
Abstract. The effect of grain boundaries and the crystal surface
on the deformation and strength properties of nanocrystalline
and nanosized materials, primarily metals, is reviewed. Basic
experimental facts about the mechanical behavior of nanocrys-
tal materials are presented and the observed findings are theo-
retically analyzed using equations of dislocation kinetics that
take the properties of grain boundaries into account as sources,
sinks, and dislocation barriers. Using a similar approach, size
effects in the plastic deformation of micro- and nanocrystals are
discussed by considering the crystal surface as a primary source
of and sink for dislocations.

1. Introduction

Presently, the concept of a nanostructure involves a wide
range of problems, including nanocrystalline (NC) materials
and elements on the nanometer scale in various systems and
devices. The common factor in all cases is the existence in the
material or in the device of structural units less than 100 nm in
size. In practice, however, materials and devices consisting of
structural elements less than 1 mm in size frequently fall under
the termnanostructure. The increased interest in thematerials
and structures of this type is explained by two related
circumstances: their high strength and high functional prop-
erties, and the tendency to miniaturization of various systems
and devices of electromechanics, robotics, electronics, medi-
cine, and so on. As promising structural materials, nanocrys-

talline and microcrystalline metals and alloys have a suffi-
ciently wide application already at present.

It so happened historically that the attention of research-
ers and technologists was primarily focused on micro- and
nanocrystalline (metallic and ceramic) materials. They have
high strength at low temperatures because of the Hall±Petch
(HP) effect of grain-boundary strengthening [1] (s � dÿ1=2,
where s is the stress and d is the grain size) and exhibit unique
technological properties (superplasticity [1, 2]) at increased
temperatures because of the grain-boundary softening. The
violation of the HP relation in nanomaterials at conventional
(room) temperatures is also ascribed to the grain-boundary
softening [3±6].

To date, a number of efficient methods of producing
metallic materials with an ultrafine (10±1000 nm) grain have
been developed, such as melt atomization or grinding a
material in a ball mill with subsequent compacting of the
produced nano- or micropowder into a polycrystalline
aggregate. A widespread technique for producing micro-
and nanocrystalline metallic films 0.1±10 mm thick is also a
method for the deposition of atoms from the gas phase onto a
substrate or deposition from an electrolytic solution.

The above methods mean the assembling (aggregation,
consolidation) of a nanomaterial from separate structural
elements such as atoms or nanoparticles. Another group of
methods for producing NC materials is based on the
processes of transformation of an initially coarse-crystalline
or single-crystal metal or amorphous alloy (metallic glass)
into an NC aggregate as a result of its severe plastic
deformation by methods such as equal-channel angular
pressing (ECAP) [7], rolling [8], or high-pressure torsion
(HPT) [9]. In the case of amorphous alloys, their nanocrys-
tallization can be achieved, apart from severe deformation
[10, 11], by using traditional methods, e.g., by heating them to
the crystallization temperature [12].

Along with nanocrystalline materials, much attention has
also been paid in the last few years to the investigation of the
strength and deformation properties of single-crystal samples
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of pure metals and alloys whose transverse size in one or two
directions is less than 1 micron. Tensile tests of samples of fcc
and bcc metals in the form of filamentary crystals (whiskers)
5±20 mm in diameter, which were performed in the 1950s [13±
15], showed that these crystals have a high strength and can be
elastically deformed to 2%.

An important achievement of recent years is the develop-
ment of methods of production and investigation of the
mechanical properties of single-crystal samples with trans-
verse dimensions in the submicron and nanometer ranges. In
[16, 17], the etching of the surface of a metallic single crystal
by a focused ion beam was used for this purpose; as a result,
samples in the form of micropillars were formed on the
surface, which had a diameter of 100±1000 nm and a height
of several microns. These micropillars were subjected to
compressive deformation using a diamond nanoindenter
with a flattened tip. A further development of this method is
the etching of the surface of a two-phase alloy using a focused
ion beam with the purpose of forming a `forest' of micro-
pillars of one of the two phases on the surface, with the
subsequent deformation of these pillars using a
nanoindenter [18]. In [19], the NEMS technology (nanolitho-
graphic etching of thin metallic films deposited on a sub-
strate) was applied to fabricate polycrystalline samples 300±
500 nm thick. This technology allows preparing not only
specimens for tensile and bending tests, but also loading and
measuring devices for their investigation in a single film
construction.

The investigation of the mechanical properties of crystals
with transverse dimensions in the submicron and nanometer
range [16, 17] showed that their strength approaches theore-
tical values in accordance with the law s � Dÿn, where D is
the transverse size of the crystal and n � 0:6ÿ1:0.

One more size effect that has attracted the attention of
researchers in the last decade is the enhanced strength of
metallic samples (wires) 1±10 mm in diameter subjected to
torsion, in comparison with their strength under homoge-
neous tensile deformation [20]. A similar effect was revealed
in the plastic bending of thin metallic films of micron
thickness [21, 22] and in the micro- and nanoindentation of
materials [23±25], i.e., the processes that also occur under
plastic deformation, which is inhomogeneous on the micro-
scale. The enhanced strength of ultrathin samples in these
cases is ascribed to the generation in them of additional
(compared to uniform deformation) geometrically necessary
(GN) dislocations because of the existence of large gradients
of plastic deformation under a torsion or bending deforma-
tion inhomogeneous on the microlevel [20±22].

In the foregoing, we described traditional materials
(metals and alloys) in which the predominant mechanism of
plastic deformation is the dislocation mechanism. But in the
last three decades, numerous investigations have been
devoted to the unusual properties of alloys with a shape-
memory effect (SME), which undergo martensitic reversible
structural phase transformations [26±30]. Their characteristic
feature is a superlarge (compared to the traditional piezo
crystals and magnetostrictive materials) SME deformation
(5±15%) sensitive to temperature andmechanical stresses and
magnetic fields [29±30]. The above facts serve as a basis for
numerous applications of these alloys (e.g., TiNi) inmedicine,
astronautics, and energy engineering for use as force actua-
tors, sensors, and functional (smart) elements of various
systems and devices, e.g., micro- and nanoelectromechanical
systems (MEMS and NEMS) [31]. The last circumstance

served as a stimulus for studying the influence of the size
effect on both the parameters of martensitic transitions in
such alloys [32±35] and their operational characteristics (force
and deformation) [36±38]. The results of work performed to
date have shown a high sensitivity of the above parameters
and characteristics to this factor.

The above brief review of experimental investigations of
the influence of the grain size in polycrystals and of the single-
crystal structure on the strength and functional properties of a
large group of materials that are promising for applications
indicates the importance and the fundamental character of
this avenue of investigation. The results of these investigations
concerning the strength properties of NCmaterials have been
summarized in a number of recent reviews [39±43]. The results
of the first stage of the investigation of strength and deforma-
tion properties of single-crystal nanosized samples of pure
metals and alloys are contained in review papers [44, 45]. The
effect of gradients of plastic deformation and of GN disloca-
tions on the deformation and strengthproperties of samples of
thin (micron thickness) sections has been considered in a
special issue of Scripta Materialia [46] and in review [22]. The
problemof the influence of the size factor on the parameters of
martensitic transitions in SME alloys and on the functional
properties of these alloys is now at the initial stage. In this
review,we therefore restrict ourselves to references to themain
experimental [26±38] and theoretical [65±71] investigations of
this issue available to date.

In spite of a large number of studies concerning the
investigation of the effect of the size factor on the strength
and deformation properties of crystalline materials per-
formed to date, the physical mechanisms of this influence
are currently debatable [39±43]. Three systematic theoretical
approaches to the investigation of these questions exist now.
The first two are based on the methods of computer
simulation; these are the molecular-dynamics (MD) method
[47±50] and the method of 3D dynamics of discrete disloca-
tions (3D-DDD) [51±55]. The third method is based on the
dislocation-kinetics equations [4, 40, 56±58], which describe
the evolution of the density of dislocations in nanomaterials
taking the structural features of grain boundaries and of the
surface of micro- and nanocrystals into account as sources of,
sinks for, and barriers to dislocations. One more theoretically
consistent method is that of an analysis of the energy stability
of dislocation micro- and nanostructures [59±62], which is
based on the continuum theory of dislocations and disclina-
tions.

These methods are microscopic, i.e., they consider phe-
nomena starting at the elementary (molecular or dislocation)
level and then pass to the meso and macro levels. The model
(heuristic) method based on phenomenological relations [5,
63, 64] has not yet exhausted its potential, either. Each of the
above methods has its own advantages and disadvantages,
and should therefore be considered as complementing one
another.

The MD simulation [65] and the dislocation-kinetics
approach [29] are also used in the analysis of the mechanisms
underlying the effect of the size factor on martensitic
transitions and on the deformation behavior of SME alloys.
The dislocation-kinetics method allows describing the effect
of structural factors, including the size factor, on the kinetics
and thermodynamics of martensitic transformations in SME
alloys [34, 38, 66]. Dislocations are here understood as
dislocations of the lattice [67] and twin [68] transformation
types and steps (ledges) of nanometer height at interphase
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boundaries [29, 69]. From the thermodynamic phenomen-
ological standpoint, the effect of the grain size on the critical
temperature of a martensitic transformation was discussed in
[70, 71].

This review is aimed at a theoretical analysis of the data
available in the literature on the strength and plasticity of
nanocrystalline materials predominantly in terms of the
dislocation-kinetics approach. This issue is considered in
Section 2. In Section 3, an analogous approach is used to
consider the effect of the size factor on the strength of crystals
and samples with transverse dimensions in the micro- and
nanorange. Section 4 is devoted to a discussion of the results
of the analysis and conclusions.

2. Nanocrystalline materials

From the dislocation-kinetics standpoint, the effect of the size
factor on the strength and plasticity of micro- and nanocrys-
talline materials was discussed in recent review [40]. However,
the rate of investigations of this question is presently so high
that a variety of new data have appeared that require new
understanding in terms of this approach. In Section 2.1, we
consider data indicating that up to the crystallite size of 2±
3 nm [72], it is precisely the dislocation mechanism that
determines the strength and plastic properties of nanometals
and the features of their deformation, such as the dependence
of the coefficient of the strain-rate sensitivity of plastic flow
[73±79] and activation volumes [42, 76, 77, 80] on the size of
crystallites, and the formation of shear microbands [81±84].
In Section 2.2, we discuss methods of improving plastic
properties of nanometals without a noticeable reduction in
their strength, namely, the creation of bimodal micronano-
grained [85±91] and nanotwinned submicrograined [92±101]
structures.

2.1 Dislocation mechanism of nanostrength
and nanoplasticity
2.1.1 Hall±Petch relation. Three issues remain debatable
regarding the problem of plasticity and strength of NC
metals: (1) the character of the breakdown of the Hall±Petch
(HP) relation in the case of grains less than 10±20 nm in size,
(2) the mechanism of this breakdown, and (3) the role of
dislocations in this mechanism. For example, Fig. 1a displays
the experimental data on the microhardnessH of a nanocrys-
talline Ni±W alloy [72], which indicate that at crystallite sizes
less than 7±10 nm, the HP law H � dÿ1=2 for the microhard-
ness is violated and a tendency appears toward the formation
of the inverse HP relation, H � d p, with an exponent p > 0.
Positive values p � 0:2ÿ0:5 at the nanograin sizes d < 10 ±
15 nm were also observed in a number of other NC materials
[3±6, 40±43, 47±49, 73±70, 88]. These values indicate a
crossover from themechanism of grain-boundary strengthen-
ing of a nanomaterial to a mechanism of grain-boundary
softening.

As regards the Ni±W alloy, it was found in [80] that its
microhardness at the grain size less than 15 nm deviates from
the HP relation, but remains approximately constant, inde-
pendent of the grain size down to d � 3 nm (Fig. 1b). Just as
in the above-considered case (Fig. 1a), the NC samples were
obtained by the method of electrodeposition. It can be seen
from Fig. 1a that at d < 10 nm, a spread of experimental
points is observed, which hampers the detection of a clear
tendency of the variation ofH in this range of grain sizes. This
fact and other similar circumstances frequently serve as

grounds for the conclusion [39] that the violation of the HP
relation for the grain sizes less than 10 nm is not related to
grain-boundary softening, but can be ascribed to a gradual
filling of the nanograin volume by a `mantle' of dislocations
emitted by grain boundaries, after which the microhardness
of the nanomaterials stops being dependent on the size of the
nanograins. The authors of [80], whose results are shown in
Fig. 1b, ascribe the deviation from the HP relation to the
amorphization of the nanomaterial structure. As one more
argument in favor of this statement, they indicate the local
instability of the process of plastic deformation of the
nanoalloy, namely, the formation in it of shear microbands
similar to plastic-flow bands in amorphous metallic alloys.

It is obvious that the above contradictory observations
and the conclusions following from them require a more
detailed discussion, covering additional experimental and
theoretical methods for the analysis of the data available in
the literature. The results obtained in this area are discussed in
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Figure 1.MicrohardnessH of the nanocrystallineNi±Walloy as a function

of the grain size d: (a) data in [72]; (b) data in [80]. The curves are

constructed in accordance with Eqn (4).
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Sections 2.1.2±2.1.4.
2.1.2 Dislocation-kinetics analysis of flow stresses in nanocrys-
talline metals. The curves in Figs 1a and 1b have been
constructed based on the assumption that at grain sizes less
than 10 nm, the grain-boundary softening related to annihila-
tion of dislocations in the boundaries of nanograins occurs.
The calculation of these curves is based on the kinetic
equation for the average dislocation density r in the nano-
materials and for its evolution with respect to the shear
deformation g [4, 40, 79]:

dr
dg
� b

bd
ÿ �ka � kb� r;

�1�

kb � 4Zb
Dgb

mT _ed 2
�
�
db
d

�2

; db �
�
4ZbDgb

mT _e

�1=2

:

Here, db � db�T; _e� is the characteristic size of nanograins
corresponding to the onset of grain-boundary softening, b is
the coefficient that determines the rate of accumulation of
dislocations in the bulk of grains because of the restriction of
the free path of dislocations to the grain size (b � 1), b is the
Burgers vector, ka is the coefficient of annihilation of screw
dislocations via the cross slip mechanism, kb is the coefficient
of annihilation of edge dislocations accumulated in the
boundaries and near the nanograin boundaries,
Dgb � Dgb�T � is the grain-boundary diffusion coefficient, T
is the temperature, Zb � mb 3=kBT, kB is the Boltzmann
constant, _e � _g=mT and _g are the respective rates of uniaxial
and shear deformation, mT � 3:05 is the Taylor orientation
factor, and m is the shear modulus. The right-hand side of
Eqn (1) does not contain the term kf r1=2 characteristic of
coarse-grained (d > 1ÿ10 mm)materials, which describes the
dislocation multiplication on forest dislocations, because the
characteristic spacing between the events of multiplication of
dislocations on forest dislocations (lf � 1=dfr 1=2, where
df � bkf � 10ÿ2) is substantially greater than the size of
nanograins [40]. For example, at r � 1014 ± 1016 mÿ2, this
spacing is 1±10 mm.

Integrating Eqn (1), we find the dependence of the
dislocation density in the nanomaterials on the uniaxial
deformation degree e � g=mT:

r�e� � r0 exp �ÿmTke� � rm
�
1ÿ exp �ÿmTke�

�
; �2�

where r0 � b0=bd is the initial (e � 0) dislocation density due
to their generation from grain boundaries [40, 192], b0 is a
coefficient depending on the density of ledges in the grain
boundaries, k � ka � kb, and rm � b=bdk is the equilibrium
dislocation density for e!1. With Eqn (2) and the Taylor
relation t � ambr 1=2, the dependence of the flow stress
s � mTt of an NC material on the deformation e is given by

s�e��mTamb
n
r0 exp �ÿmTke��rm

�
1ÿ exp �ÿmTke�

�o1=2

;

�3�
where a is the dislocation interaction constant. Because
r0 � rm � dÿ1, Eqn (3) can be written as

s�e� � mTam
�
b

d

�1=2�
b0 exp �ÿmTke�

� b
k

�
1ÿ exp �ÿmTke�

��1=2

: �4�

The results of electron-microscopic investigations [103,
104] and computer simulations [47±49, 105] of the processes
of plastic deformation of NC metals show that the grain
boundaries are (1) sources of dislocations, (2) barriers that
favor the accumulation of dislocations inside the nanograins,
and (3) sinks for dislocations. It is precisely these kinetic
processes that are taken into account in Eqns (1) and (2) for
the density of dislocations and Eqns (3) and (4) for the flow
stress. The parameters b0 and b determine the rate of the first
two kinetic processes; the coefficient of annihilation of
dislocations k � ka � kb�d;T; _e�, which depends on the grain
size d, the temperature T, and the strain rate e [Eqn (1)],
controls the efficiency of grain boundaries as sinks for lattice
dislocations.

In Figures 1a and 1b, the theoretical curves are con-
structed using Eqn (4) under the assumption that H � 3sy,
where sy � s�ey� is the yield stress, ey � 0:2%, db � 80 nm,
and b0 � 6� 10ÿ3 (the values of the other parameters are
given in [79]). At ka � 0 and mTkbey 5 1, i.e., at grain-
boundary sizes d4 �mTey�1=2db � 14 nm, Eqn (4) yields the
normal HP relationH � KHPd

ÿ1=2, which describes the effect
of grain-boundary strengthening of a polycrystalline material
(here, KHP � 3mTamb 1=2� b0 �mTbey�1=2 is the HP coeffi-
cient for the microhardness). In the other extreme case
mTkbey 4 1, i.e., at sufficiently small grain sizes and relatively
large deformations, we obtain the inverse HP relation
H � K 0HPd

1=2, where K 0HP � 3mTam� bb=d 2
b �1=2 describes the

phenomenon of grain-boundary softening of a nanomaterial.
It can be seen from Figure 1a that within the spread of
experimental data, Eqn (4) agrees sufficiently well with the
experimental data in the regions of normal and inverse HP
relations down to the grain size 2±3 nm. An agreement of
Eqn (4) with the data on the microhardness and yield stress is
also observed for other NC metals [40, 79].

The situation is different in Figure 1b, where in the region
of grain sizes d < 15 nm, the experimental points deviate
strongly from the theoretical curve. To resolve this contra-
diction, it is necessary to resort to additional data (see
Sections 2.1.3 and 2.1.4) in order to clarify to which extent
the results given in Figure 1b at the grain sizes less than 15 nm
are universal.

2.1.3 Coefficient of the strain-rate sensitivity of the flow
stresses. A traditional method of studying physical mechan-
isms of deformation of crystallinematerials, depending on the
material structure, is the thermoactivation analysis of their
plastic and strength properties. Important indicators here are
the data on the strain-rate and temperature dependences of
the flow stress s � mTt, such as the coefficient of strain-rate
sensitivity (SRS) of the flow stress m � d lns=d ln _e �
kBT=Vt and the activation volume V. Figure 2a displays the
results of the determination of the coefficient m for the
microhardnessH (of the yield stress sy � H=3) of polycrystal-
line copper depending on the grain size in a wide range, from
10 to 106 nm [77]. It can be seen that for the grain sizes
d < 1 mm, the coefficientm in NC copper is much higher than
that for coarse-grained copper (dashed line). Figure 2b
demonstrates the variation of the activation volume V
(expressed in b3 units) in a number of fcc NC metals (Ni [76],
Cu [77], Ni±W alloy [80]) depending on grain refinement. It
can be seen that the activation volume decreases substantially
with decreasing the grain size.

The activation volume depends on the spacing l between
the obstacles characterized by a short-range radius, which are
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overcome by dislocations as a result of thermofluctuations,
and on the activation width of the obstacle Dx � nb:
V � bDxl � nb 2l, where n is the obstacle width in Burgers-
vector units. In the presence of obstacles of various types,
the effective activation volume is Vÿ1 � Vÿ11 � Vÿ12 , whence

V � b 2

1=n1l1 � 1=n2l2
: �5a�

The subscripts 1 and 2 mark the values of the corresponding
parameters of the obstacles. In pure fcc metals, two types of
obstacles exist in nanograins; these are, as follows from the
results of MD simulations [48, 106], nanograin boundaries
against which the ends of the dislocation loops rest during
their motion in slip planes, and forest dislocations inside the
grains in the case of multiple slip. In the case of obstacles in
grain boundaries, the activation length is determined by the
grain size: l1 � x1d, where x1 < 1 is a parameter that depends
on the curvature of the loop and the shape of the grain. For
forest dislocations in intersecting slip planes, the activation

length is determined by the dislocation density: l2 � x2=r 1=2,
where x2 � 1. Substituting these relations in Eqn (5a), we
obtain the dependence of the activation volume on the
nanograin size and dislocation density,

V � Z1b
2d

1� �Z1=Z2� dr 1=2
; �5b�

where Z1 � n1x1 and Z2 � n2x2.
In accordance with (5b), curves 1 and 2 in Figure 2b show

the dependence of the activation volume on the grain size in
the coordinates (V=b 3, d 1=2). In constructing curve 1, the
following values of the parameters of NC copper were used:
b � 0:25 nm, db�80 nm, Z1 � 1:7, and Z2 � 0:17. At suffi-
ciently large grain sizes (d4 �mey�1=2db � 20 nm), according
to (2) and (3), we have the following relation for the
dislocation density at the yield stress: ry � � b0 �mbey�=bd.
After its substitution in Eqn (5b), we find, in agreement with
the experiment in [42, 76, 77, 80], that

V � Z2�d=b�1=2b 3

� b0 �mTbey�1=2
� d 1=2 : �5c�

In the other extreme case of small grain sizes, ry � b=bd,
whence, in accordance with (5b), V � Z1b

2d. A segment of
curve 1 for nanograins with d < 7 nm corresponds to the
dependence V � d in Fig. 2b, where the grain-boundary
softening due to the annihilation of dislocations in grain
boundaries occurs. It also follows from the data presented in
Fig. 2b that in the case of the Ni±W alloy [80] at the grain size
less than 15 nm, the activation volume increases asV � dÿ1=2.
Curve 2 in this figure demonstrates the results of calculations
of the V�d � dependence in accordance with (5b) at the
parameter values db � 180 nm, Z1 � 8:5, and Z2 � 0:17.

The analysis of the nanograin-size dependence of the
activation volume in the Ni±W alloy therefore shows that at
the smallest sizes, the plastic deformation of the alloy is
controlled by dislocation motion, and the deviation of the
experimental points in Fig. 1b from the theoretical curve is
therefore not regular.

An important argument in favor of the dislocation
mechanism of plastic deformation of nanograined materials
is the existence of data on the grain-size dependence of the
SRS coefficient m of the flow stress for the NC samples of
metals with fcc (Fig. 2a) and bcc (Fig. 3) structures. In the case
of sufficiently pure NC metals with an fcc structure, the only
barriers to moving dislocations inside grains, as was noted
above, are forest dislocations with the average spacing
l2 � x2=r 1=2 between them. The activation volume V for
them is determined by Eqn (5b). Substituting (5b) in the
relation m � kBT=Vt for the SRS coefficient and using the
relation t � ambr 1=2, we obtain the following dependence of
m on d and r:

m � md

�
1� Z2

Z1dr 1=2

�
; md � kBT

aZ2 mb 3
; �6a�

where md is the SRS coefficient in a coarse-grained material.
Taking into account that r � wy=bd at the yield stress, where
wy � b0 �mTbey, we finally find

m � md

�
1� Z2

Z1wy

�
b

d

�1=2�
: �6b�
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Figure 2. Dependences of (a) the coefficient of strain-rate sensitivity m of

NC copper on the grain size d [77] [the curve was constructed using

Eqn (6a)] and (b) the activation volume V on the grain size in fcc NC

metals: (&) Cu [80]; (^) Ni [76]; (*) Ni±W alloy [80]; (+) Cu [77] [curves 1

and 2 are constructed according to Eqn (5b)].
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The curve in Fig. 2a demonstrates them�d � dependence in
accordance with Eqn (6b) at Z2=Z1wy � 83, b � 0:26 nm, and
md � 6:4� 10ÿ3 [77, 79]. Relation (6b) can be written in a
more compact form as

m � md

�
1�

�
dy
d

�1=2�
; �6c�

where dy � �Z2=Z1wy�2b � 2 mm is the characteristic grain size
at which this size starts affecting the SRS of the yield stress
(microhardness) of the NC material.

It follows from the data in Fig. 3 that in bcc metals, in
contrast to fcc metals, the grain refinement leads to a decrease
in the SRS coefficient of the flow stress rather than to its
increase. In bcc metals at temperatures below 0.15Tm, an
obstacle to dislocations inside the nanograins, along with
forest dislocations, is given by a Peierls relief with the
characteristic activation length lP equal to the critical size of
a double kink [106, 107]. Taking this into account, we have the
following relation for the effective activation volume: Vÿ1 �
Vÿ11 � Vÿ12 � Vÿ13 , where V3 � n3b 2lP and, consequently,

V � Z1b
2d

1� �Z1=Z2� dr 1=2 � �Z1=n3��d=lP�
: �7�

Taking into account that the flow stress t � tP � ambr 1=2 in
this case includes the Peierls stress tP, we express the strain-
rate coefficient as

m � mP
1� �n3=Z1��lP=d � � �n3=Z2� lPr 1=2

1� a�m=tP� br 1=2
;

�8a�
mP � kBT

n3b 2lPtP
;

where mP is the strain-rate coefficient for the coarse-grained
bcc metal. Curve 1 in Fig. 3 illustrates the m�d � dependence
given by Eqn (8a) with r � wy=bd and d4 lP. This relation
can now be written in the compact form

m � mP

�
1�

�
dP
d

�1=2�ÿ1
; dP �

�
am
tP

�2

wyb ; �8b�

where dP is the characteristic grain size at which it starts
significantly affecting the SRS coefficient of the yield stress of
the bccmetal. The curve in Fig. 3 corresponds to formula (8b)
with dP � 2:9 m and mP � 0:07.

It also follows from the data in Fig. 3 that at the size of
nanograins d < 10 nm, the coefficient m tends to increase.
This tendency can be caused by two circumstances [79]: (1) a
grain size less than the size of the double kink lP (in a-Fe,
lP � 30b � 7:5 nm [107]) and (2) the dislocation density r � d
that decreases as the size of nanograins decreases because of
the annihilation of dislocations in their boundaries. Curve 2
in Fig. 3 illustrates the first circumstance in accordance with
the relation

m � mP
1� �n3=Z1��lP=d �
1� �dP=d �1=2

; �8c�

where n3=Z1 � 5, lP � 7:5 nm, and dP � 2:9 mm. The second
circumstance, i.e., the grain-boundary softening, has been
discussed in [79].

The analysis of deviations from the HP relation and of the
peculiarities related to the dependence of the activation
volume V and the SRS coefficient m on the grain size, which
has been performed in terms of the dislocation-kinetics
approach, thus shows that the decisive role belongs to
dislocations in all the above cases.

2.1.4 Shearmicrobands.As has been established in [81, 82], the
plastic deformation of iron nanocrystalline samples occurs
inhomogeneously, with the formation of shear microbands of
the width w � 60d, with the average spacing between the
bands L � �2ÿ10�w, and with the magnitude of shear in the
bands equal to 200±300%. Such an inhomogeneity of
deformation is observed only if the grain size is less than a
certain critical value dc. In NC iron, the critical size is 300 nm
[82]. An electron-microscopic investigation shows that inside
microbands, nanograins are strongly elongated in the direc-
tion of maximum tangential stresses and contain a large
density of dislocations, but remain undeformed between the
bands. The character of plastic deformation that is inhomo-
geneous at the microlevel was also revealed in some other NC
metals [83, 84].

It can be supposed that the formation of a regular system
of microbands in this case, just as in some other cases of
plastic deformation that is inhomogeneous on the microlevel
[86], is related to the process of spatial self-organization of
dislocations. A characteristic feature of plastic deformation
of NC materials is, as was already said above, the predomi-
nant role of grain boundaries as sources of, barriers to, and
sinks for dislocations. These features are taken into account
by the kinetic equation for the density of dislocations [83]

r
qr�x; y; g�

qg
� �xÿ 1� lD

b

�
q 2r
qy 2
�M

r

�
qr
qy

�2�
� �1ÿ bgb�

n

b
� b
bd

rÿ kar 2 ; �9�

where x is the coordinate in the direction of the elongation
of microbands (in the direction of the action of maximum
tangential stresses), y is the coordinate in the direction of
the expansion of the bands, lD � d is the length of the
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Figure 3.Dependence of the SRS coefficientm of the yield stress of a-Fe on
the grain size d [74]. Curves 1 and 2 were constructed respectively using

Eqns (8b) and (8c).
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diffusion path of dislocations upon expansion of a micro-
band, x > 1 is a parameter that ensures the spatial
instability of the dislocation density distribution (Turing
instability [108, 109]), M � 1=m�d � is a coefficient that
accounts for the dispersion of the dislocation velocity because
of its dependence on the dislocation density, and m�d � is, as
before, the SRS coefficient of the flow stress. In Eqn (9), the
first term in the right-hand side describes the balance of the
densities of dislocation sources n � �slbd �ÿ1 and sinks
ng � bgbn in grain boundaries, where s � 2b is the width of
boundaries, lÿ1b is the linear density of sources on the
boundary, and the parameter bgb � ng=n determines the
relative efficiency of grain boundaries as sources of and
sinks for dislocations. The second term reflects the process
of dislocation accumulation inside nanograins due to the
restriction of their free path to the grain size ( b � 1), and the
third term takes the annihilation of the screw components of
dislocation loops into account.

Because the rate of elongation of microbands is substan-
tially greater than the rate of their expansion, instead of a
two-dimensional problem, we consider its one-dimensional
analog, r � r�y; g�. The solution of linear equations (9) can
be sought in the form r � n�g�c�y�=bd, with the equation

n�g� � b0 exp �ÿkag� �
b
ka

ÿ
1ÿ exp �ÿkag�

� �10�

describing the deformation-related part of the evolution of
the dislocation density in theNCmetal [see Eqn (2)]. After the
substitution of (10) in (9) and separation of the variables g and
y, we obtain an equation for the spatial part of the dislocation
density c�y�:

q 2c
qY 2
�M

c

�
qc
qY

�2

� �1ÿ bgb�
d

n0�g� d0 � cÿ c 2 : �11�

Here, Y�y=L0, L0�d ��
��xÿ1� lDd=b�1=2�d, and d0 �

b 2slb=bka. The right-hand side of Eqn (11) contains the
function n0�g� � �ka=b� n�g�, which only slightly differs from
unity at b0 � b=ka; we can therefore assume that the variables
y and g actually separate in Eqns (10) and (11).

At bgb > 1 and the boundary condition dc=dY jc�0 � 0,
the solution of Eqn (11) is an elliptic integral of the first kind,
F�y; k� [83]. Using the Jacobi elliptic function sn�y�, this
solution can be written in a compact form as

c�y; d � � c0�d �
1ÿ k 2sn 2

ÿ
y=L�d �� ; �12�

where c0�d � and L�d � are the dimensionless dislocation
density between the microbands and the spacing between
them, and k � k�d � is the modulus of the elliptic integral.
Explicit dependences of these parameters on d are given in [83].
Figures 4a and 4b show the distribution of the density of
dislocations in an NC metal, r�y; g; d ���1=bd � n�g�c�y; d �,
according to Eqns (11) and (12) in the coordinates r=rmÿy=L
as g!1 at different grain sizes d, where rm � b=bdcka, and
dc � 3b 3slb=16� bgb ÿ 1� bk 2

a is the critical size of nanograins
above which no microbands are formed [83]. It follows from
Eqns (11) and (12) that at d � dc, we have k�d � � 0 and the
dislocation density is distributed in the NC material homo-
geneously, r�y; dc� � �1=2� rm (Fig. 4a).

At nanograin sizes d < dc, the dislocation density is
inhomogeneous, forming regions (microbands) with a high
dislocation density (Fig. 4b). The smaller the grain size is,

the greater the maximum density rmax � 1=d of dislocations
in a band. The dislocation density between the bands then
remains at the level of r�y; dc� � �1=2� rm (Fig. 4b, dashed
line). Figure 4c displays the dependence of the width of
shear microbands w on the size of nanograins in NC iron
[82]. The curve in Fig. 4c has been plotted in accordance
with Eqn (12) at dc � 350 nm [83]. The width of the bands
becomes infinite at the critical grain size d � dc; the
dislocation density in the nanograins then remains at the
level of �1=2� rm.

Thus, from the standpoint of dislocation kinetics, the
spatial instability of plastic deformation in NC metals in the
form of shear microbands arises at a certain quantitative
relation between the density of sources of and sinks for
dislocations in grain boundaries, and their accumulation
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Figure 4. Distribution of the dislocation density r in an NC metal in

accordance with Eqn (12) at various sizes of nanograins: (a) d � dc;

(b) d � 0:9dc (1), d � 0:5dc (2), d � 0;2dc (3), and d � 0:1dc (4); and

(c) dependence of the bandwidthw inNCFe on the size of nanograins [82].
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and annihilation in the bulk of grains.
We also note, following [64, 80], that a large similarity

exists between the shearmicrobands inNCmetals [81, 82] and
plastic-flow microbands in amorphous metals (metallic
glasses) [110]. In both cases, the bands are oriented in the
direction of action of the maximum tangential stresses. This
similarity also extends to the type of their stress±strain curves
(s, e), namely, to the existence of a high initial flow stress and
the absence of a subsequent noticeable strain hardening. At
the grain size d � 2ÿ3 nm, X-ray diffraction reveals contin-
uous diffusion rings in the Ni±W alloy, and only high-
resolution electron microscopy allows detecting the existence
of clear boundaries of nanograins of such a size [72]. The
above circumstances indicate that below the amorphization
temperature, the plastic deformation of metallic glasses has a
dislocation-like character because of the existence of a short-
range order in the amorphous metal and the presence of
atomic clusters [111].

2.2 Methods for improving the plastic properties
of nanocrystalline metals
The high strength of nanocrystalline and submicrocrystalline
(SMC) metals and alloys is accompanied by a strong decrease
in the magnitude of the uniform deformation eu at which the
sample loses plastic stability, and a region of localization of
deformation (neck) arises in it, leading to plastic rupture of
the sample after a 2±3% tensile deformation. Figure 5 dis-
plays the results for NC copper [85] that illustrate this
phenomenon. It can be seen that as the yield stress of copper
increases (in accordance with the HP relation sy � dÿ1=2), the
magnitude of the uniform deformation decreases perma-
nently. The absence of a necessary plasticity resource (quasi-
embrittlement) is a significant disadvantage of NC and SMC
metals and alloys and prevents their wide practical applica-
tion under conditions of tensile deformation.

According to the well-known Consid�ere criterion
(ds=de4s), the formation of a neck at a progressively
lower stage of plastic deformation is favored by an increase
in the yield stress, irrespective of the factor responsible for its
development, i.e., irrespective of whether this is the alloying
[112], a decrease in the grain size (to below 10 mm) [112], the
presence of radiation defects [113], or, in the case of bcc
metals, an increase in the Peierls stress [114]. One more factor
that affects the magnitude of the uniform deformation eu is
related to the effect of dynamic recovery on the strain-
hardening coefficient y � ds=de at the third stage of stress±
strain curves of fcc and bcc metals [112, 114].

The strong sensitivity of nanocrystalline metals to neck
formation is related to two circumstances: (1) the above-
mentioned significant increase in the yield stress sy with grain
refinement and (2) a decrease in the strain-hardening coeffi-
cient ds=de when the grain size becomes less than 1 mm and
the mechanism of dislocation multiplication on forest dis-
locations stops working [40, 87]. Substituting stress (4) at
ka � 0 in the Consid�ere condition ds=de4s, we find
relations for the magnitude of the uniform deformation eu
and the corresponding flow stress (ultimate tensile stress) su
[87]:

eu � 1

mTkb

�
ln

�
1� 1

2
mTkb

�
� ln

�
1ÿ b0

b
kb

��
; �13a�

su � sb

�
db
d

�1=2�
mT=2

1� �1=2�mTkb

�1=2

; �13b�

where sb � mTam� bb=db�1=2. According to Eqn (13a), the
dependence of the uniform strain eu on d is mainly determined
by the dependence of the dislocation annihilation coefficient
kb on d, kb � �db=d �2 [see Eqn (1)]. Taking this circumstance
into account, the relation sy � s�ey� � Kyd

ÿ1=2 that follows
from Eqn (4) can be written in the parameterized form with
respect to the deformation eu�kb�, i.e., sy � sy0k

1=4
b , where

sy0 � Kyd
ÿ1=2
b . The curve in Fig. 5 has been plotted in

accordance with (13a) using the parametric relation between
eu�kb� and sy�kb� with the parameter values b0=b�10ÿ2,
db � 200 nm, and sy0 � 120 MPa. This curve demonstrates
a quantitative relation between the deformation eu and the
yield stress of copper. A more detailed analysis of the
resistance of metals with micrograined and nanograined
structures to neck formation has been performed in [115].

2.2.1 Bimodal micro-nano-grained structures. To improve the
plastic properties of nanometals (to increase the uniform
strain eu), it is necessary to increase their capability of strain
hardening. This can be achieved, as was demonstrated in [85±
93], by producing mixed (composite) bimodal nano-micro-
grained structures that contain a certain fraction of grains of a
micron size capable of strain hardening via multiplication of
dislocations on forest dislocations and the formation of
dislocation cell walls.

In a one-modal micrograined structure of pure metals
with grain sizes d > 1ÿ10 mm, the evolution of the disloca-
tion density as the degree of deformation increases is
determined by the kinetic equation dr=dg�kfr 1=2 ÿ kar,
where bkf � 10ÿ2. As a result, with the initial dislocation
density r0 � b0=bd, we have the following relation for the
flow stress s [88]:

s � mTam
��

b0b
d

�1=2

exp

�
ÿ 1

2
mTkae

�
� bkf

ka

�
1ÿ exp

�
ÿ 1

2
mTkae

���
: �14�

In a bimodal nano-micro-grained structure, the flow stress,
according to the simple rule of mixing, is given by
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Figure 5.Dependence of the uniform deformation eu on the yield stress sy
during tension of NC Cu [85]. The curve was constructed using Eqn (13a).
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s�e; f � � �1ÿ f � s �n��e� � fs �m��e� ; �15�

where f is the volume fraction of micron-size grains and s�n�

and s �m� are the flow stresses of single-modal nanograined
and micrograined structures according to Eqns (4) and (14).

Figure 6 displays the yield stress, ultimate strength, and
uniform strain for a bimodal nano-micro-grained structure in
a iron as functions of the volume fraction f of micrograins
according to [91]. The curves given in this figure demonstrate
the results of numerical calculations of the stresses sy and su
and of the uniform strain eu in a iron according to Eqns (4),
(14), and (15) and to the Consid�ere criterion. The calculation
was performed for a iron using the parameters b � 0:25 nm,
m � 83 GPa, b � 1, kb � 0, and bkf � 2:2� 10ÿ2. The size of
the nanograins was 40 nm; the size of the micrograins was
1 mm [91], and the coefficients b0, a, and ka were respectively
equal to 5:5� 10ÿ2, 0.2, 10 and 10ÿ2, 0.4, 3.0 for the single-
modal nanograined and micrograined structures. It can be
seen from Fig. 6 that at the volume fraction of micrograins
f > 30%, the magnitude of uniform strain is 7±8%, which is
3±4 times greater than the strain eu in the single-modal NC
structure (� 2%). Such an increase in the uniform strain is
accompanied by a 25% decrease in the yield stress sy and
ultimate strength su, which is an acceptable result from the
practical standpoint. Approximately the same improvement
in the plastic properties of nanometals can be achieved in the
case of a single-modal nanograined structure by significantly
increasing the dispersion of the grain-size distribution [89, 90].
In [87], the question of the improvement of plastic properties
of micro-nano-composites was discussed using phenomen-
ological relation for the flow stresses of single-modal compo-
nents.

2.2.2 Nanotwinned submicrograined structures. As follows
from the results of recent investigations in [94±101, 116±
118], efficient means for the enhancement of the plastic and
strength properties of NC metals are the strengthening and
plastifying effects related to the presence in submicrograined
structures of a system of nanotwins with a linear density 1=l,
where l � 10ÿ100 nm is the spacing between twin bound-
aries in submicrograins. In SMC copper, the twin lamellae of

the above dimensions are obtained by the method of pulsed
electrodeposition of copper from an electrolytic solution of
CuSO4 onto a substrate [93, 116]. The formation of nanot-
winned (NT) structures is also favored by the plastic deforma-
tion of SMC material at low temperatures and by decreasing
the energy of stacking faults via the alloying of copper by Al
and Zn [98, 117, 118].

Figure 7 displays tensile curves of nanotwinned copper
with the grain size d � 450 nm, depending on the twin
dimension (thickness) l varying from 4 to 100 nm [97]. It is
seen that an optimum combination of strength (1050 MPa)
and plasticity (9%) of NC copper is reached at l � 15 nm.
Figure 8 illustrates the dependence of the yield stress sy � s0:2
of NC copper on the twin thickness l in the HP coordinates.
For comparison, data are also given for NC copper with the
grain size varying from 7 to 100 nm. It follows from the
comparison of these data that up to the twin thickness 15 nm,
the twin boundaries are as efficient a barrier to and source of
dislocations as the nanograin boundaries are. This is also
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confirmed by the data on the dependence of the SRS
coefficient of the flow stress and of the activation volumes of
ND copper on the thickness of twin lamellae [98±101]. They
are virtually the same as the results for NC copper.

It also follows from the results in Figs 7 and 8 that at the
twin thickness less than 15 nm, deviations are observed from
the normal HP relation and a significant decrease in the
strength of the NT copper occurs, similar to that observed in
NC copper and other nanocrystalline metals and alloys with
the grain size less than 10±20 nm [39±43]. As was already
noted, the mechanism of grain-boundary softening of NC
materials remains debatable. Processes such as grain-bound-
ary sliding [5, 47±49], absorption of dislocations by nanograin
boundaries (which is accompanied by dislocation annihila-
tion) [4, 40], amorphization of boundaries [80], and saturation
of the bulk of nanograins by dislocations emitted from
boundaries [39] have been proposed to underlie that mechan-
ism. The breakdown of the HP relation in NT copper adds a
new element to this discussion.

According to [97], the observed softening of NT copper at
l < 15 nm casts doubt on the mechanism of grain-boundary
softening of NC copper related to grain-boundary sliding and
grain rotation.Naturally, both sliding and rotation occur, but
they are a consequence of the absorption of dislocations by
grain boundaries, rather than being responsible for these
phenomena [4, 40]. We also note that analogous arguments
can be applied to the mechanisms of amorphization of
boundaries [80] and to the saturationof thebulkofnanograins
bydislocations emitted from the boundaries [39]. Based on the
data of electron-microscopic investigations, thermoactiva-
tion analysis [98±101], and MD simulation of NT copper
[120, 121] the authors of [98±101] believe, that the violation of
the HP relation at the twin lamellae thickness less than 15 nm
is caused by the interaction of lattice dislocations with twin
boundaries. This interaction consists of the absorption and
emission of dislocations by the boundaries, which leads to the
loss of coherency at the twin boundary; as a result, the twin
boundaries become similar to conventional grain boundaries.

From the standpoint of dislocation kinetics, the mechan-
ism of grain-boundary softening of NC metals due to the
absorption of dislocations by nanograin boundaries and
dislocation annihilation in the boundaries has been consid-
ered in [4, 40] and is discussed in this review (see Section 2.1).
In Figure 8, curve 1 demonstrates the dependence of the
yield stress of NC copper given by Eqn (4) at ey � 0:2%,
kb � �db=d �2, db � 180 nm, b � 0:26 nm, b0 � 10ÿ2, a�0:5,
and m � 48 GPa. The kb � dÿ2 dependence means that
the absorption of dislocations by grain boundaries is accom-
panied by the annihilation of dislocations of opposite signs in
the boundary via the mechanism of their diffusional climb
[40]. Upon diffusional dissolution of single dislocations in the
boundary, the dependence of the annihilation coefficient on
the grain size has the form k 0b � �d 0b=d �3 [40]. Curve 2 in Fig. 8
shows the sy�d � dependence k 0b � dÿ3 at d 0b � 80 nm, with
the other parameters being the same as for curve 1. It can be
seen that this dependence is close to the experimental
dependence of the yield stress of NT copper sy�l� at the
twin lamellae sizes l < 15 nm. This circumstance can serve as
an argument in favor of the mechanism of softening of NT
grain structures via the diffusional absorption (dissolution) of
lattice dislocations by (in) twin boundaries. It has been
established in [122] that the diffusion along incoherent twin
boundaries in copper does not differ significantly from the
diffusion along conventional grain boundaries.

One specific feature of NT copper compared to the NC
copper is the enhanced resistance to neck formation (see
Fig. 7). Figure 9 displays data on the dependence of the
deformation eu corresponding to the start of neck formation
on the nanograin size d and nanotwin thickness l in NC [98]
and NT [96, 97] copper. It can be seen that these dependences
have opposite characters. Curve 1 in Fig. 9 demonstrates the
result of calculations of the uniform strain eu inNC copper via
Eqn (13a). Good agreement between the theory and experi-
ment is observed. An analysis shows that based on the
Consid�ere criterion alone, it is impossible to substantiate the
enhanced stability of ND SMC structures to neck formation
in terms of the dislocation-kinetics theory or to establish a
quantitative connection between the size of twins l and the
uniform strain eu (see Fig. 9).

Finding this connection, as is noted in [101], requires that
not only the coefficient of the strain sensitivity of the flow
stress n� d ln s=d ln e but also the SRS coefficient of the flow
stress m � d lns=d ln _e be taken into account in the modified
Hart relation [123]

eu � exp �n��
1ÿ �1ÿ D0�1=m

�m ÿ 1 ; �16�

whereD0 is themagnitude of the initial geometric reduction of
the cross section of the tensile specimen. It follows from
Eqn (16) that the increase in the SRS coefficient imparts
additional stability to the process of tensile deformation of
the sample, leading to an increase in the uniform strain eu in
excess of the value specified by the Consid�ere criterion.
Indeed, substituting the SRS coefficient for the yield stress
(6c) in the form of its dependence on the twin thickness
m � md

ÿ
1� �ly=l�1=2

�
, we obtain, at n � 0, D0 � 0:01,

md � 5� 10ÿ3, and ly � 1:5 mm, a result that agrees with
the experiment (see Fig. 9, curve 2).

Summarizing the performed dislocation-kinetics analysis
of the strength and plastic properties of NC metals, we can
conclude that dislocations play the decisive role in the
explanation of all features of the mechanical behavior of
these materials.
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Figure 9. Variations of the uniform strain eu before neck formation in

nanocrystalline [98] and nanotwinned [96, 97] copper, depending on (*)

the nanograin size d and (&, ^) the nanotwin thickness l.
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3. Size effects under deformation
of micro- and nanocrystals

The first results of investigations of the effect of the size factor
on the strength of crystals were obtained more than five
decades ago [13, 14, 124]. It was established in tensile tests of
thin single crystals of copper that the yield stress of samples
with a cross section of 120 mm is significantly greater than that
of single crystals with D > 500 mm [124]. The experiments
with the deformation of dislocation-freemicrocrystals (metal-
lic whiskers) of Cu, a-Fe, and Ag, 5 to 20 mm in diameter,
showed that their strength (yield stress) approaches the
theoretical shear strength equal to m=10ÿm=20 [13±15].

In the 1960s, a number of other effects related to the
influence of the size factor on the strength and deformation
behavior of metallic crystals were revealed. In tensile tests of
copper microcrystals (whiskers) with a diameter D < 20 mm
[125] it was established that at the second (linear) stage of their
stress±strain curves, the strain hardening (SH) coefficient
y2 � dt=dg decreases strongly and approaches the SH coeffi-
cient y1 of the first stage (stage of easy slip) atD � 5ÿ10 mm.
Thus, it has been demonstrated that a thinning of a crystal
favors the disappearance of the second stage of SH and leads
to the appearance of the first stage with a lower SH
coefficient, similar to what occurs in bulk copper crystals in
passing from the tensile axis [100] and [111] to [110].

The appearance and disappearance of the first stage of SH
in thin crystals is also affected by the surface of the crystal.
The presence of a strong oxide film on the surface [128], a
special coating [129], or a subsurface layer strengthened in
one way or another [130, 131] favors the accumulation of
dislocations in the crystal, an increase in the SH coefficient,
and the disappearance of the first stage. By contrast, a
treatment of the crystal surface that facilitates the escape of
dislocations from the crystal, e.g., by using electrolytic or
chemical etching of the surface in the process of deformation,
leads to a decrease in the deforming stress and the appearance
of a stage with a low SH coefficient [132, 133].

In terms of the dislocation-kinetics approach, the above-
noted size effects in crystals with cross sections D > 100 mm
havebeenquantitatively analyzed in [127, 134] (see also review
[56]). In Section 3, in terms of an analogous approach, we
analyze the size effect in crystals with transverse dimensions
0.1±10 mm in the absence (Section 3.1) and in the presence
(Section 3.2) of a nominal gradient of plastic deformation.

3.1 Strength and plasticity of micro- and nanocrystals
3.1.1 Tensile and compressive curves of macro-, micro-, and
nanocrystals. Figure 10 illustrates, in the shear stress±shear
strain (t±g) coordinates, the tensile curves for copper single
crystals of thickness D � 0:1ÿ2 mm with a tensile axis [100]
[124]. Figure 11 shows tensile stress±strain curves of copper
whiskers with cross sections D � 5ÿ20 mm [125]. Along with
the well-known data of Brenner [13, 14], these curves
demonstrate the first results of the investigations of the effect
of size factors on the shape and parameters of the curves of
strain hardening of crystals with transverse dimensions
D > 1 mm. It follows from the data in Fig. 10 that the length
of the first (easy-slip) stage in the tensile curve increases with a
thinning of the crystal, and the SH coefficient y2 at the second
stage decreases for crystals with D � 0:12 and 0.2 mm.

This decrease is especially noticeable in the tensile curves
of microcrystalline copper (see Fig. 11). Each of the sÿe
curves shown in this figure consists of three characteristic

segments: a yield peak (`tooth') related to the small initial
density of dislocation sources in the crystal, a yield plateau,
and the region of the second stage of SH. It is seen that the SH
coefficient at the second stage of SH (Y2 � ds=de � y2=m 2

Sm)
decreases upon thinning the crystal (mSm is the Schmid
factor). Figure 12 illustrates this observation with the experi-
mental dependences of the coefficients y1 and y2 on the
transverse dimensions of Cu crystals in the (y=yII, D)
coordinates. Here, yII � �2ÿ2:5� � 10ÿ3m is the SH coeffi-
cient at the second stage of the tensile curves of bulk fcc
crystals [135]. According to [124], yII � 200 MPa in copper.
Black dots in the figure denote the relative values of the
coefficient y2=yII in copper microcrystals (whiskers) [125];
white squares and white circles are the values of the coeffi-
cients y2 and y1 in relatively thin (D � 0:1ÿ1 mm) copper
single crystals [124].

It follows from the results in Fig. 12 that the SH coefficient
at the easy-slip stage is an order ofmagnitude smaller than the
coefficient y2. Another conclusion that can be made from
these data is that y2 � y1 for crystals with D � 5ÿ10 mm.
This means that the second stage of strain hardening, which is
related to the multiplication of moving dislocations on forest
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dislocations in noncoplanar slip planes, is virtually absent in
such microcrystals.

It also follows fromFig. 11 that the magnitude of the yield
point ty, the flow stress tfl, and the shear gL � eL=mSm at the
yield plateau increase as the transverse dimension of a
microcrystal decreases. Figure 13 demonstrates the depen-
dences of these stresses on the transverse dimension in (t,Dÿ1)
coordinates. Along with the data in [125], the figure also
shows Brenner's results [13, 14] for the stress ty in copper
microcrystals. The straight lines in Fig. 13 correspond to
empirical relations like

ty � t0 � ky
mb
D
; tfl � t0 � kfl

mb
D
; �17�

where the coefficients ky and kfl are respectively equal to 93
and 13, and t0 � 100 MPa. An analogous relation,
ty � t0 � ky� mb=D�, where ky � 280 and t0 � ÿ0:4 GPa,
holds in microcrystals of a-Fe for the stress at the upper
yield point ty [13, 14].

It was also found in [125] that in copper whiskers, the
dependence of the deformation at the yield plateau on the
microcrystal dimension obeys the equation eL � 1:67=D,
where D is measured in microns. The shear deformation at
the yield plateau gL � eL=mSm can be written in the compact
form gL � DL=D, where DL � 1:67=mSm � 3:3 mm at
mSm � 0:5. Assuming further that the stress tfl and the shear
deformation gL at the yield plateau are related as
tfl ÿ t0 � y2gL, we theoretically estimate the characteristic
dimension of themicrocrystal sectionDL asDL � kfl� m=y2� b.
As can be seen from Fig. 12 (solid circles), at D � 20 mm, the
coefficient y2 � 0:75 yII, and its magnitude decreases with
decreasing the crystal cross section. Assuming that
y2 � 0:5 yII on average and taking yII=m � 2:5� 10ÿ3 [135],
kfl � 13, and b � 0:256 nm, we estimate the characteristics
dimension asDL � 2:7 mm, which is close to the experimental
value.

Thus, the analysis of the results of the first stage of the
investigation of the effect of size factors on the strength and
deformation behavior of crystals with transverse dimensions
D in the range 5ÿ100 mm shows that this influence is
significant and affects the shape of the strain-hardening
curves of crystals and their parameters, and leads to an
enhanced sensitivity of small-size crystals to the state of
their surface.

A new period in the investigation of the effect of
transverse dimensions of crystals on their strength and
deformation (plastic) properties, as was already noted in the
Introduction, began several years ago with the development
of an efficient method of fabrication of crystals with
transverse dimensions D < 1 mm in the form of micropillars
by etching the surface of a macrocrystal by a focused ion
beam [16±18, 136] or by lithographic etching of thin metallic
films deposited on a substrate [19, 137].

The first experiments on the compression of micropillars
using nanoindenters with a flat punch were performed on
microcrystals of nickel [16] and gold [17]. To date, a large
group of metals has been studied in various detail, in
particular, fcc metals such as Ni [16, 136, 138±141], Au [17,
18, 142±148], Cu [149±153], Al [137, 154±156], Ag [157, 158],
bcc metals Mo [148, 159±167], Nb [164, 165, 167], W [164,
167] Ta [164, 167], V [168], and microcrystals of the Ni3Al
alloy and alkali-halide LiF [169, 170]. The most thoroughly
studied at present are microcrystals and nanocrystals of
nickel, gold, and molybdenum. Figure 14 depicts samples of
micropillars of gold 660 nm in diameter and 2.14 mm in height
in the initial state and after deformation to 10 and 20% [17,
18]. We note that just as in crystals with D > 1 mm, slip lines
are observed on the surface of deformed crystal with
D < 1 mm, especially well visible after significant plastic
deformation (Fig. 14c).

Figure 15 demonstrates compressive stress±strain curves
of Nimicropillars with the orientation of the compressive axis
[111] and with the micropillar diameter varying in a wide
range (from 165 to 1970 nm) [139]. It can be seen that as the
crystals are thinned, their flow stresses increase strongly; the
discreteness of slip also increases, which follows from the
presence of deformation jumps in the curves. The steplike
(serrated) character of the curves is related to the fact that the
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deformation of the crystal in the nanoindenter is performed at
constant velocity of the applied load (soft regime of loading).
Under conditions of a constant rate of deformation (rigid
mode of loading), the compressive curves acquire a saw-like
shape [18, 141, 157].

Figure 15b displays the results of the processing of the
compressive curves of Ni crystals shown in Fig. 15a. Curves 1
and 2 demonstrate the dependences of the shear flow stress
t � mSms on the diameterD of micropillars at two degrees of
deformation, 0.2 and 15%. The first stress can be regarded as
the stress ty corresponding to the beginning of plastic
deformation of the nanocrystal; the second stress corresponds
to the state of developed plastic flow. Within the spread of
experimental data, the dependences under consideration can
be approximated by a relation of the type

ty � ky

�
b

D

�n

m ; tfl � kfl

�
b

D

�
m ; �18�

where n � 0:9, ky � 2:3, and kfl � 13:3. We note that the
second relation in (18) is analogous to the second relation in
(17) for the flow stress tfl of Cumicrocrystals (whiskers) upon
deformation at the yield plateau to about 10±40% (see
Fig. 11).

At deformations e > 10%, dependences analogous to the
second relation in (18) are also observed in microcrystals and

nanocrystals of Au [148] and Ag [157] with the coefficient kfl
varying in narrow limits (11±13). As regards the stresses at
deformations e4 3%, it can be noted that according to [138,
139, 144, 147], the average values for fcc metals are n � 0:67
and ky � 0:6ÿ0:7 (Fig. 16). For bcc nanocrystals ofMo [148],
Nb [164], and V [168] at D � 100±1000 nm and deformations
e4 3%, these parameters are n � 0:8ÿ1:0 and ky � 3ÿ 6;
there are also separate results for micropillars of W, Ta, and
Nb with n � 0:4ÿ0:5 [164, 167]. In LiF microcrystals [169],
n � 0:74, ky � 4 [58].

A special case is presented by dislocation-free microcrys-
tals (whiskers). According to the data in Fig. 13, the exponent
n in relation (17) for the yield stress of dislocation-free copper
and iron whiskers is equal to unity. The coefficients ky � 93
(Cu) and 280 (Fe) in dislocation-free crystals are substantially
greater than the coefficients ky � 1 for crystals containing an
initial density of defects, such as dislocations or ledges on the
crystal surface [see (18)]. In specially prepared dislocation-
free and defect-free Mo micropillars [159, 160, 163], the
deformation diagrams have a catastrophic character, just as
in the case of copper microcrystals (whiskers) (see Fig. 11).
The stress for the beginning of plastic deformation (the upper
yield stress) in them reaches the theoretical shear strength
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equal to m=20 and stops depending on the transverse dimen-
sions of the crystal [159, 160].

Thus, the investigations of crystals with the transverse
dimensions 100±1000 nm shows that the previously revealed
features of deformation of crystals with cross sections
D � 1ÿ20 mm are even enhanced in the nanorange. The
strength of crystals continues growing with decreasing D,
both in the first stage of deformation (see Fig. 16) and in the
stage of developed plastic flow (Fig. 15b); after initial strong
growth of the flow stress, the stress±strain curves exhibit a
tendency to saturation in the absence of the second stage of
strain hardening (Fig. 15a); the discrete character of slip and
the sensitivity of crystals to surface defects also increase.

3.1.2 Mechanism of the influence of the size factor. The above
results have been the subject of experimental investigations
(transmission electron microscopy [139, 141, 155, 163, 171,
172], computer 3D-DDD (3D discrete dislocation dynamics)
[51±55, 173±175], and MD [176±178] simulations, and have
also been analyzed in terms of dislocation-kinetics [58, 136]
and statistic [179, 180] approaches aimed at the establishment
of the mechanism(s) of the influence of crystal size on its
strength and deformation behavior.

The discussion of the first results [17, 18, 142] of the plastic
deformation of micropillars led the authors to the conclusion
that the high strength ofmicropillars is related to the necessity
of activating Frank±Read (FR) dislocation sources with
shorter and shorter critical lengths in the process of deforma-
tion of nanocrystals and microcrystals. The dislocations
generated by the sources escape from a thin crystal through
its surface without multiplication and interaction with one
another, such that the crystal subjected to deformation suffers
``dislocation starvation.''

The authors of [16, 138] also noted that in the compression
stress±strain diagrams of micropillars, the initial stage of
strong strain hardening is replaced by a stage with a very
low strain-hardening coefficient. The strain-hardening
exhaustion is related in [16, 138] to the exhaustion of the
capability of dislocation sources to emit dislocations. The
mechanisms of dislocation starvation [142] and dislocation-
source exhaustion [138] as the factors responsible for the high
strength of nanosized crystals were later widely discussed,
checked, and refined using electron-microscopic data and
results of 3D-DDD simulation.

Two important questions arise in discussing stress±strain
diagrams of micro- and nanocrystals (Fig. 15a) and results of
electron-microscopic observations and of 3D-DDD simula-
tion: (1) how does the dislocation density r change in micro-
and nanocrystals when their cross section decreases; and (2)
whether the flow stress of the crystal obeys the Taylor relation
t � ambr 1=2.

The TEM investigation of the defect structure of micro-
and submicrocrystals prepared by etching the surface of the
parent crystal using a focused ion beam showed that the
subsurface layer of micropillars with a thickness of several
dozen nanometers contains intrinsic dislocation loops formed
upon the penetration of Ga� ions into the bulk of the crystal
[139, 141, 163]. After a moderate plastic deformation, these
loops disappear, being swept by moving dislocations, and
escape from the crystal, exerting no significant effect on its
strength. A 3D simulation of this process [173] confirmed the
insignificant role of these loops in the mechanism underlying
the effect of the size factor on the strength of nanosized
crystals with D > 100 nm. But it seems to be premature to

completely exclude these loops as potential FR sources [139].
For example, upon compression of Mo nanocrystals with a
diameter of 91 nm in situ, in the column of an electron
microscope, it has been demonstrated [163] that after the
preliminary removal of these defects by annealing, the
strength of the crystals increases sharply and reaches the
theoretical shear strength equal to m=10 [181]. Another
consequence of high annealing is the diffusional elimination
of irregularities on the crystal surface and smoothing of
angles on its loaded end, which can serve as stress concen-
trators and dislocation sources.

With 3D-DDD simulations of the process of plastic
deformation of nanosized crystals [53, 55, 174, 175, 182], it
has been revealed that the FR dislocation sources in them are
predominantly single-pole, having one point of pinning
located inside the crystal and a free end at its surface. Their
appearance is related to the fact that the crystal surface
truncates [53] part of the dislocation loop generated by a
two-pole dislocation source (having two pinning points). It is
obvious that the least strong and most efficient (from the
standpoint of the emission of dislocations) source is the one
with an end pinned near the center of the crystal. But because
sources with even shorter critical lengths can also exist near
the crystal surface, the stress that is required for the activation
of single-pole sources is in the general case given by

tFR � mb
dSD

; �19�

where dS < 1 is a coefficient that takes the distance from the
pinning point to the crystal surface into account.

In investigating the dislocation structure in Ni crystals
[140], it was revealed that as the cross section of a crystal
decreases from 10 mm to 1 mm, the dislocation density
increases by an order of magnitude, from 1013 mÿ2 to
1014 mÿ2. This increase occurs at the initial stage of deforma-
tion, within 3±10%; under further deformation, up to the
degree of deformation equal to 50%, the dislocation density
remains constant, just as the flow stress does. An estimation
shows that at r � 1014 mÿ2, b � 0:25 nm, m � 75 GPa, and
a � 0:5, the flow stress is equal to 94 MPa according to the
Taylor relation and only moderately differs from the experi-
mental value t � 100 MPa for a crystal with D � 1 mm [140]
(see Figures 15b and 16). According to (19), the stress
required for the start of a single-pole FR source in such a
crystal, tFR, is equal, at the coefficient dS � 0:2, to the same
value as the stress t defined by the Taylor relation.

At crystal cross sections less than 1 mm, the situation is by
no means unambiguous. The flow stresses reached in such
crystals are 1±2 GPa atD � 100 nm (see Figs 15 and 16). The
electron-microscopic data [139, 171] and the results of a 3D
simulation [53] show that the dislocation density in a
deformed crystal with D < 1 mm after unloading is insuffi-
cient to explain the observed level of flow stresses according
to the Taylor formula. According to that formula, at the
thickness of anNi crystal given by 165 nm (Fig. 15b), the flow
stress t � 1000 MPa should correspond to the dislocation
density r � 1016 mÿ2. This is substantially greater than the
dislocation density experimentally observed in the crystal
after unloading [139].

The 3D simulation in [53] of the deformation of Ni
crystals 1 mm thick revealed that the process of plastic
deformation in a thin crystal consists of a periodic emission
of groups of dislocations from dislocation sources and the
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subsequent escape of part of the dislocations from the crystal
through its surface. As a result of the cyclic, dynamic
character of this process, two different densities of disloca-
tions arise in the crystal: in the process of generation of
dislocations from the source and after their complete or
partial relaxation (escape from the crystal). It is obvious that
the magnitude of the flow stress is determined by the higher
dislocation density related to their generation from the
sources.

The dynamic character of the evolution of the dislocation
density was confirmed by in situ experiments, with the
observation of the process of deformation of Ni nanocrystals
290 nm thick [141] andAl crystals of submicron sizes [171] in a
transmission electronmicroscope. The dislocations generated
by the sources almost completely escaped from the crystal,
but the dynamic process of their generation from the sources
led to their cyclic appearance in the course of continuing
loading, thus determining the high level of stresses at the stage
of dislocation generation from the sources and upon their
motion to the crystal surface.

The stress for the start of dislocation generation from the
FR sources in an Ni crystal at D � 100 nm in accordance
with Eqn (19) is 940 MPa (at dS � 0:5), which is close to the
flow stresses shown in Fig. 15b at deformations correspond-
ing to the start of plastic deformation (e � 0:2%). On the
other hand, it is also seen fromFig. 15 that at the deformation
magnitude equal to 15%, the flow stress is twice as large as at
e � 0:2%. The question is: what determines the magnitude of
this stress and, on the whole, the process of strain hardening
before the stress reaches a constant level as a result of a
balance established between the rate of generation of disloca-
tions from the sources and their escape from the crystal
through its surface?

According to the mechanisms of dislocation starvation
and source exhaustion, this should be related to the activation
of sources with progressively shorter critical lengths. But then
the following question arises: did these sources exist in the
initial crystal or do they appear in the process of its
deformation as a result of the formation, for example, of
ledges on its surface due to the emergence of screw compo-
nents of dislocation loops onto this surface [183]? Observa-
tions of the deformation of Al crystals of submicron sizes in
an electron microscope show [171] that new single-pole
sources with shorter activation lengths form in the process
of deformation as a result of cross slip of screw segments of
dislocation loops and the formation of points of pinning of
dislocations upon the interaction of dislocations belonging to
different slip systems. Multiple slip is a characteristic feature
of the deformation of thin crystals because of the breakdown
of the Schmid law in them [127, 154]. As a result of these
processes, the flow stress of the crystal increases.

If the dislocation sources arise in the process of deforma-
tion, then the Taylor relation can be written as t � amb=l,
where l � rÿ1=2 and r is the density of sources. In this form,
the stress t can be considered the stress for the start of single-
pole sources tFR in Eqn (19). Equating t to this tress, we
obtain a relation for the effective length l � adSD and the
density of sources r � lÿ2 � Dÿ2.

Therefore, stresses (17) and (18) depend not only on the
critical size of dislocation sources but also on their number
(density) in the crystal. In the absence of dislocation sources,
the shear strength of a crystal is determined by the shear
stability of the lattice [181] and is independent of the crystal
size [159, 160]. But in the presence of defects, e.g., ledges on

the crystal surface [174] or dislocation sources existing in the
initial state of the crystal [163] or created by its preliminary
deformation [160, 163, 184], the shear strength of the crystal
decreases and becomes dependent on its size, and the
dependence is the stronger, the thinner the crystal and the
smaller the density of dislocation sources in it.

In the quantitative relation, the results of 3D-DDD
simulation are in agreement with the experiment and exhibit
fine details, such as the above-noted formation of single-pole
dislocation sources, the effect of cross slip of dislocations
[182, 185, 186], and the effect of surface coating [175] on the
dislocation density in a microcrystal. At the same time, being
a virtual analog of dislocation-kinetic processes that develop
in real microcrystals, the 3D simulation, without using
theoretical models, is incapable of explaining the experimen-
tally observed dependences of the strength of micro- and
nanocrystals on their transverse dimensions in form (18) or of
estimating the values of the exponents n � 0:6ÿ1:0 and the
coefficients ky and kfl in these relation. For this, a more
consistent and systematic approach to the analysis of the
experimental data given in Sections 3.1.1 and 3.1.2 is
required.

3.1.3 Dislocation-kinetics analysis of the size factor. In our
opinion, such an approach can be provided by analyzing the
mechanism of the influence of the size factor from the
standpoint of dislocation kinetics. This approach has already
been used in Section 2 for the analysis of the effect of grain size
on the strength and plastic properties of micro- and nano-
crystalline materials. Previously, this approach was also
successfully used in [56, 134] for the analysis of the effect of
various structural factors, including the size factor [127], on
the multistage character and the parameters of curves of
strain hardening of macrocrystalline samples of fcc metals. In
[127], the analysis of the size factor in copper single crystals
[124] was restricted to their transverse dimensions in the range
0.1±1.0 mm. In this section, this approach is extended to the
range 0.1±100 mm.

The dislocation-kinetics approach is based on the kinetic
equation that describes the rate of change in the dislocation
density dr=dg as the shear deformation g increases, with the
structural features of a crystal and the kinetic processes
characteristic of an ensemble of dislocations in it, such as
generation of dislocations from sources, multiplication,
annihilation, and immobilization of dislocations, taken into
account. Applied to the problem considered in this section,
this equation is written as [58]

r
dr
dg
�
�
nV
b
� nS
bLFR

�
��km ÿ kim � kf r 1=2� rÿ kar2 :

�20�

The right-hand side contains terms that are responsible for
the processes of generation, multiplication, immobilization,
and annihilation of dislocations, whose rate, as was already
said above, is sensitive to structural and size factors. The
terms in the first parentheses in Eqn (20) describe the
generation of dislocations from the dislocation sources in
the bulk of the crystal (with a density nV that is independent of
the crystal size) and from the surface sources (with critical
lengths LFR � dSD and a density nS that depends on the
transverse dimensions). The density of surface and subsurface
dislocation sources depends on the technology of the produc-
tion of crystals of various transverse dimensions. It specifies
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the quality of the surface, i.e., the number and magnitude of
ledges on the surface, which serve as stress concentrators and
sources of dislocations. The number NS of subsurface single-
pole FR dislocation sources on the perimeter of a slip plane is
pD=meLFR, where me � sinj and j is the angle between the
slip plane and the loading axis. The sources are distributed in
a subsurface layer of the area

S � p
4m 2

e

�
D 2 ÿ �DÿmeLFR�2

� � p
2me

DLFR :

As a result, we can express the density of subsurface sources as

nS � NS

S
� 2

L 2
FR

:

The terms in the second parentheses in Eqn (20) describe
the processes of dislocation multiplication (due to double
cross slip) on obstacles of a nondeformation origin (such as
precipitates or clusters of impurity atoms, where km � 1=blm
and lm is the dislocation free path between these obstacles)
and a deformation origin (e.g., forest dislocations, kf � df=b,
df � 10ÿ2), as well as the immobilization of dislocations on
obstacles of various types (kim � 1=blim, where lim is the
spacing between such obstacles). It is obvious that the
generation of dislocations from sources and their multi-
plication on various obstacles increase the dislocation
density in the crystal, whereas the immobilization of
dislocations and the annihilation of screw segments of
dislocation loops via cross slip (the last term in the right-
hand side of Eqn (20), ka � ha=b, where ha is the effective
length for the annihilation of screw dislocations [186])
decrease the rate of multiplication and therefore reduce the
dislocation density.

In the right-hand side of Eqn (20), the transverse dimen-
sions of the crystal D can affect not only the density of
subsurface dislocation sources nS but also the coefficient of
the immobilization of dislocations kim, because the escape of
dislocations froma thin crystal through its surface leads to the
withdrawal of dislocations from the process of their multi-
plication. The dislocation path through the crystal with the
orientation of the slip plane taken into account is determined
by the expression Le � D=me. As a result, we can express the
coefficient kim as kim � me=bD. Substituting the above
dependences of nS and kim on D in Eqn (20), we obtain

r
dr
dg
� ZS

bD 3
ÿ me

bD
r� kfr 3=2 ÿ kar 2 ; �21�

where ZS � 2=d 3
S . In the right-hand side of this equation, we

omitted the contributions to the process of evolution of the
dislocation density from dislocation sources in the bulk of the
crystal, as well as from the multiplication and immobilization
of dislocations on obstacles of a nondeformation origin,
because the crystals are assumed to be sufficiently pure.

In the case of coarse-sized crystals, the first two terms in
the right-hand side of Eqn (21) make an insignificant
contribution to the process of the evolution of the dislocation
density. Omitting them, we obtain the well-known equation
dr=dg � kfr 1=2 ÿ kar; solving it and using the Taylor relation
t � ambr 1=2, we obtain the dependence of the flow stress t on
the deformation g and of the coefficient of strain hardening
y � dt=dg on the stress t at the second and third stages of the
curves of strain hardening of fcc crystals:

t � t3

�
1ÿ exp

�
ÿ g
g3

��
; �22a�

y � yII

�
1ÿ t

t3

�
; �22b�

where t3 � ambr 1=2
3 and r3 � �kf=ka�2 are the flow stress and

the dislocation density at the end of the third stage of strain
hardening, yII � �1=2� a�bkf� m � �2ÿ2:5� � 10ÿ3m is the
strain hardening coefficient at the second (linear) stage of
strain hardening of a massive crystal [135], and g3 � 2=ka is
the characteristic length of the third stage.

Using the full equation (21), we consider the evolution of
the curves of strain hardening t�g� and of their parameters
under a change in a wide range, from 1 mm to 100 nm, in the
transverse dimensions of the crystal. For this, we use the
relation t�dt=dg� � �1=2��amb�2�dr=dg�, which follows from
the Taylor law t � ambr 1=2. It relates the coefficient of strain
hardening of the crystal (y � dt=dg � dr=dg) to the disloca-
tion-kinetics processes that develop in a crystal subjected to
deformation (21). Substituting the dislocation density speci-
fied by the Taylor law r � �t=amb�2 in Eqn (21), we obtain the
dependence of the SH coefficient on the dimensionless flow
stress t� � t=t3 [58, 127]:

dt
dg
� y�t�� � yII

�
Q0

t 3�
ÿQ1

t�
� 1ÿ t�

�
; �23a�

Q0 � ZS
bD 3kfr

3=2
3

; Q1 � me

bDkfr
1=2
3

: �23b�

The parameters Q0 and Q1, as we show below, determine the
appearance of the zeroth and first stages in the SH curve of
the crystal. The zeroth stage, or the stage of microdeforma-
tion, is related to the operation of dislocation sources. The
first (quasilinear) stage, or the easy-slip stage, is transient
between the zeroth and second (linear) stages of strain
hardening. The first stage is determined by the third term in
parentheses in Eqn (23a); the last, fourth term controls the
third (quasiparabolic) stage of strain hardeningÐ the stage
of dynamic recovery. The SH coefficient at these last two
stages corresponds to the Voce empirical relation in
Eqn (22b).

Parameters (23b) can be written in a more compact and
physically clearer form as [58]

Q0 �
�
DS

D

�3

; Q1 � o
�
DS

D

�
; �23c�

where

DS �
�

ZS
bkf

�1=3

rÿ1=23 ; o � me

�bkf�2=3Z 1=3
S

:

The parameter combination DS specifies the characteristic
dimensions of the transverse section of the crystal at which the
flow stress becomes sensitive to the size factor; the combina-
tion o determines the relation (competition) between the
processes of generation of dislocations from the surface
sources (ZS � 2=d 3

S ), multiplication of dislocations on forest
dislocations (bkf � df � 10ÿ2), and escape of dislocations
from the crystal through its surface (me � sinj). At j � 0,
the dislocations cannot escape from the crystal through its
surface; at j � p=2, their path to the surface is equal to the
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transverse dimension D of the crystal.
Integrating Eqn (23a) and taking into account that

t3=y2 � g3 � 2=ka, we obtain the dependence of the reduced
flow stress t� on the reduced shear strain g=g3 in implicit form:� t�

0

dt�
Q0tÿ3� ÿQ1tÿ1� � 1ÿ t�

� g
g3
: �24�

Equations (23) and (24) are used below for a quantitative
analysis of the effect of the transverse dimensions of the
crystal on the type and parameters of its strain hardening
curve.

We first consider the effect of the crystal dimension D on
the type of the dependence of the dimensionless SH coefficient
y=yII on the stress t� � t=t3 according to Eqn (23). Figure 17a
displays the corresponding dependences (curves 1±5) and
Table 1 gives the relative dimensions of crystals D=DS and
the values of the parameter o that were used for constructing
these dependences. It follows that in the relatively coarse-
sized crystal, withD4DS (curve 1), the SH coefficient varies
with the stress according to Voce equation (22b). At sub-
stantially smaller transverse sections of the crystal (curve 2), a
zeroth stage (stage of microdeformation) appears in the
dependence of y on t, with an SH coefficient substantially
exceeding the coefficient yII corresponding to the second stage
of strain hardening of a massive crystal. Another specific
feature of curve 2 is the appearance of a minimum and a
maximum, which are related to the first (quasilinear) and
second (linear) stages of strain hardening. An analysis shows
that these extrema arise at the respective stresses t1 and t2
such that

t1;2
t3
�
�

o
2D�

�1=2h
1�

����������������������
1ÿ G�D��

p i1=2
; �25a�

G�D�� � 12

o 2D�
; D� � D

DS
: �25b�

Figure 17b displays the strain hardening curve of the
crystal in the coordinates (t=t3, g�), where g� � g=g3 � gel=g3,
gel=g3 � �t=t3�=K� is the reduced elastic deformation,K� � 8,
K� � �K=t3� g3 � K=yII and K is the coefficient of rigidity of
the sample±loading-device system. The curve was obtained by
integrating Eqn (24) with the SH coefficient corresponding to
curve 2 in Fig. 17a. The dashed lines show the stresses t1
and t2. The stress t1 corresponds to the inflection point at the
first stage of SH; the stress t2 determines the maximum value
of the strain hardening coefficient at the second stage, after
which the coefficient begins decreasing in the third stage
(dynamic recovery stage).

Thus, as a result of thinning of the crystal, the two-stage
SH curve of a massive crystal transforms into a five-stage
curve (Fig. 17b). Substituting the stresses t1�D�� and t2�D�� in
Eqn (23a), we obtain the dependences of the SH coefficients at
the first and second stages on the crystal dimension

D� � D=DS:

y1�D�� � yII

�
1

D 3� t
3
�1
ÿ o
D�t�1

� 1ÿ t�1

�
; �26a�

y2�D�� � yII

�
1

D 3� t
3
�2
ÿ o
D�t�2

� 1ÿ t�2

�
; �26b�

where we introduce the brief notation t�1 � t1�D��=t3 and
t�2 � t2�D��=t3. The correspondence of relations (26) to the
experimental data is illustrated in Fig. 12, where curves 1 and 2
demonstrate these dependences at the parameter values
yII � 200 MPa, o � 1:75, and DS � 2:5 mm.

It can be seen from relations (25) and Table 1 that as the
crystal size decreases, an instant comes when the parameterG
becomes greater than unity. At the critical value G � 1
corresponding to the critical crystal size Dc, the stresses t1
and t2 and the coefficients y1 and y2 are equal to one another.
In this case, according to (25) and (26), we have

Dc � 12

o 2
DS ; t1 � t2 �

�
o 3

24

�1=2

t3 ;
�27�

y1 � y2 � yII

�
1ÿ

�
2

3
o
�3=2�

:

In the above-considered case of copper crystals, the critical
size Dc � 4DS is equal to 10 mm, which is in good agreement
with the data given in Fig. 12.

Table 1. Relative dimensions of crystals D=DS and the values of the
parameters o and G used for constructing curves 1±5 in Figs 17a and 18.

Curve no. D=DS o G

1
2
3
4
5

103

10
1
0.4
0.2

1.5
1.5
1.5
2.0
2.0

5:3� 10ÿ3

0.53
5.3
7.5
15.0

y=yII

t=t3

0.5

1.0

1.5

0 1 2 3

2

1

3

4

5

g�

t1=t3

t2=t3

t=t3

0.5

1.0

0 2 4 6

a

b

Figure 17. (a) Dependence of the dimensionless strain hardening coeffi-

cient y=yII on the reduced flow stress t� � t=t3 according to (23) at various
relative transverse dimensions of the crystals D=DS (see Table 1) and

(b) strain-hardening curve of the crystal in (t=t3, g�) coordinates according
to Eqn (24) and relations (23).
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At crystal sizes D < Dc, the character of the dependences
of the SH coefficient on the stress t (Fig. 17a) and the shape of
the SH curves t�g� (Fig. 18) obtained by integrating Eqn (24)
changes substantially. These dependences (curves 3±5) con-
tain only the stage of microdeformation (zeroth stage), which
terminates after reaching an equilibrium between the rate of
generation of dislocations from sources and the escape of
dislocations from the crystal. Neglecting the last two terms in
the right-hand side of Eqn (21), we obtain the equation

r
dr
dg
� ZS

bD 3
ÿ
�
me

bD

�
r : �28�

It follows from Eqn (28) that the dynamic equilibrium
between the emission of dislocations from sources and their
escape through the crystal surface sets in at the dislocation
density rD � ZS=meD

2. After removal of the loading, this
density, according to the equation dr=dt � ÿ�meu=D� r,
relaxes from the crystal under the image forces in accordance
with the exponential law r�t� � rD exp �ÿt=tD�, where t is
time, u is the dislocation velocity, and tD � D=meu is the
characteristic relaxation time, which becomes smaller as the
crystal becomes thinner.

In the case of crystals with dimensions D5Dc, we omit
the last two terms in Eqn (24) in the denominator of the
integrand to obtain the (implicit) dependence of the reduced
flow stress t� � t=t3 on the deformation g and the dimension-
less crystal thickness D� � D=DS:

ln
1

1ÿ oD 2� t 2�
ÿ oD 2

� t
2
� �

g
gD

; �29�

where gD � g3=2o
2D�. According to Eqn (29), at the initial

stage of deformation, when the generation of dislocations
from a source is predominant and the conditionoD 2

� t
2
� 5 1 is

satisfied, the dependence of the stress t� on g is t� �
�4g=g3D 3

� �1=4 � Dÿ3=4. On the other hand, at stresses
oD 2

� t
2
� � 1, Eqn (29) implies the t��g� dependence

t� �
�

1

oD 2�

�1=2�
1ÿ A exp

�
ÿ g
gD

��1=2
; A � eÿ1: �30�

It follows from expression (30) that at g4 gD, the flow stress
tends to an equilibrium value tfl � �1=oD 2

� �1=2t3 � 1=D,
which depends on the transverse size of the crystal. The
parameter gD � 1=D determines the characteristic deforma-
tion magnitude required for reaching a dynamic equilibrium
between the emission of dislocations from sources and their
escape from the crystal. We note that the smaller the relative
size of the crystal is,D5DS, the closer relations (29) and (30)
are quantitatively to each other and to the result of the
integration of the full equation (24).

In dimensional form, in accordance with (29) and (30), we
therefore have the following dependences of the yield stress
ty (at ey � mSmgy � 0:2%), the deformation gD, and the
equilibrium flow stress tfl on the transverse dimension of the
crystal D:

ty � ky

�
b

D

�3=4

m ; ky � a�2mSmeyZS�1=4 ; �31a�

gD � kD

�
b

D

�
; kD � ZS

m 2
e

; �31b�

tfl � kfl

�
b

D

�
m ; kfl � a

�
ZS
me

�1=2

: �31c�

It follows from Eqn (31b) that the smaller the crystal
dimension is, the greater the deformation gD necessary to
achieve equilibrium between the emission of dislocations
from sources and their escape from the crystal. This is
confirmed experimentally (Fig. 15a, curves 4±6) [4, 139].

In accordance with relation (31b), under deformations of
10±15%, the dependence tfl � Dÿ1 of the flow stress on the
crystal dimension was revealed in crystals of Ni (Fig. 15b,
curve 2), Au [142], and Ag [157] (Table 2). The data in Table 2
show that the coefficient kfl for various metals changes in the
narrow range kfl � 11ÿ13; on average, therefore, relation
(31c) for fcc metals has a universal value kfl � 12, n � 1.

At the initial (zeroth) stage of deformation, ty � Dÿn

dependences with n � 0:6ÿ0:7 have been found in many
studies. For example, Table 2 gives corresponding data for
crystals of Au [143], Ni [138, 139], and LiF [169]. The authors
of [145] suggest a universal relation for the empirical depen-
dences of this type for fcc metals, ty � ky�b=D�nm, where
n � 0:67 and ky � 0:7. The exponent n in this expression is
10% less than that in Eqn (31a).

Of great interest are quantitative estimates (according to
the data in Table 2) of the parameter dS, the critical length
LFR � dSD, and the stress for activation of an FR source
tFR � mb=LFR in (19). For the `universal' value kfl � 12 at
a � 0:5 and me � sinj � 1=

���
2
p

, we find, according to (31c),
that ZS � 407, dS � 0:17, and tFR � 6� mb=D�. This stress is
half the flow stress given by (31c), but is six times greater than
the minimum possible stress for the activation of an FR
source in a nanocrystal, mb=D. Substituting the above-
obtained values of ZS and a � 0:5 in (31a), at mSm � 0:5 and
the universal value of the coefficient ky � 0:7 [145], we then
obtain a deformation ey � 1% at which stresses of the onset
of plastic deformation of micro- and nanocrystals are usually
determined.

Thus, in terms of the dislocation-kinetics approach with
the above assumptions, themechanisms of dislocation starva-
tion and exhaustion of strain hardening, widely discussed in
the literature, can be explained and qualitatively verified as
characteristic features of plastic deformation of micro- and
nanosized crystals.

0

1

2

3

0.5 1.0 1.5

2

3

1

4

5

g�

t=
t 3

Figure 18. Strain-hardening curves of crystals in (t=t3, g�) coordinates
according to Eqn (24) and relations (23) at the relative dimensions D=DS

and values of the parameter o given in Table 1.
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As regards the plastic deformation of defect-free crystals
[13, 14, 124, 163, 187, 188] that develops in accordance with a
catastrophic scenario (see Fig. 14), the order-of-magnitude
higher values ky � 100ÿ300 in relations (17) are related to a
low density of subsurface dislocation sources in defect-free
crystals and, correspondingly, their strong sensitivity to the
size factor. The absence of dislocations in them is explained
by the high perfection of the surface of crystals, which is
related to the technology of their production from the gas
phase (in the form of whiskers) or as a result of high annealing
(Mo [159, 160]). The catastrophic character of the develop-
ment of plastic deformation in such crystals is related to a
rapid process of generation of dislocations and the formation
of a Luders front [187, 188]. The increase in the density of
surface and bulk dislocation sources as a result of a pre-
liminary deformation of nanocrystals is accompanied by a
decrease in their strength and by the loss of their sensitivity to
the size factor [159].

We note in the conclusion of this section that the
quantitative analysis in terms of the dislocation-kinetics
approach does not cover only the above-mentioned cata-
strophic character of deformation of defect-free nano- and
microcrystals and the compressive and tensile strength of
nanosized samples of NC metals with the ratio of the size of
samples and the size of grains D=d < 30, in which case a
thinning of a nanocrystalline sample leads to a decrease in
strength rather than to its increase [188]. Among the
problems that have not been considered in terms of the
above approach, the high sensitivity of the micro- and
nanosized tensile samples to neck formation should also be
mentioned [137, 189].

3.2 Plastic deformation gradient and geometrically
necessary (GN) dislocations
As was already noted in the Introduction, for samples with
the transverse size 1±10 mm, inhomogeneous (on a micron
level) deformations by torsion [20], bending [21, 22], and
micro- and nanoindentation [23±25] lead to an enhanced
resistance to plastic deformation compared to its homoge-
neous distribution in uniaxially stretched or compressed
samples of the same cross section. The observed size effect
of additional strengthening is usually ascribed to the genera-
tion of GN dislocations (with the density rgn � bÿ1�dg=dx�)
in the process of inhomogeneous deformation because of the
existence of a plastic deformation gradient (PDG) dg=dx in
the sample cross section. According to the Ashby hypothesis
[190] and the Taylor formula, we can then express the flow
stress as t � amb

������������������
rS � rgn

p
, where rS is the density of

randomly stored (statistically distributed) dislocations arising
under homogeneous deformation.

3.2.1 Plastic deformation gradient. At present, in the theore-
tical analysis of the size factor, a phenomenological approach
is mainly used, based on the classical theory of plasticity with
the PDG taken into account [20±23]. According to this
approach, the above Taylor±Ashby relation can be repre-
sented as t � tS

���������������
1� lSw
p

, where w � dg=dx is the deformation
gradient, lS is a characteristic length depending on the
structural factors and the degree of plastic deformation g,
and tS � ambr 1=2

S is the flow stress in the absence of a
deformation gradient. At the initial stage of deformation, at
the yield-stress level, we have tS � t0 and lS � l0 � �am=t0�2b;
as a result, we obtain the relation t=t0 �

��������������
1� l0w
p

. This
relation was used in [23] for an analysis of the dependence of
the microhardness H of Cu and Ag single crystals on the
depth of indentation in the range of depths h � 0:15ÿ2 mm.
Taking into account that H � 3s, where s � t=mSm is the
compressive stress, and that w � d=h, where d is a coefficient
depending on the geometry of the indenter tip [23], we obtain
the following relation for the microhardness:

H

H0
�

�������������
1� h�

h

r
; h� � dl0 : �32�

A comparison of expressions (32) with the experimental data
shows good agreement at the characteristic parameter values
h� � 0:5ÿ1:5 mm and H0 � 0:3 ± 0:8 GPa [23]. As was noted
in a recent review of mechanistic models of the PDG effect on
the flow stress of samples deformed by bending [22], this
correspondence is conceptually not fully consistent with the
Ashby assumption that t � ������������������

rS � rgn
p

. This circumstance
was also noted in [191] from the standpoint of the dislocation
mechanism of plastic deformation.

Recent experiments on the plastic bending of thin single-
crystal samples of copper [192] and nanocrystalline samples
of nickel [193] in a wider range of transverse dimensions and
deformations than in [20, 21] allowed concluding that the
situation with the PDG effect on the strength is more complex
and ambiguous than was expected previously.

For example, estimates of the density of GN dislocations
arising during cantilever bending of copper single crystals of
the thickness D � 1 ± 7:5 mm showed [192] that their con-
tribution to the size effect does nor exceed 10% at the crystal
thickness 1 mm and that the remaining part of the increase in
the strength (Fig. 19a) is related to some other factors.
Figure 19b displays the results of processing the data given in

Table 2. Experimental values of the coefficients ky and kfl and the exponents n for micro- and nanocrystals of various metals and LiF.

Crystal D, mm n ky kfl b, nm m, GPa References

Au 0.1 ë 10 0.6 0.44 ì 0.28 27.8 [143]

Au 0.2 ë 10 1.06 ì 12.5 ì ì [142, 148]

Ni 1.0 ë 20 0.67 0.57 ì 0.25 75.0 [138, 139]

Ni 0.2 ë 20 1.0 ì 13.3 ì ì [139]

Ag 0.1 ë 1.0 1.0 ì 11.0 0.25 25.5 [157]

Cu 5.0 ë 20 1.0 ì 13.0 0.26 48.0 [124]

LiF 1.0 ë 20 0.74 3.6 ì 0.28 65.8 [169]
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Fig. 19a in the (s, 1=D) coordinates, where s is the average
tensile (compressive) stress over the crystal cross section
calculated from the magnitude of the bending moment
corresponding to the developed plastic flow of the sample. It
follows from Fig. 19b that the flow stress obeys relations such
as (18) and (31), s � s0 � k 0fl� mb=D� with s0 � 120 MPa and
k 0fl � 70. The coefficient k 0fl for the tensile stress s is related to
the coefficient kfl for the shear stress t as k 0fl � �2=mSm� kfl,
where the coefficient 2 takes into account that the tension
(compression) is applied to only half the crystal thickness. At
the Schmid factor values mSm � 0:3ÿ0:4, we obtain an
estimate kfl � 11ÿ14 for copper, which is close to the values
of this coefficient for various fcc metals in the absence of a
PDG (see Table 2). This means that in the experiment under
consideration, the predominant factor that determines the
size effect is not the PDG but the crystal thickness itself, as
well as the existence of dislocation sources in the crystal, as is
the case in a homogeneous distribution of stresses over the
cross section of a thin crystal (see Section 3.1).

An unusual result was obtained with the plastic bending
of microcrystalline Ni samples when varying the grain size
and sample thickness in wide ranges (d � 7ÿ300 mm and
D � 10ÿ125 mm) [193]. It turned out that the flow stresses
related to the sample bending, irrespective of the degree of
plastic deformation, are determined by the effective dimen-
sion leff � �1=d� 1=D�ÿ1. Curves 1 and 2 in Fig. 20 demon-
strate these results for two degrees of bending deformation,
e � 0:1 and 6%. Assuming that the deformation of 0.1%
corresponds to the yield stress of the sample sy and the
deformation of 6% to the developed plastic deformation,
the data shown in Fig. 20 can be represented in the form of

relations (18) and (31),

sy � k 0y

�
b

leff

�0:6

m ; sfl � k 0fl

�
b

leff

�
m ; �33�

with the coefficients k 0y and k 0fl respectively equal to 0.17
and 64.5.We note that the value of k 0fl for the microcrystalline
Ni is close to that for single-crystal copper (k 0fl � 70)
considered above. Taking the `composite' character of the
effective size leff into account, the relation between the
coefficient kfl for the shear stress tfl and the coefficient k 0fl
for the tensile (compressive) stress sfl in (33) can be written in
the form of a combination of the Schmid and Taylor
coefficients: k 0fl�

��2=mSm �mT�=2
�
kfl. At mSm�0:3ÿ0:5

andmT�3:05, we obtain kfl � 10ÿ14. This estimate virtually
coincides with the value of this coefficient for microsized
samples of single-crystal nickel deformed under uniaxial
compression (Table 2). Just as in the case of bending of
copper single crystals, this circumstance can serve as an
argument in favor of the idea that the factor that determines
the size effect is here, as in the preceding case, the crystal
thickness by itself, rather than the plastic deformation
gradient.

As regards the first relation in (33), the exponent equal to
0.66 is also characteristic of the flow stresses of micro- and
nanosized crystals at the degrees of homogeneous compres-
sive deformation that do not exceed 1±3% (see Section 3.1.1,
Fig. 16). On the other hand, it is also close to the exponent 0.5
in the HP relation s � KHPd

ÿ1=2 for polycrystals such as the
samples of microcrystalline nickel with the grain size d4D.
In [193], results are also presented that indicate that at the
initial stage of deformation (at the yield stress), the flow
stresses of nickel can be represented as an additive contribu-
tion of two size factors:

sy � KHPd
ÿ1=2 � Ky

�
b

D

�
m ; �34�

where KHP � 0:33 MPa m1=2, irrespective of the sample
thickness D, and Ky � 23. The available experimental data
cannot help in choosing between relations (33) and (34). We
also note that if there is a correlation between the grain sizes
and transverse dimensions of crystals, e.g., d � Dq (where
q > 0), which is related to the technology of crystal prepara-
tion, as is the case with the bending of samples of micro-
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Figure 19. Dependence of the flow stress s under cantilever bending of

single-crystal samples of copper [192] on (a) the sample thickness D and

(b) its inverse value Dÿ1.
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crystalline copper [194], then, simultaneously with the HP
relation sy � KHPd

ÿ1=2 with the coefficient KHP �
0:2 MPa m1=2, the dependence sy � Ky�b=D� m appears with
the coefficient Ky � 5 caused by this correlation.

The ambiguity related to the origin of the size effect in the
presence of a PDG and the contribution to it from the GN
dislocations were discussed in detail in [191, 195, 196]. The
authors of these studies arrived at the conclusion that the
contribution from the GN dislocations to the size effect can
be revealed only if the density of GN dislocations rgn in the
Taylor±Ashby formula t � ������������������

rS � rgn
p

substantially exceeds
the density of statistical dislocations rS. Otherwise, the
separate contributions of these densities cannot be distin-
guished because of their mutual dependence. Just such a
situation occurs in the experiments in [192] and [193].

3.2.2 Geometrically necessary dislocations. Situations can
exist (and are observed in experiments) where the density of
GNdislocations exceeds the density of statistical dislocations,
for example, when kink bands arise in a bulk single crystal or
in a polycrystal, as a result of local bending in the form of two
walls ofGNdislocations of the opposite sense (Fig. 21), which
misorient the crystal between the walls by an angle o from
1� ± 2� to 30� ± 60� with the spacingL between the walls in the
range from 1 mm to 1 mm [197±200]. Another example is
given by the phenomenon of so-called dynamic polygoniza-
tion, which is observed upon the bending of a massive crystal
and leads to the formation of a regular structure of walls of
GN dislocations of the same sense perpendicular to the slip
plane and plastically adapting the bending of the crystal [198,
201±203].

The mechanism of the formation of kink bands was
considered from the standpoint dislocation kinetics in [200].
The solution of the kinetic equations for the density of
dislocations of different signs, r� and rÿ, is given by the
following dependences on the coordinate x along the slip
plane of dislocations, the shear deformation g, and time t:

r��x; g; t� � r�m
1ÿ exp �ÿkag�

cosh2
ÿ�x�Ut�=L�

� ; �35a�

r�m �
3�km ÿ kim��

2ka
; L� � 2

� �xx ÿ 1� lx
b�km ÿ kim��

�1=2
: �35b�

Here, km � 1=blm and kim � 1=blim are the coefficients of
multiplication and immobilization of dislocations on obsta-
cles of nondeformation origin (km > kim), lm and lim are the
corresponding paths of dislocations [56, 109], ka is the
coefficient of annihilation of screw segments of dislocation
loops [56, 204], lx is the characteristic distance of diffusion of
dislocations along the x axis, xx > 1 is the parameter
corresponding to the appearance of a Turing instability and
dislocation clustering in a dislocation ensemble [56, 109], and
U is the velocity of motion of dislocation walls.

The authors of [205] note that a nucleus of a kink band
arises as a result of the spatial separation (polarization) of two
dislocation walls of different signs. Figure 21a displays the
distribution [according to Eqn (35a)] of dislocation densities
r� and rÿ at the initial instant t � 0 at g4 1=ka, the ratio of
densities r�m=r

ÿ
m � 1:4, and the ratio of the wall widths

L�=Lÿ � � rÿm=r�m �1=2 � 0:85. Figure 21b demonstrates the
result of the motion of walls in the form of two solitons
moving in opposite directions with the formation of a band of
a lattice reorientation between them, where z � xÿUt. The

motion (drift) of a low-angle tilt boundary along a Zn crystal
during its cantilever bending under the action of a constant
load suspended at the free end was observed in [206].

Figure 21c demonstrates the results of the calculations of
the misorientation angles o� of the walls:

o��x; g; t� � b

� x

ÿ1
r��x; g; t� dx

� o�m
�
1ÿ exp �ÿkag�

��
1� tanh

�
x�Ut

L�

��
; �36�

where o�m � br�mL� and 2Ut � L is the width of the band
(see the diagram in Fig. 21d). The experimental points in
Fig. 21c show the result of measuring the rotation angles in a
kink band in an aluminum crystal at the wall widths
L� � 11 mm and Lÿ � 15 mm [199]. These results show
that in contrast to the traditional representation of a kink

L
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Figure 21. (a±c)Dislocation-kinetics mechanism of the formation of a kink

band according to Eqns (35) and (36); and (d) diagram of the kink band.

The experimental points correspond to the distribution of the rotation

angles in the kink band in an aluminum crystal [199].
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band (Fig. 21d), the real walls of the bands have a significant
width comparable to the dislocation path lm and lim and a
complex structure with the lattice rotation angle o depend-
ing on both the coordinate and the deformation g. As an
illustration, Fig. 22 shows the dependence of the rotation
angle in the kink band of a Zn crystal [205] on the tensile
deformation e � mSmg. The curve shown in this figure
demonstrates the growth of the maximum rotation angle
in the band in accordance with (36), omax�e� �
om

�
1ÿ exp �ÿmSmkae�

�
, as a result of an increase in the

density of GN dislocations in its walls.
The kink bands and the GN dislocations arise at the sites

of concentration of dislocations and difficulty of slip defor-
mation. As was noted in [191, 196], such a situation occurs at
the boundaries of dislocation cells upon the formation of a
cellular dislocation structure. As a result, under large plastic
deformations, a blocked dislocation structure is formed in the
metal, consisting of crystalline fragments (blocks) 100±400nm
in size with the angles of misorientation of the crystal lattice
from 1� to 45� [7±9]. This fragmentation under equal-channel
angular pressing [7, 207], rolling [196, 208], and high-pressure
torsion [9] is the basis of modern methods of production of
nanocrystalline metals and alloys.

From the standpoint of dislocation kinetics, the mechan-
ism of the formation of a blocked dislocation structure and
fragmentation of metallic materials has been considered in
[209±212]. As is well known, at moderate degrees of deforma-
tion in the material, first, a weakly misoriented (1� ± 2�)
cellular dislocation structure is formed [213±216]. According
to [56, 217, 218], the distribution of the density of statistical
dislocations rS in this structure is given by

rS�x; e� �
rmax�e��

1� � f �e� ÿ 1� sin2�px=L��2 ; �37�

where rmax�e� � rmn
2�e� is the density of dislocations at the

center of dislocation cells (Fig. 23a), f �e� � � rm=rc�1=2n�e�,
n�e� � 1ÿ exp �ÿ�1=2�mTkae�, rm is themaximumdensity of
dislocations in the cell walls, rc is the minimum density of
dislocations in the bulk of cells [these two densities depend on
the coefficients of multiplication of dislocations on the forest

dislocations and of their immobilization on obstacles of
nondeformation origin (impurities, precipitates, and so on)],
ka is the coefficient of annihilation of dislocations, and L is
the size of the cells. Figure 23a shows the distribution of the
dislocation density only in the direction x in the cellular
structure, which in general has a three-dimensional
character [212], because the cell walls in fcc crystals are
located along characteristic (111)-type slip planes. Curves 1
and 2 in this figure demonstrate the dislocation densities for
two degrees of deformation, e � 10% and 50%, at ka � 5,
rm=rc � 1:6� 103, and mT � 3:05.

The width of the walls of the dislocation cells DL is
approximately equal to one-fourth of the cell dimension
L � 0:4ÿ1 mm [56, 209] (i.e., it is 100±250 nm), and the
shear deformation reaches 20% or more. As a result, the cell
walls are associated with large plastic deformation gradients
and, correspondingly, with a high density of GN dislocations
rgn � bÿ1 qgp=qx. The shear deformation in a wall is deter-
mined by the Orowan formula gp � brS�x; e� lf, where
lf�x; e� � 1=df r

1=2
S �x; e� is the length of the free path of

dislocations through the forest of dislocations in the cell
walls with, df � 10ÿ2. As a result, we have the following
relation for the density of GN dislocations: rgn�x; e� �
dÿ1f qr 1=2

S �x; e�=qx. Substituting the density of statistical
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6
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Figure 22.Dependence of the angle of lattice rotation in the kink band in a

Zn crystal on themagnitude of deformation [205]. The curve is constructed

in accordance with Eqn (36) at x�Ut � 0, om � 33�, and mSmka � 150.
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dislocations (37) in this relation, we obtain the distribution of
the density of GN dislocations in the cell structure (Fig. 23b)

rgn�x; e� � ÿrN
n�e�� f �e� ÿ 1

�
sin�2px=L��

1� � f �e� ÿ 1� sin2�px=L��2 ; �38�

where rN � �p=df Lr 1=2
m � rm � 16rm at Lr 1=2

m � 20 [211].
It can be seen from Fig. 23b and from the key diagram

given in Fig. 23c that at the position of the dislocation cell, the
GN dislocations form two dislocation walls of finite width
with a high density of dislocations in them, rgn �
�10ÿ100� rS � 1015ÿ1016 mÿ2. Such dense dislocation walls
[196] arise at the initial stage of the formation of the blocked
dislocation structure. In a transmission electron microscope,
they look like dark, wide (compared to the cell walls)
microbands, because these walls are associated with local
lattice misorientation o�x; g��gp�x; g� � dÿ1f br 1=2

S �x; g�. At
df � 10ÿ2, b�0:25 nm, and rS�1013ÿ1014 mÿ2, we find that
o� 4�ÿ14�. At large plastic deformations, the high density
of GN dislocations leads to the formation of additional
fourth and fifth stages in the curves of strain hardening of
fcc metals [219, 220].

As follows from the analysis of experimental data [209±
212], the formation of blocked and cellular dislocation
structures is related to processes of spatial self-organization
of dislocations [56, 109], in particular, in the case under
consideration, with the self-organization of GN dislocations.
This is confirmed by the fact that just as in the case of
cellular structures, the parameters of the blocked structure
(size of blocks L [211, 212], width of their walls DL [209],
angle of the block misorientation o [210±212]) obey the
similarity principle, i.e., change as the density of dislocations
increases in accordance with the scaling laws DL �
L � rÿ1=2 and o � r 1=2, preserving a constant ratio of
these parameters.

For flow stresses at large plastic deformations, when a
blocked structure is formed, the laws t � r 1=2 � Lÿ1 are
satisfied [211, 212], as in the case of a cellular structure. The
t � Lÿ1 dependence indicates that in spite of the large angle
of lattice misorientation, the block boundaries are disordered
and nonequilibrium, i.e., consist, as in the cellular structure,
of discrete dislocations, although predominantly of the same
sign. After annealing at moderate temperatures and weak
primary recrystallization, the boundaries become equili-
brium, and the dependence of the flow stresses on the size d
of the arising micrograins obeys the HP relation t � dÿ1=2

[40, 221].

4. Conclusions

(1) It follows from the results of the investigations of the effect
of grain size in the range 2±1000 nm (Section 2) on the
strength and deformation properties of metallic materials
that this effect can be both positive and negative. The positive
effect occurs because the grain refinement substantially (by an
order of magnitude) increases the resistance of the material to
plastic deformation; the negative effect is related to a decrease
in the resistance of the NC material to deformation localiza-
tion (neck formation), which leads to a plastic rupture of the
nanocrystalline sample at the early stage of deformation.
These opposite tendencies are a consequence of the general
regularity concerning the genetic interconnection between the
strength and the reserve of plasticity under uniaxial compres-
sion of various materials [112±115].

Another characteristic feature of plastic deformation of
nanocrystalline materials is the crossover (at the grain sizes
less than 10±20 nm) from the grain-boundary strengthening
(in accordance with the HP relation) of the nanomaterial to
the mechanism of its grain-boundary softening related to the
diffusional absorption and annihilation of dislocations in
nanograin boundaries. The softening occurs at conventional
temperatures, which strongly reduces the nanomaterial
strength. But this circumstance also has a positive aspect,
because it creates a technological base for high-strain-rate
and low-temperature superplastic deformation of these mate-
rials.

The methods of improving the plastic properties of NC
materials, such as the production of bimodal nanomicro-
grained and nanotwinned submicrograined structures, allow
improving these properties (in the sense of increasing the
uniform deformation prior to neck formation) without a
substantial loss of strength. In connection with nanotwinned
submicrograined structures, we note that the experiments
revealed one unexpected circumstance: they showed that the
boundaries of nanotwins, while absorbing and emitting
lattice dislocations, lose their coherence and acquire the
property inherent of nanograin boundariesÐ the ability to
serve as sinks for dislocations.

An important aspect of plastic deformation of crystalline
materials is the formation of GN dislocations due to the
existence of large plastic deformation gradients onmicroscale
and nanoscale levels in the boundaries of dislocation cells. At
large plastic deformations (produced, for instance, using the
method of equal-channel angular pressing), the generation
and self-organization of GN dislocations leads to the forma-
tion of a blocked dislocation structure in the material, which
results in the fragmentation of the material into strongly
misoriented crystalline blocks (fragments) 100±200 nm in
size, which increases the strength of the material compared
to its initial state by an order of magnitude.

(2) As regards the strength of single-crystal samples in the
form of thin films, micropillars, and microwires (whiskers)
with transverse dimensions in the micro- and nanoranges, the
experimental data presented in Section 3 unambiguously
indicate that their strength grows as the crystals become
thinner and perfection grows (the density of surface defects
and dislocation sources decreases). The strength reaches the
theoretical shear strength in the absence of defects. One
specific feature of the mechanism of plastic deformation of
nano- and microcrystals is that it is mainly controlled by two
kinetic processes: the emission of dislocations from surface
and subsurface dislocation sources and the escape of disloca-
tions from the crystal through the surface. Both these
processes substantially, but differently, depend on the trans-
verse section of crystals. The detection of dislocation sources
and their evolution in the process of deformation should be
the subject of further investigations. The use of methods of
molecular dynamics and dynamics of discrete dislocations,
which have widely been used for studying the mechanism of
the effect of the size factor on the strength and specific
features of deformation of nanosized crystals, have allowed
revealing the fine details of this influence, such as the
generation of single-pole dislocation sources with critical
lengths depending on the transverse dimension of a crystal.

(3) The analysis of the mechanism of the evolution of the
strength and plasticity of NC metals and micro-and nano-
sized crystals performed in this review on the basis of the
equations of dislocation kinetics permitted us to system-
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atically, in a wide range of scales and in terms of a unified
theoretical approach, investigate the effect of the size factor
on the average density of dislocations and its variation
depending on the degree of deformation in these materials.
The equations derived take a number of circumstances
characteristic of the plastic deformation of nanosized struc-
tures into account, such as the predominant role of nanograin
boundaries and of the surface of nanocrystalsÐ sources of,
sinks for, and barriers to dislocations.

The use of a dislocation-kinetics analysis permitted us to
quantitatively check, refine, and theoretically substantiate
such features of deformation of nanosized crystals as the
mechanisms of dislocation starvation and exhaustion of
strain hardening. The refinements concern the effect of strain
hardening on the initial (zeroth) stage of deformation of
nanosized crystals, the stage of activation of dislocation
sources. The existence of strain hardening at this stage follows
from the dislocation-kinetics analysis of experimental data
made in the review. This is confirmed by the data obtained in
[222].

An advantage of the dislocation-kinetics approach, com-
pared to other methods of the analysis of the mechanical
behavior of crystallinematerials, is the possibility of including
some elementary kinetic processes on the microscopic level
(generation of dislocations from dislocation sources, disap-
pearance of dislocation at a sink, multiplication and annihila-
tion of dislocations) in the kinetic equations for the evolution
of the average density of dislocations in the material,
depending on the deformation or the time, with various
structural factors, such as size effects considered in this
study, taken into account. A disadvantage of this approach
is that it ignores statistical aspects of the phenomena. This
circumstance should be taken into account when comparing
the theory with the experiment, which correspond to each
other within the spread of experimental data.

(4) In this review, in accordance with the task posed, we
restricted ourselves to the analysis of studies in which the NC
materialsÐnanocrystals andmicrocrystalsÐwere subjected
to only simple mechanical actions, namely, uniaxial tension,
compression, or bending. In the literature, studies exist in
which the nanomaterials and nanocrystals are deformed
under more complex conditions, such as mechanical fatigue
[223], impact loading [224], creep [2], and instability of sizes of
nanograins at enhanced temperatures [225]. Because the
strength and plastic properties of nanomaterials are deter-
mined by dislocations in all these cases, the dislocation-
kinetics approach can likewise be applied to the analysis of
their mechanical behavior under the above conditions. The
results of its application to an analysis of superplastic
deformation of micro- and nanomaterials can be found in
[4, 40]. In [226], results of the dislocation-kinetics analysis of
the effect of grain sizes on the impact toughness are given. It
follows from these results that the fracture toughness
decreases after the grains reach some small critical size,
which was confirmed in experiment [227]. In [228], the
dislocation-kinetics approach was used for an analysis of
critical conditions of the formation of a cellular dislocation
structure in metals under severe conditions of neutron
irradiation. Other above-mentioned cases of the behavior of
nanomaterials and alloys under complex conditions of
loading should become the subject of further investigations
in the framework of this approach.
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