
Abstract. This review presents a systematic summary of the
information collected to date on the instability and reconstruc-
tion of the flat charged surface of a cryogenic liquid under
various conditions in terms of unit cell geometry, external
electrostatics, filling degree, etc. Prospects for future research
are explored.

1. Introduction

The problem of the instability of a charged liquid surface
arose in the 1930s in connection with the discovery of the
decay of heavy atomic nuclei. Frenkel [1, 2] and, indepen-
dently, Bohr and Wheeler [3] were the first to offer an
acceptable explanation of this fundamental phenomenon
based on the liquid-drop model. An earlier and less-known
variant of the problem concerning the oscillation spectrum of
a flat charged liquid surface (Frenkel [4, 5] and Tonks [6])
attracted in essence significant attention only in the 1970s,
when extensive studies of the properties of various low-
dimensional charged structures began. One of them, a two-
dimensional (2D) charged system at the surface of liquid
dielectrics (helium, hydrogen, etc.), is to a large extent
controlled by the Frenkel±Tonks (FT) effect [4±6], since the
instability predicted by these authors places an upper bound
on charged particle density at the surface of a liquid dielectric.
By that time, research in this field had extended to encompass
natural generalization of the FT theory for interfaces between
two liquid dielectrics [7, 8] or magnetic substances [9]. In the
latter case, the point in question is simulation of a liquid
magnet with a suspension of solid magnetic particles.

A characteristic feature of FT phenomenon distinguishing
it from other known decays (Rayleigh instability of a

cylindrical jet [10], Karman trace behind a moving cylinder
(sphere) [11], Taylor vortex instability of a viscous liquid layer
between two rotating coaxial cylinders [12], instability of the
interface between two liquid media moving relative to each
other [12], Rayleigh±Benard instability [13], etc.) is the
possibility of stopping the decay and forming a new
metastable state with a finite corrugation amplitude (i.e.,
reconstruction of the charged liquid surface).

At different times, the phenomenon of liquid surface
reconstruction in external fields has attracted the attention
of many researchers [14±27], but the general picture is
beginning to emerge only now. In this process, only the
initial part of the instability decay has a universal nature (in
all cases, the frequency squared of the dispersion law for small
oscillations crosses zero and becomes negative). As regards
the details of the new metastable corrugated state, it lacks a
universal development of events. The chronologically first
scenario proposed by Zaitsev and Shliomis [14] for the
interface between liquid dielectrics (magnetic substances) in
an external fieldmay be arbitrarily regarded as homogeneous,
implying preservation of homogeneity of the boundary
conditions along the bent surface assumed to be laterally
infinite. The majority of subsequent publications [17±27]
dealing with details of the homogeneous scenario of liquid
surface reconstruction aimed to reduce the problem in
question to one of Hamiltonian dynamics, take account of
the specificity of concrete systems, and describe the dynamic
properties of the appearing lattices in terms of embraced
ideology [14].

Clearly, the reconstruction of a charged helium surface
under conditions of total charge conservation at the vapor±
liquid interface proceeds in a different way. The equipotenti-
ality of the boundary becomes violated (the charges draw
together in isolated dimples) with an increase in the degree of
corrugation; it affects both the details of the theory being
constructed and the corollaries observed. Specifically, aper-
iodic reconstruction [28] lacking in homogeneous scenarios
becomes possible.

The reconstruction of thin helium films, both neutral and
charged ones, also proceeds on a qualitatively different basis
than that in Ref. [14]. Here, one more important detail
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emerges that permits us to regard the reconstruction problem
as an inhomogeneous one because the dispersion law is
violated in the first place at arbitrarily small wave numbers
rather than at finite ones (as in the problem for a liquid half-
space). Therefore, the reconstruction problem makes sense
only for systems with restricted lateral dimensions.

In light of the aforesaid, it appears natural to discuss the
current state of the inhomogeneous reconstruction problem
with reference to its homogeneous counterpart, briefly
presented in review [16]. The case at hand is nonlinear
phenomena occurring on a charged helium (hydrogen) sur-
face. The presence of charges gives, apart from ideological
novelty, the possibility of manipulating a wide range of
external impacts. Moreover, exploration of the (helium�
charges) system is fairly advanced as regards comprehension
of nonlinear effects.

It is worthy of special note that external parameters of the
problem include various geometric factors, such as the
system's dimensions or the presence of a substrate. Never-
theless, the discussion of such nuances does not involve
successfully developing lines of research concerned with
stability of explicitly nonplanar structures, such as cylindri-
cal and spherical liquid surfaces [1±3, 10, 29±37], i.e.,
problems arising in research on charged nucleus stability,
liquid atomization, raindrop behavior in thunderstorm fields,
the rapidly progressing spectroscopy of isolated charged
nanodroplets, etc. Consideration of this wide area of
research is beyond the scope of the present paper.

2. The charged liquid surface

2.1 Problem geometry
In starting to study dynamic phenomena on a charged helium
surface, we shall first discuss the physical causes responsible
for the formation of such states. Free electrons have a
negative affinity for liquid helium. In other words, the energy
V0 of electron embedding into liquid helium is positive and,
what is important, much higher than characteristic helium
temperatures. This means that a free electron with a kinetic
energy below V0 driven to the liquid helium surface cannot
embed into depths of liquid and must remain in the gaseous
phase. On the other hand, an electron in a vacuum near the
dielectric boundary is attracted to it under the action of image
forces, resulting in the appearance of a one-dimensional
potential well in which the electron may localize at suffi-
ciently low temperatures. A distinctive feature of bound
electron states over helium is a relatively low binding energy
due to the weak polarizability of liquid helium. As a result,
electrons are `suspended' at a macroscopic distance (some
10ÿ6 cm) above the free helium surface.

An important methodical feature inevitably inherent in
experiments with electrons above the helium surface is the
presence of a metallic substrate. Being similarly charged
particles, electrons cannot co-exist in a uniform state at a
finite number density, ns 6� 0. To achieve this desired result, a
2D electron system is positioned over ametal surface to create
a structure resembling a plane capacitor with the constant ns
substantially maintained in the lateral direction.

Let us consider the system presented in Fig. 1a. The space
between two plates of the plane-parallel capacitor is partly
filled with liquid helium; h, hÿ d, and d are the distance
between the plates, the vacuum gap, and the helium layer
thickness in the capacitor, respectively. The z-axis is normal

to the liquid surface, the origin of coordinates lies on the
surface of the unperturbed liquid, and the interval z < 0
corresponds to the liquid phase.

The electric fields Eÿ and E� above and below, respec-
tively, the helium surface charged with density ns have the
form

Eÿ � V

h
ÿ 4ps

d

h
; �2:1�

E� � V

h
� 4ps

hÿ d

h
; �2:2�

where the surface charge density s � ens, and V is the
potential difference between the plates of a cell (Fig. 1a).

When helium is completely shielded against the external
field �Eÿ � 0�, the quantity

E� � V

d
: �2:3�

At given V and helium film thickness d0 in the absence of
an external field, the helium surface bends under the action of
electron pressure (the case of Eÿ � 0) Pel � E 2

�=8p to the
depth

x0 � dÿ d0 ; �2:4�

depending on the conditions of mechanical equilibrium and
preservation of the total liquid volume:

rgx0 �
V 2

8pd 2
0

� rgx1 ; �2:5�

L2x0 � �L2
0 ÿ L2�x1 � 0 ; L0 > L ; jx1j5 d : �2:6�

Here, r is the liquid helium density, g is the acceleration of
gravity, L is the electron disk radius at the helium surface, L0

and x1 are the liquid surface radius and deformation,
respectively, outside the electron disk. Condition (2.5) is
fulfilled if

kÿ1 5L ; kÿ1 5L0 ÿ L ; k 2 � rg
a
; �2:7�

b
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a

Figure 1. (a) Schematic view of a cell with a charged helium surface. (b) A

picture of a liquid `border' at the helium surface along the charged

boundary [38].
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where a is the surface tension coefficient, and k is the capillary
constant. Finding x1 from formula (2.6), namely

x1 � ÿ
x0L2

L2
0 ÿ L2

;

and substituting it into formula (2.5) lead to

x0 � ÿ
V 2

8prg �d 2
0

; g � � g

�
1� L2

L2
0 ÿ L2

�
: �2:8�

A film is considered thick (a semiinfinite problem) if

kd4 1 : �2:9�

In this case, the equilibrium and dynamic properties of a
charged liquid surface do not depend on d0 or the degree of its
deformation (2.8), although such an effect always accom-
panies the appearance of electrons on this surface. By way of
example, Fig. 1b presents the overall picture of a charged
`mirror' [38].

It should be noted that deformation effects are intrinsic in
problems with charges on the helium surface. Also of interest,
besides deformation onL scales (Fig. 1a), are events featuring
capillary constant k (including those in the reconstruction
problem) and the formation of Coulomb ordering in a system
of charges at distances rs satisfying the condition rs

����
ns
p � 1.

2.2 Instability of a charged liquid surface
The problem of stability loss for a bulk charged liquid surface
is a necessary introduction to the nonlinear phenomena
considered below. The essence of the problem was discussed
from different standpoints in Refs [2±6] (see also papers [39±
41]). A review of the known calculations facilitates the choice
of adequate terminology and notions, such as maximum
fields and densities, the degree of occupation (charging
state) n of a free liquid surface, and the relationship between
n and external fields [see relations (2.16) below]. In what
follows, dynamic information is considered along with a
fluctuational scenario of the development of instability (an
analogy with first-order phase transitions).

2.2.1 Dynamic instability scenario. The dynamic behavior of a
charged surface of the bulk liquid in the region far away from
characteristic 2D plasma frequencies is described by the set of
equations

E�t
��
z�x�x; y��Eÿt

��
z�x�x; y� � 0 ;

vz
��
z�x�x; y��

qx
qt
� vHx ;

ÿ rgxÿ qF
qt
ÿ 1

2
rv 2 � 1

8p
�E 2
�n ÿ E 2

ÿn�
���
z�x�x; y�

� a
�

1

R1
� 1

R2

�
; �2:10�

where x�x; y; t� is the deflection of the surface from the
equilibrium flat shape, a is the surface tension of liquid
helium, r is its density, R1 and R2 are the principal radii of
curvature at a given point of the deformed surface, v � HF,F
is the velocity potential in helium, E� � ÿHj� is the electric
field strength, E�t and E�n are its tangential and normal
components, and the potentials F and j satisfy the Laplace
equation.

The linear variant of equations (2.10) leads to the
dispersion law for small oscillations of a charged liquid
surfaces (Gor'kov and Chernikova [36]):

o2 � k

r

�
rg� ak 2 ÿ k

E 2
� � E 2

ÿ
4p

�
: �2:11�

If at the same time Eÿ � 0, the problem reduces to that
discussed in Landau's and Lifshitz's course [2]:

o2 � k

r

�
rg� ak 2 ÿ k

E 2
�

4p

�
: �2:12�

It follows from the conditions

o�k� � 0 ;
qo2

qk
� 0 �2:13�

that the critical strength squared of an external electric field
equals

E 2
c � E 2

�c � E 2
ÿc � 8p

��������
arg
p

: �2:14�

The critical uniform surface charge density is given by the
relation

�nmax
s �2 �

��������
arg
p
2pe 2

; �2:15�

where e is the electron charge.
The evidence of developing instability at a charged helium

surface was first observed by Volodin et al. [40]. Leiderer [41]
explored the dispersion law in the case of oscillations excited
at the interface of a layer-separated superfluid He3ÿHe4

solution charged with ions having different signs (the nature
of the charges at the liquid interface is actually unessential but
an important point is that they possess high enough mobility
in moving along the interface). Figure 2 borrowed from this

Positive ions
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Figure 2. Dispersion relation for charged ripplons at the interface of a

phase-separated He3ÿHe4 mixture. The results of calculations using

expression (2.12): solid curve for E=Ec � 0, upper dashed curve for

E=Ec � 0:71, and lower dashed curve for E=Ec � 0:99. Experimental

data [41] for positive ions at E=Ec � 0:12 (circles), E=Ec � 0:71 (trian-

gles), and E � Ec (squares). Inset: frequency corresponding to the wave

vector q � k depending on the electric field strength [41]. Dashed curve Ð

theoretical calculations using expression (2.12); squares and circles Ð

experimental data for positive and negative ions, respectively.
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study shows the experimentally found dispersion curve o�q�
of charged interface oscillations at Eÿ � 0 and its agreement
with the theoretical prediction represented by formula (2.12).
The inset illustrates details of the behavior ofo�q� in a dimple
versus theoretical findings. Figure 2 demonstrates a fairly
good agreement between theory and experiment.

In the general case, Eÿ 6� 0, the problem of charged
helium surface stability becomes especially challenging. This
variant is impossible to realize in well-conducting liquids
where always Eÿ � 0 (complete screening), whereas in the
case of charges above helium there is a whole continuum of
states with 04Eÿ4V=h.

Using the definitions (2.1), (2.2) and dimensionless
quantities

e� � E�
4psmax

; smax � enmax ; n � s
smax

�2:16�

[nmax is defined by formula (2.15)], the general expression for
E 2
c (2.14) can be reduced to

n 2 � �n� 2eÿ�2 � 2 : �2:17�

As eÿ ! 0, in accordance with the last relation, one finds

n�eÿ ! 0� ! 1 : �2:18�
In the opposite limit, n! 0, it is easy to verify that

eÿ�n! 0� � e��n! 0� ! 1���
2
p : �2:19�

The last result for�e is nonphysical (electron density tends to
vanish, while the surface loses stability without any apparent
reason).

The location of points (2.18), (2.19) in the plane �eÿ; n�
corresponds to the limiting values of function n�eÿ� depicted
in Fig. 3. The plot of function n�eÿ� may be referred to as a
phase diagram of charged helium surface stability.

Actually, limit (2.19) for dependence (2.17) has no real
sense because the electrical equipotentiality condition for the
deformed helium surface is no longer satisfied in passing to
this limit:

j � const : �2:20�

This requirement used to solve problems (2.11), (2.12) in the
limit of small n must be substituted by a more general
condition

m � ej� z � const ; �2:21�

where z is the chemical part in the general definition (2.21) of
the electrochemical potential m of 2D charges above helium.

The structure of z for a system of electrons with finite
number density ns is a self-contained problem having no
accurate analytical solution. In what follows, we rely only on
qualitative arguments and bear in mind the small electron
density limit, which makes it possible to use the explicit form
of z for an ideal gas:

z � ÿT ln
nT
n�x� ; nT � mT

2p�h 2
;

nT
n�x� 4 1 : �2:22�

Here, T is the electron temperature coinciding below with
liquid substrate temperature, m is the effective charge mass,
and n�x� is the local electron density.

In the problem of charged helium surface equilibrium, the
main part of condition (2.21) containing a large logarithm
enters the system of equations defining the bulk equilibrium
of an unperturbed `electrons� flat liquid boundary' system.
Relevant calculations [43] yield information on the quasifree
electron distribution above the charged helium surface. As far
as the stability problem is concerned, only addition dz�x�,
namely

dz � T
dn�x; t�

ns
;

dn�x; t�
ns

5 1 ; �2:23�

arising upon deformation of the liquid boundary, is of
importance.

The use of linearized relation (2.21), (2.23), and standard
operations employed to calculate the dispersion law for a
charged liquid surface leads to the result [42]

ro2

a
� �k 2 ÿ Z2�q� q 3 ; Z2 � nse

2E 2
�

aT
: �2:24�

It is easy to see that dispersion law (2.24) as Z2 ! 0 goes over
to correct asymptotics o�q� without participation of Cou-
lomb forces.

Oscillations with dispersion law (2.24) lose stability, as
they do in the Frenkel±Tonks problem. But the loss takes
place in a region other than that corresponding to Eqn (2.14),
where

Z2 > k 2 ; E� � Eÿ � V

h
: �2:25�

Characteristic density n c
s discriminating between two

limiting cases of shielding is found from the estimate

2pe 2n c
s

qT
' 1 ;

where q is the characteristic wave number of perturbation
x�x�. For the wave numbers of the same order as the capillary
length and temperatures on the order of 1 K, this density has
the following scale: n c

s ' 104ÿ105 cmÿ2.
It follows from Eqn (2.25) that a field growing with

decreasing ns as eÿ / nÿ1=2 needs to be used in order to
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Figure 3.Phase diagramdescribing, in accordance with expression (2.17), a

region of stability at the charged liquid surface in the dynamic (spinodal)

scenario of its development in plane �eÿ; n�. The inner part of the diagram
corresponds to the stable state. The inset shows the relative position of the

binodal (practically straight line) and spinodal at low electron concentra-

tions [42]. The advantage of the appearance of `binodal' dimples in this

region of n is evident.
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reach the instability of a weakly charged helium surface. This
inference qualitatively differs from `equipotential' predictions
[see asymptotics (2.19)]. This means that dynamic stability in
the region of small n is not restricted to point (2.19) but
extends as / nÿ1=2 up to eÿ ! 1 [42].

Consideration of formulas (2.17)±(2.25) and Fig. 3 paves
the way for an analysis of the reconstruction of a charged
helium surface in terms of the phase transition theory. The
dynamic boundary of stability has much in common with the
spinodal in two-component separation dynamics. The role of
concentration is played by n, and that of temperature by field
Eÿ. Therefore, an alternative binodal scenario of transition
becomes possible if multicharged dimples are introduced into
the consideration [42].

2.2.2 Fluctuational instability scenario. Fluctuational binodal
development of instability is associated with the possibility of
forming multicharged clusters (dimples) with a finite electron
(ion) charge localized in their nuclei on a flat charged helium
surface. The process of formation of a single multielectron
dimple can be at first presented semianalytically without
regard for the details of electron distribution n�r� in its
central part. Simplification reduces to the choice of function
n�r� in the following model form:

n�r� � N

pR 2
exp

�
ÿ r 2

R 2

�
; �2:26�

where N is the total number of electrons in a dimple, which
constitutes the external parameter of the problem, and R is
the variational parameter having the sense of a charged spot
radius.

The expression for the excess energy of a `dimple� self-
consistent deformation of helium surface' system for Hx5 1
may be written (Shikin, Leiderer [44, 45]) as

W �
�
d2r

�
a
2

��Hx�2 � k 2x 2
�� eE?n�r�x

� e 2
�
d2r 0

n�r� n�r 0�
jrÿ r 0j

�
; �2:27�

where x�r�, r, a, g, and k were defined above. The term
�Hx�2 � k 2x 2 takes account of the deformation contribution
to energy W, while term eE?n�r�x characterizes the interplay
between deformation and electron parts of the problem, and
the last term written in the integral form stands for the total
energy of Coulomb interaction among electrons concentrated
in a flat spot of radius R.

Taking advantage of the explicit form of the electron
distribution n�r� (2.26), the expression for W (2.27) can be
transformed into

W � Q 2E 2
?

8pa
exp

�
k 2R 2

2

�
Ei

�
ÿ k 2R 2

2

�
� VC�R� ; �2:28�

VC�R� � C0Q
2

R
; Q � eN ; �2:29�

where Ei �y� � � yÿ1 dt�exp t�=t is the integral exponential
function. For distribution (2.26), C0 � 1=2�p=2�1=2. The
value of R is found from the condition qW=qR � 0.

An analysis of the extreme properties of W�r� (2.28)
brings us to the conclusion that a stable solution of the

equation qW=qR � 0 inR is feasible only under the condition

kR < 1 : �2:30�

In the limiting case kR5 1, the value ofR and the total energy
W assume the form

R � R � � C0
4pa
E 2
?
; x�0� � ÿQE?

2pa
ln

1

kR �
;

�2:31�
W � ÿQ 2E 2

?
4pa

�
ln

C1

kR �
ÿ 1

�
; C1 � 1 :

An interesting result following from Eqn (2.31) is the Q-
independence of R �. Naturally, it would seem that R � will
grow as Coulomb interaction in the charged dimple core
increases with increasing Q. However, deformation forces
that hold electrons in the dimple grow at the same rate, which
makes the value ofR � determined by the competition of these
two factors independent of Q.

It is equally appropriate to comment on the quadratic
dependence of energy W (2.31) on E? and Q. The indepen-
dence of deformation results of the E? direction has been
mentioned before (see the dispersion law in Fig. 2 with the
structure independent of the charge sign). As regards dimples,
the sign of field E? is implied such that charges with a given
sign are driven to the center of the dimple. On changing the
sign of E?, the same procedure has to be undertaken for the
sign of charge. Otherwise the dimple will not be formed.

Asymptotics (2.31) in the vicinity of kR4 1 become
inexact, which necessitates the use of numerical methods to
determine the corresponding quantities. To this effect, it is
convenient to present energy (2.28) in the dimensionless form

~W � 2

�
2

p

�1=2
W

Q 2k
� s exp

�
x 2

2

�
Ei

�
ÿ x 2

2

�
� 1

x
; �2:32�

where

s � 1

2kR �
; x � kR : �2:33�

Setting s and constructing function ~W�s; x�, one can find the
value and position of its minimum. This information is
sufficient to examine the properties of ~W andR in the vicinity
of kR4 1. For example, the minimum of function ~W appears
for the first time when s � smin � 0:9 at point xmax � 1:14.
Function ~W first vanishes when s � s� � 1:05 at point
x� � 0:72. The dependence of x on parameter 1=2s � kR � in
the region s5 smin shown in the left inset to Fig. 4 gives the
value of the real dimensionless dimple radius x versus its
asymptotic value kR �.

Relations (2.26)±(2.32) are sufficient to determine condi-
tions for the appearance of dimples. Clearly, there is
competition between the dimple energy and the electrostatic
energy of the capacitor with 2D electrons in which the dimple
formed fluctuationally. The uncertainty lies in the estimation
of an optimal charge giving rise to a critical dimple. However,
the amount of this charge has no effect on the critical field.
This linear approach seems acceptable in order to consider
dimples as candidate structures responsible for the fluctua-
tional development of instability.

A more careful variational calculation of the parameters
of a multielectron dimple reported by Mel'nikov and
Meshkov [24, 25] has demonstrated that electron number
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density monotonically decreases with the distance from the
dimple center and tends to zero as� �1ÿ r 2=R 2�1=2, r! R in
the limit of kR5 1 at the edge of the electron spot. The n�r�
distribution in the kR4 1 region is close to Gaussian. The
results of numerical calculations of function n�r� from papers
[24, 25] illustrating the behavior of local electron density in
different limiting cases give the dependences shown in the
right inset to Fig. 4. As for the averaged characteristics of a
dimple, e.g., the minimal field strength Emin

? making possible
the existence of an individual multielectron dimple, they are
close to those in Ref. [44]. A criterion for energy-related
advantage of dimple formation is the requirement of s > s�
from which it is possible to derive (see above)

E?5Emin
? ; �Emin

? �2 � �2p�3=2s�ka � �16:520� 0:005�ka :
�2:34�

For example, it follows from Refs [24, 25] that field Emin
? �

4:06�ka�1=2, in excellent agreement with formula (2.34).
By way of illustration, Fig. 4 shows the direct `portrait' of

an individual dimple from Ref. [28].
With the two scenarios of instability development in hand,

one may try to construct a phase diagram for decay of the flat
charged liquid state even at this stage. However, the long-
range character of Coulomb interaction hinders this opera-
tion at the linear level and does not permit avoiding a number
of uncertainties. The main of them is the number of electrons
entering an individual dimple upon corrugation of the liquid
surface. Additional information about the details of instabil-
ity development is needed to eliminate the uncertainties.

2.3 Development of instability
A. The initial stage of instability development is of impor-
tance for several reasons. First, it gives an idea of real small
parameters necessary to construct a nonlinear perturbation
theory. Second, continuity breaks in the charge distribution
over the corrugated liquid boundary naturally start to be
detected at this stage, being essential for subsequent con-

sideration. Finally, the mechanism of `triggering' the decay of
the flat charged liquid state is as interesting in itself as in
traditional spinodal scenarios.

Using the parameter

D � E 2
� � E 2

ÿ
E 2
c

ÿ 1 ; �2:35�

which characterizes the proximity of a system to the stability
threshold, and quantity

n� �
E 2
� ÿ E 2

ÿ
E 2
c

� n�2eÿ � n� �2:36�

[here, Eÿ and E� are defined in formulas (2.1),(2.2), n is from
Eqn (2.16), and Ec is from Eqn (2.14)] proportional to the
unperturbed electron surface density, and assuming jDj5 1
and n�5 1, one can present the one-dimensional solution of
the initial system of equations (2.10) in the form [18]

x�r� � a

2

�
w�x; t� exp �ikx� � c:c:

�
; a � kÿ1 �

�
a
rg

�1=2

:

�2:37�
The amplitude of x is small compared with the capillary

length. The authors of Ref. [18] expanded all the equations of
system (2.10) up to third-order terms in w � x=a and thereby
obtained the equation for the perturbation amplitude w:

1

gk0
�w � ÿ�kÿ k0�2

k20
w� 1

2k 2
0

q2o2

qk 2

q2w
qx 2
� 2io

qo
qk

qw
qx

� 2Dw�
�
8�n 2� ÿ 1� � 11

2

� jwj2w
4

: �2:38�

Formally, manipulations (2.35)±(2.38) are inherent in all
calculations of reconstruction processes in the framework of
the aforementioned `uniform' approximation [14, 19]. For a
charged helium surface, this means conservation of the
equipotentiality of the curved boundary that takes place at
least at the initial stage of the decay.

Transformation (2.37) shifts the origin of counting in
k-space to point k � k0. Therefore, the amplitude w�x; t� in
the vicinity of the critical point is a functionweakly dependent
on coordinate x. The proximity to the threshold means that
�kÿ k0�2=k 2

0 5 1 and qo=qk5 1; hence, the appropriate
terms in Eqn (2.38) can be neglected. The remaining right-
hand side of equation (2.38) in a homogeneous case
�qw=qx � 0� ensues from variation of the potential

V�w� � ÿ2Djwj2 ÿ
�
8�n 2� ÿ 1� � 11

2

� jwj4
8

: �2:39�

At small enough n�, the potential V�w� has a minimum, and
the system must pass into this state if the terms describing
dissipation effects are inserted into equation (2.38). In the
limit n� ! 0, the stationary corrugation amplitude w0 has the
form

w 2
0 �

16D
5

: �2:40�

Such a type of w0 behavior (reconstruction begins only in
the region D > 0, and amplitude w0 monotonically increases
with increasing D) is usually called a soft-type transition
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Figure 4. The structure of an individual dimple [28] at a fixed total electron

charge. Left inset shows the dependence of radius x on 1=2s (holding field)
that clarifies details of the energy behavior (2.32). Right inset displays the

electron density in the dimple calculated in Refs [24, 25] at different

supracriticality values. The profile with E? � Emin
? corresponds to the

situation in the vicinity of the critical field for dimple appearance; the

variant with E?4Emin
? is appropriate to a well-formed dimple far from

E? � Emin
? .
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(reconstruction) following Landau [46], and Zaitsev and
Shliomis [14]. The coincidence is not surprising bearing in
mind the homogeneous nature of relations (2.35)±
(2.38).There is no soft-type one-dimensional solution in the
region n 2� > 5=16.

For charged liquid media such `one-dimensional' transi-
tion is purely academic because, on the whole (i.e., over the
entire time interval up to the instant of establishing equili-
brium), it is symmetrically and energetically less advanta-
geous than two-dimensional reconstruction scenarios. Never-
theless, the one-dimensional corrugation pattern may prevail
at the beginning of the process until the nonlinear terms of
equation (2.39) get involved. As experience shows, the
corrugation forms first and foremost along the natural
borders of a 2D system, regardless of the degree of its average
population. Evidently, the initial corrugation reproducing
smooth boundary geometry is essentially one-dimensional.
Details of such boundary reconstruction remain to be
elucidated.

2D corrugation is energetically more advantageous far
away from the boundaries and at a large enough time interval
from the initial stage of the process. According to papers [17,
19], there is a symmetric hexagonal structure characterized by
three wave vectors oriented at a 60� angle with respect to each
other. In this case, the expression for energy V�w� contains
new qualitatively important negative terms of the third order
in the amplitude; eventually, it gives a lower equilibrium
energy compared with that in a system of stripes or a square
lattice. Instead of potential (2.39), the result is

V�w0� �
3

2
gw 4

0 � 3n�w 3
0 ÿ 6Dw 2

0 ; g � 0;96 : �2:41�

Expression (2.41), unlike formula (2.39), does not contain
terms of order n 2� w

4
0 . Function V�w0� (2.41) reaches a

minimum at

w0 � ÿ
 
3n�
4g
�

����������������������
2D
g
� 9n 2�
16g 2

s !
: �2:42�

In the limit D! 0, the last formula yields

w0 � ÿ
3

2

n�
g
; �2:43�

i.e., there is a transition as in the case (2.39), but (using the
terminology of Refs [14, 19, 46]) it occurs in the hard regime
with finite w0 values as D! 0.

It should be noted that manipulations with parameter D
(2.35) are feasible only for liquid boundaries with a variable
density of mobile charges at the interface. When there is
complete shielding of the field, so that either E� or Eÿ
vanishes, such a degree of freedom is absent. Indeed, for
metals one finds

nm� �
E 2
�

E 2
c

: �2:44�

Quantity nm� (2.44) can be small if E�5Ec. In this case,
however, a metallic liquid is stable. If E� ! Ec, nm� tends to
unity.

B. The above results (2.40), (2.43) give a clear idea of the small
parameters needed to develop a nonlinear perturbation

theory [14, 17, 19]. What is meant are the conditions

D5 1 ; n�5 1 ; �2:45�

violation of which reduces the theory to qualitative asser-
tions. However, the list of necessary limitations is wider than
that.Mel'nikov andMeshkov [23±25] were the first to observe
that, in terms natural for a problem with surface charges, the
total charge density ~n� n� during reconstruction under the
equipotential scenario cannot vanish:

~n� n� > 0 : �2:46�

From this standpoint, the variant of reconstruction (2.40) for
n � ! 0 and D 6� 0 makes no sense whatever.

The assessment is even more difficult in a hard regime.
Nevertheless, calculations made by the authors of Refs [23±
25] suggest violation of requirement (2.46) in the parameter
region preceding the establishment of equilibrium corruga-
tion. The results of these calculations are presented in Fig. 5.
In the general case, the energy e of the corrugated boundary
depends on two variables: corrugation amplitude x, and
modulated charge density ~n. Variation of e�x;~n� in one of
these variables gives the relationship between x and ~n at an
arbitrary stage of adjustment (the electron part of the
problem undergoes rapid adjustment to the arbitrary defor-
mation x). The second variation determines the energy
extremum position in which the reconstructed boundary is
located. Figure 5 gives an idea of the value of e�~n; x�~n�� at
intermediate stages of corrugation for different values of
supercriticality D, including its negative part. The feasibility
of criterion (2.46) is indicated by the dashed straight line.

It follows from Fig. 5 that condition (2.46) is violated
before the system has had time to exponentially reconstruct.
This means that calculation of the final reconstruction stage
in the equipotential scenario ceases to be valid. The total
charge being fixed, its distribution along the boundary loses
uniformity. Is there an alternative? Yes, there is insofar as
prerequisites exist for the formation of a system of multi-
charged dimples, the notion of which was introduced in
Section 2.2.

C. Concluding the discussion of the initial reconstruction
stage, one cannot overpass the problem of boundary
conditions for equation (2.38). This detail is actually

ÿ50

ÿ100

50

0 1 2ÿ1 3 4

e

~n

Figure 5. Intermediate deformation energy e as a function of ~n for different
values of supercriticality. Dashed straight line marks the boundary of

violation of condition (2.46).
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beyond the framework of the existing publications con-
cerned with stability. However, it is indispensable to
`trigger' the decay (as is well known from an essentially
similar problem of spinodal decay in the theory of first-
order phase transitions [47]).

The data of Fig. 6 [26, 27] give evidence that equation
(2.38) in the region linear in zmakes sense within a wide range
of n values. The estimate of time tl, namely

tÿ1l �
������������������������������
2pa
g
�E 2 ÿ E 2

c �
s

; �2:47�

gives its correct scale. The figure displays a well-apparent
`watershed' between the spinodal and FT scenarios of
developing instability. As for the mechanism of triggering
instability, the question of whether it is underlain by
equilibrium surface shape fluctuations stimulated by Lange-
vin forces or by instrumental effects remains to be clarified.

2.4 Reconstruction of a charged helium surface
The analysis of the initial stage of instability development in
Section 2.3 gives evidence that the final (metastable) recon-
structed liquid surface must have a `dimpled' (nonequipo-

tential) structure. Its details are discussed below for two
qualitatively interesting n-limit cases:

(a) low population, n5 1. In this limit, there is every
reason to speak about the binodal variant of the development
of events;

(b) the reconstruction scenario with maximum filling of
the surface with charges �n4 1�, which is pertinent to refer as
a `mixed' one.

2.4.1 Small-m region. As noted in Section 2.2, the `spinodal'
critical field in the small-n region increases as nÿ1=2 [see
formula (2.25) and Fig. 3]. Let us show that binodal dimple
formation in this region requires finite eÿ values.

Transition from the flat to the corrugated state is
governed by competition between the electrostatic energy
VC of the capacitor with 2D electrons filling the entire
available liquid surface and the total energy nWn of the
system of n dimples containing the same total charge Q. The
problem of comparison contains an uncertainty because, in
the general case, the charge of an individual fluctuationally
formed dimple and the charge distribution over the totality of
dimples are poorly defined. The situation only simplifies in
the limiting case of n5 1, where all free electrons draw
together in one multicharged dimple (in this case, the flaw in
reasoning is compensated for by references to experiments in
which events proceeded as described).

The Coulomb energyVC of an electron systemwith a total
chargeQ in the region bounded by a circle of radiusL between
capacitor plates (see Fig. 1) has the scale

VC � Q 2 �hÿ d �d
L2h

; Q � pL2ens : �2:48�

The structure of energy W for a single dimple was
discussed in Section 2.2 [see formula (2.32)]. For comparison
with VC concerned, it is possible to use the expansion of W
near the zero point �s0; x0�:

W�s0; x0� � 0 ; s0 � 1:05 ; x0 � 0:75 ;

W�s; x0� ' qW
qs0
�sÿ s0� :

As a result, the equality of the competing energies takes the
form

Q 2 �hÿ d �d
L2h

� qW
qs0
�s� ÿ s0� ; �2:49�

which gives the value of s�.
The electric field Emax

� related to s� defines the abscissa on
the plane �n; eÿ� (in this region, E? � E� ' Eÿ � V=h) where
the binodal rests as ns ! 0. These results complete the
description of the transition region in which the flat charged
surface is replaced by a surface with a dimple.

Thus, instability stimulated by the finite V=h value in the
limit n! 0 leads to the appearance of a separate dimple
`collecting' all surface electrons, but not to periodic recon-
struction (as predicted by the equipotential theory). This
process can also end with the formation of several dimples
randomly sharing the total surface charge among themselves.
However, there are no common causes here for a periodic
reconstruction involving the entire charged mirror.

It should be noted that two dimples separated by a finite
distance may be in equilibrium. The interaction energy Wdd

between them contains both Coulomb and deformation
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Figure 6. (a±f) Corrugation evolution with time under conditions of

maximum occupation of a helium surface by electrons. (g) Time-depen-

dent corrugation amplitude [26, 27]. Time tl is defined by formula (2.47),

and t is the total estimated time of instability development at a given

degree of supercriticality. The authors of Refs [26, 27] argue that prefinal

states (d, e) of the corrugated mirror have a glass-like structure.

`Annealing' using a small-amplitude oscillating field brings the dimples

together to give rise to a honeycomb structure (f).
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parts:

W b
dd � ÿ

Q 2E 2
?

2pa
K0�kr� �Q 2

r
: �2:50�

Here (as above), Q is the total charge of the dimple, E? is the
holding field, r is the distance between the dimples, andK0�x�
is the modified Bessel function. Energy (2.50) goes through a
minimum, qW b

dd=qr � 0, at point rmin found from the
equation

K1�xm� ÿ xÿ2m � 0 ; xm � krmin ; �2:51�

xm 5 1 : �2:52�
The presence of metastable coupling (2.51) between

dimples qualitatively explains why the totality of dimples
formed during the decay of a 2D-charged system (Fig. 7) is
collected in mesostructures having internal equidistance with
a characteristic distance on the order of the capillary distance.

2.4.2 Mixed scenario of reconstruction in the region m9 1. In
the opposite limiting case of n4 1, it is easy to determine the
position of the spinodal in the graph �n;Eÿ� (see Fig. 3).
However, the alternative part of the problem of nucleation
`decay' of the flat charged state (binodal) remains uncertain
for lack of a characteristic scale for the charge during the
formation of the nucleus-dimple. At the same time, experi-
mental data give unambiguous evidence of periodic recon-
struction. The difficulties are obviated by turning to the
temporal evolution of FT decay. As noted before [see
comments on inequality (2.46) and Fig. 5], the spinodal
scenario of decay for a fixed value of the total surface charge
leads to the appearance of periodically arranged neutral spots
on the charged liquid surface. This picture certainly corre-
sponds to the end of spinodal and the onset of binodal
evolution with well-defined initial conditions (the charge of
a dimple is known, and all dimples are identical). The scenario
with initial spinodal and subsequent binodal stages of
charged liquid surface deformation is referred to as mixed.
The main known factors related to FT decay in the n4 1
region qualitatively co-exist in the framework of this scenario,
viz. periodicity of reconstruction, loss of equipotentiality
along the corrugated liquid surface, and, as will be shown
below, stepwise behavior of corrugation amplitude during
formation of the stationary reconstructed state of the liquid
boundary.

(1) Regarding the question of a corrugated surface state in
the critical electric field Emax

� with charge

Q0 ' 2aenmax
s �2:53�

per dimple, it is necessary to make sure that the deformed
helium surface can hold the critical charge (probably, in a
nonlinear manner) and check the fulfillment of the inequality

�W�Emax
� ;Q�5 ~W�Emax

� ;Q0; b�; Emax
� � 4penmax

s ; �2:54�

where nmax
s � nmax follows from Eqn (2.16), �W�Emax

� ;Q�
and ~W�Emax

� ;Q0; b� are the total energies of homogeneous
and corrugated states of the helium surface, respectively,
and b is the lattice period, generally speaking different from
the capillary length a. There is no reason to require the
equality of energies in formula (2.54) because it is unrelated
to a true binodal transition from the flat to the corrugated
state. Nevertheless, it is desirable to have the energy
~W�Emax

� ;Q0; b� lower than �W�Emax
� ;Q�; otherwise, it is

difficult to understand the general course of events.
In light of the aforesaid, the one-dimensional corrugation

problem reduces to calculating the energy difference
~W�Emax

� ;Q0; b� ÿ �W�Emax
� ;Q� [see Eqn (2.54)]. It should be

noted that the one-dimensional scenario not only provides a
convenient model but also describes the actually observed
state of the corrugated surface [28]. Moreover, it is the least
stable variant of corrugation. Laplace pressures stabilizing
the picture here are half of what they are in two-dimensional
scenario. The one-dimensional solution yields a lower bound
for corrugation stability.

The primary functional for the one-dimensional periodic
corrugation energy (per unit thread length) is given as follows:

d ~W�Emax
� ;R; a� � ~W�Emax

� ;Q0; a� ÿ �W�Emax
� ;Q�

�
� �a
ÿa

dx

�
a
2

��Hx�2� k 2x 2
�� eEmax

� dn�x�x�x�
�
� d


WC�r�

�
;

�2:55�
d


WC�r�

� � 2e 2n 2
s a

2 ln
a

pR
;

x�x� � z�x� ÿ hzi ; dn�x� � n�x� ÿ ns ;

it is counted from the flat charged liquid surface energy and
written for one lattice period. Its Coulomb part has the form
[48]

d


WC�r�

� � Q 2

2

�
1

~C
ÿ 1

�C

�
> 0 ; �2:56�

�C � S

4pd
; ~C � S

4pd� 4a ln �a=pR� ; �2:57�

where S is the area of the capacitor, R is the radius of an
individual thread, and 2a is the corrugation period; charge
density n�x� in a periodic dimple system is split into separate
stripes, each characterized by a certain density distribution
(e.g., Gaussian) n0�x�:

n�x� �
X
l

n0�xÿ 2la� ; n0�x� � n0 exp

�
ÿ x 2

R 2

�
;

n0 ' 2nsa���
p
p

R
; R5 a ;

�2:58�

and normalization (2.53). Mean values are subtracted from
the respective variables z�x�, n�x�, taking into account the
general structure of functional (2.55).

Energy (2.55) exhibits the standard structure for the
theory of multicharged dimples. The deformation-related

a b c

Figure 7. (a) Aperiodic reconstruction in the region of small n, and

(b, c) increase in the number of dimples and the appearance of signs of

honeycomb reconstruction with a rise in occupation n of the helium

surface with electrons.
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part represented by the terms in square brackets makes
integrally the growth of deformation of the liquid surface
under the action of local electron pressure energetically
advantageous and accounts for the reduction in parameter
R=a. The Coulomb component dhWC�r�i hinders this
process. The interplay between these factors results in the
appearance of a negative minimum in the dependence
d ~W�Emax

� ;R=a� (2.55), which determines the equilibrium
value of the parameter R=a. In order to obtain numerical
values, it is necessary to find deformation x�x� using n�x�
(2.58) from the equation for mechanical equilibrium of a
liquid surface, calculate integrals (2.55) with the help of these
distributions, and construct the dependence of energy (2.55)
on the variable parameter R=a. This picture for external
parameters corresponding to the case of n � 1 is presented
in Fig. 8a [49]. The functional minimum reached atR=a � 0:1
is negative. In other words, the corrugated state is more
energetically advantageous than the flat one.

Corrugation is stabilized in the region of R=a5 1,
although the obtained numerical values should be regarded
as rough estimates, bearing in mind that the values of
Hx�x�4 1 are not parametrically small, as follows from data
on the one-dimensional dimple deformation profile. These
data are given in Fig. 8b together with the profile of an
individual free dimple (for comparison). Obviously, the linear
variant of the theory corresponding to the bilinear energy
functional (2.55) needs to be quantitatively corrected [as
follows from Fig. 8, the requirement Hx�x� < 1 used to
derive expression (2.55) is met conditionally]. Nevertheless,
the mixed scenario of reconstruction qualitatively appears to
be self-consistent (reasoning from the assumption of con-
tinuity breaks in the equilibriumdistribution of n�x� leads to a
final picture that confirms the initial provisions of the theory).

Moreover, it may be argued, based on details of the
nonlinear solution [50] (not presented here), that the critical
dimple depth jxmax

0 j � 1:5a is not exceeded in the linear
approach.

(2) Honeycomb corrugation. There are several reasons to
additionally discuss the details of two-dimensional corruga-
tion against the background of its one-dimensional realiza-
tion. First, a reconstruction of this type most frequently
occurs as dominant under practical conditions. Second,
there is the issue of lattice choice (why honeycombs?). One
more question raised in papers [23±25] concerns the details of
charge distribution over a corrugated liquid surface. Itmay be
a system of neutral islets against the conducting background
(themodel of Refs [23±25] or a version of `soft' transition). An
alternative is a system of charged spots against the neutral
background (`hard' version with charged dimples).

Answers to the first two questions are formed even at
the initial stage of instability development. As shown in
Refs [18, 19], one- or two-dimensional perturbation x�r; t� of
the surface shape contains different exponents of this
amplitude in the nonlinear part of the energy responsible
for the appearance of charge continuity breaks, viz. x 4�r; t�
in one-, and x 3�r; t� in two-dimensional case. The two-
dimensional scenario appears to be more efficacious since
it generates a network of `bald' spots that eventually
develops into a honeycomb corrugation structure [see
comments on formulas (2.39)±(2.43)]. An advantage of
honeycomb corrugation over other possible two-dimen-
sional lattices is proved by correlation calculations [51]
under conditions in which the charged corrugation nuclei
are identical and the difference between energies is due to
lattice crystallography alone.

The issue of the relationship on average between charged
�s� and neutral �1ÿ s� fractions of corrugation in the one-
dimensional scenario posed in papers [23±25] is unessential
because any deep corrugation violates the equipotentiality of
the charged boundary in the direction perpendicular to the
grooves. Nevertheless, the smallness of s �s5 1� used in
manipulations with functional (2.55) naturally needs to be
confirmed [and wasÐsee formula (2.61)] in a series of final
results.

The s-problem becomes more critical in moving to
honeycomb corrugation because, in the case of 1ÿ s5 1
considered in Refs [23±25], the problem on the whole
remains equipotential and its solution is feasible only for
n5 1. The requirement n5 1 is unessential for describing
corrugation by a system of dimples, but it is natural to think
that the charged nuclei, with radius Rs, of adjacent dimples
do not overlap between themselves; in other words, the
condition s5 1 is fulfilled or, in more concrete terms, the
condition

s '
�
Rs

a

�2

5 1 : �2:59�

An estimate of s for a honeycomb structure was recently
obtained in paper [49] using the cylindrical Wigner±Seitz
model under the same conditions as in the one-dimensional
scenario [the total dimple charge and the holding field are
related to their critical values given by expressions (2.53),
(2.54)]. As a result, one finds

Rcrit

a
' 0:4 < 1 ;

xcrit�0�
a
' 0:3 < 1 ; �2:60�
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Figure 8. (a) Energy d ~W of a one-dimensional dimple being a member of a

periodic structure as a function of the electron spot radius. (b) One-

dimensional dimple profiles: for a single free dimple (dashed line), and a

periodic set of dimples (solid curve).
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whence

s '
�
Rs

a

�2

' 0:16 ; �2:61�

suggesting the hard (dimple) reconstruction scenario.
To sum up, reconstruction in the n4 1 region most likely

follows the mixed scenario with the energy balance controlled
by expression (2.55). Then, variations of groove-like or
honeycomb corrugation are feasible in the D5 0 region [D
from formula (2.35)]. The mixed scenario predicts no
hysteresis phenomena.

It should be noted that the probability of the appearance
of multielectron dimples in the D > 0 region began to be
discussed (see papers [44, 45]) almost simultaneously with the
development of the theory of equipotential reconstruction
[18, 23]. However, the understanding of the real place of these
`polaron' structures in the hierarchy of states determining the
corrugation of a charged helium surface has come only
recently [42, 49]. In this sense, the limit D > 0, n5 1 is
especially meaningful.

Also of interest in the chronological chain is Ref. [52], in
which the scenario of dimple-like reconstruction in the n4 1
region was discussed for the first time. Here, the tight binding
approximation provides a basis for theoretical consideration
of the problem. The roughly counted free multielectron
dimples were regarded as initial ones. Assuming subse-
quently these quasiparticles to be point-like, the authors of
Ref. [52] simulated a periodic lattice of charged dimples using
results for a classical Coulomb crystal of point charges [51].
The period of this lattice is determined by a length on the
order of the capillary length. Its energy-related advantage
over the energies of continuous charge distribution in the 2D
layer is interpreted in correlation terms [51].

It should be noted as regards the results of Ref. [52] that
the free dimple problem exactly solved in Refs [24, 25] leads
under the conditions of work [52] to a charged spot radius
much greater than the lattice period from paper [52]
(according to Refs [24, 25], in this region R=a ' 1:5). The
critical conditions for dimple formation exceed the dynamic

stability threshold. Finally, correlation effects [51] are not
directly related to the Coulomb part of the reconstruction
problem. Therefore, the approach employed in paper [52]
needs to be modified, which was accomplished later by the
authors of Ref. [49].

2.4.3 The general picture of reconstruction of a charged helium
surface. Let us discuss the current view of the general picture
of charged helium surface reconstruction in light of the
information presented in the preceding paragraphs and
available experimental data. The existence of such recon-
struction under the conditions of conservation of the total
number of charges on a liquid surface at different occupation
levels has been documented in a series of studies [21, 22, 26±
28]. Different authors agree that honeycomb corrugation
develops in a threshold manner in the region of positive
supercriticalities, D5 0. There is no experimental evidence
of honeycomb reconstruction in the D < 0 region, whereas
the region with D > 0 and n4 1 exhibits well-defined close-
packed corrugation covering the entire charged mirror of the
dimple (Fig. 9 [28], Fig. 10 [26, 27]). The dimple depth proves
to be finite immediately and grows monotonically with
increasing D > 0 (Fig. 11 [28]). Where n4 1, the alternative
equipotential theory [18, 24, 25] does not work at all, since it

a b c

Figure 9. Reconstruction of a charged helium surface under conditions of

maximum population, n4 1: (a) signs of groove-like reconstruction

reproducing the perimeter geometry at small supercriticality values;

(b, c) snapshots illustrating reconstruction at finite supercriticality differ

in focusing interfering light beams on corrugation ridges and grooves

(taken from Ref. [28]).

Eÿ E0 � ÿ6 V cmÿ1

ÿ18 V cmÿ1

a

b

1 cm

Figure 10.Picture of corrugated structure at gradually increasing (a) and decreasing (b) supercriticalityE=E0 under conditions ofmaximum population of

the helium surface with electrons [26, 27]. Supercriticality changes stepwise by DE=E0, with DE � Eÿ E0 � 6 V cmÿ1. At the initial stages (a), parts of

groove-like reconstruction can be seen. The authors of Refs [26, 27] explain it by possible nonhorizontality of the dimples. On the whole, the final state of

reconstruction looks glass-like. It is turned into a qualitative honeycomb structure (see Fig. 6) by weak `annealing' in an alternating electric field. Note

also the signs of `overcooling' in the far left photo in Fig. 6, presumably associated with corrugation establishment kinetics (as in Fig. 6).
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lacks the smallness of the ratio of the corrugation amplitude
to the capillary length (the basic small parameter of the
equipotential reconstruction theory). As for the mixed
scenario [49], it is intended to explain the phenomena being
observed.

As noted above, experimental results for the region with
D > 0 and n5 1 do not qualitatively agree with the predic-
tions of the equipotential theory. The observed reconstruc-
tion is aperiodic. The helium surface is not subject to periodic
corrugation filling the entire liquid mirror, as was expected in
Refs [18, 24, 25]. Instead, electrons are grouped into one or
moremultielectron dimples occupying only a small part of the
total helium surface. Figure 7, borrowed from Ref. [28],
illustrates a dimple-like reconstruction in the n5 1 region
with gradually increasing n. Evidently, the dimple corruga-
tion scenario is energetically preferable (see also Fig. 11), as
confirmed in experiment.

A fewmore words are in order about grooved corrugation
observed experimentally at the initial stage of instability
development [21, 22, 26±28]. As noted above, groove-like
corrugation is on the whole less energetically advantageous
than the honeycomb variety. However, near the borders of
the charged mirror (or due to dimple nonhorizontality), the
corrugation must be conjugated with the local deformation
conditions along the boundary of a 2D system. Theoretically,
this problem remains unresolved, while experiment gives
evidence that grooves actually form along the boundaries
(see Figs 9a and 10).

The data presented in the preceding sections suggest an
analogy between the reconstruction process and details of the
first-order phase transition (binodal-spinodal alternative).
The most reliable indicators of such an analogy are the
duality in determining conditions promoting the develop-
ment of reconstruction [see formulas (2.16)±(2.19), (2.32)±
(2.34)] and the possibility of drawing a phase diagram
separating stability and instability regions of the charged
liquid surface in natural coordinates. The following variables
appear acceptable: the average population of a helium surface
with electrons [n from formula (2.16)] and eÿ, the dimension-
less [related to the critical field (2.14)] electric field (2.16)
above the charged helium surface. Figure 3 shows a spinodal
line, convenient for orientation, which was plotted in these
coordinates with the use of `electrostatic' approximation
(2.17). However, the corrections (2.21)±(2.24) indicate that
the spinodal cannot approach the axis of ordinates n! 0with
a finite tilt, in contrast to the binodal (2.48), (2.49) calculated
with account of phase equilibrium rules. The resulting relative
position of the binodal and the spinodal in the region of small
n factors is shown in the inset to Fig. 3. The analogy with the

general properties of first-order phase transitions (see for
instance, Ref. [47]) supports this prediction and substantively
explains the observed aperiodic development of reconstruc-
tion (formation of isolated multielectron dimples).

Consistent discrimination between the dispersive and
fluctuational mechanisms of instability development encoun-
ters difficulty at finite (especially maximal) populations
n! 1. The same is true of the first-order phase diagrams in
the regions where binodals and spinodals are tangent to each
other. A distinctive feature of the problem with reconstruc-
tion consists in the involvement of both mechanisms in its
development. Bearing in mind experimental data that
unambiguously suggest periodic reconstruction of a charge-
saturated liquid surface, it is possible to eliminate the
`binodal±spinodal' ambiguity, taking into account the tem-
poral evolution of FT decay. As mentioned above [see
comments on Eqns (2.11)±(2.15), (2.47), and Figs 3, 4, 10),
the spinodal scenario of the decay consistently defines the
main details of linear oscillation dynamics and the onset of
instability development on a charged liquid surface, thus
preparing the system to the appearance of periodically
arranged neutral spots in the charge distribution. This
picture testifies to the end of spinodal and the onset of
binodal evolution with well-defined initial conditions (the
charge of a dimple is known, and all dimples are identical).

The scenario with `spinodal onset' and `binodal continua-
tion' of deformation of a charged liquid surface may be called
naturally a mixed one. The main known factors related to FT
decay in the n4 1 region qualitatively correctly co-exist in the
framework of this scenario, viz. periodicity of reconstruction,
loss of equipotentiality along the corrugated liquid surface,
and the stepwise behavior of corrugation amplitude during
formation of the stationary reconstructed state of the liquid
boundary.

The verbal description of charged helium surface recon-
struction can be supplemented by the data integrated into a
graphical phase diagram. Figure 12 represents in the nÿeÿ
coordinates such a combination of the plots from Fig. 3 and
the experimental information on reconstruction in different
limits in n. Here, n is defined by formula (2.16), and eÿ is a
dimensionless electric field [related to the critical one (2.14)]
above the charged helium surface. The solid curve describes
the behavior of the critical n value as a function of voltage eÿ
starting from zero for the dynamic instability scenario
(spinodal, in the phase language). As shown before, the
reconstruction in the n4 1 region follows a mixed scenario.
It becomes aperiodic for n5 1, taking on the appearance of
individual solitons interacting among themselves. The photo-
graphs-insets illustrate the real shape of the corrugated

100

D
im

p
le
d
ep
th
,m

m

50

1.00 1.05 1.10
E=Ec

0

c

0 0.5 1.0 r, mm

50

100

z, mm

ba

Figure 11. (a) Isolated dimple, the profile of which was obtained using the interference technique. (b) Reconstructed profile. (c) Variation of dimple depth

depending on the holding field [28].
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surface. The bottom right one correlates with Fig. 3 and
corresponds to the binodal plane±single dimple transition.
The two central photos correspond to a certain intermediate
state in the presence of dimple±dimple interaction [see
formula (2.51)]. The close-packed picture shown in the top
photo corresponds to an intermediate scenario of decay with
the spinodal onset (see Fig. 3) and binodal end. The
continuity of filling an increasingly larger area of the liquid
surface with the dimples is implied (but not proved).

3. The charged thin liquid film

3.1 Introductory notes
A metallic substrate is one of the important factors influen-
cing the character of instability and details of corrugation
formation on a charged liquid surface. The effect of a
substrate growing with monotonically decreasing thickness
d of a liquid film in the region of ~kd < 1 (~k is the effective
capillary constant of the film problem depending on the
details of its setting up) accounts for the film reconstruction
problem being a self-consistent problem requiring special
consideration. The changes are purely formal (the Coulomb
part of the problem simplifies, and the boundary condition
problem arises); modification of the dispersion law results in a
more diversified picture of deformation phenomena, and,
finally, in hydrogen films (a mere detail) variations in the
reconstruction are feasible, both with a fixed total charge and
with a given external potential.

In analogy with the `bulk' problem, we shall start
considering `film' results from the discussion of the stability
problem for an infinitely extended film. Edge effects can be
neglected here if themain events occur at wavelengths that are
small compared with the film dimensions along the substrate.
An additional simplification (also arising from the `bulk'
problem) concerns conductivity of a film surface regarded as
ideally conducting. An advantage of the `unconstrained'
approach is uniformity of the linear description of the instant
of stability loss in a charged film allowing for a consistent
interpretation of the limits of bulk �~kd > 1� and film �~kd < 1�

problems. The boundedness manifests itself as the impossi-
bility of considering edge effects that are much more diverse
in the charged film problem than in the bulk case. In
particular, an inhomogeneous variant of stability loss absent
in the bulk problem acquires significance. Formally, the
question at issue is an inhomogeneous system of equations,
and, therefore, deformation of a charged liquid surface
develops in a thresholdless manner after the appearance of
finite charge density on it. The effect of thresholdless
deformation is present in the bulk problem, too [see formulas
(2.4)±(2.8)], where deformations of these two types seem to be
independent. In the film, however, the thresholdless solution
ceases to be stable as the destabilizing field increases.
Parametrically, the threshold looks like that in an infinite
problem (although it is not evident in advance). But the
numerical coefficient is highly sensitive to the boundary
conditions at the film edges.

The development of events in the region of parameters
exceeding the critical ones, including the reconstruction
problem, is discussed in Section 3.2. Here, the restoration of
the alternative is of qualitative interest; namely, the stationary
reconstruction of a charged film becomes possible not only
under conditions of conservation of the total number of
charges on it but also when a fixed value of electric potential
is maintained along the film. As a matter of fact, the film
problem differs from the bulk case in that the latter contains
no proof of the impossibility of such a course of events for
technical reasons (the lack of a regular perturbation theory)
and direct experiments remain to be performed, while the
former exhibits both opportunities.

3.2 Instability of a charged thin liquid film
A. It is natural to begin discussing this issue from the stability
problem as in the case of a charged liquid surface (see Section
2). The set of equations (2.10) with the boundary conditions
for potentials j and F at finite d and h (Fig. 1a) gives the
following expression for the spectrum of small oscillations,
derived for the first time by Chernikova [53]:

o2 � k tanh �kd �
r

�
rg� ak 2

ÿ k

4p

�
E 2
ÿ coth

ÿ
k�hÿ d ��� E 2

� coth �kd �
��
: �3:1�

The general dependence (3.1) simplifies in the cases of
symmetric �hÿ d � d � and asymmetric �h!1� geometry.

In the former case, according to formula (3.1), one obtains

o2 � k tanh �kd �
r

�
rg� ak 2 ÿ k

4p
�E 2
ÿ � E 2

�� coth �kd �
�
:

�3:2�

Formally, the parameters of the problem corresponding to
the stability boundary are defined by simultaneous solution
of equations

o�k� � 0 ;
qo2

qk
� 0 : �3:3�

The analysis of conditions (3.3) that requires the application
of numerical methods in the transition region leads in the
symmetric limit to the results presented in Fig. 13 [53]. Curve
1 depicts a variation of E 2

�c � E 2
ÿc depending on d=a, and

curve 2 illustrates the behavior of kca as a function of d=a.
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Figure 12. Phase diagram [49] of the reconstruction process at the helium

liquid±vapor interface in the presence of a fixed charge with different

degrees of occupation, n, depending on the reduced electric field eÿ above

the helium surface. The snapshots-insets illustrate the state of the helium

surface at a given degree of occupation. The top left part of the diagram

corresponds to the quasispinodal scenario of corrugation appearance. The

bottom right part is typically binodal.
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The most interesting corollaries of formulas (3.3) and the
results presented in Fig. 13 include the vanishing of the critical
wave number kc. Near the threshold d0, one has

k 2
c �

d 2 ÿ d 2
0

a 2d 2
; d0 �

���
3
p

a : �3:4�

In the region d=d0 < 1, the critical electric field also
appreciably diminishes:

E 2
�c � E 2

ÿc ' 4prgd : �3:5�
Accordingly, the critical electron surface density is given

by

n cr
s '

1

e

���������
rgd
4p

r
: �3:6�

Analysis of the asymmetric case does not change the
qualitative conclusions (3.4)±(3.6). Instability moves into the
region of small wave numbers, and critical parameters `drop'
until van der Waals forces come into play.

Notice also that all experiments with helium films were
carried out at Eÿ � 0 without regard to any special con-
siderations, besides a relatively simple possibility of estimat-
ing charge density. For this reason, the problem of infinite
film stability at arbitrary occupation n and its role in the
formation of corrugation variants (considered in Section 2 for
a charged liquid surface) is not discussed below.

The results of Ref. [40] deserve special mention among the
experimental findings obtained in this field; they illustrate the
initial stage of kd-dependence of critical characteristics of the
charged helium film in the kd4 1 region (Fig. 14).

B. There are two generalizations of the picture reported in
paper [53]. First, the notion of gravity in the stability problem

undergoes modification with film thinning. Van der Waals
forces come into play, which radically changes the results
obtained. Second, it is interesting to observe the behavior of
the stability problemwhen the substrate is other thanmetallic
and has finite permittivity. Relevant corrections [54] lead to
the dispersion law

o2 � k

��
3 f

rd 4
� g

�
� a
r
k 2

ÿ 4pe 2n 2

r
k
1� d exp �ÿ2kd �
1ÿ d exp �ÿ2kd �

�
tanh �kd � : �3:7�

Here, f is the van der Waals constant, d � �Eÿ 1�=�E� 1�,
and E is the permittivity of the substrate (E � 1 for a metal).
The van der Waals forces are represented here by an
unretarded variant, d < dW, where dW is the characteristic
van der Waals thickness. In the general case, van der Waals
pressure is defined as

PW�z� � f

d 3

�
1� d

dW

�ÿ1
: �3:8�

Interpolation formula (3.8) taking account of the retardation
effect was proposed in Refs [55, 56]. The measurement of f
and dW constants entering formula (3.8) is a special problem.
In the case of superfluid helium, the values of these constants
ensue from the analysis of third-sound propagation [56].
Clearly, law (3.7) can aspire to quantitative assertions only
in the d4 dW region, which is the point of interest here
though.

The solution of the system of equations (3.3) taking
account of law (3.7) yields the critical value of surface charge
density n cr

s and the respective critical value of wave vector k cr

as a function of d. The asymptotic behavior of these quantities
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Figure 14. Experimentally found film-thickness dependence of the critical

field of a charged helium film at a constant total charge on its surface [40].

Solid curveÐ theoretical prediction [53]. InsetÐ schematic of the experi-

mental setup [40].
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Figure 13. Properties of a charged thin film: curve 1Ðdependence of the

critical field in a film on its thickness d=a in capillary lengths, referred (for

convenience) to half of the critical field in the case of charged semispace;

curve 2Ðdependence of the critical wave number of a film on its thickness

d=a, referred to its critical value for the charged space [53].

1216 V B Shikin Physics ±Uspekhi 54 (12)



in thick films for k crd4 1 (d > 107 A
�
) is independent of

substrate permittivity:

n cr
s �

�
a

4p2e 4

�
3f

d 4
� rg

��1=4
; �3:9�

k cr � 2pe 2�n ��2
a

: �3:10�

For thin films (d < 103 A
�
) deposited on a metallic substrate,

the following asymptotic expression was obtained taking
account of kd5 1:

n cr
s �

�
3f

4pe 2

�1=2

d ÿ3=2 : �3:11�

This means that taking account of van derWaals forces alters
the character of the film-thickness dependence of critical
charge density: the value of n cr

s passes through a minimum
as d monotonically decreases, and sharply increases there-
after.

The general picture of n cr
s �d � and k cr�d � behavior is

presented in Fig. 15.

C. An additional beautiful detail emerges when deformation
�d is taken into account in the problem of critical parameters
in the region of action of van der Waals forces. These forces
lead to renormalization of critical parameters of a charged
film [see formulas (3.9)±(3.11)]. Moreover, they play an
important role in the formation of the film. In the present
case, the analog of the problem (2.5)±(2.8) is the calculation of
the van der Waals film thickness in the presence of fixed
charge density ns at the film surface. The result from paper
[57] is as follows:

d ÿ1W �
�

1

d 3
0

� 2pe 2n 2
s

f

�1=3

; d0 �
�

f

rgh0

�1=3

; �3:12�

where h0 is the height of the solid substrate above the liquid
helium level, and the holding electric field strength has the
maximum value E? � 2pens.

The experiment reported in paper [57] confirms the
substantial relation between d, f, and ns. According to
Eqn (3.12) (solid curves in Fig. 16), electron pressure may
cause a severalfold change in the film thickness.

Turning back to the discussion of the critical parameters
of the charged film, one has to obviously correlate two
processes, viz. the growth in the critical n cr

s value with
decreasing d, and the reduction in d with increasing the level
of film charging. The co-existence of these two trends is
illustrated in Fig. 17 [58]. Curve 1 is analogous to the
dependence n cr

s �d � in Fig. 15 for E!1 and unretarded van
der Waals forces. Curves 2±5 reflect the process of film
thinning with increasing charge density (for films of different
initial thicknesses). The real critical density for a film of
thickness d0 is given by the intersection of curves 1 and 2±5.
Evidently, the critical density is increasingly less dependent on
d0 as the last quantity decreases; formally, it tends toward
infinity.

The traces of the influence of film thickness deformation
on n cr

s �d � can be seen right of the minimum of curve 1 (see
Fig. 17). Curve 2, starting from a certain d0 value of the
neutral film, meets, due to its deformation, the general
dependence n cr

s �d � at point d < d0 under the effect of
electron pressure; this effectively corresponds to a fall in the
critical surface density compared with the calculated one [57].
The final results of such correction of n cr

s �d � taken from
Ref. [59] (that proved to be useful) are shown in Fig. 18,
together with the theoretical result presented earlier in Fig. 14,
data obtained in Ref. [40] (light circles) and those, as reported
by a French group (dark circles), covering the interval kd4 1
somewhat greater than in Ref. [40] and extended toward the
reduction of this parameter.

D. The qualitative difference between the surface and film
stability problems also holds for the conditions of conserva-
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Figure 16. Effective helium film thickness plotted vs electron density.

CurvesÐ results of calculations by formula (3.12) for two neutral films of
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tion of the electric potentialV (rather than the total charge or
its density) on a charged surface. The primary cause of such
difference lies in electrostatic definitions. Given the geometry
of the structure shown in Fig. 1, it is easy to see [assuming
complete field shielding above the film �Eÿ � 0� and using
information on the long-wavelength character of the film
instability development] that in the case of fixation of the total
charge (hence, charge density along film edges), the main part
of stress tensor E 2

�=8p appearing in pressure balance on the
film surface is unrelated to its thickness d and, therefore, can
be neglected as in the bulk case. However, the maintenance of

V changes the picture. Characteristic electric fields

E� � V

d
;

and, therefore, the stress tensor E 2
�=8p, begin to `adhere' to

variations in the position of the free film surface if x=d4 1,
where x�x; t� is the film surface oscillation amplitude. There is
no such adhering in the bulk case where x=d5 1. This means
that all nonlinear phenomena on the helium film in the
problem with V � const need to be reconsidered.

In so doing, the first issue is the equilibriumproperties of a
helium film in a plane capacitor (see Fig. 1) with potential V
across its plates under conditions of Eÿ � 0. The considera-
tion is analogous to that in Section 2 [see formulas (2.4)±(2.8)]
with the substitution of

V

d
! V

d� x0
:

As is shown in Ref. [61], the solution of this inhomoge-
neous one-dimensional problem leads to film deformation x0
in the form

x0 �
V 2

�d� x0�2
: �3:13�

The behavior of deformation x0 is apparent in the region of
small V. Here, x0 increases in a thresholdless manner at the
initial stage of capacitor voltage growth (Fig. 19). However, a
rise in V results in appearance of a threshold Vc:

V 2
c �

�
2

3

�3

V 2
0

g �

g
; V 2

0 � 4prgd 3 ; �3:14�

g � � g

�
1� L

L0 ÿ L

�
�3:15�

(L and L0 are marked in Fig. 1), bringing about the loss of
stability. Here, V0 is the threshold voltage (3.5) from the
`infinite' film stability problem, and x0 at the critical point
�x0 � x crit

0 �, namely

x crit
0 � ÿ d

3
;

is comparable to the initial film thickness.
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The picture of what is happening is supplemented by the
interaction of two factors, viz. the thickness dependence of
liquid film field stability and the change in film thickness
under the action of electron pressure (effects analogous to
those in Figs 16, 17). Taken together, these factors in the
region to the left of the minimum in the diagram in Fig. 15 are
responsible for the absence of the instability effect. Inter-
pretation of these phenomena to the right of the minimum
needs modification if g � 6� g.

The diagram in Fig. 20 gives the critical field strength for a
helium film subject to inhomogeneous electron deformation
at different g �. The pairs of curves 1±1, 2±2, and 3±3
correspond to g �=g � 1; 3; 5, respectively. The curves issuing
from a point d � 1 show how deformation of a charged
surface increases in the cell center with growing voltage. The
respective curves reflecting the dependence �3=2�3V 2

c �
4prd 3g �=g demonstrate the behavior of the critical voltage
following alteration of the film thickness. The intersection
point of the curves with similar indices corresponds to the loss
of stability caused by liquid deformation. At g � g �, the
critical voltage Vc turns out to be lower than V0, in
accordance with formula (3.14). On the other hand, the
larger g �, the higher the critical voltage. The position of
point A (see Fig. 20) below B means that the critical
deformation voltage of a finite film is higher than the critical
voltage corresponding to the loss of stability of an infinite
film.

The method realized in experiments with a charged
hydrogen antifilm [63] makes it possible to identify the
mechanism of instability (3.14) alternative to that described
by formula (3.5) (see Figs 19 and 20). The authors used a
closed container with a liquid condensed from the inflowing
gas. The lateral diameter of the cell was roughly 1.2 cm. The
vacuum gap between the upper electrode and the condensed
liquid surface played the role of the antifilm. Under
isothermal conditions, manipulations with the liquid compo-
nent of such a system were difficult to control. But the level of
the liquid in the container could be established at any desired
height by varying the amount of the gas in the cell and the
temperature difference produced when the bottom of the
vessel was mildly cooled with respect to the ambient
temperature.

By charging a liquid hydrogen surface with ions from the
inside [the only way to charge the surface when the gap

between the liquid and the upper electrode (antifilm) is
sufficiently small] and keeping the cell saturated in the course
of the experiment (with the liquid surface being equipoten-
tial), it is possible to make the liquid surface lose stability (by
varying the vacuum gap thickness), to form a soliton state in
supracritical conditions, and, finally, to cause a breakdown of
the charged boundary (by further increasing the degree of
supercriticality) as proposed inRef. [53] or in accordance with
the scenario illustrated in Fig. 19. The critical conditions from
Ref. [63] are represented in Fig. 21 where the abscissa is the
temperature (instead of the film thickness d ) unambiguously
determining the value of d. The experimental data reported in
paper [63] fairly well reproduce Chernikova's predictions [53].
The same figure contains information about the upper critical
field.

When discussing the degree of correlation between the
experimental data from Ref. [63] (see Fig. 21) and Ref. [40]
(see Fig. 14) and the theory [53], it is unfortunately worth
noting the absence of details of these measurements impor-
tant for the interpretation of the available alternative
(different conditions of filling the film surface with elec-
trons, and incomplete information about cell geometry
preventing estimation of the difference between g� and g).
What is certain are the real physical causes suggesting the
possibility of different origins of instabilities in the cases
illustrated in Figs 21 and 14. The authors of Ref. [63] did not
try to decide between two alternatives (either [53] or [61]) and,
therefore, did not use the obvious way to come to a
conclusion, i.e., variation of the parameter g �=g. A better
agreement between theory [53] and experiment [63] than in
Ref. [40] may be due to the variativity of definition (3.14). The
equipotential scenario of instability development is especially
noticeable at the final stage of soliton formation during
reconstruction (see Section 3.3).

E. To sum up the foregoing, let us briefly outline the current
state of the `film' problem. The most distinctive feature in the
behavior of the system of electrons above a helium film is the
nonmonotonic dependence of the critical parameters of 2D
electrons on the film thickness. This fact was partly
documented by independent data [40] (see Fig. 14) to the
right of the minimum of function n cr

s �d � and, accordingly, by
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measurements [57] (see Fig. 16) on the left shoulder of this
extremum. Measurements in the region of the minimum itself
have not yet beenmade. The real thickness of the film needs to
be corrected practically within the entire range of kd4 1 in
view of the action of electron pressure on it. This effect is
especially noticeable left of the minimum of n cr

s �d � (see
Fig. 16). On the right-hand side of the n cr

s �d � diagram, the
correction must take into account variations of the film
thickness under the action of electron pressure pursuant to
the scheme illustrated in detail in Fig. 20.

An interesting possibility of increasing critical electron
density at the left shoulder of the n cr

s �d � diagram (up to the
appearance of signs of degeneration in the 2D system)
stimulated serious efforts [64] to reveal this effect, which is
of importance from the standpoint of overlapping conditions
for the existence of classical and degenerate 2D ensembles and
determining the upper melting limit of the Coulomb crystal.
Figure 22 [64] illustrates the position of the transition region
at the plane: absorption as a function of plasma parameter G
of the problem for an electron Coulomb crystal on a helium
film, and parameter G � VC=T, where VC is the mean
Coulomb energy of electrons in the 2D system, and T is the
temperature.

3.3 Charged solitons on a thin helium film
A consistent picture of transition from the flat to the
corrugated state for the `bulk' problem is to a large extent
based on the qualitatively acceptable mechanism of charge
distribution between the emerging dimples (each dimple traps
electrons in a region with a radius on the order of capillary
length). Such heuristic arguments are absent for a charged
filmwith instability in the vicinity of small wave numbers. For
this reason, the section concerning dimples and other soliton
structures on a liquid film can be formulated only as a
description of separate episodes without pretension to
building (as in Section 2 above) a general phase diagram of

the flat state transformation to the corrugated one. Part of the
present section is devoted to a discussion of alteration in the
properties of multicharged dimples with gradual film thin-
ning. In what follows, we consider the most interesting
possibility of the formation of qualitatively new charged
soliton structures with equipotential electrostatics.

A. Isolated multicharged film dimples versus thoroughly
explored `bulk' analogs [65]. Let us consider a multielectron
dimple on a helium surface of thickness d underlain by a bulk
metallic substrate. The influence of the finite film thickness on
dimple parameters touches several parts of the problem. First,
the interaction of electrons and the metallic substrate
modifies the effective holding field:

E � E? � Fd

e
; Fd � e 2

4d 2
; �3:16�

where E? is the external electric field, and Fd is the image
force.

Second, film thickness d appears in the definition of
dimple Coulomb energy. Because the Coulomb energy over
`bulk' helium has the form

WC � c0
Q 2

R
; Q � eN ; c0 � 15:73 �3:17�

(R is the radius of the charged spot in the dimple center, andQ
is the total dimple charge), it must be expressed at the film
under conditions d=R4 1 as

WC � 2dQ 2

R 2
: �3:18�

Interpolation of asymptotics (3.17), (3.18) gives the definition
of energy

WC � c0Q
2

R�1� c1R=d � ; �3:19�

where c1 is a constant on the order of unity. Finally, the
definition of effective capillary constant ~k changes:

~k 2 � r~g

a
; ~g � g� 3f

rd 4

1

1� d=d�
: �3:20�

The van der Waals constant f has a scale of� 60 K, and d� is
the characteristic length arising in the theory of van derWaals
forces taking account of retardation effects.

The total energy of a multielectron dimple on a helium
film is possible to represent in analogy with the bulk case [44,
45] as

W � Q 2E 2
?

8pa
exp

�
~k 2R 2

2

�
Ei

�
ÿ ~k 2R 2

2

�
� VC�Rd � ; �3:21�

where R is the variable parameter, while N, E?, and d have
fixed values.

It is convenient to introduce a dimensionless electric field
l and film thickness ~d :

E 2
?� lk0a ; k 2

0 �
rg
a
; ~d � d

d0
; d0 �

�
3f

rg

�1=4

� 10ÿ4 cm:

�3:22�
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Figure 22. Absorption (or inverse quality factor Qÿ1 of the resonator) of
the high-frequency energy by electrons on a helium film of variable

thickness, which were placed at the electric field antinode of the

resonator. Plasma parameter G � VC=T, where VC is the mean Coulomb

energy of electrons in the 2D system, increases with a rise in the critical

electron density caused by the film thinning (the phenomenon left of the

minimum of curve 1 in Fig. 17). The growth in G is accompanied by

monotonic increase in absorption until this parameter reaches the critical

valueG4 160. The nonmonotone behavior ofQÿ1 observed in this region

is interpreted as the arrival of the 2D system in theCoulomb crystallization

region and its transition to a state with quantum melting of the electron

Coulomb crystal [64].
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The dimple is stable as in the bulk case if

W�lcritk � � 0 : �3:23�

The corresponding plot of function lcritk � ~d � at different
values of the parameter k � d�=d0 is presented in Fig. 23a. It
can be seen that parameter k markedly affects the diagram.
When k � 0, retardation effects are neglected. Figure 23b
demonstrates the dependence of the dimple energy W on the
dimensionless film thickness at a fixed l value and a different
number N of electrons in the dimple. The value of N was
optimized by the requirement that the energy had a scale in
excess of the experimental temperature close to 1 K. Impor-
tantly, the position of the minimum ofWmin� ~d � is insensitive
to N, meaning that multielectron dimples differing in N and
emerging as the film loses stability have a maximum binding
energy at a ~d value equal for all N.

In addition to a series of calculated plots, we display an
image [63] of a film dimple with a fixed charge number
(Fig. 24). This image may be useful for comparing the dimple
profile with equipotential soliton geometry (see Fig. 26
below).

Of importance for the development of reconstruction is
not only the appearance of individual multicharged dimples
on the liquid surface but also the character of their
interaction. A comparison of `bulk' [see Section 2, formulas
(2.50)±(2.52)] and `film' dimples reveals their qualitative
identity. As in the case of interdimple interaction energy
(2.50), the film exhibits strain-induced attraction between
the dimples stronger than that in the bulk case. In contrast,
the electrostatic repulsion is markedly weakened (dipole±

dipole instead of Coulomb). As a result, individual dimples
emerging in the course of reconstruction must merge into one
another.

B. A variant with a very pronounced R=d4 1 ratio. In this
hypothetical regime, one finds

W 'WC �Wx �Wedge ; �3:24�

WC � 2p�d� x�Q 2

S
; Wx � a~k 2x 2S ; Wedge /

���
S
p

;

Q � ensS ; S � pR 2 ;

whereWC is the Coulomb energy of a flat capacitor,Wx is the
deformation energy of gravitational origin, Wedge is the
contribution to the total energy of the boundary origin, and
Q is the total charge of a disk having areaS at the film surface.

Reducing the energy (3.24) with the omitted contribution
ofWedge to aminimum in x and substituting the result into the
initial expression, one arrives at

W ' 2pe 2ns

�
dÿ e 2

a~k 2
n 2
s

�
N ; n 2

crit �
da~k 2

e 2
: �3:25�

Evidently, there is no solution with the finite values of Q
and S in the present scenario. The system of electrons either
occupies the whole available area S14S for ns < ncrit or
collapses into a point for ns > ncrit. This conclusion logically
continues the analysis described in paragraph A of this
section; namely, an isolated dimple with a large enough
number of electrons is unstable and cannot exist in the form
of a charged disk with radius R=d > 1 in the right branch of
the plot in Fig. 17. The respective structures `sink' to the
stable left part of this dependence arising from a sharp
increase in ~k 2 in the region subject to the action of van der
Waals forces. Figure 25 illustrates such behavior of solitons.

C. Solitons on an equipotentially charged helium film under
conditions V � const. This case brings us back to the problem
of the realization of the equipotential (homogeneous) or
inhomogeneous reconstruction scenario raised in the Intro-
duction. For the `bulk' problem under the conditions of the
conservation of a total charge, the equipotential recombina-
tion variant proved unrealizable (because of emerging
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Figure 24. Photo of an antifilm dimple with a fixed charge [63]. The lateral

dimension of the dimple is roughly 1.2 cm. The capillary length of liquid

hydrogen is on the order of 0.19 cm.
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continuity breaks in the charge density distribution); in this
case, there is no regular approach for the scenario with
V � const because of the absence of the perturbation theory
in parameter kxmax < 1 that has here a scale on the order of
unity. In these conditions, an equipotential film is an
alternative, leaving open the possibility of constructive
calculations. Details of this alternative discussed below are
qualitatively most interesting for soliton results.

The equation for a small addition dx�x� to static
deformation hxi within the accuracy of the first nonlinear
contribution, namely

x�x� � hxi � dx�x� ;
� �L
ÿL

dx�s� ds � 0 ; �3:26�

has the form�
rg � ÿ V 2

4p�d� hxi�3
�
dxÿ a dx 00

� 3V 2

8p�d� hxi�4 dx 2 � const � c0 : �3:27�

The expression in square brackets on the left-hand side of
equation (3.27) changes the sign at point

4prg �
ÿ
d� hxi�3 � V 2

crit : �3:28�

Criterion (3.28) corresponds, as in formulas (3.13), (3.14), to
the loss of stability of the homogeneous state of a charged
helium film.

It is worthwhile to discuss at the level of relations (3.27),
(3.28) the difference between the equipotential problems of
reconstruction at bulk and film surfaces. To recall, in the
former case the question is not the absence of a solution of the
reconstruction problem in general, but the impossibility of
formulating it in terms of the smallness of parameter kdx5 1.
In equation (3.27), a different spatial parameter forms: ~k5 k
[see formulas (3.27), (3.29), (3.30) containing the definition of
this parameter]. Therefore, there is hope of elucidating, even if
qualitatively, the structure of a corrugated film surface under
conditions of its equipotentiality and the smallness of the

parameter ~kdx5 1 justifying power expansion in this para-
meter in Eqn (3.27).

In the conditions of V > Vcrit, the first integral of
Eqn (3.27) equals�

dx�x�
dx

�2

� ÿ ~k 2dx 2

2
� g 3dx 3

3
� c0dx� c1 ; �3:29�

~k 2 � k 2

�
V 2

4p
ÿ
d� hxi�3rg � ÿ 1

�
; g 3 � V 2

4p
ÿ
d� hxi�4a :

�3:30�

This expression testifies to the formation of a natural region
of length ~kÿ1 at the center of soliton in which deformation
may oscillate.

Let us assume dx 0jx�0 � 0 for deformation dx0 at the
center of our soliton, and

dx0 < 0 : �3:31�

This requirement leads to the definition of `constant' c1 in
Eqn (3.29):

c1 � ÿc0dx0 �
~k 2dx 2

0

2
ÿ g 3dx 3

0

3
: �3:32�

An additional solution [along with the root of Eqn (3.31)] of
equation (3.29) exists in the case of independent points with
dx�x�=dx � 0, besides the region with dx0. Here, the lateral
film dimension `enters' the problem. Assuming the parameter
~k5 k to be small but finite, we seek the solution in which
external dimensions of the soliton are fixed by conditions
dx�x�=dxjx��L � 0 at the boundaries �L4 ~kÿ2 4 kÿ2.
Thus, the problem of reconstruction with a single cycle
between the cell boundaries is reduced to studying properties
of the roots of equation

g 3
dx 3 ÿ dx 3

0

3
ÿ ~k 2 dx 2 ÿ dx 2

0

2
� c0�dxÿ dx0� � 0 : �3:33�

As mentioned above, this equation has the root dx � dx0.
Therefore, the cubic equation (3.33) for roots dx 6� dx0
simplifies to a quadratic one relating dx 2

L to dx0.
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Figure 25. Data on the state of a helium film surface in a quasi-one-dimensional cell having the distance between its sides smaller than the capillary

constant. In the neutral state, the film forms a well apparent meniscus of finite Laplace radius. Attempts to charge the film and thereby measure the

segment of the curve for ncr�d � to the right of its minimum (see Fig. 15) result in deformation of the film shape and stabilization of its geometry at the left

shoulder of curve ncr�d � [66].
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What follows is just a succinct exposition. The soliton
shape is implicitly defined by the second integral of equation
(3.27) in the form

x � f
�
dx�x�; dx0; c0

�� c2 : �3:34�

The new integration constant, c2, follows from the condition
dx�x! 0� ! dx0, whence c2 � 0.

The resulting solution must be correlated with the
requirement

L � f
�
dxL�dx0�; dx0; c0

�
: �3:35�

Moreover, there is normalization (3.26). These conditions are
sufficient to define the remaining constants dx0, c0 and
thereby to close the discussion of conditions for the existence
of a soliton on a bounded equipotential film.

The details being neglected, the resulting solution dx�x�
has the structure

dx�x� ' ~k 2

g 3

�
1ÿ tanh2

~kx
2

�
; �3:36�

where g and ~k are taken from formulas (3.30). A soliton of
this type is well known from work on the shallow water
theory [67].

Observation of the soliton state on an equipotentially
saturated charged hydrogen film in supercritical conditions is
reported in paper [63] (Fig. 26). Note a characteristic
curvature of the profile, which is much smaller than could
be expected from manipulations with the capillary constant
alone. For comparison, it is convenient to consider the profile
of a multicharged dimple formed by the local pressure of a
finite number of charges accumulated on its top (see Fig. 24).
The curvature of the central part is controlled here by the
capillary constant (as it should be for a cluster with a fixed
number of charges in the central part).

Using the definition (3.34), (3.35) of the solution shape, it
may be numerically compared with the data of Fig. 26.
Relevant treatment yields the result given in Fig. 27.

D. Concluding the `soliton' part of this section. We can afford
to go beyond the above framework of reasoning that does not
include the domain of essentially nonlinear phenomena at a
charged liquid surface. The soliton shown in Fig. 26 that
emerged at the flat charged boundary losing its stability in the
field Uc1 of the diagram (see Fig. 24) with an increase in the

degree of supercriticality up to theUc2 level becomes unstable
itself and turns into a geyser, periodically breaking through
the liquid boundary (Fig. 28); its outburst emits a portion of
charges detected by an electrometer (the chronologically first
formation of a geyser by positive ions seeking to leave the
charged helium surface in a strong electric field was observed
in Refs [69, 70] under conditions in which the external
receiving electrode was essentially nonplanar).

In this part of the study, the cryogenic problem of
developing instability of a charged liquid surface overlaps
with research on the properties of normal electrolytes and
liquid metals (Fig. 29). The central issue here from both
theoretical [69±75] and experimental [71, 72] standpoints is
the shape of the surface of a conducting liquid under
conditions of developing instability. The construction of
theory aims at substantiating the assertion that a soliton in
the final phase must, as a rule, have the form of an
axisymmetric pyramid with a cone angle of 98:6� (Taylor
cone) [71, 72].

There is every reason to believe that cryogenic and normal
patterns of an eruption growth for a solitary geyser are
identical. The cryogenic conditions allow this process to be
observed in the form of reproducible relaxational oscillations
[63]. The results of liquid metal research may have practical
applications, for example, for the formation and acceleration
of bulk charged clusters.
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Figure 27. Comparison of the soliton shape calculated using formulas

(3.34), (3.35) (solid curve) and that shown in Fig. 26 (circles).

Figure 28. The behavior of an equipotential soliton in the vicinity of the

upper critical fieldUc2 (data of Fig. 24 from Ref. [63]). In accordance with

formulas (3.30), the curvature of the profile at the top of the soliton

sharply increases, thus inducing a breakdown and periodic escape of the

accumulated charge toward the gate electrode (relaxationally pulsating

geyser).

Figure 26. Photograph of the charged surface of liquid hydrogen (taken

fromRef. [63]). Note the characteristic curvature of the profile (its radius is

comparable to the cell's lateral dimensions), much smaller than could be

expected from manipulations of the capillary constant alone. The

difference is especially well apparent by comparing the soliton tops in

this figure and those in Fig. 24.
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4. Conclusions

In conclusion, the present review concerning the problem
posed in Ref. [16] systematizes the currently available
information on stability and reconstruction of flat charged
surfaces of cryogenic liquids under conditions different in
terms of cell geometry, external electrostatics, degree of
electron filling, etc. Prospects for the further development of
research on this topic are outlined.

It was shown that reconstruction of a charged liquid
surface proceeds under different scenarios, depending on a
combination of external conditions.

(1) In neutral liquid dielectrics (magnetic materials), the
boundary stability is disturbed at a finite wave number
q ' aÿ1 of the dispersion law o�q� for small oscillations of
the shape of the free liquid surface in an external electric field
(here, a is the so-called capillary length). Reconstruction of
the free liquid surface (i.e., its transition from the flat to the
corrugated state) is possible and realized in the so-called
homogeneous scenario where the electrostatic boundary
conditions along the corrugated liquid surface are homo-
geneous over its entire profile. The systematic description of
corrugation is feasible only in the presence of the small
parameter �E1 ÿ E2�=�E1 � E2�5 1. The period of developing
corrugation is scaled by the capillary length. Observations
confirm the existence of such reconstruction (see review [16])
and the requirements for the smallness of the parameter are
not very stringent, playing a special role only in theoretical
considerations.

(2) The establishment of finite charge density at the
liquid±vapor interface at a fixed total charge number results
in a wide diversification of reconstruction details. An
additional parameter n, the degree of filling this interphase
boundary with charges (with respect to the critical one),
appears in the problem: 0 < n4 1. On the whole, the
reconstruction is inhomogeneous because the entire interface
breaks into a system of multicharged dimples. At different
poles of filling n, corrugation varies from periodic (with a
period on the order of capillary length and signs of similarity
with spinodal decay processes) in the region of n4 1 to the
state characterized by the appearance of individual binodal

solitons with a charged nucleus and neutral wings, as n! 0.
Transition in the vicinity of n4 1 has much in common with
spinodal decay in the physics of first-order phase transitions.

Experimental studies of the inhomogeneous reconstruc-
tion of charged cryogenic liquid surfaces are far ahead of
research on other possible scenarios of this beautiful effect
and confirm many details ensuing from the theory of this
phenomenon.

It is possible to create conditions for the homogeneous
development of events on a maximally charged liquid surface
(liquid metal in an electric field). In this case, however, the
theory does not contain small parameters and therefore
remains undeveloped. Being focused on the observation of
different types of geysers, experiments with liquidmetals have
not thus far revealed a finite reconstruction.

(3) Thin charged liquid films lose stability at small
(formally, zero) wave numbers. This fact is of significance
for reconstruction phenomena, accounting for an alternative-
to-dispersion scenario of developing instability of a flat
charged liquid film. The role of van der Waals forces is of
special importance and interest for the development of
charged film stability criteria. The reconstruction takes
place, but differs from that in the `bulk' problem. The notion
of an individual multicharged dimple is modified, too.
Reconstruction of a charged liquid film with metallic proper-
ties becomes possible (in contrast to the `bulk' problem).

There are experimental constraints on the creation of film
systems with large lateral dimensions. As a result, the
observed reconstruction has the form of individual visible
solitons with predictably varying properties.
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