November 2011

Conferences and symposia

1165

The same components of the Abraham tensor are as follows:
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The formula for the energy density W given above can be
written out as W = (1/8n)(¢E? 4 wH?), but using this form
implies that the two permeabilities ¢ and p are both essentially
positive. If ¢ and u are negative, Ref. [23] gives the following
expression for the energy density:

_ 1 [0(ew) 5 O(uew) o
W = | 2o E-+ oo H|. (21)
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Acoustic waves in metamaterials, crystals,
and anomalously refracting structures

V A Burov, V B Voloshinov,
K V Dmitriev, N V Polikarpova

1. Introduction

At present, much attention in the literature is being paid to
media in which the propagation of waves occurs in the
‘unusual’ fashion. In particular, such media include so-called
left-handed media in electrodynamics. The concept of these
media was first proposed in paper [1], where they were
introduced as media in which both the permittivity ¢ and
permeability u are negative. Interest in such media was
rekindled after the publication of a number of papers (for
example, Ref. [2]) reporting their experimental realization
based on metamaterials — artificial structures with character-
istic sizes of elements that are well below the wavelength of
propagating radiation.

One of the unusual peculiarities of the propagation of
plane waves in such media is that the Umov—Poynting vector
is antiparallel to the wave vector [1]. This specific feature of
the wave propagation is of a general character and is inherent
in metamaterials studied not only in electrodynamics and
optics, but also in acoustics. Because the phase and group
velocity vectors of bulk waves in metamaterials are antipar-
allel, it is interesting to analyze the possibility of other spatial
orientations of these vectors. It is also important to know the
angles between the phase and group velocity vectors of a
plane wave that can appear whatsoever in optical and
acoustic anisotropic materials.

2. Double negative acoustic media

It has been shown in a number of theoretical and experi-
mental papers [3-6] that double negative media (below, for
brevity, we will call them simply negative) with negative
effective dynamic characteristics (density p and compressi-
bility #) are suited for playing the role of media in acoustics in
which wave processes proceed similarly to those in left-
handed media in electrodynamics. The characteristics of
these media are dynamic in the sense that each element of
such a medium within a certain frequency band can behave as
an element of a homogeneous medium with negative para-
meters (for example, due to the presence of resonance
structures in it).

In negative media, both in electrodynamics and acoustics,
negative refraction can be observed, which is often described
by using the wave equation or Helmholtz equation [7]. In this
case, a principal difficulty appears because these equations
contain the square of the refractive index, and to determine its
sign, it is necessary to invoke additional considerations which
can be based on the choice of one branch or another of the
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square root, on the causality principle, etc. For this reason, it
was proposed to use first-order equations for describing
processes in negative media [3]. In electrodynamics, these
are Maxwell’s equations, while in acoustics, these are the
linearized hydrodynamic equations

I o .
&(ﬂp)'FVV*ﬁD? 5(pV)+Vp7f, (1)

where p is the acoustic pressure, v is the vibrational velocity,
and ¢ and f are scalar and vector primary acoustic-field
sources, respectively. In the absence of dispersion, the
parameters p and # are scalars; otherwise, they can be treated
as time-convolution type integral operators. These para-
meters enter equations (1) separately, and therefore no
problems appear with the choice of one sign or another.

An arbitrary distribution of parameters p(r) and n(r) can
be represented as a sum of constant positive background
values p, and 7, with arbitrarily large additions p’(r) and
n'(r): p(r) = py + p'(r), n(r) =1y +n’'(r). In the monochro-
matic case, system of equations (1) for the time dependence
of fields fitted by ~ exp (—iw?) can be represented in the
form of the matrix analogue of the Lippmann—Schwinger
equation [3]:

ﬁ(r):L“to(r)+JG(r—r’)[ﬁl(r’)ﬁ(r’)} dr’, (2)

where i1y and i are column vectors characterizing the incident
and perturbed fields, viz.

o=(n) =)
Uy = 5 u= s
Po p

Ay is the addition operator defined as
o _ (lwp'(r) 0
an= (% i)

and G(r — r') is the matrix Green function expressed in terms
of the Green function G(r — r’) in the Helmholtz equation:

A iw \%
G(r—r')z( V’70 iop,

) Gr—r').

Equation (2) can be solved numerically for any configuration
of the incident field #, and arbitrary medium density and
compressibility distributions.

To observe negative refraction phenomenon, we simu-
lated the incidence of a plane monochromatic wave with the
wavelength Jp at an angle of 18° to the normal on a
rectangular plate made of a negative-index material with the
parameters p = —p, and y = —n, (Fig. 1). The beam in the
plate lies on the same side of the normal to its boundaries as
beams in the environment. The wave fronts prove to be
mirror-symmetric with respect to the plate boundaries.
These properties demonstrate the negative refraction of
sound in this plate. In this case, the phase velocity in the
plate is directed antiparallel to the phase velocity in the
environment (background medium), thereby being negative.
Because the energy flux is continuous and waves are not
reflected from plate boundaries, the energy flux in the system
under study is oriented in the positive direction.

The following fact is noteworthy. At two points located in
the environment on both sides of the plate in a straight line
perpendicular to its boundaries and separated by a distance

X//Lo

Figure 1. Real part of the calculated acoustic pressure field p(r) during the
incidence of a plane monochromatic wave on a negative-material plate.
The plate boundaries are indicated by light horizontal straight lines. The
arrows show the propagation directions of the wave energy in the plate and
environment.

equal to the doubled thickness of the plate, the wave phases
are coincident with each other (for example, points A and B in
Fig. 1). This is the consequence of the phase velocity
negativity in the negative medium, i.e., the phase incursion
in the positive environment is exactly compensated by the
phase incursion in the negative medium of the plate. This
circumstance may lead to the conclusion that the causality
principle is violated in negative media, and therefore they
cannot exist in reality, which was discussed, for example, in
review [8].

Because the discussion of the causality in the purely
monochromatic case is impossible, we analyzed the follow-
ing situation: nine monochromatic beams with the Gaussian
amplitude distribution in the front plane are incident on a
3 Jo-thick plate 101y in length at an angle of 18° to the
normal. The field frequency w in the beam was varied from
wy =2mcy/Ay to 14wy in increments of 0.05w, where
co = 1/./Ppoy is the speed of sound in the environment. The
amplitudes of the beams on the axis were different and
described by a Gaussian distribution over w:

2
P(w) = Pyexp (— w)
(Aw)

where Aw = wy/6.3. The fields calculated for each frequency
were then summed up. As a result, by solving several
monochromatic problems, we obtained the solution to a
polychromatic problem corresponding to the propagation of
an infinite series of pulses through a plate made of a negative
material.

The results of calculations for a fixed instant of time are
presented in Fig. 2. At the moment when the incident pulse is
located at a distance equal to the plate thickness from the
plate boundary, a perturbation representing a pair of pulses
appears on the opposite boundary. One of the pulses
continues to propagate in the environment behind the plate
in the direction parallel to that of the incident pulse. Another
pulse, which is mirror-symmetric to it with respect to the plate
boundary, moves to the mirror-symmetric side. This pulse
reaches the plate boundary simultaneously with the incident
pulse, and they quench each other.
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Figure 2. Real part of the acoustic pressure field p(r, ¢) calculated at a fixed
instant of time during the incidence of pulses, representing a superposition
of nine plane monochromatic waves, on a negative-material plate. The
plate boundaries are indicated by dark horizontal straight lines. The
arrows show the propagation directions of pulses in the plate and
environment.

Such a consideration brings up a number of questions.
First, a pulse leaving the plate appears before the moment
when the incident pulse touches the plate, i.e., the causality
principle is violated. Second, the mechanism of the appear-
ance of additional energy on one side of the plate and its
absorption on the other side is not quite clear. Third, a pulse
propagates in the plate mirror-symmetrically to the traveling
direction of a pulse in the environment, i.e., not only the phase
but also the group velocities (if we relate the latter to the
envelope maximum velocity) are negative. On the other hand,
it was pointed out [3] that the phase and group velocities in the
negative medium are antiparallel.

The possible answer to the first question is that a periodic
time-infinite process is considered and therefore there exist an
infinite number of pulses that have propagated through the
plate earlier. Then, the observed pulse ‘leaving’ the plate is the
consequence of their propagation rather than the precursor of
the pulse incident on the plate. The creation of the pulse is
caused by the energy of propagated pulses stored in the plate.

Therefore, because the medium possesses the internal
stored energy, this energy storage can decrease during the
pulse propagation in it. In this sense, the pulse in a negative
medium can have the negative energy (with respect to the
environment). Taking this fact into account, the energy
conservation law on both boundaries of the plate remains
valid: as a pair perturbation is produced on the far side (from
a radiation source) of the plate, a pulse with the positive
energy propagates in the environment, while in the plate, i.e.,
in the negative medium, a pulse with the negative energy
propagates. These pulses merge on the front side of the plate
to produce the zero total energy.

The negativity of both phase and group velocities is due to
the fact that simulations were performed assuming that the
medium was nondispersing. Negative metamaterials realized
in practice, which often contain resonance elements, are
strongly dispersing. To understand whether a nondispersing
negative medium can exist in principle, we will analyze the
propagation of a single pulse (packet) through it, i.e., consider

the problem in a broad frequency range. The consideration
should be based on the system of equations (1). Then, the field
in the medium in the one-dimensional case is described by the
Lippmann—Schwinger type equation

(o) = () ~afavrarae-v-22)

Po

X Mo sgn (=) <17'(x') 0 )
sgn (x — x') Z—Z 0 P

o (p(x',t")

ar’ <v(x’, t’)) ’ ¥

where § is the Dirac delta function. (The derivation of this
equation will be presented in detail elsewhere.) Equation (3)
allows one to study the propagation of a single Gaussian
packet through a plate made of a negative material.

The results of such a simulation are presented in Fig. 3.The
packet width is 1.5 times larger than the plate thickness which
is indicated by double vertical straight lines. The coordinate x
is plotted on the abscissa, and the quantity ¢t is plotted along
the ordinate. To obtain the field distribution at a certain
instant of time, it is necessary to draw a horizontal straight
line (section) across the figure. A packet incident on the plate
in the positive direction of the x-axis is located in region I.
Packets propagating in the plate and environment behind the
plate are located in regions IT and III, respectively. One of the
possible sections, shown by the dashed straight line, corre-
sponds to the instant of time when the center of the primary
packet resides at a distance on the order of the plate thickness
from the plate. In this case, the field perturbation begins to
appear on the opposite side of the plate. Thus, the packet
transmitted through the plate appears earlier than the
primary incident packet reaches the plate and, therefore, the
causality principle is violated in such a medium. It seems that
this means that nondispersing negative media cannot exist. In
the presence of dispersion in a medium (for example, if a

X

Figure 3. Real part of the acoustic pressure field p(x, ) calculated during
the normal incidence of a Gaussian pulse on a negative-material plate. The
thick vertical straight lines indicate the plate boundary coordinates. The
dashed horizontal straight line corresponds to the instant of time at which
the packet center is located at a distance from the plate equal to its
thickness, and the field perturbation appears on the far side of the plate.
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negative medium is constructed of resonance elements), scalar
quantities n’(x) and p’(x) in equation (3) should be replaced
by operators in the form of the time convolution of response
functions of resonators. The simulation of this case showed
that a precursor packet does not appear, i.e., the causality
principle is not violated. Simultaneously, negative refraction
is observed in the steady-state regime, which is not accom-
panied by considerable absorption in a broad frequency
band.

3. Angle between the phase and group wave velocities

in crystals

It is known that birefringent crystalline media with specifi-
cally combined optical and acoustic characteristics are widely
used in modern optics, acoustics, acoustooptics, and acous-
toelectronics [9—-11]. For example, quartz (¢-SiO»), lithium
niobate (LiNbO3), calcite (CaCOs3), paratellurite (TeO»)
crystals and some others are extensively applied in optical,
acoustooptic, and acoustoelectronic devices [9—12]. However,
recently crystal materials with a large anisotropy of acoustic
and optical properties have found applications in optics,
acoustooptics, and acoustics. Such materials include mer-
cury (Hg)- and tellurium (Te)-based single crystals having
extremely large birefringence and a strong dependence of the
phase velocity of sound on the propagation direction [12].

4. Optical birefringent media
The birefringence An of crystalline materials is determined by
the difference An =n. —n, of the refractive indices for
extraordinarily (ne) and ordinarily (n,) polarized light [9,
10]. This difference in some materials can be rather large. For
example, the relative birefringence (the anisotropy coeffi-
cient) d = An/n, in tellurium crystals reaches 6 = 0.3, and in
calomel (Hg,Cl,) 6 = 0.35. For comparison, birefringence in
quartz is two orders of magnitude lower: 6 = 0.006 [12, 13].
It is known from optics and electrodynamics that
extraordinary waves in materials with large birefringence
propagate with angles i between the phase and group
velocity vectors exceeding 10° [9, 10]. The ‘walk-off” angle v
for the extraordinary optical wave is found from the analysis
of the surface of wave vectors in a crystal. The wave surface in
a uniaxial optical material represents the ellipsoid of revolu-
tion. The value of the wave vector k. of light in a crystal
depends on the light propagation direction with respect to the
optical axis Z and changes in a positive crystal within the
limits 2nn, /A < ke < 2mne /2, where Z is the light wavelength
[9, 10]. It is known that the group velocity direction of an
electromagnetic wave coincides with the direction of the
normal to the wave-vector surface erected at a point in
which the wave vector k. touches the normal surface. It can
be shown that the maximum walk-off angle in a uniaxial
crystal is described by the expression [12]

5(1 +0.56)

ax — t
Vmax = arctan s

(4)

Calculations by means of formula (4) show that the angle
between the wave phase velocity vector and the Umov—
Poynting vector in a negative calcite crystal with the
birefringent coefficient 6 = —0.1, widely used in polarization
devices, is {,,,, = —6°. The maximum optical walk-off angles
in paratellurite and quartz crystals with 6 = 0.07 and 0.006 do
not exceed ¥, = 4° and ., = 0.4°, respectively. On the
other hand, the maximum walk-off angle in a tellurium
crystal with 6 = 0.3 is ., = 15°, while this angle in a

max

Figure 4. Cases of the unusual propagation and refraction of light waves in
birefringent crystals. The direction of the phase velocity of light is shown
by dashed straight lines and arrows, and the energy flux direction is
indicated by solid straight lines and arrows: (a) the propagation of a light
wave through a plane-parallel plate; (b) anomalous internal reflection of
light from a crystal-vacuum interface, and (c) the incidence of light on an
interface at an angle 6 exceeding 90°.

mercury bromide (Hg,Br,) crystal with 6 = 0.36 already
reaches a considerable value of . = 19° [12]. Finally, the
maximum angle between the Umov—Poynting vector and the
wave vector of light in one of the base planes of a biaxial
antimony sulfoiodide (SbSI) crystal with the record-high
birefringence 6 = 0.6 [13]is ¥/, = 25°.

The anisotropy of physical properties resulting in large
angles between the phase and group velocities of optical
waves can lead to unusual cases of propagation and
reflection of these waves from the crystal-vacuum interface.
Some of these cases of wave propagation are illustrated in
Fig. 4. Figure 4a demonstrates the oblique incidence at an
angle of 6 and propagation of a light beam through a
birefringent crystal plane-parallel plate. The angle of inci-
dence is traditionally measured between the wave vector and
the normal m to the interface. The directions of the
electromagnetic energy flux and the group velocity vector in
the beam are shown by the arrows and solid straight lines,
while the direction of the phase velocity of light is indicated by
the dashed arrow and the straight line. One can see from the
figure that the energy flux refracted in the plate is directed
anomalously, i.e., just as this occurs in metamaterials. The
refraction angle for the energy flux proves to be negative,
although the wave vector of light is oriented with respect to
the normal strictly in accordance with Snell’s law. Therein lies
the difference between the classical case of light propagation
in a crystal and the propagation of light in a metamaterial.
Obviously, the anomalous refraction of the optical beam in
Fig. 4a is caused by a large optical walk-off angle .

Figure 4b demonstrates the unusual reflection of a light
beam from the interface during the propagation of a light
wave through a birefringent crystal. One can see from this
figure that, because of the large optical anisotropy of the
material, the energy fluxes of the incident and reflected
optical beams are located on the one side of the normal to
the interface. Finally, Fig. 4c illustrates the propagation of
light in the crystal and its incidence at an angle of 0 to the
crystal-vacuum interface exceeding 90°. The wave vector of
light at such an anomalously large angle of incidence is found
directed not to the interface side but from it, while the energy
flux of the optical wave hits the interface. Obviously, these
unusual effects are caused by the considerable optical
anisotropy of the crystal.

5. Acoustic anisotropic media
Acoustic media are known to possess even the more
pronounced anisotropy of physical properties compared to



November 2011

Conferences and symposia

1169

that in optical media. An acoustic crystal with the large
anisotropy of elastic properties is characterized by a strong
dependence of the phase velocity v of ultrasound on its
propagation direction [11-16]. For example, a slow shear
acoustic wave in a calomel (Hg,Cl,) crystal propagates along
the [110] axis with the anomalously slow velocity
v =347 m s~!, whereas the same acoustic mode propagating
along the [100] and [010] axes has the velocity v = 1305 m s~
[13—15]. Thus, the ratio of the maximal and minimal phase
velocities of sound in calomel for this acoustic mode is
r = 3.76. In mercury bromide (Hg;Br;) and iodide (Hgy1)
crystals, the ratio of acoustic velocities reaches r = 4.39 and
4.89, respectively. Finally, the acoustic anisotropy coefficient
in a paratellurite (TeO,) crystal is r = 4.95. The large spatial
dispersion of acoustic velocities leads to extremely large
acoustic walk-off angles , i.e., angles between the wave
vector and the Umov—Poynting vector. Thus, for example,
the acoustic walk-off angle in a calomel crystal is equal to
Y = 70°. Similarly, the acoustic walk-off angle in a mercury
bromide crystal reaches iy = 72°, while the wave vectors of the
phase and group velocities in HgyI, and TeO; crystals are
separated by a very large angle iy = 74°. It should be noted
that rather large acoustic walk-off angles are also typical for
many other acoustic materials. For example, the walk-off
angles in a double lead molybdate (Pb,MoOs) crystal and a
tellurium crystal are y = 69° and 56°, respectively [17].

The unusually large angles between the phase and group
velocities of acoustic waves lead to many unusual wave
phenomena observed at crystal-vacuum or crystal-isotropic
medium interfaces. One such unusual phenomenon is the
nearly backward reflection of the acoustic energy in a
paratellurite crystal during the glancing incidence of a wave
on the free crystal-vacuum interface [15, 16, 18, 19].

The case of a grazing incidence of the elastic energy on a
free face of a paratellurite crystal is illustrated in Fig. 5. A
piezoelectric transducer excites an acoustic wave in the
crystal with the phase velocity and wave vector directed
horizontally, i.e., at an angle of incidence 6 = 90° with
respect to the normal m to the upper boundary of the
crystal. One can see from the figure that the group velocity
of the initial wave is directed towards the upper face of the

/

4

Figure 5. Nearly backward reflection of the acoustic energy from a
crystal-vacuum interface during the glancing incidence of an acoustic
wave front on the interface: (a) the general view of the crystal and the
propagation directions of energy fluxes shown by the arrows, and (b) the
visualization of acoustic fields in a paratellurite crystal by the acous-
tooptic method.

crystal, and therefore the acoustic energy is incident on the
interface obliquely, as shown in Fig. 5a. The group velocity
vector of the acoustic wave reflected from the upper face of
the crystal is, in fact, antiparallel to the incident wave energy
flux. Calculations predict that the spatial angle y between the
energy fluxes of the incident and reflected waves does not
exceed 6°.

The wave vector of the reflected acoustic wave is spatially
oriented in strict accord with the known condition for the
equality between tangential projections of the wave vectors of
incident and reflected waves onto the interface [14, 15]. The
unusual backward propagation of the reflected acoustic
energy is caused by the large acoustic walk-off angle in
paratellurite. It turns out that, in the case of unusual
reflection, almost all the energy of the incident acoustic
wave can be converted without losses to the energy of the
backward reflected wave.

6. Observation of the unusual reflection of acoustic waves
The unusual reflection of acoustic waves was experimentally
confirmed by the acoustooptic method via visualization of
acoustic fields and illumination of a TeO; crystal by a broad
collimated 633-nm beam from an He—Ne laser [18, 19].
Longitudinal acoustic waves were excited by a lithium
niobate piezoelectric transducer at the ultrasonic frequency
f=150 MHz. The linear dimensions of the transducer,
0.3 x 0.5 cm, exceeded the ultrasonic wavelength in the
crystal by a few orders of magnitude. Therefore, the acoustic
waves were treated in the experiments as plane waves.

Figure 5b displays the general view of the diffraction
pattern observed at the crystal output. The presence of a
visualized acoustic column in the lower right corner of the
photograph, which was oriented parallel to the reflected
acoustic column shown in Fig. 5a, proves that it was the
backward reflection of acoustic waves that was detected in
experiments [18, 19]. The angle y between the group velocity
vectors of the incident and reflected acoustic waves was
measured to be 9°, with the calculated angle being 6°.

Our analysis has evidenced that the unusual cases of
propagation, reflection, and refraction of light waves shown
in Fig. 4 can also be easily realized in acoustic crystals.
Thus, unusual wave phenomena with anomalously directed
waves can be observed in both optics and acoustics.
Although the physical nature of these phenomena and
effects differs from that in metamaterials, they are mani-
fested similarly to those in double negative media. Notice
that the unusual propagation and reflection of waves occur
not only in anisotropic media known in optics and
acoustics. For example, the propagation of electromagnetic
waves in thin magnetic films is also characterized by large
angles between the phase velocity vector and the Umov—
Poynting vector [20].

7. Orientation of the phase and group velocity vectors

in anisotropic media and metamaterials

Generalizing results of studies into the propagation of
acoustic waves in optical and acoustic media [12, 15-20], we
can propose a unified view of wave processes proceeding in
crystals, anisotropic media, and artificial periodic structures
in electrodynamics, optics, and acoustics. The conditional
direction of the phase velocity of a plane bulk wave
propagating in an anisotropic medium is indicated in Fig. 6
along the horizontal direction (the x-axis). According to the
conclusions presented in Section 4, angles between the wave
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¥ = 270°

Figure 6. Orientation of the group-velocity vector with respect to the phase
velocity vector of optical and acoustic waves in crystals and metamaterials.

vector of the extraordinary light wave and the Umov—
Poynting vector in birefringent crystals can lie within the
limits —25° <y < 25°, as shown in Fig. 6. In acoustic
anisotropic media, angles between the phase and group
velocities of the waves lie in the range —74° < < 74°.
Thus, almost the entire right half of the diagram in Fig. 6
describes wave processes typical of optics and acoustics.

The propagation of waves in metamaterials and double
negative acoustic media with the Umov—Poynting vector
antiparallel to the wave vector corresponds in Fig. 6 to the
horizontal direction oriented at an angle of iy = 180° relative
to the initial wave vector. In this connection, it is interesting
to determine the waves corresponding to the energy walk-off
angles lying in the ranges 90° <y < 180° and
180° <y < 270° in the diagram. Our analysis suggests that
the left part of the diagram describes waves propagating in
artificial media, i.e., metamaterials. However, these media
should have the anisotropy of physical properties providing
the propagation of waves not only with the antiparallel
phase and group velocity vectors but also at angles
different from y = 180°. Obviously, such artificial media
should also possess a strong spatial anisotropy of physical
properties.

By analyzing the data presented in Fig. 6, we should
consider separately the cases of the group velocity directed at
angles of y = 90° and 270° to the phase velocity vector. It is
well known from optics and acoustics that the group velocity
of a wave in a crystal exceeds in absolute value the phase
velocity, these velocities being related by the expression
Uph = Vg COS |, where i is the angle between the phase and
group velocities [9, 10, 14]. It follows from this relation that
for walk-off angles y = 90° and 270° and the finite group
velocity of the wave, its phase velocity vanishes. In other
words, when the phase and group velocities are mutually
orthogonal, the concept of a ‘wave’ becomes completely
meaningless. Similarly, when the phase velocity is finite, it
follows from the last relation that the energy transfer rate
becomes infinite, which also contradicts the physical sense.
Thus, we can assume that wave processes with the orthogonal
phase and group velocities of volume waves are absent in
optical and acoustic media.

8. Conclusion

The description of wave acoustic processes directly based on
hydrodynamic equations and an analogue of the Lippmann—
Schwinger equation is correct both for classical (positive) and
negative media. The propagation of a wave packet in a plate
made of a negative material, assuming the absence of
dispersion, gives rise to a precursor packet behind the plate,
which contradicts the causality principle. This does not occur
when the response of the metamaterial is resonant in
character.

The strong anisotropy of the optical and elastic properties
of crystals leads to the unusual propagation and ‘negative’
reflection of waves in these materials. The reflection of elastic
waves from a free surface separating a crystal and a vacuum
can be accompanied by the propagation of the reflected-wave
energy almost antiparallel to the energy flux of the incident
wave.
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