

ab.
However, it can be argued, in line with Pauli [17, æ 33], that

Maxwell's equations and energyëmomentum tensors (of any
form) containing all four éelds E, H, D, and B ``are only a
hollow notion unless relations between E, H and D, B are
established,'' i.e., unless the constitutive equationsìwhich
do depend on the medium velocityìare introduced (see
Ref. [11, æ 76], [17, æ 33]). With this done, Maxwell's
equations (only for two éelds, E and H), the Minkowski
energyëmomentum tensor, and the Abraham tensor will be
dependent on the velocity of the medium.

The real difference between theMinkowski and Abraham
tensors is that TA

ab is symmetric, whereas TM
ab is not. The

symmetry of the energy±momentum tensor is related to the
conservation of the 4-tensor of the moment of momentum
(see Ref. [6, æ 32]), so that the lack of symmetry is a serious
drawback for the Minkowski tensor. Pauli's view [17, æ 35]
was that the macroscopic energyëmomentum tensor cannot
be asymmetric because it is obtained by averaging the
microscopic energyëmomentum tensor, which is symmetric,
and ``averaging does not detract from the symmetry of a
tensor.'' Notice also that in the relevant chapter of the
Electrodynamics of Continuous Media [11, æ 75] the Min-
kowski tensor (as an alternative to the Abraham tensor) is
not discussed at allì exactly because, we believe, it is
asymmetric.

As regards the calculations performed inRef. [24], we note
that they can be made correct by properly supplementing the
setting up of the problem. The authors write: ``Let us consider
two reference frames, K and K 0, where K 0 moves at the
velocity v with respect to K along the Ox-axis.'' In reality,
though, these two frames are not arbitrary: K is a comoving
reference frame (with respect to which the matter is at rest),
whereas K 0 is a laboratory frame, so that the velocity v has a
different sign than the velocity of matter.

1288 V P Makarov, A A Rukhadze Physics ±Uspekhi 54 (12)



3. Force acting on matter in an electromagnetic
field in the absence of dispersion

A second conclusion of paper [15] concerns equation (1.14)
[labelled (22) in Ref. [15] 6] for an isotropic nongyrotropic
medium at rest with nondispersive e and m in the absence of
external charges �r ext � 0, j ext � 0�. It reads as follows:
``Whereas the Minkowski tensor causes no problems when
using Eqn (22), determining the forces by means of the
Abraham tensor turns out to require ... that Eqn (22) be
modified by introducing the so-called Abraham force... .
Another reason why the Abraham tensor cannot be directly
used in Eqn (22) is that it is not relativistically invariant'' (the
italics are ours). The lack of meaning in the italicized sentence
has been noted in Section 2. The result itself, the author of
Ref. [15] argues, is proved in Ref. [25]Ðbut it is not. So our
task here will be to show by direct calculation what Eqn (1.14)
will actually yield if the Minkowski tensor TM

ab or the
Abraham tensor TA

ab is substituted into it.
We start by writing out Eqns (1.6), (1.7) for the case we

are considering here �r ext � 0, j ext � 0�, remembering in
addition that for a medium at rest 7 qe=qt � qm=qt � 0 and
D � eE, B � mH:

1

8p
q
qt
�eE 2 � mH 2� � divSP � 0 ; �3:1�

ÿ em
4pc

q
qt

E�H� r0M � 1

8p
�E 2He�H 2Hm� � 0 ; �3:2�

where now

sM
i j � sM

ji �
1

4p

�
�eEiEj � mHiHj� ÿ 1

2
�eE 2 � mH 2�di j

�
: �3:3�

If the energy±momentum tensor is taken in the Min-
kowski form, Eqn (1.17) or Eqn (1.18), then equations (1.13)
or equation (1.14) with j ext � 0, f ext � 0, v � 0, D � eE, and
B � mH reduce to equation (3.1) and to

fM � ÿ em
4pc

q
qt

E�H� r0M ; �3:4�

which, together with equation (3.2), defines the force in the
Minkowski approach (see Refs [25, 26]):

fM � ÿ 1

8p
�E 2He�H 2Hm� : �3:5�

Using the Abraham tensor (1.19) for Tab in equation
(1.13) or equation (1.14), we obtain the same equation (3.1)
and, instead of equation (3.4), the equation

fA � ÿ 1

4pc
q
qt

E�H� r0M ; �3:6�

which, with equation (3.2) taken into account, gives the force
in the Abraham approach (see Refs [25, 26]):

fA � ÿ 1

8p
�E 2He�H 2Hm� � emÿ 1

c 2
qSP

qt
� fM � fA ; �3:7�

differing from fM by an additional term, the so-called
Abraham force

fA � emÿ 1

4pc
q
qt

E�H : �3:8�

Thus, one and the same equation (1.14) produces both
equations for the force fM, formula (3.5), in the Minkowski
approach [when the field momentum density is taken to be
gM, formula (1.18)] and for the force fA, formula (3.7), in the
Abraham approach [when the field momentum density gA is
given by Eqn (1.19)]Ðand this happens without any
additions suggested in Ref. [15]. The difference between the
forces in these approaches is determined by the Abraham
force (3.8).

In the statical limit, the Abraham force (3.8) vanishes,
making the expressions for the force in both approaches
identical. These expressions, however, do not include the so-
called striction forces (see Ref. [11, ææ 15, 35]) obtained by
Helmholtz [27] (Helmholtz's paper [27] is cited in monograph
[28, p. 135]):

fH � ÿ 1

8p
�E 2He�H 2Hm� � f str ;

�3:9�
f str � 1

8p
Hr
�
qe
qr

E 2 � qm
qr

H 2

�
;

where r is the density of matter. The force f str is taken into
account (in the case of a medium at rest) by adding the tensor

s str
i j �

1

8p
di j r

�
qe
qr

E 2 � qm
qr

H 2

�
�3:10�

to TM
ab and TA

ab. So modified, the tensors are, as before, called
the Minkowski and Abraham energy±momentum tensors
[25]. In our view, if we neglect dispersion, the energy±
momentum tensor of an electromagnetic field in a medium
at rest should be more properly called the Helmholtz±
Abraham tensor, THA

ab . Its components can be defined in
accordance with Eqn (1.10) as follows (see Ref. [11, ææ 15, 35,
75]):

THA
i j � sH

i j ; THA
j 4 � THA

4 j � ÿ
i

c
SP
j ; �3:11�

THA
44 � w � 1

8p
�eE 2 � mH 2� ;

sH
i j � sH

ji �
e
4p

�
EiEj ÿ 1

2
E 2di j

�
� m
4p

�
HiHj ÿ 1

2
H 2di j

�
� s str

i j ; �3:12�

where s str
i j is the tensor (3.10). The expression for the force,

accordingly, has the form

f HA � f H � fA ; �3:13�

with f H and fA given by formulas (3.9) and (3.8), respectively.
The force acting on a unit volume of the medium in the

absence of a field is ÿHP0, where P0 is the pressure in the
medium, and its corresponding stress tensor is defined as
ÿP0di j (see Ref. [11, æ 15]). Therefore, the total stress tensor in
a medium in the presence of an electromagnetic éeld is

s tot
i j � ÿP0di j � sH

i j ; �3:14�

6 Similar to Ref. [25], we use an imaginary temporal variable; Ref. [15] uses

a real temporal variable ct, in which case one should take into account the

difference between the covariant, contravariant, and mixed tensor

components.
7 Because the discussion below is limited to media at rest, we will simplify

our work by removing the vincula from variables. For example, instead of
�E we will write simply E.
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and the total force acting on a unit volume of the medium is
given by

f tot � ÿHP0 � f HA ; �3:15�

where P0�r;T � is the pressure which would be found in the
medium in the absence of an electromagnetic field for the
given values of density and temperature (see Ref. [11, æ 15]).

It should be noted that, for any problem, the tensor si j
cannot enter the final answer unless together with �ÿP0di j�,
and the force f, unless together with �ÿHP0�, implying the
obvious fact that only the total stress tensor s tot

i j and the total
force f tot are physically meaningful.

4. Abraham±Brillouin±Pitaevskii
and Polevoi±Rytov tensors

Reference [15] then proceeds to discuss the energy±momen-
tum tensor of an electromagnetic field allowing for dispersive
dielectric and magnetic permeabilities. As is well known (see
Ref. [11, æ 80]), in this case one is considering a quasimono-
chromatic éeld which comprises a set of monochromatic
components with frequencies in a narrow interval do about
a certain average frequency o > 0:

E�r; t� � ReE0�r; t� exp �ÿiot� ; �4:1�
H�r; t� � ReH0�r; t� exp �ÿiot� ;

where E0�r; t� and H0�r; t� vary slowly in time compared to
exp �ÿiot�: if t0 � 1=�do� is the time scale of E0�r; t� and
H0�r; t�, then

1

ot0
5 1 : �4:2�

The field inductionsD�r; t� and B�r; t� can be written out in a
similar form:

D�r; t� � ReD0�r; t� exp �ÿiot� ; �4:3�
B�r; t� � ReB0�r; t� exp �ÿiot� :

The functions D0 and B0 are related to the functions E0 and
H0 by constitutive equations which can be written, correct to
first-order terms in the parameter (4.2), as (see Ref. [11], æ 102)

D0�r; t� � e�o�E0�r; t� � i
qe
qo

qE0

qt
;

�4:4�
B0�r; t� � m�o�H0�r; t� � i

qm
qo

qH0

qt
:

The energy density of an electromagnetic field in matter, i.e.,
the component T44 of the energy±momentum tensor [to a
zero-order approximation in parameter (4.2)], is found to be
given by the Brillouin relation (see Ref. [11, æ 80]) 8

wB � 1

8p

�
qoe
qo
hE 2i � qom

qo
hH 2i

�
� 1

16p

�
qoe
qo
jE2

0j �
qom
qo
jH2

0j
�
: �4:5�

Reference [15, p. 693] argues that ``...no question usually
arises as to whether all the other components of the energy±

momentum tensor should also be modified in some way in the
presence of dispersion.'' In reality, the question of the
remaining components of the energy±momentum tensor not
only has arisen but has long been answered (see Ref. [11, ææ 75,
80, 81]). We have the following relations

w � wB; S � hSPi ; g � gA� hS
Pi

c 2
; s tot

i j � ÿP0di j � sP
i j ;

sP
i j � sP

ji �
1

4p

�
e�o�hEiEji ÿ 1

2

�
eÿ r

qe
qr

�
hE 2idi j

�
� 1

4p

�
m�o�hHiHji ÿ 1

2

�
mÿ r

qm
qr

�
hH 2idi j

�
; �4:6�

the stress tensor sP
i j was obtained as far back as 1960 by

L P Pitaevskii [29]. What is remarkable about the Pitaevskii
tensor is that, unlike the energy wB in formula (4.5)Ðand
also to zero-order approximation in the parameter (4.2)Ð it
does not contain derivatives qe=qo and qm=qo and is obtained
from the stress tensor in the absence of dispersion (3.12) by
the simple formal replacement

e! e�o� ; EiEj ! hEiEji ;
�4:7�

m! m�o� ; HiHj ! hHiHji :

Therefore, the force fwhich the field exerts on themediumhas
as one of its terms the force fHA, (3.13), with the same
replacement (4.7) and, accordingly, with SP ! hSPi (see
Ref. [11, æ 81]). Accounting for dispersion leads to appearing
a certain additional force which was studied for a nonmag-
netic medium �m � 1� byWashimi andKarpman [30] (see also
Refs [11, æ 81] and by Barash and Karpman [31]). The force
related to the dispersion e�o� was found in Ref. [31] to be
given by

f BKd � fWK
d � 1

8p
qe
qo

Im

�
qE �0
qt

H
�
E0 ; �4:8�

where the first term is identical to the expression

fWK
d � o

8pc
qe
qo

Re

�
qE �0
qt
�H0

�
�4:9�

obtained earlier in Ref. [30].
Results presented in our recently published paper [32]

support the validity of using the Abraham±Brillouin±Pitaev-
skii form (4.5), (4.6) for the energy±momentum tensor.
Reference [32] addresses two problems: the quantum-
mechanical problem of a force acting on an atom in the
quasi-monochromatic field (4.1), and the classical (i.e.,
Newtonian) problem of a force acting on an isotropic
harmonic oscillator in the same field. In both problems, the
force is taken to be

F�R; t� � a
4
HjE0j2 � a

2c

q
qt

Re �E �0 �H0�

� 1

2

da
do

�
o
c

Re

�
qE �0
qt
�H0

�
� Im

�
qE �0
qt

H
�
E0

�
; �4:10�

with a�o� being the electric polarizability of the atom (or
oscillator). It can be argued that expression (4.10) defines the
field period-averaged force acting on any nonrelativistic
particle with negligible magnetic polarizability b�o�.8 The angle brackets denote averaging over the period of the field.
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The dielectric and magnetic permeabilities of a rarefied
gas of particles are presented in the form (see Ref. [11, æ 15])

e�o� � 1� 4pn a�o� ; m�o� � 1� 4pn b�o� ; �4:11�
where n is the number of particles per unit volume. Hence, the
force acting on a unit volume of gas of uniform �Hn � 0�
number density can be represented as the sum of the
Helmholtz±Abraham force (3.13) [with the replacement
(4.7)] and the Barash±Karpman force (4.8).

The author of Ref. [15] does not use the tensor (4.6) and
suggests instead ``the Polevoi±Rytov modification of the
energy±momentum tensor'' [33]. In Ref. [33], a wave packet
in a uniform medium at rest �qe=qt � qm=qt � 0, He �
Hm � 0� is approximated by a quasimonochromatic plane
wave with functions E0�r; t� and H0�r; t� in formulas (4.1)
having the form

E0�r; t� � E00�r; t� exp �ikr� ; �4:12�
H0�r; t� � H00�r; t� exp �ikr� ;

where the coordinate functions E00�r; t� and H00�r; t� slowly
vary compared to exp �ikr�: if l0 is the length scale of E00�r; t�
andH00�r; t�, then the parameter

1

kl0
� c

ol0
� l

l0
5 1 ; �4:13�

where l � 1=k is the wavelength.
To the zero-order approximation in the small parameters

(4.2) and (4.13), Maxwell's equations (1.5), together with the
constitutive equations (4.4), determine the relation between
the field amplitudes and give the dispersion relation (see
Ref. [11, æ 83]):

H00 � c

om�o� k� E00 ; E00 � ÿ c

oe�o� k�H00 ; �4:14�

k2 � o2

c 2
e�o� m�o� : �4:15�

From relation (4.15) it follows that for real e and m, the vector
k can be real [and hence the wave � exp �ikr� can be
undamped] only if, for a given frequency, either e�o� > 0
and m�o� > 0 or e�o� < 0 and m�o� < 0 [4, 5, 9]. If the wave is
undamped, relations (4.14) become

H00 � �
����
e
m

r
l� E00 ; E00 � �

����
m
e

r
l�H00 ;

�4:16�
l � k

k
; k � no

c
; n � �����

em
p

;

where, as before (see Section 1), the upper (lower) sign refers
to the case e; m > 0 �e; m < 0�.

For the energy (4.5), we obtain (see Ref. [11, æ 83]) the
relations

wB � 1

16pmo
qo2em
qo

jE00j2 � 1

16peo
qo2em
qo

jH00j2 ; �4:17�

and for the Umov±Poynting vector we find

hSPi � c

8p
ReE �00 �H00 � � c

8p

����
e
m

r
jE00j2 l

� � c

8p

����
m
e

r
jH00j2 l : �4:18�

The expression for the wave group velocity follows from
Eqn (4.15) as

vgr� qo
qk
� c

q�no�=qo l � 2oem
q�o2em�=qo vph� 1

wB
hSPi ; �4:19�

where vph is the phase velocity of the wave.
Because wB 5 0 (see Ref. [11, æ 80]), it follows from

formula (4.17) that for all frequencies �o > 0� one has
1

e
qo2em
qo

> 0 : �4:20�

Formula (4.19), together with inequality (4.20), yields
conditions (1.4). Notice that the dielectric and magnetic
permeabilities can assume negative values only in the
presence of dispersion. Indeed, neglecting dispersion,
inequality (4.20) reduces to m > 0 (and e > 0 because em > 0).

The Polevoi±Rytov tensor [33] is written out as

TPR
ab � ÿw

c

o

��������������
1ÿ v

2
gr

c 2

s
kaugrb ; �4:21�

where ka � �k; io=c� is the 4-wave vector, ugra is the 4-group
velocity of the wave, and w � wB is the energy density (4.17).
Using Eqn (1.10) and noting that hSPi � wBvgr [see expres-
sion (4.19)], the tensor (4.21) can be written in the form

sPR
i j � ÿ

1

o
kihSP

j i � ÿgPR
i vgr j ;

�4:22�
gPR � 1

o
wBk ; SPR � hSPi � wBvgr ; wPR � wB

(as was also done in Ref. [33]). These results were earlier
given in this form by S M Rytov [13] who did not introduce
the 4-group velocity of the wave, though.

The authors of review [33] believed that their results (4.22)
are a direct consequence of Maxwell's equations. The only
equations that rigorously follow from Maxwell's equations
for quantities quadratic in the field intensity are equations
(1.6) and (1.7). In these we have to set (as in Ref. [33])

j ext � 0 ; f ext � 0 ; v � 0 ; r ext � 0 ;

qe
qt
� qm

qt
� 0 ; He � Hm � 0 ;

and to represent fields in the form (4.1), (4.3), (4.4), and (4.12).
On averaging over the field period, Eqn (1.6) becomes (see
Ref. [11, æ 80])

qwB

qt
� div hSPi � 0 : �4:23�

Because the field does not perform work (the volume under
consideration is at rest and contains no external charges), it
follows uniquely [see Eqn (1.13)] that wB has the meaning of
the energy density, and hSPi of the energy flux density. Hence,
the energy density and the energy flux density in the Polevoi±
Rytov tensor (4.22) are determined correctly in the sense of
being identical to the corresponding expressions in the tensor
(4.6).

We now proceed by averaging equation (1.7) over the field
period to obtain

hr0Mi � 1

4pc
q
qt
hD� Bi � fd ; �4:24�
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where

fdi � 1

8p

��
D

qE
qri
ÿ E

qD
qri

�
�
�
B

qH
qri
ÿH

qB
qri

�������
He�Hm�0

;

�4:25�

with the subscript `d' indicating that fd 6� 0 only if dispersion
is taken into account.

Following averaging, the tensor sM
i j [see equation (1.7)] is

expressed in terms of the field amplitudes E00 and H00 and
their derivatives qE00=qt and qH00=qt. To the zero-order
approximation in the parameter (4.2), one finds

hsM
i j i �

1

8p
Re

�
e�o�

�
E �00iE00 j ÿ 1

2
jE00j2di j

�
� m�o�

�
H �00iH00 j ÿ 1

2
jH00j2di j

��
: �4:26�

We proceed by expressing H00 in formula (4.26) in terms of
E00 [according to Eqn (4.16)] and subsequently using the well-
known relation (see Ref. [6, æ 6]) between the product of two
antisymmetric third-rank unit tensors ei jk and the second-
rank unit tensor di j. A straightforward calculation yields

hsM
i j i � ÿ

1

8p
e�o�jE00j2lilj : �4:27�

Making use of formulas (4.18), (4.16), and (4.22), the equality
(4.27) can also be written out in the form

hsM
i j i � ÿ

1

o
kihSP

j i � sPR
i j ; �4:28�

i.e., the Polevoi±Rytov stress tensor is identical to the wave
period-averaged Minkowski tensor (1.7).

To the same approximation, one derives the relations

1

4pc
hD� Bi � 1

8pc
e�o� m�o�ReE �00 �H00 � 1

8po
kjE00j2 ;
�4:29�

fd� 1

16p
k

�
qe
qo

qjE00j2
qt

� qm
qo

qjH00j2
qt

�
� 1

16pm
qem
qo

k
qjE00j2

qt
:

�4:30�

Using formulas (4.29), (4.30), (4.17), and (4.22), the right-
hand side of the equality (4.24) can be written as

1

4pc
q
qt
hD� Bi � fd � 1

o
qwB

qt
k � qgPR

qt
: �4:31�

As follows from Eqns (4.28) and (4.31), equality (4.24) takes
the form

r0PR � qgPR

qt
: �4:32�

Notice that neglecting dispersion yields vgr � vph, gPR �
hD� Bi=�4pc�, according to Eqn (4.22), i.e., gPR is identical
to the fieldmomentumdensity gM in theMinkowski form [see
Eqn (1.18)]. It should also be pointed out that Eqn (4.32) is
not independent but follows from equation (4.23) and the
definitions of sPR

i j and gPR in Eqn (4.22). Indeed, using
initially the first equality in Eqn (4.22), then equation (4.23),
and finally the definition of gPR in Eqn (4.22), we arrive at
Eqn (4.32).

Thus, equations (4.23) and (4.32) are correct because they
indeed directly follow from Maxwell's equations and the
constitutive equations for a medium at rest. What remains
to be figured out is the meaning of the tensor sPR

i j and vector
gPR. As noted in review [33], equations (4.23) and (4.32) or the
equations qTPR

ab =qrb � 0 [labelled (38) in Ref. (33)] ``take the
form of the continuity equations in which it is natural to
regard the tensor TPR

ab , which is bilinear in the field, as the
energy±momentum tensor of the system (field�medium).''
Choosing sPR

i j and gPR as a stress tensor and a wave
momentum density tensor implies, on account of Eqns (1.13)
and (4.32), that the force the wave exerts on the medium is
zero, f � 0. But in a fluid at rest, the total force [see Eqn (3.15)]
is f tot � ÿHP0 � f � 0, i.e., the force f has to compensate for
the force ÿHP0. Equation (4.32) can also be written in the
form [see Eqn (4.31)]

r0PR � qgM

qt
� fd : �4:33�

Notice that, as before, sPR
i j `can naturally be considered' as a

stress tensor, but what can equally naturally be considered as
a momentum density is the Minkowski form of the field
momentum density [see Eqn (1.18)], in which case f � fd.
Taking into consideration that q�gM ÿ gA�=qt � fA, where
gA is the Abraham form (4.6) of the field momentum density
and fA is the Abraham force [see Eqn (3.8)], equation (4.32) or
(4.33) can also be written out as

r0PR � qgA

qt
� �fA � fd� : �4:34�

We could then suppose that sPR
i j , gA, and fA � fd are,

respectively, the stress tensor, the wave momentum density,
and the force the wave exerts on the medium. Finally, adding
to both sides of equation (4.32) the striction force f str (3.9)
averaged over the wave period, and bearing in mind that
according to Eqns (4.6), (4.26), and (4.28) the stress tensor is
given by

sP
i j � sPR

i j � hs str
i j i ; �4:35�

we arrive at the equation

r0P � qgA

qt
� �fHA � fd� ; �4:36�

where fHA [see formula (3.13)] is the sum of the Abraham
force (3.8) and the Helmholtz force (3.9), both wave period-
averaged, the latter of which in this case �He � Hm � 0�
reduces to just the striction force f str. Polevoi±Rytov's
equations (4.32) are correct, but so are equations (4.33),
(4.34), and (4.36), implying that Maxwell's equations and
constitutive equations for a medium at rest are insufficient
to determine either the stress tensor or the force acting on
the medium (see, for example, review [25]) and that it is also
necessary to consider the displacement of the medium and
its associated change in the energy (if the process is
adiabatic) or in the free energy (if the process is isother-
mal). It is in this way that the Helmholtz tensor and
Pitaevskii tensor are obtained (see Refs [11, ææ 15, 75, 81]
and [29]).

Review article [33] does not compare the tensor TPR
ab it

introducesÐEqns (4.21) and (4.22) hereÐwith the energy±
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momentum tensor (4.6), nor indeed does it mention Ref. [29]
(or Ref. [25], either). It was already noted that the energy
density wPR and the energy flux density SPR in the Polevoi±
Rytov tensor (4.22) are identical to the counterpart expres-
sions in tensor (4.6), and that the tensor sPR

i j , Eqn (4.22),
unlike the stress tensor sP

i j , does not contain the striction force
tensor [see formula (4.35)]. The vector gPR in Eqn (4.22) also
differs from the field momentum density in Eqn (4.6):

gPR � �gAe�o� m�o� vph
vgr

: �4:37�

We can say here nothing else about the vector gPR. As
regards the tensor sPR

i j , its physical meaning will be clarified
in Section 5, where we will show that sPR

i j is identical to the
field-dependent part of the total stress tensor s tot

i j �
sP
i j ÿ P0di j (4.6) in a mechanically and thermally equili-

brium medium, provided a single quasimonochromatic
plane wave propagates in the medium. We recall that P0 is
the pressure which would exist in the medium in the absence
of a field at given values of its density and temperature (i.e.,
at those found in the presence of a field) (see Ref. [11, æ 15]).
Clearly, Maxwell's equations and the constitutive equations
alone do not imply this conclusion, as they do not contain
the pressure P0.

5. Light pressure on solids

Consider a solid completely immersed in liquidmedium in the
presence of a quasimonochromatic electromagnetic field
(4.1); we take into consideration the force of gravity and
assume that the body is kept in the fluid by forces that are at
rest and external with respect to the fluid (they can, for
example, be related to threads by which the solid hangs).
The force P acting on a unit area of the surface of a solid at
rest is given by themomentum flux density or the stress tensor
(see Ref. [11, æ 16]) as

Pi � ÿs tot
i j Nj ; �5:1�

where N is the inward unit normal to the surface of the body,
and s tot

i j is the Pitaevskii stress tensor (4.6).
Reference [11, ææ 16, 35] presents formulas for the total

force and total moment of the force which static éelds in a
uniform-density uniform-temperature êuid at rest exert on a
solid. These formulas comprise

~Pi � ÿ~si jNj ;
�5:2�

~si j � 1

4p

�
e
�
EiEj ÿ 1

2
E 2di j

�
� m
�
HiHj ÿ 1

2
H 2di j

��
as a force acting on a unit surface. In Section 4 we noted
that stress tensor (4.6) is obtained formally from the
corresponding tensor for a static field, Eqns (3.12), (3.10),
by the substitution (4.7). It can therefore be conjectured
that expressions for the force and for the moment of force
in an alternating field (and with allowance for dispersion)
are also identical to their static field counterparts, provided
the same substitution (4.7) is made in ~si j, Eqn (5.2). This
conjecture 9 turns out to be true under very general
assumptions.

Assuming, as in Ref. [11, æ 16], that the êuid resides in
thermal equilibrium, we have

He �
�
qe
qr

�
T

Hr�
�
qe
qT

�
r
HT �

�
qe
qr

�
T

Hr ;
�5:3�

Hm �
�
qm
qr

�
T

Hr :

Expression (3.9) for the force then becomes

f H � r
8p

H
�
qe
qr
hE 2i � qm

qr
hH 2i

�
: �5:4�

We noted in Section 4 that the expression for the force fd
due to the inclusion of dispersion has so far been obtained
only for media with m � 1 (see Refs [11, æ 81], [30ë32]) or,
if for an arbitrary medium, then for a single quasimono-
chromatic plane wave [see Eqn (4.30)]. In can be argued
that in the general case the force fd [as well as the
Abraham force fA (3.8)] to an order of magnitude equals
jE0j2=�ct0�. If the éeld (4.1) is such that ct0 4 l0, where l0
is the distance characterizing functions jE0j and jH0j, then
the Abraham force fA and the force fd can be neglected
compared with fH, Eqn (5.4) [see expressions (3.13) and
(3.15)], giving

f tot � ÿHP0 � fH � rg ; �5:5�

where the force of gravity was also included.
We further assume as in Ref. [11, ææ 15, 16] that the êuid in

an electromagnetic éeld is also inmechanical equilibrium, i.e.,
f tot � 0. From Eqns (5.5) and (5.4) we then obtain the
equation for P0:

HP0 � rH
�
gr� 1

8p

�
qe
qr
hE 2i � qm

qr
hH 2i

��
: �5:6�

For the case of a noncompressible fluid �Hr � 0�, the last
equation is easily solved (see Ref. [11, æ 15]) to give

P0�r; t� � p�r� � r
8p

��
qe
qr

�
T

hE 2i �
�
qm
qr

�
T

hH 2i
�
; �5:7�

p�r� � p0 � rgr ; �5:8�

where p�r� is the pressure in the fluid in the absence of an
electromagnetic field, and p0 � p�0�.

For another type of medium, a sufficiently rarefied gas,
the dielectric and magnetic permeabilities are given by
formulas (4.11). Using the equation of state P0 � nT
(Clapeyron's equation with the Boltzmann constant set to
1), equation (5.6) with e�o� and m�o� from Eqn (4.11) reduces
to

THn � nH
�
mgr� 1

2

�
a�o�hE 2i � b�o�hH 2i�� ; �5:9�

where m is the molecular mass. It is seen that the gas density
varies quadratically with the field intensity. To stay within
linear electrodynamics �D � E, B � H�, Eqn (4.11) and,
hence, terms with hE 2i and hH 2i in Eqn (5.9), should be
modified by replacing the density n by its zero-field counter-
part n0 (see Ref. [11, æ 15]), which relates to the zero-éeld9 As expressed by L P Pitaevskii.
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pressure p through p � n0T. This gives

n�r; t� � n0�r�
�
1� a�o�hE 2i � b�o�hH 2i

2T

�
;

�5:10�
n0�r� � n0�0� exp mgr

T
:

The pressure P0 � nT is found to be given by the same
expression (5.7) obtained for an incompressible liquid
medium, but with formula (5.8) for the zero-field pressure
replaced by the expression

p�r� � n0T � p0 exp
mgr

T
; p0 � n0�0�T : �5:11�

By substituting P0 from formula (5.7) into s tot
i j , Eqn (4.6),

we obtain the stress tensor in the form

s tot
i j � ÿp�r�di j � ~si j ;

�5:12�
~si j � 1

4p

�
e�o�

�
hEiEji ÿ 1

2
hE 2idi j

�
� m�o�

�
hHiHji ÿ 1

2
hH 2idi j

��
;

with tensor ~si j really obtained from tensor (5.2) by the
replacement (4.7). The first term in s tot

i j , Eqn (5.12), con-
tributes an amount p�r�Ni to the force Pi (5.1), which, after
integrating over the entire surface of the solid, leads, as it
should, to the Archimedes force �ÿgM�, where M ��
V r0�r� dV is the mass of fluid (gas) in the volume of the
solid. Notice that the tensor ~si j which is identical to the tensor
hsM

i j iÐthe Minkowski tensor (1.7) averaged over the field
period (4.1)Ðcan be obtained from the Pitaevskii tensor sP

i j ,
Eqn (4.6), by dropping the striction terms hs str

i j i (3.10):
~si j � hsM

i j i. From this and formula (4.28) it follows that, for
a single quasimonochromatic plane wave, ~si j is identical to
the Polevoi±Rytov tensor sPR

i j [see Eqn (4.22)]. This result was
presented at the end of Section 4.

As the simplest example, consider the case where a linearly
polarized electromagnetic wave impinges normally on the
planar surface of a solid.We choose the coordinate axes in the
same way as in Section 1 (the z-axis is along the inward
normal to the surface of the body), then the pressure [see
Eqn (5.2)] is defined as

~Pi � ÿ~siz : �5:13�

The fields E and H in Eqn (5.12) should, of course, be
understood as the strengths of the total field in the fluid near
the wall (for the incident and the reflectedwaves). For the unit
vectors l0 and l1 of the incident and reflected waves, we have
the relations [see Eqns (4.16) and (4.18)] l0i � �diz, l1i � �diz,
and for the amplitudes of incident and reflected waves one
finds

E
�0�
00i � E

�0�
00 dix ; H

�0�
00i �

����
e
m

r
E
�0�
00 diy ; �5:14�

E
�1�
00i � rE

�0�
00 dix ; H

�1�
00i � ÿ

����
e
m

r
rE
�0�
00 diy ;

where r is the amplitude reflective index. Substituting these
expressions into Eqns (5.12) and (5.13), we obtain after simple

algebra

~Pi � ~Pdiz ; ~P � e�o�
8p
�1� R���E �0�00

��2 ; �5:15�

where R � jrj2 is the power reflective index.
Pressure (5.15) can be given another form by introducing

the energy flux density hSP
z i [see Eqn (4.18)] and the incident

wave phase velocity vph and then the corresponding compo-
nent of the Polevoi±Rytov tensor (4.22), giving

~P � ��1� R� hS
P
z i

vph
� ÿ�1� R�sPR

zz : �5:16�

From formulas (5.15) and (5.16) it is seen that the pressure ~P
has its sign determined by the sign of e�o�: if e�o� > 0 [and
m�o� > 0], i.e., the wave group velocity is positive, then ~P > 0
(the pressure on the body). If e�o� < 0 [and m�o� < 0], i.e., the
wave group velocity is negative, then ~P < 0 (attraction). As
noted in Section 1, this feature of a negative group velocity
wave was first pointed out by Veselago [12].

Reference [12] considers a wave incident normally on an
ideally reflecting body andmakes the assumptions that (1) the
force the incident and reflected wave exert on the body is
codirectional with the incident wave momentum, and (2) the
momentum (or more precisely, the momentum density) of the
wave is equal to the vector gPR in tensor (4.22). In tensor
(4.22) we always have gPR ""k, so that if the group velocity is
positive, then gPR ""SPR and we deal with `light pressure',
and if the group velocity is negative, then gPR "#SPR, and the
`light pressure' is replaced by `light attraction'.10 Both starting
assumptions are wrong: the force is determined not by the
momentum but by its change rate, i.e., themomentum flux (or
the opposite-in-sign stress tensor), and the field momentum
density is not gPR but rather gA [see Eqns (4.6) and (4.37)].
Still, Ref. [12] predicts a correct sign for the force [see
Eqn (5.16) with R � 1].

In his analysis inRef. [15] of a wave incident normally on a
body that completely absorbs radiation, Veselago lifts both
his earlier [12] assumptions and admits that the force is
determined by the momentum flux density rather than by
the momentum itself. The momentum flux density of a wave
(now only one, incident) is written by Veselago as a ratio of
the energy density flux to the phase velocity of the waveÐ
without any justification whatsoever and seemingly ignoring
the fact that this is nothing other than the component �ÿsPR

zz �
of the Polevoi±Rytov tensor [see our formula (5.16)], which
Veselago discusses at the end of Ref. [15].

6. Conclusions

The key points of the above discussion can be summarized
generally as follows: most of the results of Ref. [15] concern-
ing the energy±momentum tensor of an electromagnetic field
in a medium are wrong.

(1) Contrary to what is stated in Ref. [15], the Abraham
form of the energy±momentum tensor is indeed a tensor in the
sense of being Lorentz transformed as the product of two

10 The authors of Ref. [33] exclude this case because, as they write with

reference to the first edition (1957) of the Electrodynamics of Continuous

Media (see also Ref. [11, æ 84]), the group velocity of a wave ``in an
isotropic medium is directed along the wave vector'' [33, p. 552]. The
overlooked point here is that Ref. [11] proves this result only for
nonmagnetic �m � 1�media.
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4-vectors. The Minkowski tensor, unlike the Abraham
tensor, does not depend on the velocity of the mediumÐ
but only until constitutive equations are introduced; after
that, the Minkowski tensor also becomes velocity-dependent.
On the other hand, the asymmetric character of the
Minkowski tensor should be considered as its major dis-
advantage. The author of the recent Physics±Uspekhi paper
[34], who also discusses the energy±momentum tensor of an
electromagnetic field in a medium, claims that he ``proved the
necessity of using the Minkowski form for the momentum
density in a medium.'' He writes [34, p. 637]: ``A recent
publication [Ref. [15]ÐTranslator's note] demonstrated the
relativistic covariance of the Minkowski energy±momentum
tensor, thus providing further evidence in its favor.'' As
regards Ref. [34], two comments suffice here: first, the
Minkowski tensor is written by Minkowski himself in a
form [see Eqn (1.17)] which makes the covariance of the
tensor obvious (in the literal sense of this word), and, second,
the Abraham tensor is also written in the explicitly covariant
form [see Eqn (2.10)].

(2) Expressions for the force are obtained in both
Minkowski's and Abraham's approaches from one and the
same equation equivalent to the momentum conservation
law. Because the tensors differ from each other, the
corresponding expressions for the force also differ, specifi-
cally by a term commonly referred to as the Abraham force
[11, æ 75] [see Eqn (3.8)]. The Abraham tensor, like the
Minkowski tensor, does not include striction forces; the
correct energyëmomentum tensor of an electromagnetic
éeld in an isotropic medium at rest without allowance for
dispersion is the HelmholtzëAbraham tensor, Eqns (3.10)ë
(3.15) [11, ææ 15, 35, 75].

(3) The energy±momentum tensor Tab of a (quasimono-
chromatic) electromagnetic field in a medium at rest with
allowance for dispersionÐwhich is left undiscussed in
Ref. [15]Ð is something already known for half a century:
its component T44 is the energy w

B determined by Brillouin's
formula [11, æ 80], the componentsT4 j � Tj 4 are proportional
to the wave period-averaged UmovëPoynting vector hSP

j i,
and the components Ti j form the Pitaevskii tensor sP

i j [11,
æ 81], [29] [see Eqn (4.6)]. The force due to dispersion, with
which the quasimonochromatic plane wave acts on a volume
unit of matter (with m � 1), is determined by Eqn (4.9)
obtained by Washimi and Karpman in Ref. [30] (see also
Ref. [11, æ 81]). Neglecting dispersion, tensor (4.6) reduces to
tensor (3.11), (3.12).

(4) Tensor sPR
i j , Eqn (4.22), is the field-dependent part of

the Pitaevskii form of the total stress tensor s tot
i j , Eqn (4.6), in

a medium which is in thermal and mechanical equilibrium
�T � const, f tot � 0�, and in which a quasimonochromatic
plane wave propagates.

(5) A quasimonochromatic plane wave incident normally
on a solid body at rest acts on the body with a force (per unit
area) which is expressed in terms of the stress tensor sPR

i j [see
Eqn (5.16)] for any reflective index (not only in the absence of
reflection, as in Ref. [15]).

Finally, the question we cannot avoid is whether negative
group velocity waves can exist at all (as before, isotropic
nongyrotropic media are assumed). As before (see Ref. [7]),
we believe that fulfilling Sivukhin±Pafomov's conditions (1.4)
for the negative group velocity of a wave ``would be an almost
improbable random event'' for the following simple reason.
The frequency ranges for which e�o� < 0 are near those
eigenfrequencies o0 of the substance whose corresponding

electric dipole transitions, witho > o0 (see Ref. [11, æ 84]), do
not contribute to m�o�, so that for frequencies for which
e�o� < 0, themagnetic permeability m�o� � 1. An interesting,
though not entirely uncontroversial, study [8] makes an even
stronger statement: ``In the more than 50 years that have
passed [since Sivukhin's paper [9]ìTranslator's note] the
situation has not changed and, I am sure, will never change.
No continuous homogeneousmedia with e < 0 and m < 0 can
exist in the optical spectrum range.'' It should be kept inmind,
however, that Ref. [8] (following Refs [12, 35]) considers that
``in a homogeneous isotropic medium without field absorp-
tion and amplification, the only reason for opposite direc-
tions of k and hSPi for uniform waves can be negative values
of e and m.'' Actually, though, the Sivukhin±Pafomov
conditions (1.4) are only sufficient but not necessary for a
wave to have a negative group velocity [7, 36, 37]. The
dielectric and magnetic permeabilities of an isotropic non-
gyrotropic medium are, strictly speaking, functions not only
of the frequency but also of the absolute magnitude of the
wave vector (see Ref. [11, IÁ 103], [38, IÁ 2]): e � e�o; k�,
m � m�o; k�. Even if the dependence of e on k can be
neglected in a large frequency range, at frequencies o
sufficiently close to the eigenfrequencies o0 of the medium
(which are exactly the ones we are interesting in, in this
particular case), this dependence becomes significant and
has to be taken into account. The conditions determining
the sign of the group velocity of the wave were given in
Ref. [36]; in terms of the dielectric and magnetic permeabil-
ities they are written out as

e
�
o2

c 2
qem
qk 2
ÿ 1

�
< 0) vgr ""vph ;

�6:1�
e
�
o2

c 2
qem
qk 2
ÿ 1

�
> 0) vgr "#vph ;

where, needless to say, the condition em > 0 should also be
satisfied. Neglecting the dependences of e and m on k,
conditions (6.1) reduce, as they should, to conditions (1.4).
But, according to Eqn (6.1), a wave can also have a negative
group velocity at positive e and m. In particular, setting m � 1
(and hence, of course, e > 0), as is usual for the optical range,
the condition for the group velocity to be negative becomes

o2

c 2
qe
qk 2

> 1 : �6:2�

Notice that condition (6.2) follows directly from the well-
known expression

hSPi � c 2

8po
jE00j2

�
1ÿ o2

c 2
qe
qk 2

�
k �6:3�

for the energy flux density of a quasimonochromatic plane
transverse wave (see Ref. [11, æ 103]). It is shown in Ref. [36]
that condition (6.2) can hold for a monatomic gas in
suféciently narrow ranges of frequency o adjacent on the
long-wavelength side to the frequencies o0 of electric dipole
transitions.

This paper owes much to many discussions with and
helpful comments from L P Pitaevskii.
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