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Resonant tunneling of ultrashort electro-
magnetic pulses in gradient metamaterials:
paradoxes and prospects

A B Shvartsburg, N S Erokhin

1. Introduction. Tunneling of a monochromatic
wave through a gradient photonic barrier
(exactly solvable model)
This report is devoted to new effects of wave-pulse tunneling
through inhomogeneous media. The concept of tunneling
often refers to quantum effects of particle penetration
through potential barriers with the heights exceeding the
energy of the particles themselves. It is this problem that was
first solved by G A Gamow in 1928 [1] when E Rutherford
asked him to explain the paradox of the alpha decay of atomic
nuclei, in which the energy of an alpha particle leaving a
nucleus proved to be lower than the height of a potential
barrier surrounding the nucleus. By using the formal analogy
between the classical wave equation and the SchroÈ dinger
equation, Gamow managed to show that a partial penetra-
tion of de Broglie waves describing an alpha particle through
the barrier corresponds to the frustrated total internal
reflection effect known in optics. Such a penetration mechan-
ism, which is impossible in classical mechanics, was called
`tunneling'. By connecting this analogy with the uncertainty
in the relation between the momentum and coordinate of a
quantum particle, Gamow calculated the exponentially small
but finite probability of particle tunneling through the
barrier. This was probably the first application of quantum
mechanics in nuclear physics, and became for many years an
etalon for describing the tunneling of quantum objects in
electronics and solid state physics.

Tunneling effects attracted new interest with the develop-
ment of metamaterials and, especially, in connection with
advances in nanotechnologies in the manufacturing of so-
called gradient media with electromagnetic or mechanical
parameters continuously distributed inside a medium accord-
ing to a specified law managed by the manufacturing
technology. Studies were devoted not to traditional quantum
problems, but to classical problems of the propagation of
electromagnetic waves through gradient finite-thickness
dielectric layers. In nanophotonics, such layers are called
`gradient photonic barriers', while in the radiophysics of
superhigh-frequency electromagnetic waves, they are called
gradient wave barriers. It is these structures that are now
attracting attention in the development of a new generation of
photonic crystals, guiding wave systems, and miniature
radioelectronic devices.

As shown in review [2], the physical foundations of
tunneling electromagnetic waves through gradient media
are determined by geometrical or nonlocal dispersion. This
mechanism is not related to the material dispersion of
the barrier material and depends on the gradient and
curvature of the spatial profile of the refractive index n�z�.
Artificial dispersion effects are considered in this paper for
transparent barriers obtained by the deposition of a
dielectric onto a homogeneous nonabsorbing substrate
with the refractive index n. The exact analytical solutions
to Maxwell's equations for a number of such gradient
photonic barriers demonstrate the peculiarity of wave
tunneling processes in gradient nanooptics, which consists,
in particular, of the following [3]:

(1) The reflection and transmission spectra of gradient
media are determined not only by the jump of the refractive
index n�z� on the medium boundary, but also by the
discontinuities of the gradient and curvature of the refractive
index profile n�z�. The expressions for reflection and
transmission spectra were obtained for a number of n�z�
profiles, the classical Fresnel formulae being merely a
particular case of these expressions. Thus, the normalized
n�z� profile (Fig. 1) containing two arbitrary spatial scales L1

and L2, namely

n�z� � n0U�z� ; U�z� �
�
1� z

L1
ÿ z 2

L2
2

�ÿ1
; �1�

is characterized by the cutoff frequency O [3] depending on
the barrier thickness d, the refractive index n0 of the barrier
material, and geometrical parameters of profile (1):

O � 2cy
��������������
1� y 2

p
n0d

; y � L2

2L1
: �2�

The transmittance of a gradient wave barrier (1) with cutoff
frequency (2) is determined by the waveguide type dispersion:
waves with frequencies o > O propagate through the barrier
in the traveling-wave regime, while waves with frequencies
o < O propagate in the tunneling regime. The tunneling
spectra of barrier (1) can be conveniently considered using
the dimensionless frequency u � O=o. In this case, the regime
ofo > O �o < O� corresponds to the condition u < 1 �u > 1�.
The complex transmission coefficient T � jT j exp �ift� of
barrier (1) in the traveling-wave regime is described by the
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Figure 1. Normalized permittivity profile (1) inside a gradient photonic

barrier providing the tunneling of electromagnetic waves through a

barrier with width d; z=d is the dimensionless coordinate across the

barrier.
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expressions [3]
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The complex transmission coefficient T � jT j exp �ift� of
the barrier in the tunneling regime is described by other
expressions

jT j2 � 4nn 2
e �1ÿ t 2�
jQj2 ; �8�
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Parameters g and l entering formulas (8)±(11) are defined in
Eqn (7).

(2) Analysis of expressions (3)±(11) for the complex
transmission coefficient T � jT j exp �ift� shows that, on
passing from the traveling-wave regime to the tunneling
regime �u � 1�, the modulus of the coefficient, jT j, changes
continuously (Fig. 2a), while the phase ft experiences a jump
by p (Fig. 2b).

(3) The permittivity, unlike that in conventional electro-
magnetic-wave tunneling effects in media with free carriers,
preserves the positive real value at all points inside a nanofilm
�0 < z < d �, in particular, on the descending branch of the
e�z� profile �04 z4 d=2�, where the condition grad e < 0 is
fulfilled for e > 0. The interference of the forward and
backward waves in the gradient barrier can lead not to the
known effects of strong reflection of the incident wave and
exponential decay of the tunneling field in a homogeneous
rectangular barrier, but to an almost reflectionless (reso-
nance) tunneling regime in some spectral interval. The
transmission coefficient squared jT j2 in such a state can
reach high values of jT j2 � 0:9ÿ0:95, and even jT j2 � 1.

2. Dynamics of an ultrashort pulse
during resonance tunneling
Theproperties ofmonochromatic fields pointedout inRefs [2,
3] are used here to analyze the tunneling of ultrashort
broadband one- or few-cycle femtosecond pulses and video
pulses through a gradient photonic barrier. The tunneling of
such pulses is considered below without any new physical

hypothesis and mathematical approximations based on
Maxwell's equations for the exactly solvable model of this
barrier.

Consider a barrier formed by a transparent dielectric
nanolayer with width d and continuous profile (1) plotted in
Fig. 1 (curve 1). The nanolayer is deposited onto a thick
homogeneous substrate with the refractive index n. The
refractive index achieves maximum values of n � n0 on the
layer boundaries z � 0 and z � d, and a minimum value of
n � nmin at z � 0:5d. The cutoff frequency O of such a
gradient barrier is determined by expression (4). The
amplitude±phase transmission spectra in the vicinity of the
normalized cutoff frequency u � O=o � 1, plotted by expres-
sions (3)±(11) for the complex transmission coefficient
T � jT j exp �ift� of the barrier, are displayed in Fig. 2.

One can see from Fig. 2 that the energy transmission
coefficient jT j2 for u � 1 is continuous, whereas the phase
spectrum of the transmitted wave for u � 1 exhibits a jump by
p [4]: the values of ft�o� in the tunneling regime �o4O,
u5 1� are positive, and they are negative in the traveling-
wave regime �o5O, u4 1�. The phase shift ft in the
tunneling regime can exceed in some frequency interval the
phase shift f0 of a wave with the same frequency o
propagating through the same distance d in free space
�f0 � od=c�. These superluminal �ft > f0� and subluminal
�ft < f0� phase effects are exemplified in Fig. 2b.

Consider the tunneling of a femtosecond pulse with
duration t0, carrier frequencyo0, amplitude E0, and envelope

E�t� � E0 sin
pt
t0

cos �o0t� ; �12�
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Figure 2.Tunneling spectra for the gradient barrier depicted in Fig. 1, with

parameters n0 � 2:3, nmin � 1:47, and d � 100 nm. (a) Energy transmis-

sion coefficient jT j2. (b) Phase shift ft of the transmitted wave; f0 is the

wave phase incursion in air, and u � O=o is the normalized frequency.
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incident normally on a gradient barrier with the transmission
spectra displayed in Fig. 2. The spectrum of pulse (12)
contains harmonics belonging both to the traveling-wave
and tunneling regions. The phase shifts ft in these regions
have opposite signs, and the frequency dispersion of phase
spectra is considerable in both regions (Fig. 2b). The
contributions of harmonics with ft < 0 and ft > 0 to the
envelope of the tunneling pulse prove to be dependent on the
detuning of the carrier frequency o0 from the cutoff
frequency O. The pulse envelope after tunneling through the
gradient barrier is constructed by using the inverse Fourier
transform of the product F�o�T�o�, where F�o� is the
Fourier transform of an initial pulse (12), and T�o� is the
complex transmission coefficient. To take into account
contributions from both subluminal and superluminal phase
shifts to the formation of the tunneling envelope E1�t�, the
inverse Fourier transform is performed in the o-frequency
range from 0 to1.

The tunneling pulse dynamics can be conveniently
considered in a coordinate system moving together with the
leading edge of the pulse in free space at the velocity c. The
points of the envelope located behind (ahead) of this leading
edge correspond to positive (negative) times, the pulse onset
corresponding to the instant t � 0. Figure 3 plotted in this
coordinate system shows the superluminal displacements of
the deformed envelope caused by tunneling frequencies
�u > 1� in the region t < 0 [4]; propagating frequencies
�u < 1� determine deformation in the subluminal region
t > 0. The inequality between phase shifts of different
harmonics leads to the oscillating broadening of the trans-
mitted pulse and the superluminal shift of its leading edge
accompanied by some loss in the pulse energy [jT j2 � 0:91±
0:92 (Fig. 2a)]. The normalized envelopes E1�t�=E0 of
transmitted pulses are depicted in Fig. 3. A comparison of
these envelopes shows that the distortion of tunneling pulses
critically depends on the carrier-frequency detuning D �
�o0 ÿ O�=O with respect to the cutoff frequency O.

Figure 3a, corresponding to the negative detuning
D � ÿ8:16� 10ÿ2, gives evidence that precursors formed at
the leading edge of the tunneling pulse are located in the
region t < 0, therefore leaving behind the leading edge of the
freely propagating pulse �t � 0�; the amplitude of these
precursors, equal to 0.2 at the point t � 0, decreases side-
wise of the pulse propagation. The modulation of the trailing
edge in the region t > 0 is provided by propagating
frequencies �u < 1�. In the case of the zero detuning
(o0 � O and D � 0), the pulse is completely split, producing
two peaks with the amplitude 0.7; the precursor amplitude
on the pulse leading edge at the point t � 0 increases to 0.48.
Finally, as the carrier frequency shifts to the traveling region
�D � 4:08� 10ÿ2 > 0�, the modulation of the fronts of the
tunneling pulse and splitting of the maximum become less
pronounced (Fig. 3d).

Notice that these deformations appear when pulse (12)
propagates through a thin gradient barrier with width
d � 100 nm much smaller than the wavelength l (800 nm)
corresponding to the carrier frequency o0. This effect is
typical precisely for a gradient barrier: one can see from
Fig. 4 that when pulse (12) with the same carrier frequencyo0

propagates through a homogeneous barrier, which does not
have the cutoff frequency �O � 0� and has all the other
parameters �n0; nmin; n; d � coinciding with those for the
above-discussed gradient barrier, the tunneling regime and
pulse splitting do not appear.
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Figure 3. Normalized time envelopes E�t�=E0 of a femtosecond pulse (12)

(t0 � 20 fs) propagating in free space (dashed curves), and a pulse

tunneling through a gradient barrier (solid curves), O � 2:45�
1015 rad sÿ1; carrier frequencies and detunings in Figs 3a±d are o0 �
2:25� 1015, 2:35� 1015, 2:45� 1015, and 2:55� 1015 rad sÿ1, and D �
ÿ8:16� 10ÿ2, ÿ4:08� 10ÿ2, 0, and 4:08� 10ÿ2, respectively. Superlum-

inal precursors are formed in the region of t < 0.
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Figure 4. Transmission of pulse (12) with o0 � 2:45� 1015 rad sÿ1 in the

traveling-wave regime through a homogeneous wave barrier �O � 0� with
parameters n0, nmin, n, and d indicated in the caption to Fig. 2. Unlike the

tunneling regime (Fig. 3), no pulse precursors are formed.
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It should be noted that during tunneling the `center of
gravity' tc of the pulse f �t� shifts with respect to the center tc0
of a pulse propagating in a vacuum at the speed of light,
Dt � tc0 ÿ tc, where

tc �
� 1
ÿ1 t f �t� dt� 1
ÿ1 f �t� dt : �13�

Calculations using expression (13) reveal that, during tunnel-
ing of pulse (12) (t0 � 20 fs), the pulse shift Dt � 0:15ÿ0:2 fs,
i.e., the center of gravity of the pulse after tunneling lags
behind the center of gravity of a freely propagating pulse
�Dt > 0�.

3. Formation of superluminal precursors
during tunneling of a short pulse
At first glance, the modulation of the envelope at the pulse
edges resembles the classical Sommerfeld±Brillouin effectÐ
the formation of precursors during the propagation of a pulse
in a transparent dispersive medium outside the tunneling
region. It is well known that the formation path of these
precursors should be long enough �Z4 ct0�, their amplitude
should be small compared to the peak amplitude of the pulse,
and their velocity does not exceed the speed of light c in a
vacuum [5]. However, the results of formation of super-
luminal precursors [4] during pulse tunneling through a
gradient barrier (see Fig. 3) strongly differ from those in the
classical picture.

(1) Because of the phase jump producing the fast shift of
tunneling harmonics, the considerable deformation of the
pulse is developed at distances smaller than the wavelength.

(2) The amplitudes of precursors are not small and can be
comparable to the initial pulse peak.

(3) The partial or complete pulse splitting resulting in the
formation of precursors is determined by the frequency
detuning D.

Speaking of the formation of superluminal precursors of
the pulse transmitted through a gradient barrier in the
tunneling regime, we should point out differences between
the basic parameters of the transmitted and initial pulses:

(a) the energy of the transmitted pulse is lower than that of
the initial pulse, while its duration is longer compared to the
initial pulse. Moreover, the envelope of the transmitted pulse
has nothing in common with the initial envelope;

(b) the rate vg of energy transfer by the tunneling wave
inside the barrier, defined as vg � P=W, where P is the
Umov±Poynting vector, and W is the energy density, is less
than the speed of light c in a vacuum (Fig. 5);

(c) the center of gravity of the transmitted pulse lags
behind the center of gravity of the same freely propagating
pulse.

The precursor formation rate depends on the numberm of
field oscillations inside the tunneling pulse with the carrier
frequency o0 and duration t0 �m � o0t0=�2p�� and the
amplitude build-up rate from a periphery to maximum, this
rate being related to the parameter m. Under conditions
specified in the caption to Fig. 3 �m � 7ÿ8�, precursors and
the splitting of the maximum are well pronounced, while in
the case of t0 � 100 fs at the same carrier frequency,m is much
greater �m � 37ÿ38�, the amplitude build-up rate is slower,
and a weak modulation appears only in the envelope wings
(Fig. 6), while the central peak is not split. To exclude the
possible influence of artificial `end points' of the envelope
appearing in model (12), paper [4] reported on the tunneling

dynamics of a `smooth' Gaussian pulse, in which a slow
decrease of the envelope in the wings is not related to these
points:

E�t� � E0 exp

�
ÿ t 2

t 21

�
cos �o0t� : �14�

The characteristic time t1 in formula (14) is selected so that t0,
determining the duration of pulse (12), corresponds to the
half-width of the Gaussian pulse (14), i.e., t1 � 1:2t0.

A comparison of the tunneling of pulses (12) and (14)
through the same barrier at the same carrier frequencies o0

shows that the envelope experiences splitting in the case of a
Gaussian pulse as well, and a superluminal precursor is
formed at its leading edge.

Similar effects are also observed during tunneling of
ultrashort broadband video pulses containing one or several
anharmonic field oscillations and a long decaying `tail' [6].
An example of such a transformation of a video pulse with
the envelope constructed from the Laguerre functions,
namely

E�t�
E0
� 1

2
x�xÿ 4� exp

�
ÿ x

2

�
; x � t
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; �15�
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Figure 5. Dispersion of the normalized group velocity V�x� � vg=c inside
the gradient photonic barrier shown in Fig. 1; x � z=d is the dimensionless

coordinate. Curves 1, 2, and 3 correspond to normalized frequencies

u � 1:0, 1.5, and 2.0.
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conditions of Fig. 3; o0 � 2:562� 1015 rad sÿ1.

1174 Conferences and symposia Physics ±Uspekhi 54 (11)



where t0 is the characteristic time scale, is presented in
Fig. 7.

Speaking of superluminal precursors, note that the
question about the tunneling rate became a sticking point in
the tunneling theory beginning already in Gamow's time.
Thus, the attempt by Condon and Morse [7] to calculate,
using this theory, the velocity or the flight time of a particle in
the region where the particle energy E is smaller than the
potential barrier height U0 revealed the principal problem:
how to determine these quantities in the `classically forbid-
den' region, where the particle momentum should be treated
as an imaginary quantity? A year later,MacColl [8] concluded
that ``a wave packet moving inside a barrier exhibits no
delay''. Later on, the concept of the complex time attracted
attention in the analysis of the fundamental-mode tunneling
in a metal waveguide through a region with a lower cutoff
frequency [9]. According to this concept, the tunneling time t
in the problem under study was expressed in terms of the
complex transmission function T � jT j exp �ift�:

t �
�����������������������������������������������
qft

qo

�2

�
�
q ln jT j
qo

�2
s

: �16�

On the threshold of the centenary of the special theory of
relativity (2005), new formulations of the causality principle,
including tunneling effects, also appeared. For example, the
output energy flux from a stationary medium at any instant
cannot exceed the flux that would be present in the absence of
the medium [10]. However, this formulation leads to contra-
dictory judgements [11, 12], and the question of defining the
tunneling time remains open.

4. Conclusions
Speaking about the controllable dispersion of waves in
gradient media, it is worthwhile noting a number of its

features which can be used for the development of gradient
structures for optoelectronics:

(1) To produce a gradient wave barrier in the specified
spectral range, an artificial material can be utilized with the
absorption spectrum lying far from the strong dispersion
region, unlike the absorption spectra of natural materials,
which are usually located close to the strong dispersion
region.

(2) The appearance of the controllable cutoff frequency in
gradient dielectrics opens up the possibility of using such
dielectrics instead of metal films in photonic crystal elements
and other devices in plasmonics.

(3) The universal character of the above-mentioned effects
based on the exact analytical solutions of Maxwell's equa-
tions for inhomogeneous media allows one to extend the
obtained results to other spectral regions, for example, the
gigahertz range. This analogy permits the parallel develop-
ment and simulation of subwave optical, gigahertz, and
quantum structures with such sets of parameters which are
not encountered in natural materials.

Notice also that the formation mechanism of super-
luminal pulse precursors during tunneling through gradient
photonic nanobarriers has been described here by exact
analytical solutions of Maxwell's equations and does not
require new physical hypothesis. Moreover, the use of weakly
decaying tunneling modes eliminates the problem of record-
ing exponentially decaying modes in conventional tunneling
experiments. In this situation, tunneling experiments in
optical and microwave regions of electromagnetic waves
become decisive [13]; as pointed out above, the transmitted
pulse, in which the envelope experiences a superluminal pulse
shift in some part due to tunneling, has nothing in common
with the incident pulse (the energy of the transmitted pulse is
lower and its duration is longer than those of the incident
pulse, and the temporal and spectral envelopes of these pulses
are different), so that the Einstein treatment of the speed of
light in vacuum as the limiting speed of motion of any object
in a free space (``the speed of light in vacuum cannot depend
on the source velocity'' [14]) is not violated in the tunneling
picture under study. However, the study of the superluminal
pulse advance of some part of the pulse compared to the same
pulse propagating in vacuum can be of not only academic but
also practical interest, opening new possibilities for applica-
tions.
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Focusing of low-frequency sound éelds
on the ocean shelf

V G Petnikov, A A Stromkov

1. Introduction
The utility of focused low-frequency (100±500 Hz) sound for
solving a variety of applied tasks of sea-shelf acoustics is
presently a subject of ongoing research. The case in point
concerns focusing of sound waves at distances of several
dozen kilometers from focusing systems in a sea with a typical
depth of 100 m.

From a physical viewpoint, the question to be answered is
how to focus sound waves in a planar waveguide, the
parameters of which (depth, refractive index, and acoustic
characteristics of the lower boundary set by the oceanic
bottom) are some complex functions of space coordinates. It
is essential that part of these parameters, primarily the
refractive index, exhibit random fluctuations in space and
time. Furthermore, the distance to the focal point far exceeds
the size of the focusing system.

Under these circumstances, perhaps the only way to focus
sound waves consists in adopting methods based on the
generation by the focusing system of a wave field that is
conjugate to the medium. Such methods include the wave
front reversal (WFR) (or phase conjugation) of sound waves
and a similar approach based on time wave reversal [1±3],
dubbed the time-reversal mirror (TRM). It should be kept in
mind that both methods rely on detecting sound waves
emitted by a probe source (PS) placed at the supposed focal
point and subsequent generation of the reversed wave field by
the focusing system backwards into the waveguide. Sound
propagation in the opposite direction through just the same
inhomogeneities as encountered on the direct way leads to the
compensation of phase and time distortions of the acoustic
signals and, as a result, to focusing on the PS site.

This paper describes methods and research results related
to unusual properties of focused sound in shallow water. It
discusses characteristics of physical setups designed for
focusing sound waves in conditions that are very experimen-
tally demanding. It also considers possible areas where the
focused sound can be utilized.

2. Methods of the investigation
of focused sound in shallow water
Studies of specific features of sound focusing in ocean shelf
have been carried out both through numerical simulations
and on-site experiments (see, for example, Refs [4±6]).
Generally, the TRM-based focusing effect in some vicinity
of point r0 was computed for the spatial distribution of the
quantity B�r�:

B�r� � max
t

ÿ
Bc�r; t�

�
� max

t

"
1

T

�����1ÿ1 P�o; r� s�o� exp �ÿiot� do
����
#
: �1�

The function Bc�r; t� represents here the envelope of the
cross-correlation function of the transmitted and received
retransmitted signals, which can, strictly speaking, be
defined for broadband signals of finite duration; the
maximum is sought with respect to time t; r0 is the radius
vector of the focal point (the point where the PS is located);
s�o� is the spectrum of the transmitted signal; T is its
duration, and P�o; r� is the spectrum of the retransmitted
signal at some point r:

P�o; r� �
XJ
j

Z1�o; rj; r�Z ��o; r0; rj� s ��o� ; �2�

with the asterisk � denoting a complex conjugation. Here,
Z�o; r0; rj� and Z1�o; rj; r� are the waveguide transfer
functions between points r0 and rj, and rj and r, respec-
tively, and, finally, rj is the radius vector of transceivers
(receiving and emitting elements) of the focusing system. It is
assumed that the role of such a system is played by a discrete
vertical antenna composed of J transceivers (just such
antennae are used in conventional hydroacoustic on-site
experiments to transmit and receive low-frequency hydro-
acoustic signals).

When applied to the focusing of a quasiharmonic sound
field of frequency o � o0 and arbitrarily long duration,
formula (1) converts to the well-known expression for the
field amplitude at the observation point:

Pa�o0; r� �
����XJ

j

Z1�o0; rj; r�Z ��o0; r0; rj�
����s0 : �3�

Formula (3) describes focusing with the help of WFR for a
harmonic PS with the amplitude s0. As shown by Zverev [3],
the two methods of focusing (based on WFR and TRM)
possess principal distinctions, which has just been corrobo-
rated by numerical modeling.

In numerical simulations, the transfer functions were
taken as sums of interacting waveguide modes. In particular,
the following expression served to compute the Z�o; r0; rj�
function:

Z�o; r0; rj� �
XM�o�
m

Cm�o; r0; rj� cm�o; zj������������������
qm�o�r0

p exp
ÿ
iqm�o�r0

�
;

�4�

where cm�o; z� and xm�o� are the eigenfunctions (waveguide
modes) and eigenvalues of the related Sturm±Liouville
problem �xm�o� � qm�o� � igm�o�=2�, respectively, and
M�o� is the number of propagating modes. The expression
for Z1�o; rj; r� is written out in a similar way [6].
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