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Abstract. Methods and results of research on the focusing
properties of planar boundaries of some metamaterials mod-
eled by a negative electromagnetic medium (i.e., one with both a
negative permittivity and a negative permeability) are pre-
sented. The properties of flat focusing lenses made of isotro-
pic, anisotropic, or chiral negative media are described in terms
of ray theory. The wave theory of an isotropic flat negative-
material lens is developed, which shows that such a lens allows
localizing a stationary electromagnetic field, in principle, onto
an area of the effective linear size either larger or smaller (or
even much smaller) than the radiation wavelength in a homo-
geneous medium at some distance from the source.

1. Introduction

The unusual physical phenomenon of localization (concen-
tration) of a stationary electromagnetic field in a homoge-
neous medium and, in particular, in free space can be realized
using a planar boundary of a metamaterial: inside, if a source
is outside the metamaterial, and outside, if a source is inside
the metamaterial. Using two boundaries, i.e., a metamaterial
slab (plate), the divergent field of an outside source located at
one side of the plate can be localized in space on the other side
of the plate [1, 2].

From the methodological standpoint, this effect can be
separated into two, generally speaking different, but related
physical processes: the first corresponds to the focusing of an
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electromagnetic field diverging from the radiation source
(described as a divergent beam of rays) and the second can
be interpreted as a transfer of the source near field,
concentrated around the source, to a new location with the
field localization preserved. The first process is related to the
so-called negative refraction of beams (plane waves) at the
planar metamaterial boundary, and both processes are
related to the notion of backward waves (see [3-21] for
metamaterials, negative refraction, and backward waves).

The models of metamaterials, i.e., artificial electromag-
netic media currently being considered can be separated into
two types according to their investigation methods: contin-
uous electromagnetic media (isotropic, anisotropic, and
chiral [1, 2, 12, 13, 22-31], described by the model of negative
medium, i.e., a medium with negative values of both the
permittivity and permeability) and structured media, which
cannot be described by the above electromagnetic para-
meters: these are cases where the sizes of artificial media
elements (artificial molecules) are of the order of or larger
than the radiation wavelength, while the ‘media’ themselves
are actually given by spatial structures in the form of periodic
gratings [2, 1418, 32-41].

In this paper, we consider models of metamaterials as
continuous media, i.e., in the case where the linear size of
medium elements and the distances between them are
significantly smaller than the radiation wavelength. The
structure, deterministic or random, of such a medium does
not matter here. It is assumed that the medium can be
described in terms of averaged macroscopic electromagnetic
parameters—a scalar or tensor (in an anisotropic case)
permittivity/permeability. First, we present the ray (geome-
trical optics) theory of focusing of a divergent ray beam
transmitted through a planar metamaterial (negative med-
ium) boundary and transformed into a convergent ray beam.
Then we consider the wave theory for a divergent spherical
wave (which would be a cylindrical wave in two dimensions)
transmitted through such a boundary and turned into a
convergent spherical (cylindrical) wave or a similar wave. It



1132 V V Shevchenko

Physics— Uspekhi 54 (11)

is then possible to describe the effect of the transfer of the
source near-field (without the source itself) to a new location
with the field localization preserved, and, when wave losses
are taken into account, with the localization preserved
approximately.

These theoretical problems are considered here on the
basis of analytic methods of mathematical physics.

2. Ray theory
of flat homogeneous focusing lenses

Flat homogeneous focusing lenses —isotropic [1], anisotro-
pic [2], and chiral [31]—are plates (slabs) of metamaterial,
i.e., structures with two parallel plane boundaries. When
considering the ray (plane wave) focusing process by such
lenses, the key issue is to describe this process for a ray beam
diverging from a source and transmitted through one
boundary of the lens, for example, inside the metamaterial.
We emphasize that just the planar interface (between the
ambient medium and the metamaterial) has the focusing
properties. At the second interface (metamaterial-ambient
medium), the process actually repeats itself.

2.1 Isotropic lens
An isotropic homogeneous flat lens was first considered in
Ref. [1]. It is a plate of a metamaterial —a negative
electromagnetic medium described by a negative scalar
permittivity and a negative scalar permeability. The ray
theory for such a lens is especially simple.

An isotropic lens, which includes the planar interface at
z = a between the positive and negative media, is sketched in
Fig. 1. The relative (with respect to free space) permittivity
(permeability) of the positive medium is given by & (u, ), and
that of the negative medium is e (x_). In order that all rays
propagating from a point source located in the positive
medium be focused inside the negative medium at the point
p =0,z=2a,where p = (x2 +y2)1/2, it suffices to set

ey =&, My =H, & =—&, [ =—[. (1)
Indeed, in this case, the refractive index for rays (plane waves)
at the interface of the media is

m_

[ 2

n= =l 2)
where

my = (62 )" = £(ep)' (3)
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Figure 1. Isotropic flat lens: a plate of the thickness d = b — a. The upper
arrows along the rays indicate the direction of the ray (plane wave) phase
velocity, and the lower arrows show the power flux (Umov—Poynting
vector) direction.

are the deceleration factors for forward and backward plane
waves in the media relative to free space [1, 19]. This leads to a
convergent bundle of rays transmitted through the boundary.
This beam is symmetric with respect to the boundary to the
divergent bundle of rays incident on the boundary. The ratio
of the wave impedances of the media is given by [1, 19]

Z_
Z =l Z. =", (4)

where {° is the wave impedance of free space, and

1 1/2 me  n u 1/2
gi:(_i> :_:_i:(_> ={, (5)
&4 &4 my &

which results in the absence of rays (plane waves) reflected
from the boundary [1, 42, 43].

Based on these results, we can make an important
generalization and formulate it as the following statement.
To focus radiation from a point-like source at a point in the
region of its image after it is transmitted through a planar
interface between positive and negative media, it is not
sufficient to have equal optical paths from the source to its
image for all rays; a stronger condition is necessary: the full
optical path for each ray must be equal to zero. We call this
condition the principle of zero optical paths for rays from a
source to its image.

This principle can be written as

Sy +s5-=0, (6)

where, for homogeneous isotropic media, the optical paths
are

se=mily =my L., (7)

m, and m_ are the wave vectors, L, and L_ are the vector
coordinates of the ray geometrical paths before and after the
boundary, my = |my|, and Ly = |L.|. For homogeneous
anisotropic media,
L.
S+ = — 8
= (®
where p; = |p. |, and p, and p_ are the ray vectors related to
the wave vectors as m_p, = £1 [44].

2.2 Anisotropic lens
The idea to make an anisotropic homogeneous flat lens from
a metamaterial was suggested in Ref. [2]. The focusing theory
for such a lens, presented below, differs from that in Ref. [2],
but gives the same result. Here, we use the above principle of
zero optical paths for rays transmitted through a metamater-
ial boundary from a point-like source to its image.

Figure 2 shows the boundary between an isotropic

external medium with the parameters
e =¢>0, pu, =u>0, 9)

1/2

my=m=(en) '~ >0

and an anisotropic uniaxial metamaterial with the parameters

e 00 er 0 0 1 0 0
i2=10 ¢ 0l=10 ¢ O —8<0 1 0)7
\

0 0 & 0 0 ¢ 0 0 ¢?

fio=p_<0, (10)
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Figure 2. The interface p > 0, z = a between isotropic positive and
anisotropic negative media.

The optical path of a ray in the isotropic external medium
from the source to the metamaterial boundary is

s, =m L, =m(p>+ az)l/2 =mp(1 4 tan—2 90)1/2,

p:(x2+y2)1/27 (11)

where 0 is the angle of incidence of the ray at the boundary,
and the optical path of an extraordinary ray in the
metamaterial with polarization corresponding to an extra-
ordinary plane wave [44-46] from the boundary to the image
of the source is given by

L. p
p_  sin0;
=myp(l +¢ *tan"26,)",

2 in2 2 2p01/2
S_ = (mj sin” 0y + m7 cos 01)/

(12)

where 0; is the refraction angle of the extraordinary ray,
corresponding in this case to the backward extraordinary
plane wave.

Hence, based on the condition of zero optical path, i.e.,
zero total optical path from the source to its image (6), we
obtain

mp(1 4 tan~2 0y)"/2 +myp(1 +¢2tan20))* =0. (13)

We see that Eqn (13) is satisfied when the relations

I’VZH =—m,

tan 0, = q’1 tan 0,

hold; in this case, all rays from a point-like source transmitted
through the boundary are focused at one point of its image,
because it follows from Eqn (15) that projections of the paths
of transmitted rays on the optical axis are equal to

L_cos0y =2a; —a=qa, (16)
and are therefore the same for all rays.
From the same equation (15) and the known relation [44]

(17)

e
tan 0, = ik tan 0 = qztanHI ,
&1

where 0, is the refraction angle of a plane wave in the
metamaterial in the direction of the wave vector m_ (see
Fig. 2), it follows that

tanf, = gtan0.

(18)

In the particular case of an isotropic metamaterial, i.e., for
q = 1, we reproduce the results in Section 2.1.

2.3 Chiral lens
The theory of a chiral isotropic lens is given in Ref. [31]. The
lens is a double-layer plate (Fig. 3) in which one layer consists
of a right-handed and the other of a left-handed chiral
negative medium. To describe propagation of electromag-
netic waves in chiral media, another parameter that describes
the medium chirality is added to the permittivity ¢ and the
permeability u. The matter equations, for example, in the
Drude-Born-Fedorov form [22, 23, 47, 48], are then given by
D = ¢%(E + p.rotE), (19)
B = u’u(H + p.rotH),

where D and B are the field inductions, E and H are the field
strengths, ¢° and u° are the dimensional parameters of free
space (the vacuum), ¢ and u are the dimensionless permittivity
and permeability of the medium, and p, is the chiral
parameter measured in the units of length and proportional
to the linear size of particles (artificial molecules) that
constitute the medium. The right- and left-handed chiral
media differ by the sign of p,, which can be positive or
negative, respectively.

In an isotropic chiral medium, either right-handed or left-
handed, only circularly polarized waves can propagate, right-
handed and left-handed in each medium. Because the right-
hand polarized and left-hand polarized plane waves have
different phase velocities, the splitting (bifurcation) of an
incident ray into two parts, i.e., birefringence, occurs at the
boundary of the chiral medium (in our case, the metamater-
ial). In the lens as a whole, when the ray from the source
propagates through it, the birefringence occurs at the first
boundary, the bireflection at the second boundary, and both
effects at the interface between the layers. In Fig. 3, we show
only the trajectories of the main rays, carrying most of the
power of rays originating from the source in low-chirality
layers and, consequently, with low reflection from the
boundaries. These last are not considered here.

The chiral lens layers have equal thicknesses and consist of
right-handed (r) and left-handed (1) chirally symmetric media,
with an arbitrary arrangement (sequence) of layers. The
deceleration factors (refractive indices) for right-hand and
left-hand circularly polarized rays (denoted by superscripts

o RH LH

N

14

Figure 3. Chiral flat isotropic lens.
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‘+’and ‘—’ below) in the layers are
m_

mrilh = m ) (20)
where

m_=(e_p ) <0, (21)
¢ = —gand p_ = —u are the permittivity and permeability

of the lens layers, ¢ and u are the permittivity and permeability
of the external nonchiral positive medium, ¢ u >0,
m= (8,11)1/2 >0, m_ = —m, and

Orh,Ih = m—koprh,lh . (22)
For the right- and left-handed chirally symmetric layers, the

parameters are py, =p. >0, py = —p., O = —0., and
o = 0., where

5c:mk0pc <1, (23)

0 _ (0,042 _®

K = o) 2 =2,
and c is the speed of light in the vacuum.

It is not difficult to demonstrate that in this lens, despite
the ray bifurcation, the principle of zero optical paths is
satisfied for each ray coming out from the source and
reaching the point of its image [31].

Indeed, the total optical path length from the source to the
image, for example, for the upper ray of those bifurcated
inside the lens (see Fig. 3), is given by

myd
2cos0~

+
ma m;d

_ma m(2d —b)
" cosf  2cosfOF

cos 0

T

: (24)

where a is the distance from the source to the first boundary of
the lens, dis the lens thickness, and 2d — b is the distance from
the second boundary of the lens to the image of the source.
From Snell’s law for the rays shown in Fig. 3,

msin 0 = m7 sin 0= = mj sin0F (25)
it follows that

sin0* = —(1 F d.)sin 0. (26)
Hence, for small ¢ in (23), we obtain

cos0F = (1 425, tan”0)"/* cos 0. (27)
Substitution of this relation in (24) gives

st=0. (28)

It can be shown similarly that the full optical path length
for the lower ray is

s~ =0. (29)

In Ref. [31], a calculation was made for a particular disk-
shaped chiral lens, bounded by the radius R = d, with the
reduced chirality parameter d. = 0.1 of the metamaterial
(Fig. 4). Under the condition

<a<d (30)

2

A

Figure 4. Disk-shaped chiral lens of thickness d and finite size radius R.

for the distance a from the field source to the first boundary of
the lens, all rays incident on this boundary are focused by
both front and back boundaries of the lens. If the distance a is
less than d/2, then some rays are not focused by the second
(back) boundary, i.e., only partial ray focusing is realized.

3. Wave theory of field localization

We consider the wave theory of the simplest homogeneous
flat lens: an isotropic nonchiral lens. We formulate the key
problem as follows. A divergent spherical wave excited by a
point electric dipole oriented normal to the boundary is
incident on a planar interface between positive and negative
media. The stationary dipole field depends harmonically on
time, exp (iw?). The function of the wave field transmitted
through the boundary has to be found. This problem is first
solved without taking wave losses in the media into account,
and then qualitative and quantitative effects of the wave
losses in the media are considered.

Two approaches are used to solve this key problem. The
first directly considers spherical waves incident on and
transmitted through the boundary. The second approach is
to first expand these waves with respect to spectral plane-
cylindrical (waveguide) eigenfunctions (a spatially spectral
expansion with continuous spectrum, i.e., an integral decom-
position) [53-55]. The problem is solved analytically in both
approaches when wave losses in the media are not taken into
account, and can be solved approximately when the losses are
taken into account. Here, the known concept of a point dipole
source as well as the notions of point ‘sink’ and ‘sinksource’
introduced by this author are used.

3.1 Hertz vector potentials for point source, sink,
and sinksource fields
An electromagnetic field excited in a medium by an
elementary (point) dipole source is well known [56-59]. The
point-like source and the function of its excited field, the so-
called Green’s function, are idealized mathematical models
convenient for simplified descriptions of physical field
radiation processes.

For the field of a stationary electric dipole with the dipole
moment

Dy = Doz exp (iwt) , (31)
which satisfies the equation
5 4r X

AIl + k-1 = % ZDo(r), (32)
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where z is the z-axis unit vector, k = mk®, m = (e)'/*> 0,

k®=w/c, ¢ is the speed of light in free space, the wave
impedance Z of the medium is given by (4), and D = wDy.
The Hertz vector potential, or simply the Hertz vector IT can
be written as

II = Izg exp (iwt) . (33)
Here, the only z-component of the Hertz vector of the emitted
wave is given by

S 1 3
I1° = o ZDexp (—ikr), (34)

r=(p>+29)"2,

p= (x> +y7)? (35)
and describes a divergent spherical wave.

The nonzero spherical components of the electric and
magnetic field strengths in this case are

2i

E? =02 Zf(kr)cos0,
s -1 :
H, = — f(kr)sin@, (36)
s -1 :
E) = - Zg(kr)sin0,
where
. i 1,
](u):l——, g(u)zl__f(u)v (37)
u u
and the cylindrical components are
. . -1 2i .
Ej=E,sin0+ Eycos0 = = Z[g(kr) 5 f(kr)} sin 20,
H =L f(kr)sin0 38
5=~ flkr)sin0, (38)

El=E, cos0— Epsinf = % zZ [g(kr) sin® 0 + % f(kr) cos? 9] .

For brevity, the common factor k2D exp (—ikr) is omitted in
these formulas.

The notions of a ‘sink’ (radiation-receiving sink), in
contrast to the radiation source (emitting the field), and the
‘sinksource’, i.e., coupled sink and source, receiving and re-
emitting the field, were introduced by the author in the
Anniversary Talk “Integral and spectral representations
(expansions) of wave fields. A review” at the Moscow
Ya N Feld Electrodynamics Seminar on November 6, 2007.

The notion of a point dipole field sink was introduced
using the second linearly independent solution of Eqn (32) for
the Hertz vector component as

1%k, Z) = [(—k, —Z) =~ ZDexp (ikr),

kr (39)

which describes the field of a converging spherical wave. In
this case, the dipole in Eqn (32) does not emit but does absorb
the incident wave field.

According to (34) and (39), the spherical and cylindrical
components of the point dipole sink field are obtained from
Eqns (36) and (38) by replacing k with —k and Z with —Z.

When using the term ‘field source’, either an external
device that emits a field or a medium inhomogeneity that
scatters an incident wave is physically understood. The sink

a
14
E
k k
0 D() z
P P b
E E
k k
-0 D0/2 +0 D()/Z z
p p ¢
E E
k k
-0 D0/2 +0 D()/Z z

Figure 5. Sketch of: (a) a dipole point source, (b) coupled sources, and (c) a
sinksource; for their fields, the boundary condition is E, = 0 for p > 0,
z=0.

should be understood similarly, but in contrast to the source,
it does not emit: it receives (absorbs) the incident wave
energy.

By a sinksource, we here mean a singularity of the field in
a homogeneous medium, induced by an incident convergent
wave. The point dipole sinksource can be modeled on the
basis of the following considerations. According to (38), the
field of a point emitting dipole (Fig. 5a) satisfies the condition

E,=0 for p>0, z=0 (40)
and, consequently, 0 = nt/2, except at the point p =z =0.
This condition allows considering such a field separately in
semi-infinite spaces z < 0 and z > 0, as the field excited by
two point sources with half dipole moments (Fig. 5b) located
at the points p =0, z=—0 and p =0, z = 40. The same
condition (40) is satisfied in the description of a converging
field absorbed by the sink at the point p =0, z = —0, and in
the description of a diverging field emitted by the source at the
point p = 0, z = 4+0. Such a sink—source pair (Fig. 5c) is the
sinksource under the assumption of a consistent relation
between the sink and the source, i.e., if the electromagnetic
energy (power) received by the sink is fully transferred to the
source. Here, it is not necessary to introduce an external
device or a medium inhomogeneity to understand the
physical meaning of a sinksource, and the presence of a
point-like singularity of the field at the point of convergence
and divergence of spherical waves, i.e., at the focal point, can
be explained by the absence of the field diffraction effect in the
model of the sinksource field. The diffraction should be taken
into account only in the case of a finite incident wave beam, in
particular, to account for wave losses in a medium (see
Section 3.5 below).

The sinksource field (Hertz vector) therefore satisfies
Eqn (32); for z > 0, it satisfies the Sommerfeld radiation
condition, and for z < 0, the analogous condition for counter
radiation.
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By using the sinksource, the problem of transmission of
convergent spherical waves through a focal point can be
solved easily. The field after the focal point is obtained
based on the formulas known for a point-like source.

The above results for fields in an ordinary positive
medium with m; = m > 0 can be easily generalized to the
case of a metamaterial, i.e., a negative medium with
m_ = —m < 0 (3). To do so, in expressions (32), (34), (36),
and (38), we replace k = k;, = m k® with —k = k_ = m_k°
while keeping Z =Z, = Z_ in (4) and (5), or, alternatively,
replace Z with —Z while keeping k for counter backward
waves [19].

To conclude this section, we note that we have considered
the so-called elementary (point) electric dipole field source
and the corresponding sink, sinksource, and Hertz vector.
The obtained results can also be written for an elementary
magnetic dipole source and the corresponding sink, sink-
source, and Hertz vector [which, in turn, correspond to the
electromagnetic field that is orthogonal to the field in
Eqns (36)—(38)] by using the known procedure: replacing ¢
with g, u with ¢, Z with 1/Z, E with H, and H with —E.

3.2 Spherical waves at the interface

between positive and negative media

Figure 6 schematically shows a convergent spherical wave
incident on the planar interface between the positive
and negative media and excited by a point-like source—
the electric dipole with normal orientation to the bound-
ary. Using the above notation, we write the Hertz vector
z-component of the incident wave (34) as

1
I} =—— Z,Dexp (—ikyr), (41)
k+l‘1
where
ky=m.k°, = (p? +Z2)1/2, (42)

z < a, and D is the factor that includes the absolute value of
the dipole moment. According to (38), the cylindrical
components needed in what follows are given by

. -1 3i 3
s =z (1-=2 2 )sin20
LT +( kyr k?rrz) S0 251

(43)
-1 i
H, =—(1-——)si
o= ( k+r1> sin0; ,
where 0 =arctan(p/z) and the common factor

k2 Dexp (—ik.ry) is omitted.

0

Figure 6. Transmission of spherical waves through the interface between
positive and negative media for p > 0, z = @ and through the focal point
p =0, z = 2a in the negative medium.

We seek the corresponding Hertz vector and field strength
components of the wave transmitted through the boundary
z = a in the range a < z < 2a in the negative medium in the
form of a backward spherical wave [21]:

I} = FZ Z_Dexp (ik_ra), (44)
. T 3i 3 .
;2 :2—r22, (1+k—r2_k2—r22) sin 20, , 5)
0 :;—2T<1 +k+r2> sin 0,
where
ko=mk", r}=p*+(z—2a), tan, = L (46)

z—2a’

and we omit the common factor k2D exp (ik_r,) in (45). The
transmitted wave field in the range 2a < z < o0, i.e., behind
the focal point p = 0, z = 2a, is to be given below.

The components of the reflected (forward divergent) wave
for z < a can be written similarly:

R .

II; = . Z . Dexp (—ikir), (47)
2
—R 3i

s = Lz (121 2 Ysin20

e (s R )

—R i
s =2 (1- 1 Vsine
@2 " ( k+r2> smoz,

where the common factor k2 D exp (—ik_r,) is omitted in (48).

Because the continuity conditions must be satisfied at the
interface z=a (r,=r;, 6, =m—0,) for the tangential
components,

E;l + E;Z =Ej

s S a
p2> Hq)l + H

o2 — M2

(49)

after substitution of expressions (43), (45), and (48) in (49)
and taking (3)—(5), (42), and (46) into account, we obtain

I1-R=T, 1+R=T, (50)
whence it follows that
R=0, T=1. (51)

Thus, spherical waves, as well as plane waves [1, 42, 43],
are transmitted without reflection through an interface
between isotropic positive and negative media if conditions
(1) are satisfied. These conditions are the field focusing
(m- = —m; = —m) and consistency (Z_ = Z, = Z) condi-
tions at such an interface.

3.3 Transmission of a convergent wave

through the focal-point region

It is noted in Ref. [60] that this problem is not related to the
specific properties of the metamaterial (negative medium) or
to the properties of backward waves. In Section 3.1, based on
the sinksource concept, we actually considered the problem of
transmission of a convergent spherical wave through the focal
point in an ordinary (positive) medium. From those results,
by properly changing the notation, it is not difficult to obtain
a solution of the problem considered in Section 3.2 for a
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transmitted backward wave in a negative medium after the
focal point, i.e., in the range (24, c0), or, equivalently, in the
half-space p > 0, z > 2a occupied by the metamaterial.

In this half-space, the field components of a backward
spherical wave diverging from a sinksource (located at the
point p = 0, z = 2a) that complement solutions (44) and (45)
of the problem considered above are given by

1

st = — Z,DeXp (7ik7"2) 9 (52)
k,rg
-1 3i 3

S =— 7 [1—————_)sin20

TS ( k_rs kzrf) e (53)

-1 i
s [1-— :
. ( k_r2> sin 0>

in the range (2a, co); the common factor k2D exp (—ik_r,) is
omitted in (53).

In analyzing the radiation field transmission through the
entire flat focusing lens, an additional problem is to describe
the transmission process of a divergent backward spherical
wave (52) and (53) through the second interface between the
negative and positive media. The description of this process
fully replicates the results obtained for wave transmission
through the first boundary, up to notational differences. We
note the special case where the focal point is on the second
boundary, i.c., at 2a = b (see Fig. 1). In the case 2a < b, a
convergent backward wave on the left side of the plane z = 2a
and a divergent backward wave on the right side of this plane
have opposite directions of phase motion but identical
directions of energy fluxes (Umov—Poynting vectors), but in
this special case, the wave phase at z = b — 0 and the wave
phase at z =5+ 0 propagate in one direction, while the
directions of energy fluxes remain the same. We recall that
the direction of backward wave propagation is the direction
of the energy flux (the Umov—Poynting vector) and not the
direction of the wave phase motion [19].

3.4 Spectral expansion

of divergent and convergent spherical wave fields

The problem of spherical wave transmission through a
planar interface between positive and negative media was
solved by using the spectral expansion of the transmitted
field with respect to plane or plane-cylindrical eigenwaves
[60-68] (see, e.g., [53—59] for integral and spectral or, more
accurately, spatially spectral expansions of wave fields). In
Refs [61-63, 65-67], the spectral expansion used for
divergent waves was also applied to transmitted convergent
waves. But it turned out [63] (see also [54, 55]) that when
conditions (1) for media are satisfied, an improper integral
for the transmitted wave field expansion diverges, and hence
the expansion procedure cannot be used here. The cases
where conditions (1) are not strictly satisfied, in particular
in the presence of wave losses in media were considered in
Refs [63, 65-67] (see Section 3.5 below). In Refs [60, 64, 68],
another spectral expansion, which can be used to analyze
convergent waves when conditions (1) are satisfied, was
applied to the transmitted wave. Below, the solution of the
key problem of spherical wave transmission through an
interface between positive and negative media with the use
of this spectral expansion is reproduced from Ref. [64]; this
not only is of methodological interest but also gives better
physical understanding of the wave transmission process
through the interface.

Following Ref. [64], we write the Hertz vector component
(31) of a divergent spherical wave incident on the boundary
(see Fig. 6) as a spectral expansion with respect to plane-
cylindrical (waveguide) eigenwaves [53-55], i.e., the waves
with a plane phase front and the cylindrical coordinate
dependence in the plane orthogonal to the z axis:

1 .
II} = —— Z. Dexp (—ikir)
k+rl

®ik .
= Z+DJ miad Jo(kkip)exp (—iy z) kdk,

- (54)

where Jy(kkp) is the Bessel function, 0 < z < a, k. = k, and

T+ _k+{

The corresponding component of the wave field reflected
from the boundary z = a can be written similarly:

II; = Z+DJ ey R(x) Jo(kk..p)exp [iy, (z — 2a)] xdx,

0T (56)

(1 —Kz)l/z for k<1,

55
—i(k2=1)"Y* for k>1. 53)

where R(x) is the reflection coefficient and z < a.
The solution for the convergent backward wave trans-
mitted through the boundary can be written as
®ik_ .
I} = Z_DJ = T(x) Jo(xk_p) exp [—iy_(z — 2a)] x dx,
0o V-
(57)

where T(k) is the transmission coefficient, ¢ <z < 24,
k_ = —k, and

p —k (1_K2)1/27
I =T S ITE

When dividing the integration interval (0, c0) in (54) into
two ranges, (0,1) and (1,00), the following physical inter-
pretation for partial integrals resulting from this procedure is
usually given. The first integral describes the field emitted by
the source and the second describes the field localized near the
source. To correctly describe the localized field around the
source, the square root value y, is chosen for x > 1 as
indicated in (55). This leads to the integrand in (54) that
exponentially decreases as z increases, i.e., decreases in the
direction of the wave propagation; this ensures the integral
convergence. Similar considerations can be applied to
representation (56) for the reflected wave field with decreas-
ing z. The same considerations were used in Refs [61-63, 65—
67] to find the field of a convergent wave transmitted through
the boundary; this leads, as we noted already, to a divergent
integral in the spectral expansion of the field.

In our spectral expansion (57), the integral converges in
the considered z range for medium parameters satisfying
conditions (1); here, the exponentially increasing (with
increasing z) integrand correctly describes the singularity of
the integral, i.e., the field, at the focal point of spherical wave
convergence p = 0, z = 2a (see [64] for the details).

Applying the field matching conditions at the boundary,

k<1,

K>1. (58)

Ey+Ep=Ey, Hy+Hpy=Hp,
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where
o't —ik,,_ OIT**
ES? — HS? — + 59
P 0pdz ’ ¢ Z,_ 0p (59)

and using the orthogonality property of the Bessel functions,

k2j Ti(kp) T (Rkp) pdp = k15 (k — 7).
0

we obtain the set of equations

l1-R(k)=T(x), 14+ R(x)=T(k) (60)
similar to (50), with solution (51): R(x) =0, T (k) =T = 1.

Substitution of the obtained result in expansion (57) for
T = 1 allows reducing it to form (44) [64].

3.5 Accounting for wave losses in media

To take wave losses in media into account, we have to
generalize the above notation for the positive and negative
media parameters as follows:

ey =&(1—idp1),  py =p(l —idyus),
ey =k (esp)'? 2 k(1 —16,) (61)
1/2
z, :50(“—+) >~ Z(1+id.),
et
e-=—¢(1+1i0,-), pu_=—-pu(l+1id,),
ko =k%e_p )" —k(1+id_), (62)
1/2
Z = 40(“;> ~7(1-id_),
E_
where
8,H>0, 0<5é1<17 O<6Hi<la
k=k"ew)"> >0, 204 =00+ 0, (63)

NG
ZZﬁO(Z) >07 2A:§::56j:_5uj:~

With these relations, we seek a solution for a wave
transmitted through the interface between the positive and
negative media; this can be done approximately in the same
form (44), (45), with r, replaced with

D=1 — iara, (64)
where
ra=(p2+a?)"?. (65)

To satisfy matching conditions (49) for wave fields, we
suppose that the condition

kiri=—-k_r, (66)

is satisfied at the boundary z = a; we then substitute
expressions (43), (48), and (45) in (49), taking (66) into
account. As a result, instead of (50), we obtain the set of
equations

k3Z.(1-R)=-k*Z_T, (67

~—

ki(14+R)=—-KT,

which has the solution

Z,—Z_ Kk

R=CF—"2-
Z,+7Z_

T K Zo+zZ (68)

With (61) and (62) used here, this solution can be written
as
S +4) #0,
(69)

T:1f1<35++35_7%) 21,

R =

where we have taken into account that 1 and A, are small,
and therefore their squares can be omitted; however, these
squares have to be taken into account when calculating the
reflected and transmitted wave power.

Furthermore, relation (66) (for z = a) implies that
kyr, = —k_r,(1 — i0); hence follows the equality

g = (S+ -+ (3, . (70)

To summarize the results, we note that if the Hertz vector
component of the wave incident on the media interface has
the same form (41) in this case, i.¢.,

! 1 .
II} = — Z, Dexp (—ikyr1),
k+l‘1

(71)
but with a different value of k in (61), then the transmitted
spherical wave, instead of (44), is given by

. T .
I} = i Z_Dexp (ik_r),

(72)
where k_ is given by (62), 7, is given by (64) and (70), and the
transmission coefficient 7'in (69) now differs from unity. The
Hertz vector component of the reflected wave then retains its
form (47) but with a new value of k, in (61) (as for the incident
wave) and with a nonzero reflection coefficient R in (69).

It follows from relations (63)—(65) and (70), that in the
vicinity of the focal point p =0, z = 24, i.e., for p < a, we
approximately have

Fp =1y —ioa. (73)
This expression allows analyzing the field structure near the
focal point, where

|TZ_D|
cka

|13 = exp (—oka), (74)

i.e., in contrast to (44), the field function does not diverge at
this point.

To quantitatively estimate the size of the field concentra-
tion (localization) region around the former focal point, we
can introduce the effective radius r, = r¢ of the ‘3D diffrac-
tion spot’. For this, from the condition of a twofold decrease
in the squared absolute value of function (72) compared to its
value at focal point (74), we derive the equation

(1‘0 ) 2} B
I+ (—

oa

exp (20_krg) :% . (75)
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Whence the spot radius is given by

ro = oa(l +20_cka). (76)

This result is correct for the values of ka satisfying the
condition (26_cka)* < 1.

For the transverse planar diffraction spot, it follows from
(76) that

po = oa(l +20_cka) . (77)

The problem of wave transmission through an interface
between positive and negative media with wave losses in the
media taken into account was considered in Refs [60, 68]
using a generalized spectral expansion of a divergent spherical
wave similar to (57), where a slightly different but also
approximate estimate of the radius of the transverse spot
was introduced, calculated, and plotted:

4
po = daln (78)

5
Here, = . = 0_, meaning that the calculation in Ref. [60]
was performed in the case of identical wave losses in the
media.

As we noted already, the results of solution of the
considered problem with the standard spectral (integral)
expansion (used for divergent waves) applied to convergent
waves were published in Refs [63, 65-67]. It was demonstrated
that if conditions (1) are not satisfied, but losses (61)—(63) are
introduced, then there is a case where the integral in the
standard spectral expansion still converges (although poorly).
The estimates for the diffraction spot radius given in Refs [65,
66] differ from those in (77) and (78). For example, the
estimate obtained from condition (1) in Ref. [65] in the
model of a two-dimensional field transmitted through a flat
lens with a small aggregate deviation of media parameters
(with losses taken into account) can be approximately written

as
2 -1
= In=
Po a<n5>

(see also [63] for real deviation values).

Figure 7 shows plots of functions (77)—(79). We can see
that the presented results describe the tendency whereby the
field spot vanishes for decreasing wave losses in the media in a

(79)

po 0.50
a 045
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.0

0 el — [IT N
10-4 10-3 10—2 10-!

Figure 7. Effective transverse length (radius) of the field spot in the former
focal point region depending on the parameter of losses: (/), according to
(77) for (a) ka = 10, (b) 3.0, (c¢) 1.0; (2) and (3), according to respective
expressions (78) and (79).

qualitatively similar, albeit quantitatively different, ways. For
3 < 1072, the values of py/a for dependence 3 differ from
those for dependences / and 2 by orders of magnitude, while
those for dependences 7 and 2 are approximately of the same
order. Overall, it follows from the results presented in Fig. 7
that the size of the diffraction spot can be greater as well as
less (and even much less) than the radiation wavelength.

The following should be added to what was stated above.

(1) The mathematical model of an elementary dipole field
source that was used here adequately describes the divergent
field of a physical (not point-like) source model only in the
case where the radiated power that remains finite in the limit
of a point-like source. The local field at the source point is
then infinite, with a nonintegrable field energy density in the
source domain [56—59]. The power flux density for the wave
propagating from the source is expressed via the squared
absolute value of the field Hertz vector near the source, or
more precisely, the power flux density is proportional to this
square (see, e.g., vol. 2 of Ref. [59]).

Everything said about the source field can also be applied
to the divergent field of a sink. Therefore, in Refs [60, 68], as
well as here, the effective field spot through which the power
flux passes when the wave losses in the media are taken into
account was estimated based on local values of the Hertz
vector in the converging field region around the former focal
point (the one calculated without losses).

(2) We also note that the authors of Refs [63, 65] related
the size estimate in (79) for the field spot in the focal point
region to the presence of surface waves excited by the source
on the interface between positive and negative media. Such
near-boundary surface waves can indeed be formed if
complex values of the media parameter deviations from
conditions (1) include real parts [62, 69, 70]. When only
wave losses in the media are taken into account, such
deviations are purely imaginary. In this case, the near-
boundary surface waves are not formed, and we therefore
disregard them here.

On the other hand, because the field spot size estimate in
(79) indicates a significantly lesser degree of field localization
at the focal point compared to estimates (77) and (78), the
latter can also be more accurate in the presence of surface
waves.

As concerns numerical results in Ref. [66] that showed
that the spot size does not vanish as § — 0, their invalidity can
be explained as follows. In numerical calculations of the field
in [66], the wave was actually assumed to propagate not
through the entire plane normal to the z axis but only through
its limited part (limited aperture), with the size of the order of
2a. That resulted in a bound on the field and the diffraction
broadening of the spot, complementary to the diffraction
effect due to a limited field extent in this plane because of
wave losses in the media. This complementary effect is
independent of §.

We stress in this regard that in the presence of wave losses
in the media, the effective apertures are bounded for radiation
transmitted through the planes z = @ and z = b; this leads to
the appearance of a diffraction spot in the plane z = 2a and its
expansion in the plane z = 2d (see Fig. 1). This problem was
considered in detail in Ref. [60]. If the losses are absent in an
infinite lens plate and conditions (1) are satisfied, then the
wave diffraction is also absent, and therefore the waves are
localized at the focal point.

When wave losses in the media are taken into account, the
whole problem of radiation transmission through a flat lens,



1140

V V Shevchenko

Physics— Uspekhi 54 (11)

e, iy el ey, Ly

p

Figure 8. Structure of a quasi-spherical wave beam propagating through a
plane isotropic lens with losses (p; > p,). For coupled arrows at the beam
wave front, the arrows beginning in the upper front points indicate the
direction of wave phase motion while the arrows beginning in the lower
points indicate the power flux (Umov-Poynting vector) direction.

which also includes the solution of the transmission problem
for a convergent quasispherical backward wave through the
region of the former focal point and then such a divergent
wave transmission through the interface between negative
and positive media, requires special consideration. This can
be done using the following two-stage method for solving the
problem.

First, from the above solution of the first key wave
transmission problem (for a divergent spherical wave excited
by a point source) through the first interface between the
positive and negative media, we derive (by changing the
notation) the solution of the similar second wave transmis-
sion problem for a divergent backward spherical wave also
excited by a point-like source located in the plane z = 2a in
the negative medium and propagating through the interface
between the negative and positive media. Next, this solution,
regarded as the Green’s function, can be used to solve (by the
known method [56-59]) the wave emission problem for a
source with distributed current density in the plane z = 2a.
The current density in this plane can be obtained from the
tangential field components calculated in the first problem.
Such a method to solve the problem of wave transmission
through a flat lens taking wave losses in the media into
account is still waiting for its application, which is to involve
numerical computations.

However, even now we can already qualitatively predict
the structure of the wave field transmitted through the lens. It
must be a Gaussian wave beam resembling a Gaussian beam
[71, 72], damped along the direction of its propagation and
having an increased spot size in the beam neck (Fig. 8).

4. Conclusion

There are still insufficiently studied and incorrectly under-
stood problems, somehow or other related to the problem of
field localization in a homogeneous medium in metamaterial
applications. We mention the following three.

First, there is the question of how to realize metamaterials
as negative (continuous) media. Previously, this question was
raised in Ref. [31]. Even a ‘simple’ flat lens made of a
homogeneous isotropic negative medium [1] has not been
realized yet because the means to create such a medium has
not been implemented, although 15 years have passed since
the first publications related to the problem of the realization
of isotropic negative media [24—28]. In these publications, the

results of theoretical investigations were given for the model
of a negative medium made of small chiral elements: chirally
conducting dipole particles — artificial molecules [73-76]; by
this example, the physical mechanism of possible realization
of a negative medium has been demonstrated, in essence, for
the first time. It was shown that such a medium can have
simultaneous negative values of the dielectric permittivity and
magnetic permeability in the resonance frequency range of
dipole particles for sizes significantly less than the radiation
wavelength. In that case, the medium structure, deterministic
or random, is not essential.

The models of structured media published somewhat later
[32, 33, 35, 37] are not directly related to the negative
electromagnetic media [1, 12, 13]. An incorrect interpretation
of experimental data given in these studies has caused only a
great deal of confusion for further studies. The proper
explanation of the effect of negative wave refraction at the
boundary of structured media was given in theoretical and
experimental studies [34, 36] based on the isofrequency
method and theory developed previously (see [14—18]) and
devoted to the investigation of artificial structured media for
which the use of dielectric permittivity and/or magnetic
permeability notions is not correct.

The second question is related to the incorrect wave
interpretation presented in Ref. [61] for the physical process
of radiation transmission through a homogeneous isotropic
flat lens made of a negative medium [1]. This interpretation
has had a detrimental effect on subsequent studies of the
problem as well, although the suggestion given in [61] of the
conceptual possibility of obtaining the resolution effect for
behind-the-lens images of objects separated by small dis-
tances and small compared to the radiation wavelength, i.e.,
the effect of superresolution, turned out to be valid (see [64],
the other references given above related to that problem, as
well as the results presented in this paper). There is still an
open question how to realize this effect technologically and to
obtain a substantial superresolution.

The third question is related to the terminology used in the
metamaterial theory. In various studies, various different
terms are used for metamaterials as electromagnetic media:
(1) left-handed media (not to be confused with left-handed
chiral media: see [22, 23, 31] and Section 2.3 above);
(2) negative media or double negative media, which is the
same; (3) media with a negative frequency dispersion of
parameters; and (4) backward-wave media. However, all
these are actually the same type of metamaterials, which can
be universally called the negative electromagnetic media. For
metamaterials that are described by the model of a contin-
uous isotropic electromagnetic medium and can be called by
the above terms, this follows from papers [19, 21].

The author is grateful to his colleagues S E Bankov for the
useful discussions of the results presented here and
G G Grachev for his help in preparing this paper for
publication.
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