
Abstract. We consider the scattering matrix approach to
quantum electron transport in meso- and nanoconductors.
This approach is an alternative to the more conventional
kinetic equation and Green's function approaches, and is
often more efficient for coherent conductors (especially when
proving general relations) and typically more transparent. We
provide a description of both time-averaged quantities (for
example, current±voltage characteristics) and current fluctua-
tions in timeÐnoise, as well as full counting statistics of
charge transport in a finite time. In addition to normal con-
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ductors, we consider contacts with superconductors and Jo-
sephson junctions.

1. Introduction

Over the past 30 years, the study of electrical conductors have
evolved from considering of macroscopic objects, in which
the quantum nature is mainly manifested at the level of band
structure formation, to the study of mesoscopic objects 1 at a
scale larger than the atomic one but smaller than the
characteristic length at which quantum correlations already
appear, and finally to nanophysics objects at even smaller
scales, down to the atomic ones (quantum contacts and
quantum dots, molecular and quantum contacts, carbon
nanotubes, and graphene).

Electron transport in conductors of a size comparable to
inelastic scattering lengths, such as the energy relaxation
length or the dephasing length, or even to Fermi wave-
lengths, has a number of specific features, the most impor-
tant of which is a considerable transport nonlocality. For
such conductors, it is meaningless to consider quantities such
as local conductivity, and the question is actually asked about
the electron transport from point A (left reservoir) to point B
(right reservoir). In this case, the electron transfer through the
conductor is a purely quantum mechanical process. This
process can be described by using the well-known approach
from the particle and atom scattering theory which consider
an initial state (in our case, electron state), a scatterer, and a
final state (reservoir to which the electron arrives) and where
the transition from one state to another is described by the
scattering matrix.

Last years the scattering matrix approach has been widely
and successfully used to describe quantum transport. The
difference between this approach and more traditional
methods based, for example, on the kinetic equation, the
Kubo formula, Green's functions, or diagram techniques, is
mainly as follows. The total conductivity (or the total current)
of a system can be expressed in terms of the conductor
quantum transparency (in the general case, in terms of the
scattering matrix) and the occupation numbers of exact
electron scattering states, which are determined by para-
meters at the boundaries (reservoirs).

At first glance, such a method for describing electron
transport only replaces the problem of calculating the local or
nonlocal conductivity with the calculation of transmission,
which is no less complicated. But this is not the case. First, in
many cases with a simple sample geometry and a simple
scattering potential, transmission can be calculated analyti-
cally, which is simpler, e.g., than calculating the Green's
function. Second, it is often possible to make a reasonable
assumption about the scattering matrix to describe experi-
ments adequately. For disordered (dirty) conductors with a
complex scattering potential, the transmission probabilities
can be efficiently described statistically, for example, by
methods developed for random matrices.

In addition, due to the development of mesoscopics and
nanophysics, new problems appeared, which either had not
attracted special attention earlier or seemed unrealistic for
systems under study. One such problem is the description of
not only the mean current but also its fluctuations and the full

counting statistics as a whole in quantum meso- and
nanoconductors. It was found that these problems can be
efficiently solved by the scattering matrix method. It is
important that even if the scattering matrix is unknown, i.e.,
is not calculated for a particular scattering potential, the full
counting statistics for large times can formally be described,
as can the mean current. Therefore, if the transmission is
known, then we know not only the conductance G � 1=R,
whereR is the resistance, but also the spectral density S�o� of
current fluctuations at low frequencies, the distribution
function P�Q� of the charge transferred for a certain fixed
time, and so on. In some cases, it is possible to derive general
relations like the fluctuation±dissipation theorem, for exam-
ple, relating the mean current and nonequilibrium fluctua-
tions. The traditional approach would require calculating S,
P, and other quantities different from the mean current each
time.

2. Scattering matrix approach
to the description of transport:
the Landauer formula

The scattering matrix, taking asymptotically free incoming
states through an interaction region and providing the free
outgoing states, plays a tremendous role in quantum physics.
This matrix, first introduced by Born [1] and then byWheeler
[2] and independently by Heisenberg [3, 4] to describe the
scattering of particles and atoms, has been extensively used
since the late 20th century in the theory of electron transport
in quantum conductors.

The best-known result in the theory of quantum
transport obtained with the help of the scattering matrix is
the famous Landauer formula,2 which is also called the
Landauer±B�uttiker formula. In fact, this formula in the
form conventionally used first appeared in [6±8]. The
conductance of a quasi-one-dimensional (one-channel) con-
ductor is given by the conductance quantum G0 � 2e 2=h
(where e is the electron charge, h is Planck's constant, and
the factor 2 appears due to the spin degeneracy), known
from the quantum Hall effect [9], times the transparency T of
the conduction channel. In the case of several channels, the
expression for the conductance

G � 2e 2

h

X
n;m

Tnm �1�

contains the sum of transmission probabilities Tnm from one
mode (channel) to another (see the details in Section 3).

The Landauer approach was better understood in
subsequent papers (for example, Imry [10] pointed out the
role of a voltage drop at the input to the conductor) and
extended to more complicated systems with many reser-
voirs, the quantum Hall effect regime [11±14], and hybrid
superconducting systems [15±20], and was also used to
describe current fluctuations in time [21±24]. Currently,
this method has become very clear and functional. As a
whole, this approach can be applied to the description of
coherent mesoscopic conductors in which the characteristic
size L of the voltage drop region is much smaller than all
inelastic lengths.

1 That is, objects with properties intermediate between microscopic and

macroscopic. Mesoscopic translated from Greek means intermediate

scopic or mean scopic.

2 This formula is called this because Landauer [5] was the first to use

scattering matrices to describe transport problems.
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2.1 Conductance in a one-dimensional contact
To describe a quasi-one-dimensional conductor, we first
consider a purely one-dimensional problem3 for a system in
which electron reservoirs are located to the left and to the
right, far away from an obstacle located at the center, and
emit electrons in the direction of this obstacle.

We assume that the left electron reservoir emits electrons
in the direction of the obstacle (we forget about spin for the
moment) with energies up to m (experimentally, this may
correspond to the presence of the bias voltage V � m=e). The
conductor is coherent and the states are the Lippmann±
Schwinger scattering states.

For such states belonging to the continuous spectrum, the
problem of counting their number appears. For the contin-
uous spectrum, `box normalization' is often used, i.e.,
periodic boundary conditions are imposed and the conduc-
tor is closed to a circle with length L to make the spectrum
discrete, after which the limit L!1 is taken. But it is
difficult to rigorously perform this procedure for scattering
states, and we here solve this problem differently, by forming
normalized wave packets from continuous-spectrum states.

By dividing the energy interval �0; m� intoN segments with
size D � m=N, we form the wave packets

Cn�x; t� � cn

� nD

�nÿ1�D
dECL;E�x� exp

�
ÿ iEt

�h

�
; �2�

where n � 1; . . . ;N and CL;E�x� is the Lippmann±Schwinger
scattering (left) state with energy E, having the asymptotic
forms

CL;E�x� �
exp �ikx� � r�E� exp �ÿikx� ; x! ÿ1 ;

t�E� exp �ikx� ; x!1 :

(
�3�

The normalization constant can be calculated from the
relation�

dxC �L;E 0 �x�CL;E�x� � 2pd�k 0 ÿ k� ; �4�

where k � ����������
2mE
p

=�h. Calculating the integral
�
dx jCn�x; t�j2

and equating it to unity for the correct normalization of wave
packets, we obtain

cn � 1����������
hvnD
p ; �5�

where vn �
���������������
2nD=m

p
is the velocity of the nth packet; we

assume that D is small.
The wave packets described by expressions (2) are

localized in the vicinity of x � 0 at the instant t � 0 and
have the characteristic size hvn=D. These packets move at the
speed vn. As D! 0 (i.e., N!1), the wave packets become
broader, their shape approaching the shape of scattering
states (3).

We now calculate the current I carried by a given
orthonormalized set of wave packets. The current for them
is additive (because, according to Pauli's principle, only one
electron can occupy each state), and we can first calculate the
contribution In to the current from each nth packet and then

sum the contributions. For scattering states (as for any
stationary states), the current is independent of the point at
which we calculate it, and hence in the limit D! 0, the
contribution to the current from each packet at t � 0,

In � ÿi e�h

2m

�
C �n �x�C 0n�x� ÿC 0 �n �x�Cn�x�

�
; �6�

can be calculated, for example, to the right of the barrier,
where the wave function has the known form
CL�x� � t�E� exp �ikx�. This gives

In � c 2nD
2evnT �nD� � e

h
DT �nD� ; �7�

where T�E � � jt�E �j2 is the transparency at the energy E.
Summing the contributions of all packets, we find

I �
XN
n�1

In � e

h
D
XN
n�1

T �nD� !�D!0� e
h

� m

0

dET �E � ; �8�

where the sum over n transforms to the usual (Riemann)
integral in the limit asD! 0. The conductance, defined as the
ratio of the current I to the voltage V � m=e, is written in the
form

G � I

V
� e 2

h

� m

0

dE

m
T �E � : �9�

Expression (9) is a simple variant of the Landauer formula for
the conductance [7, 25].

Because the wave functions of the continuous spectrum
cannot be normalized in the usual way as the states of the
discrete spectrum, it is not clear beforehand in the construc-
tion of a many-particle state from arbitrary states of the
continuous spectrum which current is carried by each state.
This question can be solved by dividing into wave packets and
passing to the limit, as we did above. Such a procedure can be
used in an explicit form to analyze intricate problems, for
example, to describe the full transport statistics, as was done
in [26]. The current can be calculated using the rule (which can
also be derived by the method indicated above) allowing the
summation of the contributions to the current from contin-
uous-spectrum states: if cx�x� satisfies a normalization
condition generalizing (4),�

dxc �x �x�cx 0 �x� � c�x� d�xÿ x 0� ; �10�

then the mean of the current operator is given by

I �
�

dx
c�x� n�x�Ix ; �11�

where Ix is the current from the particle in the state cx�x� and
n�x� is the occupation number, equal to 1 if the state with the
subscript x is present in the many-particle wave function
(Slater determinant) and to 0 otherwise (at finite temperatures
Y > 0, the number n�x� can take values between 0 and 1). In
the case discussed here, x � k, Ik � ÿe�hkT �E �=m, c�k� � 2p,
and

n�k� �
1 ;

�h 2k 2

2m
< m ;

0 ;
�h 2k 2

2m
> m :

8>>><>>>:
3 It is this problem that Landauer initially considered in [5]. The problem

was solved by using an impressively small amount of knowledge:

information on the setup and solution of scattering problems in the one-

dimensional case in quantum mechanics and basic concepts about the

degenerate electron gas at the general physics level.
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Substituting these expressions in (11), we obtain

I � e�h

m

� k�m�

0

dk

2p
kT �E � � e

h

� m

0

dET �E � ; �12�

which corresponds to (8). At the last calculation step, we
switched from integration over the wave vector k to
integration over energy E, using the one-dimensional density
of states

n�E � � dk

dE
� m

�h 2k
: �13�

This leads to the cancelation of the factor k in the integrand in
(12), and it then follows that each energy interval (in the
absence of scattering) carries the same current

i0 � dI
dE
� e

h
; �14�

which is a characteristic feature of the one-dimensional
ballistic transport.

2.2 Two reservoirs
In Section 2.1, we discussed the case where spinless electrons
were emitted by one reservoir. We now consider the more
realistic case where spin-1=2 electrons are emitted by both
reservoirs. We assume that the left reservoir with the
electrochemical potential 4 mL emits the `left' scattering states
CL�x� and the right reservoir with the electrochemical
potential mR emits the `right' scattering states CR�x� (Fig. 1).
Then the total current is determined by contributions from
both reservoirs:

IL � 2e

h

� mL

0

dET �E � ; �15�

IR � ÿ 2e

h

� mR

0

dET �E � ; �16�

where the factor 2 appears due to the spin degeneracy, and in
contrast to IL, the current IR determined by the right states
acquires aminus sign because the wave vector and velocity for
CR�x� are opposite to those for CL�x�. Here, we used the

important property of the scatteringmatrix following from its
unitarity and symmetry under time reversal, namely, that the
transmission probabilities for mutually inverse processes are
equal.5 In our case, the transmission probability from left to
right, T � jtj2, is equal to the transmission probability from
right to left, T � T 0 � jt 0j2. In the total current

I � IL � IR � 2e

h

� mL

mR

dET �E � ; �17�

the contributions from energy intervals filled both on the left
and on the right cancel, and only the states filled on one side
make a contribution to the total current.

2.3 Landauer voltage drop
Having discussed the current caused by the difference in
electrochemical potentials, we now address the question
about the voltage drop on a scatterer. First, we determine
the electron density produced in a nonequilibrium state,
assuming that mL > mR (Fig. 2). The left reservoir emits
states (3) and the right reservoir emits the states CR;E. The
total density to the right of the scatterer,

rR � 2

� k�mL�

0

dk

2p

��CL;E�x�
��2 � 2

� k�mR�

0

dk

2p

��CR;E�x�
��2

� 2

� k�mL�

0

dk

2p
T �E � � 2

� k�mR�

0

dk

2p

�
1� R�E �� ; �18�

is the sum of contributions from the left and right states (the
factor 2 is due to spin degeneracy). (We do not consider the
details of Friedel oscillations with the period p=�k�m�� (see
below) and perform averaging over several wavelengths
/ �h=

���������
2mm
p

.) Calculating the density on the left gives

rL � 2

� k�mL�

0

dk

2p

�
1� R�E ��� 2

� k�mR�

0

dk

2p
T �E � : �19�

In the nonequilibrium situation, mL 6� mR, and if the transpar-
ency is not ideal, T 6� 1, then the density on the right of the
scatterer does not coincide with that on the left (see Fig. 1).

`='`+'

Incident Transmitted Reêected

Right stateLeft state

mL

1� R T

mR

1� RT 1� R� T
� 2

1� R T

T� 1� R
� 2

Figure 1.Charge density (shown by color gradation) caused by the left and

right scattering states (we omit the details of Friedel oscillations and

perform averaging over several wavelengths). The total densities of states

with energies smaller than mR are equal (shown with dark grey). For the

states with energies between mR and mL, the charge to the left of the

scatterer is greater (for T 6� 1).

4 We recall that the electrochemical potential is the maximum total energy

of one electron (at zero temperature), which is the sum of the kinetic

(Fermi) energy and the potential energy (of a charge in the electrostatic

potential).

5 In the one-dimensional case, the equality of the transmission probabil-

ities follows from the unitarity, even in the absence of the time reversal

invariance.

R < 1

R � 1

mR

mL

eVL

Incident

Transmitted

Reêected

Figure 2. Occurrence of the Landauer voltage drop VL on a barrier.

Because of the bending of the conduction-band bottom caused by the

voltage drop, the states emitted from the right reservoir with energies

between 0 and eVL are completely reflected. Here, eVL > 0, which

corresponds to the negative voltage and electric current, but to the

positive flow of particles (from left to right). This difference in signs

appears because the electron charge is standardly assumed negative.
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The difference in densities is given by

rL ÿ rR � 4

� k�mL�

k�mR�

dk

2p
R�E � ; �20�

where we use the relation R�E � � T �E � � 1. If the quantum
conductor is electrically neutral, then this density difference
should be compensated by the voltage drop across the
scatterer, which bends the conduction-band bottom. This
(Landauer) voltage drop VL in the stationary case can be
obtained from the condition of electrical neutrality, which, as
assumed, takes place in the equilibrium; in particular, the
density should be the same on both sides of the barrier (see
Fig. 2).

In the presence of a voltage drop VL, the left states with
the energy E (measured from the conduction band bottom in
the right reservoir) have the form

CL;E �x� �
exp �ikx� � r�E � exp �ÿikx� ; x! ÿ1 ;����

k

~k

s
t�E � exp �i~kx� ; x!1 ;

8><>: �21�

where k�E � � ���������������������������
2m�Eÿ eVL�

p
=�h and ~k�E � � ����������

2mE
p

=�h are
the wave vectors in the left and right asymptotic regions,
respectively. Similarly, the right scattering states are

CR;E �x� �
exp �ÿi~kx� � r 0�E � exp �i~kx� ; x!1 ;����

~k

k

s
t 0�E � exp �ÿikx� ; x! ÿ1 :

8><>: �22�

The factor

��������
k=~k

q
appears due to the unitarity of the scattering

matrix. We also note that the scattering problem must be
solved taking the bending of the conduction-band bottomdue
to the Landauer voltageVL into account. For example, due to
the appearance of this voltage, the right scattering states with
energies E < eVL are completely reflected andR�E � � 1. The
averaged density on the left, caused by the left scattering
states, is given by

rLL � 2

� k�mL�

0

dk

2p

�
1� R�E �� ; �23�

where the factor 2 is due to spin degeneracy. The density on
the left, caused by the right states, takes the form

rLR � 2

� ~k�mR�

~k�eVL�

d~k

2p

~k

k
T �E � : �24�

Similarly, calculating the density on the right, we find

rRL � 2

� k�mL�

0

dk

2p
k

~k
T �E � ; �25�

rRR � 2

� ~k�mR�

~k�eVL�

d~k

2p

�
1� R�E ��� 2

� ~k�eVL�

0

d~k

2p
�1� 1� ; �26�

where the last term appears due to the right states completely
reflected at the conduction-band bottom.

To simplify further calculations, we switch to integrals
over energies. For rLL, we then obtain �dk � �m=�h 2k� dE �

rLL �
2

�h

�����
m

2

r � mL

eVL

dE

2p
1� R�E �������������������
Eÿ eVL

p : �27�

Similarly, for d~k � �m=�h 2 ~k� dE, we have

rLR �
2

�h

�����
m

2

r � mR

eVL

dE

2p
T �E �������������������
Eÿ eVL

p : �28�

Calculations for rRL and rRR give

rRL �
2

�h

�����
m

2

r � mL

eVL

dE

2p
T �E �����

E
p ; �29�

rRR �
2

�h

�����
m

2

r � mR

eVL

dE

2p
1� R�E �����

E
p � 2

�h

�����
m

2

r � eVL

0

dE

2p
2����
E
p : �30�

Summing the densities on the left, rL � rLL � rLR, and using
the relation T �E � � R�E � � 1, we obtain

rL �
2

�h

�����
m

2

r � mR

eVL

dE

2p
2������������������

Eÿ eVL

p

� 2

�h

�����
m

2

r � mL

mR

dE

2p
1� R�E �������������������
Eÿ eVL

p ; �31�

while the total density on the right is given by

rR �
2

�h

�����
m

2

r � mR

0

dE

2p
2����
E
p � 2

�h

�����
m

2

r � mL

mR

dE

2p
T �E �����

E
p : �32�

Assuming the electric neutrality, we should equate the
densities: 6� mL

mR

dE

2p
1� R�E �������������������
Eÿ eVL

p �
� mR

mR�eVL

dE

2p
2����
E
p �

� mL

mR

dE

2p
T �E �����

E
p : �33�

Equation (33) allows calculating the voltage VL for an
arbitrary energy dependence of the transparency and an
arbitrary difference of electrochemical potentials.

We consider a simple linear case and find VL for a small
difference Dm � mL ÿ mR 5 mR. Under such conditions, the
voltage drop is also small, jeVLj5 mL. We assume that T�E �
is constant on the interval �mR; mL�. Then replacing������������������
Eÿ eVL

p ! ����
E
p

in (33) and taking T and R out of the
integrand, we express the Landauer voltage as

eVL � DmR : �34�

The voltage VL is zero for an ideally transparent conductor
and reaches the maximum eVL � Dm when all the electrons
are reflected. The current is [see expression (17)]

I � 2e

h
TDm ; �35�

which gives the Landauer resistance

RL � VL

I
� h

2e 2
R

T
: �36�

The absence of the voltage drop in an ideal conductor was
the object of intensive discussions for a long time. It finally
became clear that the voltage drop occurs even in this case,
but in joints with reservoirs rather than in the conductor itself
(see the discussion in Section 2.4).

6 In the nonlinear case, the additional requirement of the equality of

densities to their equilibrium values gives the displacement of the barrier

`pedestal' with respect to electrochemical potentials at the boundaries.
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2.4 Contact resistance
Equating Dm in (35) to the value specified by the bias voltage
eV, we obtain the conductance G � I=V in the form7

G � 2e 2

h
T : �37�

Resistance (36) is different from the inverse of G in
`Landauer formula' (37). We can assume that (37) is the
conductance measured by the two-contact method, whereas
(36) is the resistance measured by the four-contact method.8

The Landauer resistance takes only the voltage drop directly
across the barrier into account.9 However, in a one-dimen-
sional conductor, the voltage drop also appears in contacts
with reservoirs, which is the reason for the discrepancy
between the two Landauer formulas. Subtracting VL from
the bias voltage Dm � eV, we obtain the voltage drop VA at
the conductor entrances:

VA � Dmÿ eVL � DmT :

The total voltage drop can be written as the sum

V � VA � VLD � IRL � IRA

� I
h

2e 2
1ÿ T

T
� I

h

2e 2
� I

h

2e 2T
� I

G
:

In the symmetric case, the voltage drop is distributed
equally between contacts. The voltage drop VA=2 at each
boundary (contact) corresponds to the resistance

RS � h

4e 2
; �38�

which is the quantum analogue of the known Sharvin
resistance [28]. We can assume that this resistance is caused
by the reflection of higher modes at the wire entrance (see
Section 4).

Figure 3 shows the example of a ballistic conductor
�T � 1�. Applying a voltage, we obtain the nonzero current
I � 2e 2=hV, although no voltage drop occurs in the one-
dimensional conductor itself due to the absence of backward
reflection. The distribution of the voltage equally between
contacts has been studied theoretically in detail [29, 30] and
verified experimentally [31, 32]. As a whole, the described
situation is quite unusual from the standpoint of the classical
local conduction: the electric field inside the conductor is
absent (Fig. 4), although the total current is nonzero. It is also
unusual that the Joule heat dissipates far from the reservoirs
due to slow energy relaxation, whereas the electromagnetic
energy, from the standpoint of classical electrodynamics,
enters the electron system at much smaller scales, in voltage
drop regions in contacts and at the barrier.

To conclude, we note that the oscillating part of the
electron density (and its slowly changing part at a finite
voltage), which we did not consider above, can lead to an
additional scattering of electrons. Density oscillations

(Friedel oscillations) are not completely screened and
produce a spatially dependent electrostatic potential. The
oscillating part of the potential is especially important
because the oscillation period is equal to p=kF and back-
scattering from it (by 2kF in the momentum space) is
strong [33]. Therefore, the transmission probability T�E �
taking the total scattering potential into account can strongly
differ from the bare probability (determined on a local
scatterer); in addition, this probability depends on the
voltage V in principle. Assuming that the reflection ampli-
tude is independent of energy, we can obtain the oscillating
part of the density in equilibrium in the form

dn�x� � 1

jxj
�
Im �r��cos �2kFx� ÿ 1

��Re �r� sin ÿ2kFjxj�	 :
The case of energy-independent r is realistic, for example, for
almost complete reflection �r � ÿ1�, but similar oscillating
dependences also appear for an arbitrary scatterer.

We once more emphasize the difference between our
approach and more traditional methods: instead of the
calculation of the nonlocal conductivity s�r; r 0� for use in
the expression

ja�r� �
�
s�r; r 0�ab Eb�r 0� dr 0 ; �39�

we calculate the total conductance determining the total
current I � GV as a function of voltage. The convenience of
such an approach is obvious, because, instead of the self-
consistent calculation of the field E for use in (39), only the
total voltage drop V must be known. In this case, the
conductance can be expressed in terms of the probability of
transmission through the conductor. (Yet, to exactly solve the
scattering problem in the nonlinear case, the electrostatic
potential inside the conductor must also be known.)

7 Below, we do not explicitly indicate the energy dependence of the

transparency and elements of the scattering matrix, except in the cases

where this dependence is being studied.
8 We note that in this case, the actually measured resistance is also ill

defined and depends on experimental conditions [27].
9 Below, we will consider the case where such voltages can be summed in

the usual way, as in an ohmic conductor.

eV=2

eV=2

b

mR

mL

eV=2
m

eV=2

a

Figure 3. (a) Absence of the voltage drop in an ideal conductor. (b) Initial

one-dimensional electrostatic potential (dashed curve) and its modifica-

tion by the bias voltage (solid curve).

E � 0

�ÿ
E 6� 0

ÿ �
E 6� 0

I 6� 0

Figure 4. Input and output voltage drops in a ballistic one-channel

conductor.
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In Section 3, to solve a broader class of problems, we
consider a multichannel conductor as a waveguide for
electrons.

3. Waveguides: the multichannel case

We describe a quantum conductor as a wire smoothly
connected to reservoirs. More formally, we consider the
geometry convenient for the description of such a system.

A quasi-one-dimensional system is formed as a constric-
tionwith infinitely highwalls (orwith a potential increasing at
infinity) in transverse directions �y; z�, such that transport is
possible only along the x axis (Fig. 5). Along the x axis, plane
waves can propagate that belong to different modes or, as is
customarily said in mesoscopic physics, to channels having
the spatial structure of bound states in transverse directions.
The waveguide can transfer many modes. At low tempera-
tures in a narrow waveguide, only the first mode is significant
and the transport becomes effectively one-dimensional (we
actually discussed this situation in Section 2). In the general
case, the number of conducting modes (channels) involved in
transport is finite.

3.1 Quantized modes
We recall how in a simple case, in the presence of translational
invariance (along the x axis), modes appear due to the
transverse motion quantization. We must solve the Schr�odin-
ger equation�

ÿ �h 2

2m
D� V�x; y; z�

�
C�x; y; z� � EC�x; y; z� ; �40�

where the potential V�x; y; z� � V�y; z� and boundary condi-
tions are temporarily considered independent of x. In this
case, we can seek a solution of Eqn (40) in the form
C�x; y; z� � w�y; z� exp �ikx�. After the substitution of a
function of this type in (40), the variables separate and we
obtain the eigenvalue equation�

ÿ �h 2

2m
�q 2

y � q 2
z � � V�y; z�

�
wn�y; z� � Enwn�y; z� ; �41�

where n is the mode (channel) index, wn�y; z� is the corre-
sponding wave function, and En is the transverse direction
quantization energy. The functions wn�y; z� form a complete
set,X

n

wn�y; z� w �n �y 0; z 0� � d�yÿ y 0� d�zÿ z 0� ; �42�

which also orthonormalized,�
dy dz w �m�y; z� wn�y; z� � dmn : �43�

The general solution of Eqn (40) can be decomposed with
respect to these functions as

C�x; y; z� �
X
n

cnwn�y; z� exp �iknx� ; �44�

where kn �
������������������������
2m�Eÿ En�

p
=�h is the wave vector in the nth

mode (channel) and cn are constants. Modes with energies
E < En decay as exp �ÿKnx�, where Kn �

������������������������
2m�En ÿ E�p

=�h.

3.2 Scattering problem in a waveguide
We consider a system that is a translation-invariant wave-
guide for x! �1. Asymptotic solutions are described by
expression (44). If an additional potential or a change in the
boundary conditions exists in the vicinity of a finite x � xs,
then we can formulate a scattering problem. We assume that
the incident (from left or right) wave has the form

C in�x; y; z� � wn�y; z� exp
ÿÿiknjxj� : �45�

Scattered waves can be written as

C out�x; y; z� �
X
m

Smn

�������
kn
km

s
wm�y; z� exp

ÿ
ikmjxj

�
; �46�

where the sum over m channels is taken for both transmitted
�Smn � tmn� and reflected �Smn � rmn� states. The additional
factor

�������������
kn=km

p
is introduced to preserve the unitarity of the

scattering matrix Smn, and hence each of the asymptotic states
wn�y; z� exp �iknx�=

�����
kn
p

carries the unit current.
We calculate the electric current in the waveguide to the

right of the scattering potential. Let m1 and m2 be electro-
chemical potentials of the reservoirs, and the electron
distribution functions in them have the form

fa�E � � 1

exp
��Eÿ ma�=Ya

�� 1
; a � 1; 2; �47�

where Ya is the reservoir temperature in energy units. We
assume here that the temperatures Y1 and Y2 are equal.
Electrons with energy E emerging from the nth channel of
the left reservoir �a � 1� make a contribution to the current
in the unit energy interval to the left of the scattering
potential (as in purely one-dimensional problems consid-
ered in Section 2), which is proportional to f1�E ��2e=h�, while
to the right, after scattering to the mth channel, they make a
contribution proportional to f1�E ��2e=h�Tnm. Electrons
emerging to the right of the nth channel provide an initial
current of the opposite sign ÿf2�E ��2e=h� and, after back-
scattering, also make the contribution �2e=h� f2�E �

P
m Rnm.

As a result, after summation over channels, the current is
given by

I � 2e

h

X
n;m

�1
0

dE
�
f1�E �Tnm ÿ f2�E ��dnm ÿ Rnm�

�
; �48�

where dnm � 1 for n � m and dnm � 0 for n 6� m. Similarly, we
can formulate the scattering problem in the multilead case by
replacing mode (channel) numbers by reservoir indices or by
adding modes (channels) (Fig. 6). We now take the unitarity
of the scattering matrix into account to simplify the expres-
sion for the current:

I � 2e

h

X
n;m

�1
0

dETnm

�
f1�E � ÿ f2�E �

�
: �49�

C�x; y; z�
x

y

z

Figure 5. Waveguide elongated along the x axis with an adiabatically

slowly varying cross section.
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The sum over the transparencies in (49) can sometimes be
conveniently written as the trace of the scattering amplitude
matrix. In this case, we obtain the conductance in the form

G � 2e 2

h
Tr ftt yg : �50�

In what follows, with the products of the transmission and
reflection amplitude matrices of types tt y and 1ÿ rr y

appearing in expressions not only for current but also for
noise and more complicated quantities, it is very important
that due to the unitarity of S, such Hermitian matrices have
the same set of eigenvalues T1;T2; . . . ;TN, and the product of
matrices such as tt ytt y has the eigenvalues T 2

1 ;T
2
2 ; . . . ;T 2

N,
and so on. Each of these transparency eigenvalues is a real
number in the interval �0; 1� (see [23, 34, 35]). In turn, such a
diagonalization of the problem implies the presence of
eigenmodes (channels) representing the superposition of
states of type (44), which are no longer mixed after
scattering. The conductance in the diagonal representation
has the form

G � 2e 2

h
Tr ftt yg � 2e 2

h

X
n

Tn : �51�

3.3 Waveguide with an adiabatically
slowly changing cross section
In the general case, the boundary conditions and the potential
in (4) are inhomogeneous. Nevertheless, changes are often
rather slow and small at the wavelength scale. In this case, we
can use the adiabatic approximation to separate rapid
transverse motion in the waveguide and slow motion along
it. The eigenvalue equation for rapid motion takes the form�

ÿ �h 2

2m
�q2y � q2z� � V�x; y; z�

�
wn�x; y; z� � En�x� wn�x; y; z�

�52�

for each cross section (see Fig. 5). In this case, the transverse
quantization energy En�x� becomes slightly dependent on x.
Assuming the adiabaticity, we substitute

C�x; y; z� � wn�x; y; z�fn�x� ; �53�

where fn�x� is the solution of the equation�
ÿ �h 2

2m

d2

dx 2
� En�x�

�
fn�x� � Efn�x� �54�

for motion along the wire. We note that the transverse
quantization energy En�x� serves as the effective potential
U�x� for slow motion along x. Expression (53) is an
approximate solution of the SchroÈ dinger equation with the
mode mixing neglected. The approximation validity condi-
tions are���� qxwn�x; y; z�wn�x; y; z�

����5 ���� qxfn�x�
fn�x�

���� � ��k�x��� ; �55�
���� q2xwn�x; y; z�wn�x; y; z�

����5 ���� q2xfn�x�
fn�x�

���� � ��k 2�x��� : �56�

We now consider the important example of a real
waveguide, a microscopic constriction (a quantum point
contact) in the two-dimensional electron gas.

4. Quantum contacts

4.1 Current through a quantum point contact
We consider a contact between two conductors. If the contact
width W is so small that no more than a few electron
wavelengths lF fit in it, such a contact is called a quantum
point contact (QPC). The point contact can be realized in
experiments in the following way [36, 37]: two massive
electrodes are connected with a layer of the two-dimensional
electron gas (2DEG) formed in the region of a semiconductor
heterojunction (Fig. 7). Then two gates are brought to the
2DEG layer from above.10 By applying a potential Vg to the
gate, we can `expel' electrons from regions near the gate,
making them unavailable for electrons and thereby producing
a constriction in the 2DEG (a point contact). The higher the
voltage applied across the gate is, the larger the region
forbidden for electrons and the stronger the narrowing.

We consider a system with connected reservoirs N1 and
N2 (Fig. 8) and assume that the system is two-dimensional,
corresponding to the standard experimental situation
presented in Fig. 7.11 We choose the direction of the x
and y axes as shown in Fig. 8. The two-dimensional
electron gas lying in the xy plane is additionally restricted
in the y direction by means of voltages applied across the
gates. We simulate the walls by the boundary condition

n � 2

n � 1

n � N

n � 3
n � 4

Snn0

Figure 6.Multilead conductor.

V1 V2

Vg

N1 N22DEG

Vg

Figure 7.Diagram of the experimental realization of a point contact. Two

massive electrodes are connected via a two-dimensional electron gas layer

formed in a semiconductor heterostructure. A constriction is produced by

the voltage Vg applied to the gates.

10 This is the so-called split gate technique developed in [37, 38].
11 More precisely, the size quantization along the z axis is so strong that

under all standard experimental conditions, only the lowest mode is

always filled.
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C�x;�W�x�=2� � 0, makingmotion possible only in a strip of
the width W�x� along the x axis. Assuming that W�x� varies
slowly and the mean free path in 2DEG greatly exceeds all the
characteristic dimensions of the contact, we obtain

wn�x; y� �
������������

2

W�x�

s
sin

�
np

y�W�x�=2
W�x�

�
�57�

for the transverse modes. The wave function fn�x� satisfies
Eqn (54) describing motion in the effective potential
U�x� � En�x� � �h 2p2n 2=�2mW 2�x��, n5 1. The applicabil-
ity conditions for (55) and (56) now become
W 0�x�=W�x�5 k�x� and W 00�x�=W�x�5 k 2�x�. We let W0

denote the minimal value of W�x�. Then the effective
potential (depending on the transverse quantum number n)
in the resultant SchroÈ dinger equation has the form of a
potential barrier with the height

En � �np�h�2
2mW 2

0

; �58�

decreasing to zero as x! �1 (Fig. 9).
For a wave function with the mode number n, the

transverse motion of an electron is specified by the condition
that an integer number of half waves lF=2 fit in the contact
width. Therefore, for electrons flowing through the contact,
either one or two, or three, and so on half-waves fit in the
contact width. These waveguide modes are called channels.
For example, it is customary to say that an electron in the
state with the wave function wn is in the nth channel.12

Since W�x� changes slowly, Eqn (54) can be solved in the
semiclassical approximation. In the leading approximation,
only electrons with energies E > En propagate through the
throat. In the general case, the additional scattering of
electrons in the narrowing, for example, from the impurity
potential, must be taken into account. Such a scatterer is
schematically shown by the dashed contour in Fig. 8.

4.2 Conductance quantization
We now consider the linear conductance G � dI=dV at
V! 0. We assume that scattering by impurities in the
constriction is absent and channels do not mix. Then
expression (51) defines the conductance directly in terms of
the transparencies Tn in each channel:

G � 2e 2

h

X
n

Tn�EF� : �59�

The quantity G0 � 2e 2=h, which is called the conductance
quantum, is the natural unit for conductance measurements
in mesoscopic systems. In the zeroth-order semiclassical
approximation described in Section 2, Tnm � dnm for `open'
channels, whence

G � NG0 ; N �
X
n

y�EF ÿ En� ; �60�

whereN is the number of open channels and y is theHeaviside
function.

We consider how G changes when we change the QPC
widthW0 by applying a voltage across the gate (see Fig. 9). If
W0 ! 0, we obtain EF < E1; therefore, N � 0 and electrons
cannot pass through the QPC. This effect can be simply
explained qualitatively: in a narrow QPC, due to the
Heisenberg uncertainty principle, an electron should have a
large quantization energy, and if this energy exceeds the
specified energy, the presence of the electron in this region is
forbidden. If E1 < EF < E2, then one channel is open and
G � G0. If E2 < EF < E3, then two channels are open;
therefore, G � 2G0, and so on. The QPC conductance is
thus quantized in G0 units (Fig. 10), similarly to the case of
the integer quantum Hall effect (IQHE).13 The analogy
becomes even more direct in the presence of the Zeeman
splitting (see Section 5.1), when the steps are split and the
conductance is quantized in G0=2 units, as in the IQHE.

The step height in the experimental plot in Fig. 10b obeys
the quantization rule with good accuracy, whereas the step
edges are smeared. This can be caused by different factors,
such as a finite temperature, the finite probabilities of the
underbarrier transmission and overbarrier reflection, and so
on (see Section 4.3). It is interesting that the experimental
constriction was rather small (Fig. 11), suggesting that
quantization should not be so pronounced. This puzzle was
solved in paper [40] (almost immediately after the publication
of experimental results). It was found that the quantization
conditions remained valid until the angle a was greater than
1=p2 rather than unity, as would be expected (the condition of

N1

f1�E� W�x�
I

Rnm f1�E�
Tnm f1�E�

N2

y

x

Figure 8. Point contact in the form of a constriction. The constriction

width is described by a functionW�x�with a minimal valueW0. Inside the

constriction, a scatterer I (for example, impurities) can be located.

EF

U2�x�

U1�x�

U3�x�

Figure 9. Example of the effective potential Un�x� appearing due to the

effect of contact walls. For each n, the potential has themaximum valueEn

determined by the smallest width. The current is provided by electrons

with energies close to the Fermi energy EF. The picture in the figure

corresponds to two open channels (channels 1 and 2, because the relation

EF > En is satisfied only for them).

12 The terms `channels' and `leads' should be distinguished in multilead

systems.

13 For a waveguide with a two-dimensional effective cross section, the

quantization picture can bemuchmore intricate, because it depends on the

energy level structure in a two-dimensional box formed by the cross

section. When a certain spatial symmetry exists and a two-dimensional

problem is integrable (for example, if the wire cross section is nearly

circular), the levels are grouped and, when the parameters are changed,

several channels can be `switched on' at once, almost simultaneously [39].
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the applicability of the adiabatic approximation proved to be
more strict). The problem therefore has a specific numerical
small parameter 1=p2. We consider this situation in more
detail following [40].

4.3 Smearing of conductance steps caused
by tunneling through the effective potential
To perform a more detailed analysis, we describe the shape of
a QPC by the model dependence (see Figs 8 and 11)

W�x� �W0

L

�����������������
x 2 � L2

p
; �61�

where W0 and L are the QPC width and length. The opening
angle of the contact walls is a � 2 arctan �W0=2L�. In this
case, the effective potential

Un�x� � �h 2p2L2n 2

2mW 2
0 �x 2 � L2� � Un�0� ÿm

2
O 2

n x
2 �62�

is approximately quadratic near the barrier top �x � 0�, with
the expansion coefficients

Un�0� � En � �h 2p2n 2

2mW 2
; On � �hpn

mWL
:

The problem of tunneling through an inverted quadratic
potential can be solved exactly. The probability of transmis-

sion through (62) is given by the Kemble formula [41, 42]

Tn�E � � 1

exp
�
2p�En ÿ E �=��hOn�

�� 1
; �63�

in the form of a smeared step increasing from 0 forE < En to 1
for E > Un�0�; the crossover occurs at the scale �hOn=�2p�. To
observe steps in the conductance as functions ofW0, the step
width �hOn=�2p� should be much smaller than the distance
between steps: Un�1�0� ÿUn�0� � �h 2p2n=mW 2

0 , i.e.,

L

W
4

1

2p2
� 0:051 : �64�

Good quantization is therefore observed even for a relatively
short point contact [36, 37]. It is also important that the region
of the potential responsible for scattering is sufficiently small,
and therefore quadratic approximation (62) can be justified
and the Kemble formula well describes the behavior of the
transparency in the range from low transparencies T5 1 to
high transparencies T � 1. The nonquadratic shape of the
scattering potential would be manifested only in the descrip-
tion of very weak reflections or transmissions.

We consider the question of the possible mixing of
channels. The condition for the absence of channel mixing
in the constriction region is well satisfied. Away from the
throat, in the banks, the situation for the first channels is the
opposite: motion along the x axis in this region is faster, while
transverse motion is slower and the distances between the
transverse quantization levels are small. Therefore, even
smooth inhomogeneities cause mode mixing. The mixing of
transmitted modes does not affect the quantization picture, in
particular, the transport remains reflectionless on a plateau.
The point is that the eigenmodes diagonalizing the transmis-
sion amplitude matrix are important here. In the constriction,
the eigenmodes look like usual transverse modes, which we
already considered, whereas on the banks, they can be a
complex mixture of transmitted modes. But if the transmitted
modes are mixed with the reflected ones, then the conduc-
tance in the plateau can of course change and, moreover, the
entire quantization picture can be smeared.

It is interesting that for the chosen boundary conditions
(impenetrable walls), variables separate in the SchroÈ dinger
equations if the wall shape is described by a second-order
curve such as a parabola or hyperbola [43]. In this case, the
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2W0=lF
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Figure 10. (a) Quantization of the conductance of a point contact under the variation in the constriction widthW0 due to a voltage applied to the gate (see

Fig. 7). (b) Experimental dependences of the constriction conductance on the gate voltage Vg. It can be assumed with good accuracy thatW0 is a linear

function of Vg. The plot is taken from the first experimental paper [36]. Similar results were presented at about the same time in [37].

W0

a

Figure 11. Quantization is observed for angles a4 1=p2.
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absence of channel mixing is an exact fact rather than the
result of approximation. In addition, variables are separated
in the saddle potential [44], which is also used in simulations
of QPCs [45]. Such a wall shape is also of interest because it
allows solving the problem in a magnetic field.

The conductance quantization is observed not only in
QPCs and a 2DEG but also in contacts of carbon nanotubes
with metals [46±48] and in atomic point contacts [49±52], and
it was predicted [53] and recently observed in graphene [54].

The nature of quantization in these systems is similar to
that in QPCs; however, differences also exist. For example,
the number of channels is related not only to the form of
orbital transverse modes (in the case of atomic point contacts,
they are caused by the electron wave functions of contacting
atoms) but also to the physical amount of layers in nanotubes
or atoms in the throat. The adiabaticity of the bottleneck±
bank joining is also caused not by the smoothness of the
conduction region opening, as in QPCs, but by a weak
tunneling from a quasi-one-dimensional conductor to mas-
sive banks on a large effective contact area.

5. Electron waveguide in a magnetic field

A finite magnetic field in an electronwaveguide, and in aQPC
in particular, leads to two effects. First, Zeeman splitting
appears. Second, orbital effects appear in two- and three-
dimensional cases, which are absent in one-dimensional
systems, where the vector potential leads simply to the phase
accumulation and does not affect observables. In this case,
the form of the wave functions of transverse modes (channels)
changes considerably, and we consider these changes in
Sections 5.1 and 5.2.

5.1 Zeeman effect in a quantum point contact
AQPC in a two-dimensional gas in the xy plane in a magnetic
field with the vector lying in the same plane (Fig. 12a) is
described by the Hamiltonian

Ĥ � 1

2m

�
pÿ e

c
A

�2

�U�x; y� � mBBr ; �65�

where e is the electron charge, mB is the Bohr magneton, r are
the Pauli matrices, and

B � Bey : �66�
We note that the in-plane magnetic field (66) does not affect
the orbital motion of particles, and we can describe

Hamiltonian (65) in the form

Ĥ � Ĥ0 � mBBsy ; �67�
i.e., represent Ĥ as a sum of the Hamiltonian Ĥ0 �
p 2=2m�U�x; y� without a magnetic field and the Zeeman
term. Two solutions with kinetic energies E� mBB corre-
spond to each scattering state or bound state of the
Hamiltonian Ĥ0 with an energy E (see Fig. 12). As the throat
width W increases, the spin degeneracy is lifted and the
conductance of the system increases by steps e 2=h (Fig. 12b).
Such a splitting was already observed in the pioneering paper
[37] and was later investigated in detail in [55, 56]. This effect
was considered theoretically in [57].

We note that in the plateaumode after odd steps, the spin-
polarized current flows through the contact.

5.2 Edge states in a magnetic field
If the magnetic field B is perpendicular to the plane shown in
Fig. 13a, then orbital effects appear along with the Zeeman
effect. For simplicity, we consider only orbital effects in this
section. We describe them by the Hamiltonian

Ĥ � 1

2m

�
pÿ e

c
A

�2

�U�y� ; �68�

where the potential U�y� is independent of the coordinate x
along the wire. We still assume that the magnetic field is
homogeneous, but this time it is perpendicular to the plane of
the 2DEG,

B � Bez : �69�
The vector potential

A � ÿBy ex �70�
corresponding to this magnetic field depends only on y (the
Landau gauge). Hamiltonian (68) takes the form

Ĥ � 1

2m

�
px � eB

c
y

�2

� p 2
y

2m
�U�y� : �71�

Variables in the SchroÈ dinger equation with Hamiltonian (71)
can be separated by the substitution

C�x; y� � exp �ikx� w�y� : �72�

a

y

x

B

c
E

E� mBB

Eÿ mBB

2e2=h

e2=h

G

W

b

Figure 12. (a) Quantum point contact in a magnetic field collinear to the

plane of a two-dimensional gas. (b) The solid curve shows conductance

steps in the magnetic field, and the dashed curve does so in the absence of

the magnetic field. (c) Each scattering state with an energy E is split into

two with energies E� mBB.

0,1
0,6B

y

x
a

c

b
U�y�

mo2
c�yÿ y0�2

2
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mo2
c�yÿ y0�2

2

U�y� mo2
c�yÿ y0�2

2

U�y�

Figure 13. (a) Quantum point contact in a magnetic field perpendicular to

a sample. (b) Weak magnetic field in a potential box. (c) Edge states in a

strong magnetic field for a steep wall U�y�. (d) Edge states in a strong

magnetic field for a smooth potential U�y�.
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The transverse modes w�y� then satisfy the equation

w 00n �y� �
2m

�h 2

�
En�k� ÿU�y� ÿmo 2

c

2
�yÿ y0�2

�
wn�y� � 0 ; �73�

whereoc � jejB=mc is the cyclotron frequency, y0 � `2Bk, and
`B �

���������������
c�h=jejBp

is the magnetic length. Solving Eqn (73), we
can obtain the dispersion and En�k� and the wave function in
the presence of the magnetic field. In the absence of the
additional potential, U�y� � 0, Eqn (73) reduces to the
equation for a harmonic oscillator. The solution gives the
Landau levels:

En�k� � �hoc

�
n� 1

2

�
; �74�

which form a flat dispersionless band [42].
In the case of a weak magnetic field in a QPC, we can

regard the quadratic potential produced by B as a perturba-
tion (Fig. 13b). The energy levels take the form

En�k� � En � �h 2k 2

2m
� 
w �0�n

��V�y���w �0�n

�
; �75�

where En is the transverse quantization energy in the w �0�n �y�
state (in the absence of a magnetic field),

V�y� � mo2
c

2
�y 2 ÿ 2y0y� : �76�

Averaging over wave functions (57) gives



w �0�n

��V�y���w �0�n

� � mo2
cW

2�x�
24

�
1ÿ 6

p2n 2

�
: �77�

This addition to the transverse quantization energy shifts the
steps and increases the plateau width [57]. An even more
substantial effect is the narrowing of the step width due to a
decrease in the curvature of the effective scattering potential
~O 2
n � O 2

n ÿ O 2
H, where

O 2
H �

o2
cW

2�0�
12L2

�
1ÿ 6

p2n 2

�
: �78�

Both these effects improve quantization. But another con-
tribution of the same order in the magnetic field exists, which
can lead to the step broadening [57]. Taking the kinetic energy
variation into account in the second-order perturbation
theory [with a term linear in the magnetic field in (71)]
complicates the picture: for the first step, it always provides
a further increase in the quantization, whereas for the next
steps, the effect can be the opposite due to the possible change
in sign in the second-order perturbation theory.

At the same time, the magnetic field effect in [45]
resulted only in the improvement of quantization. This
difference can be caused by the use of different QPC
models and the different choice of parameters (although
the improvement of quantization in a magnetic field is
intuitively the most natural result).

In the case of a strong magnetic field and a steep wall,
transverse modes can change considerably for large k and B.
Such a situation for a magnetic field in a potential box is
shown in Fig. 13c, where the parabola of the quadratic
potential is strongly displaced with respect to the center. The
states formed at the boundaries, which are called edge states,
play a key role in transport in the IQHE regime, when the

magnetic film is so strong that only several modes contribute
to the transport even in a wide contact, which are in fact edge
states.

In a strong magnetic field for a smooth potential
U 00�y0�=m5oc, the wave function of the edge states is not
deformed,U�y� can be replaced with the potentialU�y0�, and
the energy levels have the form

En�k� � �hoc

�
n� 1

2

�
�U�y0� : �79�

An exact solution can be obtained for parabolic walls,
U�y� � mo2

0y
2=2, when the equation takes the form

w 00n �y� �
2m

�h 2

�
En�k� ÿm

2

�
o2

0y
2 � o2

c�yÿ y0�2
��

wn�y� � 0 :

�80�

Introducing the new variables

~o2 � o2
c � o2

0 ; ~y0 � y0
o2

c

o2
c � o2

0

;

~En�k� � En�k� ÿ mo2
co

2
0

2�o2
c � o2

0�
y 2
0 ;

we can reduce (80) to the equation of a harmonic oscillator

w 00n �y� �
2m

�h 2

�
~En�k� ÿm~o2�yÿ ~y0�2

2

�
wn�y� � 0 �81�

with the spectrum

~En�k� � �h~o
�
n� 1

2

�
: �82�

Returning to the usual variables, we obtain

En�k� � �h
�����������������
o2

c � o2
0

q �
n� 1

2

�
� mo2

co
2
0

2�o2
c � o2

0�
y 2
0 ; �83�

where the dependence on k enters through y0 � ` 2Bk. In
Eqn (81), ~y0 indicates the edge state position. We fix the
energy E and express ~yn in terms of E and n:

~y 2
0 �

2o2
c

mo2
0�o2

c � o2
0�
�
Eÿ �h

�����������������
o2

c � o2
0

q �
n� 1

2

��
: �84�

It follows from (84) that the higher the energy E is, the closer
the edge state is to the sample boundary. The total excess
nonequilibrium current in the IQHE mode is transferred just
by these states. This is explained by the fact that the edge-state
energy is higher than the energy of bulk states, and hence edge
states are typically the first to touch the Fermi surface (level),
making the contribution to transport. It is important that, as
in the case of one-dimensional motion without a magnetic
field, each channel (each Landau level in the strong-field
approximation) carries the same current i0 � e=h per energy
interval (for one spin direction) [see expression (14)]. This
occurs because the current in the presence of a magnetic field
can still be expressed in terms of the velocity, which cancels
the velocity from the density of states, as in the normal case.

By analyzing the behavior of transverse modes, which are
converted to edge states as the magnetic field increases, we
can see that the quantization of the conductance both at the
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QPC and in the IQHE has the same nature in a certain sense,
namely, the switching on of new modes when changing
parameters (width or magnetic field) upon passage from
plateau to plateau through steps. As regards the transport
on a plateau without reflection, this property is caused in the
case of QPCs bymotionwithout reflection in the semiclassical
potential, while in the case of the IQHE, it is caused by a
similar phenomenon of the suppression of scattering from
boundary to boundary, because the edge states with opposite
momenta are located near the opposite walls.

In pure conductors, the picture described above is clear
and raises no doubts. In dirty conductors, the picture is more
complicated and is commonly described by using quite
different approaches. However, a similarity can be seen to
exist between these pictures, which we discuss in Section 8,
where we consider the transmission distribution function in
dirty conductors.

The quantum Hall effect is an intricate and diverse
phenomenon deserving a special discussion that is outside
the scope of our review. Here, we only wanted to show that
even a simple analysis of edge states based on the Landauer
approach can give useful information. A more detailed
analysis by means of scattering matrices was performed in
[14] (after papers [58, 59], in which the nature of the IQHE
was considered by using edge states). The theoretical and
experimental aspects of edge states are discussed in detail in
review [60].

6. Aharonov±Bohm effect

We consider one of the most interesting effects in which the
nonlocality of quantum mechanics is manifested, the
Aharonov±Bohm effect [61], which has been observed in
mesoscopic quantum conductors [62]. Let a quantum wire
(Fig. 14) with one open channel (one propagating mode) be
connected at point 1 to a single-mode ring connected at point
2 to another quantum single-mode conductor. We consider
the probability of propagation of a particle from one
conductor to another in the case where the ring is in a
magnetic field (for example, in a weak homogeneous
magnetic field B perpendicular to its plane).

We calculate the scattering amplitude using the Feynman
approach. The total scattering amplitude can then be found
by summing the amplitudes of transmission of a particle from
one conductor to another through the ring over all the
possible paths. The shortest path is the propagation of the
particle from the left conductor to the right one through the
upper or lower part of the ring. We assume for simplicity that
the ring and the contacts are symmetric, and hence, forB � 0,

the transmission amplitudes t
u�d�
12 for the particle along these

paths are the same and equal to t12. If the magnetic field B is
nonzero, the particle acquires different phases after propaga-
tion through the upper and lower parts of the ring:

t
�u�
12 � t12 exp �iw1� ; t

�d�
12 � t12 exp �iw2� ; �85�

w1 �
e

c�h

�
u

A dl ; w2 �
e

c�h

�
d

A dl ; �86�

where A is the vector potential and the integral is taken along
the particle path between points 1 and 2. The difference
between these phases can be expressed in terms of the ratio
of the magnetic field flux F � � A dl through the ring to the
magnetic flux quantum F0 � hc=e,

w � w1 ÿ w2 �
e

c�h

�
A dl � 2p

F
F0

: �87�

Then the total transmission amplitudes and the probability
are

~t � t12 exp

�
i�w1 � w2�

2

��
exp

�
iw
2

�
� exp

�
ÿ iw

2

��
; �88�

~t 0 � t12 exp

�
ÿ i�w1 � w2�

2

��
exp

�
iw
2

�
� exp

�
ÿ iw

2

��
; �89�

T � j~t j2 � 2T12 � 2T12 cos w : �90�

We note that the amplitude ~t 0 of scattering from left to right,
which can be found with the help of rule (359) (see Appendix
A.3) from the expression for ~t, is not equal to ~t in general,
unlike that in problems with the symmetric �t � t 0� scattering
matrix considered in Sections 2±4. Here, this symmetry is
broken [but the transmission probabilities are still equal
because the scattering problem is effectively one-dimensional
(see footnote 5 in Section 2.2)].

The periodic dependence of the transmission probability
T on the magnetic field represents the Aharonov±Bohm
effect. When the system shown in Fig. 14 is connected at the
right and left to electron reservoirs, the conductance of such a
contact is described by the Landauer formulaG � G0T. If the
motion of a particle were incoherent, we would obtain
T � 2T12. Due to interference, T � 0 when w � p� 2pn,
n � 0;�1;�2; . . . . The vanishing of the transmission indi-
cates the presence of the so-called Fano resonance [63], which
appears upon hybridization of the continuous and discrete
spectra.14 In the case w � 2pn, the conductance is twice that in
the incoherent case.

We note that we did not take all the contributions to the
scattering amplitude into account in (88), and considering
only two amplitudes is, generally speaking, incorrect. A
particle can tunnel at point 1 to the ring from the left
conductor, pass several times along the ring, and only then
enter the right conductor. Multiple reflections typical of a
Fabry±Perot interferometer can be avoided by using aMach±
Zehnder interferometer in which only two amplitudes
interfere (Fig. 15).15 In this case, generally speaking, it is
necessary to fabricate a reflectionless scatterer (`beamsplit-

t exp �ikx�exp �ikx� B

u

d

1 2

Figure 14. Aharonov±Bohm effect. A quantum conductor with one open

channel (one propagating mode) is connected at point 1 to a single-mode

ring. The ring is connected at point 2 to another quantum single-mode

conductor.

14 The transparency never vanishes in usual purely one-dimensional

problems of scattering on finite potentials.
15 Because the geometry of such an interferometer is not one-dimensional

(four contacts exist), the transmission probabilities are no longer sym-

metric in the contact indices in a nonzero magnetic field.
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ter'). This task is quite complicated but can be fulfilled under
quantum Hall effect conditions (see, e.g., [64]).

7. Double barrier: the Fabry±Perot interferometer

As mentioned in the Introduction, scattering by a real
potential in meso- and nano-quasi-one-dimensional conduc-
tors can be simulated by scattering from potentials for which
the problem can be solved exactly. We considered one such
example in Section 4.3, where the Kemble formula for
scattering by a quadratic potential was used. Another
example (perhaps the one used most frequently) involves the
Dirac delta function d�x�. The potential can be written in the
form U�x� � ad�x� if its range is shorter than the wavelength
l of a scattering particle. In the case of metals, such a
description is usually valid for boundaries between different
materials. But in quasi-one-dimensional conductors, where
the effective wavelength can considerably exceed 1 nm, the
applicability range of such a description broadens, and this
approximation can sometimes be used even for QPCs.

The scattering amplitudes in such a potential are given by
the known expressions

t � t 0 � 1

1� iZ
; �91�

r � r 0 � iZ

1� iZ
; �92�

where

Z � ma

�h 2k
: �93�

7.1 Double delta barrier
Another very important case, which we consider several
time further, is scattering from the double barrier. The
double barrier is a structure with two scatterers connected
in series. Such a scatterer can successfully simulate trans-
port through a quantum dot, for example, in a carbon
nanotube. In the case of coherent transport, interference
occurs due to multiple scatterings and resonances appear in
the transmission amplitude and the transparency of the
double barrier. Each of the barriers can be typically
described by a delta function. The transmission and
refection amplitudes of this structure can be calculated in
a standard way by matching the wave functions on different
sides of the scatterers. However, we consider a more
illustrative calculation method based on an analogy with
the optical Fabry±Perot interferometer, which also gives an
exact result. The method involves the summation of all
possible semiclassical trajectories with successive reflections,
along which the particle can propagate (the method can be
formally substantiated by integrating over Feynman trajec-
tories). In addition, this method accounts for the fluctua-
tions of the phase accumulated during motion between
barriers.

We assume that the left scatterer has the transmission and
reflection amplitudes t1 and r1, and the right scatterer has the
corresponding amplitudes t2 and r2; the distance between the
barriers is L. All possible paths of the particle are shown in
Fig. 16. The transmission amplitude is determined by the sum
of the series

t � t2t1 � t2
�
r 01r2 exp �2ikL�

�
t1 � t2

�
r 01r2 exp �2ikL�

�2
t1 � . . . ;

�94�

where the first term corresponds to the trajectory passing
through the two barriers without reflection, the second term
corresponds to the trajectory with two reflections forming
one loop, and so on. The summation of the (geometrical)
series gives

t � t 0 � t1t2
1ÿ r 01r2 exp �2ikL�

: �95�

We recall that t1 � t 01, t2 � t 02, and t
0 � t if theHamiltonian of

the system is invariant under time reversal (in the general case,
r 6� r 0 in the absence of spatial symmetry).

Similarly, we can sum over trajectories for the backward
reflection amplitude:

r � r1 � t1r2 exp �2ikL� t1

� t1
�
r2 exp �2ikL�r1

�
r2 exp �2ikL� t1 � . . . ; �96�

B

1

2

r2

r1

t2

r1

t1
exp �ikx�

t exp �ikx�

r2

Figure 15. Reflectionless scattering in a `four-tail' figure.

r1

. . .
. . .

t1 exp �ikL�r2 exp �ikL�t1
t1 r2 exp �ikL�r 01 exp �ikL�t2

t2; r2t1; r1

t1 t2

0 L x

Figure 16. A double barrier (two scattering potentials in series) can be regarded as an analogue of the Fabry±Perot interferometer known in optics.
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which gives

r � r1 � t1t1r2 exp �i2kL�
1ÿ r1r2 exp �2ikL� �

r1 � r2 exp �2ikL��t1t1 ÿ r 21 �
1ÿ r1r2 exp �2ikL� :

�97�

The transparency of the whole system is

T � jtj2 � T1T2

1� R1R2 ÿ 2
�����������
R1R2

p
cos y

; �98�

where y � 2kL� 2w r, Ti � jtij2 and Ri � jrij2 are the trans-
mission and reflection probabilities for barriers, and
w r � �w r 0

1 � w r
2�=2 (for example, w r 0

1 � arg r 01). Relation (98)
is illustrated in Fig. 17. The total transparency T�E � attains a
maximum at y � 2pn, n � 1; 2; . . . ; which corresponds to
wave vectors kn � �pnÿ w r�=L with the energies

En � �h 2

2mL2
�pnÿ w r�2 : �99�

The maximum value of T�E �,

Tmax � T1T2

�1ÿ �����������
R1R2

p �2 ; �100�

is equal to unity for T1 � T2 and to 4T1T2=�T1 � T2�2 for
Ti 5 1, i � 1; 2.16

The obtained transmission probability demonstrates the
important property that for a symmetric barrier with
jt1j � jt2j, the resonances are ideal, jtj � 1. Therefore, the
two-barrier structure becomes ideally transparent at reso-
nance (neglecting the phase gain) even for very strong
scattering from each of the barriers. This effect, appearing
due to interference, can be an indicator of the full coherence
of particle motion. If coherence is absent, the transmission
probability is given by the product of probabilities
T � T1T2, which can be much smaller than unity. The
measurement of T is used for the experimental verification
of the coherence degree. We note that if T < 1, then it is
impossible to find by this method whether the system is
coherent. But the case T � 1 unambiguously indicates full
coherence.

Outside the resonance (in the destructive interference
region), we have

T � Tmin � T1T2

�1� �����������
R1R2

p �2 : �101�

For T1;T2 5 1, we obtain T � T1T2=4, and therefore the
destructive interference effect is stronger than the dephasing
effect, which we discuss in more detail below.

We define the spacing between resonances as

Dn � jEn�1 ÿ Enÿ1j
2

� 2p
�h 2jpnÿ w rj

2mL2
� p�hvn

L
� p�hnn ; �102�

where vn � �dE=�h dk�jE�En
is the velocity of an electron

moving between the potential walls of the double-barrier
potential. We note that the resonance energies are not
equidistant and the definition Dn � jqEn=qnj gives the same
result. The quantity

nn � vn
L

�103�

has the dimension of frequency and its physical meaning
corresponds to number of electron attempts to leave the trap
between potential barriers per unit time.

We analyze expression (98) near the resonance energy En

in Eqn (99). For this, we expand the cosine in the denominator
in the right-hand side of (98) to the second order in the energy
deviation from the resonance dEn � Eÿ En:

cos y � 1ÿ 1

2

�
dy
dEn

�2

�dEn�2 ;

dy
dEn
� dy

dE

����
E�En

� 1

�hnn
: �104�

Substituting this expression in (98), we find that the transmis-
sion probability near the nth resonance can be approximated
by a Lorentzian function (the Breit±Wigner approximation
[42]):

T�E � En� � TBW � g 2n
g 2n � �dEn�2

Tmax : �105�

Here, we define the resonance half-width as

gn �
1

2

dE

dy

����
E�En

1ÿ �����������
R1R2

p�����������
R1R2

4
p � �hnn�1ÿ

�����������
R1R2

p �
2
�����������
R1R2

4
p : �106�

The transmission probability T can be approximated by a
Lorentzian function for all energies:

T�E � �
X
n

TBW�dEn� : �107�

The relative error of the approximation (107) does not
exceed a few percent, even for T1;T2 9 0:5. For example, in
Fig. 17, if we additionally plot approximation (107) with the
same parameters that determine the plot of T shown in this
figure, these plots coincide so perfectly that the difference is
visually indistinguishable [65].

For a strong resonance, T1;T2 5 1, simpler expressions
are often used. We introduce the partial resonance widths

G �i�n �
dy
dEn

Ti � �hnnTi ; i � 1; 2 : �108�

E��h2=2mL2� 1000

1

T

Figure 17. Transmission probability T as a function of energy; T1 �
T2 � 0:5 and w r � 0 [65].

16 We assume that T1, T2, and w 0 are virtually independent of energy at

scales of the order of the distance between resonances.
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The ratio G �i�n =�h gives the number of successful attempts of a
particle to leave the trap between the walls of the double-
barrier potential per unit time. Expanding the right-hand side
of (105) in small probabilities of transitions through potential
walls, we find that

T�E � � G �1�n G �2�n

G �1�n � G �2�n

An�Eÿ En� ; �109�

An�E� � Gn

E 2 � �Gn=2�2
�110�

near the resonance, where Gn � G �1�n � G �2�n is the total
resonance width and A is the Lorentzian function. Then
gn � �hnn�T1 � T2�=4 � Gn=4. We see that resonances
become sharper as T1 and T2 decrease.

We next discuss the dephasing effects mentioned above.
We rewrite expression (94) by adding phase factors with
random phases ai, i � 1; 2; . . . ; to each term:

t � t2t1 exp �ia1� � t2
�
r 01r2 exp �2ikL�

�
t1 exp �ia2�

� t2
�
r 01r2 exp �2ikL�

�2
t1 exp �ia3� � . . . : �111�

These phases can appear due to time fluctuations of the
electrostatic potential in the quantum dot (i.e., in the region
between barriers), which should be taken into account in
multiple reflections in the resonance potential, which are
described by the terms in the sum.17

We now find the transmission probability by averaging it
over phase realizations ai, assuming that the ai are indepen-
dent random quantities with dispersion greatly exceeding 2p.
Such a model corresponds to the assumption that the
dephasing length is smaller than the distance between
barriers. Then

hT ia � jt2t1j2 �
��t2�r 01r2 exp �2ikL��t1��2

� ��t2�r 01r2 exp �2ikL��2t1��2 � . . . � T1T2

1ÿ R1R2
: �112�

It is interesting to compare incoherent tunneling described
by Eqn (112) with the so-called sequential tunneling [72, 73].
Sequential tunneling is usually considered in a situationwhere
the quasi-equilibrium distribution is established in a quantum
dot. In this case, the total resistance is given by the sum of the
first and second barrier resistance,

Rs � h

2e 2

�
1

T1
� 1

T2

�
� h

2e 2
T1 � T2

T1T2
: �113�

In the case of incoherent tunneling (i.e., for the phase-
averaged transparency considered above), the resistance

R � h

2e 2
T1 � T2 ÿ T1T2

T1T2
� h

2e 2
T1 � T2

T1T2
ÿ h

2e 2
�114�

is smaller than Rs by the contact resistance formed by the
internal modes of the region between barriers.

An interesting question arises: When is the simple
summation of Landauer resistances applicable? For exam-

ple, if we assume that the relaxation in momentum with the
same propagation direction occurs inside the quantum dot
such that the independent Fermi surfaces (points) appear for
each direction, then no additional voltage drop occurs and the
Landauer voltage can be summed (assuming that the delta
function provides energy-independent scattering). We note
that the reasoning about the summation of Landauer
resistances when averaging over scattering amplitudes was
used in different variants in the scaling theory of localization
in well-known papers [6, 25].18

If T1;T2 5 1, then

hT ia �
T1T2

T1 � T2
: �115�

We note that destructive interference [see Eqn (101)] sup-
presses T much more strongly than phase coherence: in the
former case, T / T1T2=4, while in the latter case, T / T1=2
for T1 � T2 5 1.

7.2 Transport properties of contacts
with the resonance potential
We consider a quantum contact between two electron
reservoirs in which a resonance potential, similar to that
considered in Section 7, serves as a scattering potential (see
Fig. 16). For simplicity, we assume that only one channel is
open, and hence Eqn (48) reduces to

I � 2e

h

�1
0

dE
�
f1�E � ÿ f2�E �

�
T�E � : �116�

We also assume that T1;T2 5 1, and therefore the Breit±
Wigner approximation in form (109) can be used. Then

T�E � �
X
n

G �1�n G �2�n

G �1�n � G �2�n

An�Eÿ En� ; �117�

An�E� � Gn

E 2 � �Gn=2�2
; �118�

where G �i�n are the partial widths of resonances �i � 1; 2�
and Gn � G �1�n � G �2�n is the total width of the resonance
(Fig. 18a). Substituting (117) into (116), we find (for the
temperature Y � 0)

I � 2e

h

X
n

G �1�n G �2�n

G �1�n � G �2�n

� V

E?
1

dEAn�Eÿ En� ; �119�

17 Electron transport in the presence of time-dependent fields can also be

described by means of scattering matrices, which was discussed, e.g., in

[66±71]. We do not consider this question because of the limited scope of

our review.

18 The transparency of a conductor containing many scatterers with

random parameters was studied more accurately in [34], where a transfer

matrix was used to describe the effect produced by the addition of a new

scatterer. The total transparency was found to behave like a particle

randomly diffusing in the parameter space.

b

In

I

Gn

eV� eV

a
Tmax

Tmin

EnEnÿ1 E

Gn

Figure 18. (a) Energy dependence of the transmission T. (b) Current as a

function of the bias voltageV. In the symmetric case, each resonance gives

the current increment by In � �2e=�h�pGn.
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where we introduce the superscript ? at the transverse
quantization energy E?1 in the constriction to distinguish it
from the resonance energy of the scattering potential.

We assume that the energy interval En 2 �E?1 ;V � contains
several transmission probability resonances. Then, according
to (119), the contribution from each of them to the current is

In � 4e

�h
p

G �1�n G �2�n

G �1�n � G �2�n

�120�

(we took into account that
� 1
ÿ1 An�E � dE � 2p). In the

symmetric case, we obtain the simplest expression

In � 2e

�h
pGn : �121�

In this case, the IÿV characteristic has a typical step-like
profile (Fig. 18b).

8. Conductance in dirty conductors

We now consider a multichannel dirty conductor in which
electrons diffuse from one boundary to another (Fig. 19).
Some important parameters of such a sample at low
temperatures, when all inelastic processes can be neglected,
surprisingly resemble those of a QPC and the double-barrier
system considered in Sections 4 and 7.

8.1 Mesoscopic conductance fluctuations
The question about strong fluctuations of the resistance of
such mesoscopic conductors was first considered in Azbel's
work [74] (It is starting with this work that the term
`mesoscopic' was coined for such systems).

Quantitative investigations of mesoscopic quantum
effects in transport were initiated in theoretical papers by
Al'tshuler [75] and Lee and Stone [76], where large fluctua-
tions of the conductance G in a two-dimensional dirty film
were predicted even for large (but still coherent) samples. A
standard quantity characterizing fluctuations of the con-
ductance from sample to sample is the mean-square
deviation

hdG 2iim �

ÿ
Gÿ hGiim

�2�
im
; �122�

where the subscript im means averaging over all the possible
variants of the location of impurities, and the mean con-
ductance is

hGiim �
dLs
L

; �123�

where s is the conductivity. The authors of [75, 76] found that
the standard deviation

dG �
����������������
hdG 2iim

q
� G0 �124�

is universal (i.e., is independent of the disorder details) and is
approximately equal to the conductance quantumG0 � e 2=h.
The relative fluctuations

dG
hGiim

� e 2

h

1

ds
�125�

are independent of the sample size L. This is a surprising
result because it was usually assumed that at large scales, the
conductivity of even quantum conductors is a self-averaging
quantity, and its relative fluctuations decrease upon increas-
ing the sample size. But this is not the case for a coherent
quantum conductor. In addition, Lee and Stone [76] and
Al'tshuler and Khmel'nitskii [77] described mesoscopic
fluctuations as a function of the applied magnetic field and
other parameters. The fluctuations of the conductance
appearing when changing the magnetic field can be qualita-
tively explained as follows: 19 the conductance is proportional
to the probability Pa!b of an electron starting from one side
of the conductor reaching its opposite side. Using the path
integral formalism, the probability can be represented as the
square of a sum of amplitudes over all possible paths:

Pa!b � jA1 � A2j2 � jA1j2 � jA2j2 � A1A
�
2 � A�1A2: �126�

For simplicity, we here consider only two semiclassical paths
with amplitudes A1 and A2 (Fig. 20). The cross terms A1A

�
2

and A�1A2 vanish in the mean probability hPa!biim due to
averaging over the random phase (the exception is the
contributions from paths or segments of paths repeating the
motion backward and contributing to weakly localized
corrections, which we do not consider here); the two
probabilities are simply added,
hPa!biim � jA1j2 � jA2j2 � P1 � P2, and the interference
terms vanish. In the calculation of the second moment,

hP 2
a!biim / �P1 � P2�2 � 2jA1j2jA2j2

� hPa!bi2im � 2P1P2 ; �127�

the terms with A1A
�
2 and A�1A2 also vanish after averaging.

But additional terms 2jA1j2jA2j2 remain finite after averaging.

L

Impurities

B

L

`

d

Figure 19. Two-dimensional dirty conductor. Crosses indicate the posi-

tions of impurities fluctuating from sample to sample; ` is the mean free

path. A magnetic field can be applied perpendicularly to the sample.

19 The explanation by D E Khmel'nitskii.

b

a

Figure 20. Interference between two trajectories contributing to the

conductance. A magnetic field induces the Aharonov±Bohm phase,

which changes the relative phase between the trajectories. The sensitivity

to the magnetic field (i.e., a change in the magnetic field resulting in a

change in the conductance by a value of the order ofG0) is specified by the

condition of obtaining the magnetic flux quantum F0 � hc=e per sample

area L2.
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The root-mean-square has the form

dPa!b �
�������������������������������������������������
ÿ
Pa!b ÿ hPa!biim

�2�
im

q
�

�������������
2P1P2

p
: �128�

If we now apply a weak magnetic field, the relative phases
between all the paths change and the conductance changes
accordingly. Thus, the conductance fluctuates upon changing
the magnetic field, as when the realization of a random
potential is changed. Detailed calculations show that the
fluctuation value is of the order of G0 � 2e 2=h (Fig. 21).
Similar fluctuations of the conductance also appear as
functions of the Fermi energy (chemical potential). The
characteristic energy scale at which fluctuations occur is
determined by the inverse diffusion time in the sample. The
phase increment on a typical path during the diffusion time is
then dkL � p. Such fluctuations appear as voltage changes
(Fig. 22) [78] and also in thermoelectric phenomena (see
Section 9). Conductance fluctuations were observed in
experiments [79, 80] (also see the results of subsequent
experiments and the references in [81]).

We note that there is a possibility of some resonances
existing in the transparency of dirty samples, as already
discussed in the pioneering papers by Azbel [74].

8.2 The Dorokhov distribution function
We consider the problem of fluctuations from the standpoint
of scattering matrices. The conductance represented with the
help of `eigenchannels', which diagonalize the transmission
matrix, has the form

G � 2e 2

h

X
n

Tn : �129�

For a conductor with Nch channels, Eqn (129) can be written
as

G � Nch
2e 2

h
hT i ; �130�

where hT i is the transparency averaged over all channels.
Comparing (130) with the usual expression

G � S

L
s ; �131�

where s � e 2nD is the conduction calculated from the Kubo
formula [82, 83] at zero frequency, n is the density of states on
the Fermi surface, and D � vF`=3 is the diffusion coefficient,
we obtain

G � 2e 2

h

Sk 2
F

p2
p`
3L

: �132�

The number of channels in a wire can be estimated in the
semiclassical approximation as Nch � Sk 2

F=p
2 [i.e., one

channel per the area p2=k 2
F � �lF=2�2]. Comparing expres-

sions (130) and (132), we obtain the mean transparency

hT i � p`
3L

; �133�

which, being proportional to `=L, tends to zero as L!1.
Does thismean that the typical transparency is approximately
equal to `=L? This turns out to not be the case. A surprising
property of transport in diffuse conductors is that for the
eigenchannels, for which the problem is diagonal (channels
are not mixed), the transparency is either very small or close
to unity. In reality, most of the channels are virtually closed
and T � 0, and only n � Nch `=L channels are almost
completely open with T � 1, providing the total conductiv-
ity. The distribution function forT, which was first calculated
by Dorokhov (Fig. 23), has the form [34, 84]

P�T � / 1

T
������������
1ÿ T
p : �134�

This is the general result for a quasi-one-dimensional
conductor (a thick wire) with the total length L5Lloc,
where the localization length Lloc can be estimated as
Lloc � Nch`, i.e., the conductance becomes comparable to
the quantum G0 � 2e 2=h. Using the normalization deter-
mined by the mean conductance

P�T � � p`
6L

1

T
������������
1ÿ T
p ; �135�

we obtain

G � 2e 2

h
Nch

�
dTP�T �T � 2e 2

h

Sk 2
F

p2
p`
3L

: �136�

G0 � e2=h

B

G

F0=L
2

Figure 21. Conductance fluctuations as the magnetic field changes.

V

I a

b

G0

eV

G
�

qI
=
qV

�hvF`=L
2

Figure 22. Conductance fluctuations as the voltage changes.

1024 G B Lesovik, I A Sadovskyy Physics ±Uspekhi 54 (10)



The situation resembles the case of a point contact with
n � Nch `=L open channels, but the difference is that the
eigenmodes for different energies and different magnetic field
strengths in a sample are different combinations of usual
propagating modes. The switching between conducting and
nonconducting channels provides mesoscopic fluctuations of
the conductance dG � e 2=h [75]. We can prove that the
transparency distribution function is nontrivial by consider-
ing noises whose intensity is given by the sum

P
n Tn�1ÿ Tn�.

Because of such a nonlinearity in T, the result [85]�X
n

Tn�1ÿ Tn�
�
� Nch

�
dTP�T �T�1ÿ T � � 1

3

�X
n

Tn

�
�137�

can give additional information on the properties ofP�T � (see
Section 10.3).

As mentioned in Section 5.2, the quantization of the
conductance in QPCs and the IQHE in the ballistic case has
a similar nature, namely, a relatively sharp switching on of
new modes under a variation in the external parameters.
The situation with the IQHE in dirty conductors is much
more complicated and is usually described by completely
different methods, in particular, by using field models [86].
It is interesting that the authors of [87] proved that the
descriptions of a quasi-one-dimensional (multichannel)
conductor in terms of a sigma model [88, 89] and by the
Dorokhov method (in particular, in the presence of a weak
magnetic field) are equivalent. It seems that the analogy
between a dirty conductor and a QPC described above is
also valid in the presence of a strong magnetic field, and we
can assume that the IQHE in dirty conductors is also
provided by the presence of high-transparency eigenchan-
nels (the number of open channels for the IQHE is
obviously determined not by the ratio of the mean free
path to the wire length but already by the number of
occupied Landau levels [90]). The behavior of edge states
in the presence of impurities was qualitatively discussed
in [14].

9. Thermoelectric effects

We now show how thermoelectric effects can be described
by using scattering matrices. So far, we have considered
only the situation at zero temperature. The occupation
numbers f �E � at finite temperatures are given by Fermi
distribution (47). The trivial effect of a nonzero temperature
is manifested, for example, in the smearing of the steps of
the conductance G�W� or the peaks of I�V� in the vicinity of
resonances.

9.1 Thermoelectric current and thermoelectromotive force
To study nontrivial thermoelectric effects, we consider the
case where the temperatures YL and YR in the reservoirs are
different and their difference dY � YL ÿYR is finite. A
thermoelectric current (i.e., the current caused by the
difference in temperatures at a constant electrochemical
potential) (Fig. 24) then appears, which is described in the
one-dimensional case by the expression

I�V � � 2e

h

�1
ÿ1

dE
�
fL�E � ÿ fR�E �

�
T�E � : �138�

It follows from this general expression that the current is
absent in the case of energy-independent transparency,
qET�E � � 0.

As an illustration, we first consider a simple example
where the transparency depends on energy, namely, a QPC
with ideal quantization:

T�E � � 0 ; E < E1 ;
1 ; E > E1 ;

�
�139�

where the electrochemical potentials of the reservoirs are
equal to the quantization energy in the first channel, m � E1,
and hence m is the opening threshold energy for the first
channel. We assume that the temperature in the left reservoir
is zero,YL � 0, and particles on the left cannot overcome the
contact, while electrons with energies E > m in the right
reservoir can overcome the barrier, resulting in the appear-
ance of the current

I � 2e

h

�1
ÿ1

dE
�
nL�E � ÿ nR�E �

�
T�E �

� ÿ 2e

h

�1
0

de
1

exp �e=YR� � 1
; �140�

where e � Eÿ m. Integrating over e, we obtain [91] 20

I � 2e

h
�log 2� dY : �141�

If a circuit containing our quantum wire is opened, a
voltage V (thermoelectromotive force) should appear to
compensate the thermoelectric current produced due to the
difference in temperatures. With the temperature difference

100

10
T

P�T�

Figure 23. Bimodal Dorokhov distribution function P�T � with the most

probable values of T equal to 0 or 1.

I
E1 � m

E

fR�E �fL�E �

YR 6� 0YL � 0 x

T�E �

Figure 24. Appearance of the thermoelectric current. Only electrons with

energies E > m can overcome the barrier on the right, producing the

thermoelectric current.

20 We use the relation�1
0

dz
exp z� 1

�
�1
1

dl
l�l� 1� �

�1
1

�
1

l
ÿ 1

l� 1

�
dl � log

l
l� 1

����1
1

� log 2 :
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dY taken into account, the general expression for current
(138) takes the form

I�dY;V � � 2e

h

�1
ÿ1

dE

�
1

exp
��Eÿ mÿ eV�=�Y� dY��� 1

ÿ 1

exp
��Eÿ m�=Y�� 1

�
T�E � : �142�

If the temperature difference dY is small and T�E � depends
on the energy E relatively weakly, then the Fermi distribution
function can be expanded in the vicinity of m and the
condition for the absence of the current I�dY;V � � 0 gives

2e

h
dY
�1
ÿ1

dE
q f �E �
qE

Eÿ m
Y

�
T�m� � �Eÿ m� qT�m�

qE

�

� 2e 2

h
V

�1
ÿ1

dE
q f �E �
qE

T�m� � 0 : �143�

From (143), we obtain the Katler±Mott formula

a � ÿY
e

q logT�m�
qE

�1
ÿ1

z 2
qn
qz

dz � p2

3

Y
e

q logT�m�
qE

; �144�

for the thermoelectric coefficient a � V=dY, where
z � �Eÿ m�=Y. 21

The generalization to the multichannel case is straightfor-
ward: a sum of transparencies appears instead of a transpar-
ency. For a dirty sample, we then have

a � Y
e

e 2

h
Gÿ1

hL2

D
: �145�

A large thermoelectric coefficient for mesoscopic conductors
was explicitly predicted in [92]. The nonlinear case, which
cannot be described using only the first derivative of the
transparency with respect to energy (in which case theKatler±
Mott formula becomes invalid), is considered in [93].

9.2 Thermal flow: the Wiedemann±Franz law
For a nonzero difference in temperatures, dY 6� 0, electric
current appears only whenT depends on energy in the vicinity
of m. But the thermal flow also exists when the transparency is
constant:

IQ � 2

h

�1
ÿ1

dE
�
fL�E � ÿ fR�E �

�
T�E ��Eÿ m� : �146�

Here, the factor 2=h gives the number of electrons transmitted
per unit time, while the factor Eÿ m in the integrand
determines the amount of energy (which can dissipate)
carried by each electron. For a � 0 �qET�m� � 0�, the
thermal flow is

IQ � G

e 2

�1
ÿ1

dE
�
fL�E � ÿ fR�E �

��Eÿ m� ; �147�

where G is the electric conductance and G � �2e 2=h�T.

Assuming that dY is small and expanding the difference
fL�E � ÿ fR�E �, we find

IQ � dY
G

e 2
Y
�1
ÿ1

z 2
qn
qz

dz ; �148�

where z � �Eÿ m�=Y. Integrating, we obtain the Wiede-
mann±Franz law [94, 95]

K � p2

3

�
1

e

�2

GY �149�

for the heat conduction K � IQ=dY, which is also valid for
usual (nonmesoscopic) conductors.

9.3 Violation of the Wiedemann±Franz law
The transparency of meso- and nanoconductors, unlike that
in usual conductors, can strongly depend on energy in the
vicinity of the electrochemical potential m, resulting in the
appearance of the thermoelectromotive force

V � a dY ; �150�

which also contributes to the thermal flow, and then
Wiedemann±Frantz law (149) can be violated. Substituting
(150) in expression (146) for the thermal flow, we find

IQ � 2

h

�1
ÿ1

dE

�
1

exp
��Eÿ m� ea dY�=�Y� dY��� 1

ÿ 1

exp
��Eÿ m�=Y�� 1

�
T�E ��Eÿ m� : �151�

Standardly expanding (151) in dY, we obtain

IQ � 2

h

�1
ÿ1

dE

�
ea

qT�m�
qE

ÿ T�m�
Y

�
�Eÿ m�2 qn�E �

qE
dY : �152�

After integration, we obtain

IQ � GY
�
ÿa2 � p2

3

�
1

e

�2�
dY : �153�

Hence, the Wiedemann±Franz law is valid only if
a5 �p= ���

3
p ��1=e�. We note that in principle, the situation

is possible where a > �p= ���
3
p ��1=e�, but in that case, as

follows from a more careful consideration, k also remains
positive.

The possibility of the violation of theWiedemann±Frantz
law in mesoscopic samples was first pointed out by Anderson
and Engquist [96], which became in important step in the
understanding of specific features of quantum low-dimension
conductors different from usual metals.

10. Second quantization formalism
and scattering matrix approach

In the preceding sections, we discussed the mean current in
coherent conductors. The method used for the calculation
of the current involves the summation of contributions to
the current from different energy intervals. This method
cannot be directly generalized to describe current fluctua-
tions in time. Such calculations can be conveniently
performed within the secondary quantization method

21 The relation�1
ÿ1

z 2
qn
qz

dz � ÿp2

3

is used.
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(using the Landauer approach, this was first done in
[21]).22

In this section, we describe this method, derive the
Landauer formula more rigorously, and consider noises. We
find the mean current and noise by averaging current
operators (in the secondary quantization representation)
over the nonequilibrium density matrix of the system, taking
the difference in the distribution of occupation numbers in
electron reservoirs into account.

The state of an electron in the secondary quantization
formalism is described not by the wave function jk�x� but by
the creation operator ĉ

y
k acting on a vacuum state j0i. The

current density operator

ĵ � ie�h

2m

��HĈ y�Ĉÿ Ĉ y HĈ
� �154�

is defined in terms of the Ĉ operators

Ĉ�x; r?� �
�
dk

2p

XN
a�1

ĉa; k ja; k�x; r?� ; �155�

where r? is a vector in the cross section of a conductor. One-
particle wave functions ja; k (where k is the wave vector at
infinity and the subscript denotes a set of discrete quantum
numbers, for example, the spin or number of a channel or a
reservoir) used in secondary quantization form a complete
orthonormalized set,�

dxdr? j �a 0 ; k 0 �r�ja; k�r� � 2pdaa 0 d�k 0 ÿ k� ; �156�

and satisfy the SchroÈ dinger equation

Ĥja; k � Ea�k�ja; k ; �157�

from which the dispersion law Ea�k� is also determined. The
normalization condition for the annihilation and creation
operators ĉa; k and ĉ

y
a 0; k 0 has the form

fĉ ya 0; k 0 ĉa; kg � ĉ
y
a 0 ; k 0 ĉa; k � ĉa; kĉ

y
a 0; k 0 � 2pda 0a d�k 0 ÿ k� : �158�

The total current operator is the integral of the current density
ĵ over the cross section:

Î �
�
dr? ĵ�x; r?� : �159�

We express the Ĉ operators in terms of the Lippmann±
Schwinger scattering states, which form the complete ortho-
normalized set of eigenstates of the Hamiltonian Ĥ (the proof
of this fact is given in Appendix A.1). We note that normal-
izations in (156) and (158) should be matched. For conve-
nience, we can redefine the normalization; for example, to
obtain the delta function of energy in the right-hand side of
(156), we should redefine (158) correspondingly such that the
same delta function is in the right-hand side. Below, we use
this renormalization.23

We now consider the problem of two electron reservoirs
connected through a constriction with one open channel. If a
particle with energy E is incident on a scatterer from the side
of the left (right) reservoir, we letcE; 1�x� �cE; 2�x�� denote the
corresponding state. Quantum numbers characterizing the
one-particle state are then the energy E and the number of the
reservoir from which the particle was emitted (for simplicity,
we omit the spin subscript). The Ĉ operator has the form

Ĉ�x� �
�
dE
�
cE; 1�x�âE; 1 � cE; 2�x�âE; 2

	
�
�
dE

X
a�1; 2

cE; a�x�âE; a ; �160�

where âE; a are electron annihilation operators in the state
with quantum numbers fE; ag �a � 1; 2�. These operators
satisfy the commutation relations

fâE; a; â yE 0 ; a 0 g � daa 0 d�Eÿ E 0� ; fâE; a; âE 0;bg � 0 ; �161��
Ĉ�x�; Ĉ y�x 0�	 � d�xÿ x 0� : �162�

In the left asymptotic region, we then have

Ĉ�x! ÿ1� �
�

dE������������
2p�hv1
p

�
n�
exp �ik1x� � rE exp �ÿik1x�

�
âE; 1 � tE exp �ÿik1x�âE; 2

o
:

�163�

Similarly, we can obtain the expression for Ĉ in the right
asymptotic region in the form

Ĉ�x! �1� �
�

dE������������
2p�hv2
p

�
n
âE; 1tE exp �ikx� � âE; 2

�
rE exp �ikx� � exp �ÿikx��o :

�164�

Using (163) and (164), we can find the current operator in the
asymptotic regions. For example, to the right of the scatterer,
we have

Î�x� � e

�
dE 0 dE

i

2pm
���������
v1v 02

p
�
�
â
y
E 0; 1âE; 1�ÿik 0 ÿ ik� t �E 0 tE exp

�
i�kÿ k 0�x�

� â
y
E 0; 1âE; 2

h
�ÿik 0� t �E 0 exp �ÿik 0x�

� ÿexp �ÿikx� � rE exp �ikx�
�

ÿ t �E 0 exp �ÿik 0x�
ÿÿik exp �ÿikx� � ikrE exp �ikx�

�i
� â

y
E 0; 2âE; 1

hÿ
ik 0 exp �ik 0x�ÿ ik 0r �E 0 exp �ÿik 0x�

�
tE exp �ikx�

ÿ ÿexp �ik 0x� � r �E 0 exp �ÿik 0x�
�
iktE exp �ikx�

i
� â

y
E 0; 2âE; 2

hÿ
ik 0 exp �ik 0x� ÿ ik 0r �E 0 exp �ÿik 0x�

�
� ÿexp �ÿikx� � rE exp �ikx�

�
ÿ ÿexp �ik 0x� � r �E 0 exp �ÿik 0x�

�
� ÿÿik exp �ÿikx� � ikrE exp �ikx�

�i�
: �165�

22 An alternative can be either the method of wave packets developed by

Landauer and Martin [23, 97±99], which is not rigorous either, or a

rigorous description in terms of wave functions [26, 100], which allows

describing the full counting statistics, but is too cumbersome, for example,

for the calculation of noise.
23 Such a normalization is convenient, for example, in the case where

scattering states are to be defined in a region with a smooth semiclassical

potential.

October 2011 Scattering matrix approach to the description of quantum electron transport 1027



For a pure state of a many-particle quantum system,
which is described in the framework of second-quantized
formalism by an expression like jci � â

y
E1
â
y
E2

. . . j0i (where j0i
is the vacuum state), the mean current is defined as

I � 
cjÎ jc� : �166�

If the state is described by the density matrix r̂ (i.e., the state is
an incoherent superposition of pure states), the mean current
is given by

I �
X

fcg; fc 0g



c 0 j r̂jc�
cjÎ jc 0� � Tr fr̂Î g ; �167�

where the current operator is multiplied by the density matrix
and the trace of this product is taken. For an equilibrium
system with a Hamiltonian Ĥ, a finite temperatureY, and an
electrochemical potential m, the density matrix is given by24

r̂ � exp

�
ÿ Ĥÿ mN̂

Y

�
: �168�

The Landauer assumption that reservoirs are completely
independent in the nonequilibrium case, which was adopted
above, means that the density matrix of the total system is
equal to the product of the density matrices of the left and
right reservoirs, r̂ � r̂1 
 r̂2. The density matrix of the
reservoir a has the form

r̂a � exp

�
ÿ
X
E

â
y
E; aâE; a

Eÿ ma
Ya

�
: �169�

Then the density matrix of the total system is

r̂ � exp

�
ÿ
X
E

�
â
y
E; 1âE; 1

Eÿ m1
Y1

ÿ â
y
E; 2âE; 2

Eÿ m2
Y2

��
: �170�

Using this density matrix, we can find all averages,

hâ yE; asâE 0; a 0s 0 i � d�Eÿ E 0� daa 0 dss 0 fas�E � �171�

(as an example, we indicate the spin index s explicitly).
Almost all calculations presented in this review are in fact

rather simple. One of the important sources of this simplicity
is just relation (171), which implies that the only nonzero
means are those that are diagonal in the scattering states in
whose basis the current operator is written.

The electron distribution function fa�E � inside reservoirs
is given by Fermi distribution (47).25 In the general case,
temperatures and electrochemical potentials in reservoirs are
different.

We also note that the real bias voltage V (specifying Dm in
the contact) can differ from the voltage V0 (electromotive
force) far in the reservoirs, and hence a part of the voltage
drop V0 ÿ V occurs in the lead wires of a quantum contact.

This fact is taken into account experimentally quite simply,
however. In addition, it may happen that a reservoir partially
reflects electrons rather than absorbs themwithout reflection.
This reflection can also be taken into account in principle as a
correction to the density matrix, such that a nonzero average
value hâ y1 â2i appears. In any case, we emphasize that
approximations leading to the expressions used in this
section (and above) are valid according to the experimental
results. It seems that this is the main reason why the
interaction with a reservoir, the possible role of reflection,
the values of corrections, and so on have been insufficiently
studied theoretically so far.

10.1 Average current
Using expressions (165), (167), and (170), we obtain expres-
sions for the average current, 26 coinciding in the one-
dimensional case with expression (49):

hÎ i � 2e

h

�
dET�E �� f1�E � ÿ f2�E �

	
: �172�

In the general case, in the presence of many channels and
reservoirs, we have

Ib � 2e

h

X
a

X
j; l

�
dE
�
fb�E � ÿ fa�E �

�
Tba; l j�E � ; �173�

where a and b are the numbers of the reservoirs, and j and l
are the numbers of the channels.

If m1 � EF � eV, m2 � EF, and Y1 � Y2 � Y, then as
V! 0, the conductance in the one-dimensional case has the
form

G � 2e 2

h

�
T�E �

�
ÿ q f
qE

�
dE : �174�

10.2 The Landauer approach
from the standpoint of the Keldysh Green's functions
Many efforts have been devoted to a rigorous derivation of
the Landauer formula by more traditional methods, in
particular, based on the Kubo formula [101]. We show,
omitting obvious details, how the Landauer formula can be
obtained with the help of a more formal (or, more precisely,
better formalized) approach used in Keldysh's paper [102] to
construct a diagram technique for nonequilibrium situations.
The Keldysh Green's function

iGÿ��r; r 0� � Tr
�
r̂Ĉ y�r 0� Ĉ�r�	 � 
Ĉ y�r 0� Ĉ�r�� �175�

is an analogue of the distribution function f �q; p; t� in the
kinetic equation. The kinetic equation is typically solved by
specifying the boundary conditions in the reservoirs, such
that the distribution function be coincident with the local
equilibrium function. For the Keldysh function, the bound-
ary conditions at infinity, i.e., in the reservoirs (see, e.g., [78]),
are

Gÿ��r; r 0�
���
r; r 02L�R�

� Gÿ�eq �r; r 0� ; �176�

where r; r 0 2 L�R�means that r and r 0 belong to either the left
or right, but always to the same reservoir. The current is

24 In this case, we use the standard theoretical `ensemble averaging'.

However, experimental averaging occurs in time. The fact that these two

averaging methods give the same result is the subject of the ergodic

hypothesis. Thus, we calculate one quantity, but another is measured.

However, the ergodic hypothesis gives grounds to assume that they should

coincide. For some particular systems, the ergodic hypothesis can be

proved.
25 At distances from the contact greatly exceeding the characteristic energy

relaxation length lE associated with inelastic scattering of electrons on

phonons or electron±electron scattering.

26 It is important that the terms in (165) responsible for the mixing of the

reservoirs, which contain creation and annihilation operators with

different subscripts a, vanish due to (171).
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expressed in terms of the Keldysh Green's function as

j � e�h

2m

�
q
qr
ÿ q
qr 0

�
Gÿ��r; r 0�

���
r�r 0

: �177�

We consider a quasi-one-dimensional QPC with several
open channels. Most of the electrons located far in the
reservoirs belong to closed channels, which do not penetrate
through the contact, and only a small fraction of electrons
comes from the opposite reservoir. Therefore, because the
ratio of open and closed channels in the reservoir is small,

df � Nwire

Nreservoir
; �178�

the distribution function in the reservoirs can be treated as the
equilibrium function with the specified ma and temperature,
the boundary conditions for the Keldysh function calculated
with density matrix (170) are satisfied, and hence the
derivation of the Landauer formula is completely confirmed.

We qualitatively describe the transport picture oncemore.
Particle fluxes emerging from the left and right reservoirs
have distribution functions characterized by their tempera-
tures and electrochemical potentials. In the contact region,
particles experience only elastic scattering, and the distribu-
tion function is strongly nonequilibrium. Along with the
states associated with the conducting channels in the con-
tact, both reservoirs contain many other states not connected
via the contact, which do not contribute to the current,
although play a dominant role in the formation of distribu-
tion functions (far away in the reservoirs), which turn out to
be close to equilibrium functions with good accuracy.

10.3 Noise description
We consider current fluctuations in time. To describe current
fluctuations (noise), we need the time-dependent current
operator in the Heisenberg picture. For the time-indepen-
dent HamiltonianH0 of the system, this operator is written as

Î�x; t� � exp

�
iĤ0t

�h

�
Î�x� exp

�
ÿ iĤ0t

�h

�
; �179�

Î�x; t� � e

�
dE 0 dE

i exp
�ÿi�Eÿ E 0�t=�h

�
2pm

���������
v1v 02

p
�
�
â
y
E 0 ; 1âE; 1�ÿik 0 ÿ ik� t �E 0 tE exp

�
i�kÿ k 0�x�

� â
y
E 0 ; 1âE; 2

h
�ÿik 0� t �E 0 exp �ÿik 0x�

� ÿexp �ÿikx� � rE exp �ikx�
�

ÿ t �E 0 exp �ÿik 0x�
ÿÿik exp �ÿikx� � ikrE exp �ikx�

�i
� â

y
E 0 ; 2âE; 1

hÿ
ik 0 exp �ik 0x�

ÿ ik 0r �E 0 exp �ÿik 0x�
�
tE exp �ikx�

ÿ ÿexp �ik 0x� � r �E 0 exp �ÿik 0x�
�
iktE exp �ikx�

i
� â

y
E 0 ; 2âE; 2

hÿ
ik 0 exp �ik 0x� ÿ ik 0r �E 0 exp �ÿik 0x�

�
� ÿexp �ÿikx� � rE exp �ikx�

�
ÿ ÿexp �ik 0x� � r �E 0 exp �ÿik 0x�

�
� ÿÿik exp �ÿikx� � ikrE exp �ikx�

�i�
: �180�

Fluctuations are described using the average
hDÎ�x; t�DÎ�x 0; t 0�i, where the operator DÎ � Îÿ hÎ i deter-
mines a deviation from the mean current. This average is
called the irreducible correlator, is denoted by
hhÎ�x; t� Î�x 0; t 0�ii, and is given by



Î�x; t� Î�x 0; t 0���
� 
Î�x; t� Î�x 0; t 0��ÿ 
Î�x; t��
Î�x 0; t 0��
� 
DÎ�x; t�DÎ�x 0; t 0�� : �181�

Current operators evaluated at different instants do not
commute, and therefore the operator DÎ�x; t�DÎ�x 0; t 0� is
not Hermitian and quantity (181) is typically complex. This
means that this quantity cannot be directly measured in
experiments. In Landau and Lifshitz's book [103], the
symmetrized correlator

1

2

�


Î�x; t� Î�x 0; t 0���� 

Î�x 0; t 0� Î�x; t���� �182�

is considered to be a measurable quantity. Another standard
quantity characterizing noise is the Fourier transform of
current correlators: the spectral noise density. In [103], it was
proposed to take the Fourier transform of symmetrized
correlator (182). However, as follows from the analysis of
themeasurement process, themeasurable quantity is typically
the Fourier transform of the nonsymmetrized correlator 27

[104±106]

S�o� �
�
dt exp �iot�

Î�x; 0� Î�x; t��� : �183�

This fact was confirmed in recent experiments [107] (see also
previous experiments [108±110] in which only the excessive
noise was measured, and, as a result, it was impossible to
rigorously distinguish the symmetrized correlator from the
nonsymmetrized one [111]).

In (183), we used the fact that in the absence of time-
dependent external fields, the correlation function must
depend only on the time difference. Therefore, the Fourier
transform with respect to two times has the form



Î�x;o� Î�x;o 0��� � S�o�2pd�o� o 0� : �184�

The quantity studiedmost often is the spectral noise density at
the zero frequency:

S�0� � 2e 2

h

� �1
0

dE
n
f1�E �

�
1ÿ f1�E �

�
T 2�E �

� f2�E �
�
1ÿ f2�E �

�
T 2�E � � T�E ��1ÿ T�E ��

� � f1�E �ÿ1ÿ f2�E �
�� f2�E �

ÿ
1ÿ f1�E �

��o
: �185�

This quantity is independent of coordinates (which is the
general property following from the stationarity of the
random process of charge transfer).

Expression (185) was first obtained by one of us [21]. Its
generalization to themultichannel case [21] looks surprisingly
simple in the representation of eigenchannels in [23], for

27Which, unlike the nonsymmetrized current correlator at different times,

is always a real quantity.
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which the transparency is diagonalized,

S�0� � 2e 2

h

X
n

� �1
0

dE
n
f1�E �

ÿ
1ÿ f1�E �

�
T 2
n �E �

� f2�E �
ÿ
1ÿ f2�E �

�
T 2
n �E � � Tn�E �

ÿ
1ÿ Tn�E �

�
� � f1�E �ÿ1ÿ f2�E �

�� f2�E �
ÿ
1ÿ f1�E �

��o
; �186�

and coincides in form with the expression for a QPC in which
the channels are not mixed [21].

We consider the value of S�0� in the limit case where the
reservoirs are in equilibrium with each other � f1 � f2 � f �.
Then the relation f �1ÿ f � � ÿY qE f holds, and we obtain

S�0� � 4e 2Y
h

�
dE

�
ÿ q f
qE

�
T�E � � 2YG : �187�

This is the equilibrium noise (the Johnson±Nyquist noise)
appearing due to temperature fluctuations of the electron
occupation numbers in the reservoirs.

We now consider noise in the limit (quantum) case where
the temperature of the reservoirs is zero. Then fa�E � �
y�Eÿ ma� and

S�0� � 2e 2

h

�
dE
�
1ÿ T�E ��T�E �� f2�E � ÿ f1�E �

�
� 2e 3jV j

h
�1ÿ T �T � ehÎ i�1ÿ T � ; �188�

where we set m1 � m� eV and m2 � m.
The approximate equality in (188) is valid if the transmis-

sion probability T�E �weakly depends on energy. In this case,
expression (188) (the Khlus±Lesovik formula) was obtained
in [112] and then independently in [21], as a particular case of
general expression (185).28

It follows from (188) that the quantum shot noise intensity
is determined by scattering from a potential barrier. If a
scatterer is absent, T � 1, the noise is also absent. Noise also
disappears if T � 0 because the electron transfer is then
completely absent. In the intermediate situation, the wave
packets describing electrons split into transmitted and
reflected fractions during tunneling through the barrier.
During measurements, electrons can be detected both in the
left reservoir (`reflected electrons') and in the right reservoir
(`transmitted electrons'), and this occurs absolutely unpredic-
tably and randomly. This principal quantum mechanical
unpredictability is the main source of the quantum shot
noise. It is important that in the quantum case, the electrons
obeying the Fermi±Dirac statistics leave the reservoir in an
almost ordered way, and therefore, in the absence of the
uncertainty caused by scattering from the barrier �T � 1�, the
low-frequency shot noise is suppressed. Expression (188) was
confirmed in the excellent experiments of two groups [113,
114] studying noise in QPCs. At a plateau, where Tn � 1 or
Tn � 0 for all channels, the noise was suppressed, while in the
region of steps, it was finite, according to (188), and correctly
depended on transparency.

Expressions obtained for the dependence of noise on the
transparency make the theory closed in some sense. In
describing the conductance for a QPC, we compared
theoretical results based on the calculations of T with
experimental data. But having theoretical results for the

average current and noise, it is possible not to calculate the
transparency T but to determine it experimentally from
current measurements, and then to compare these measure-
ments with independent experimental data on noise.

Themeasurements of noise in dirty samples allow proving
that the transparency distribution function (the Dorokhov
function) is actually nontrivial and the simple estimates of
transparencies discussed in Section 8.2 are incorrect. If all the
transparencies are small, it follows from the general expres-
sion that

S�0� � ehÎ i ; �189�

and the Fano factor F, defined as the ratio F � S�0�=eI, is
unity, F � 1, as for the classical shot noise (see the end of this
section). By averaging the sum

P
n Tn�1ÿ Tn� entering the

expression for noise with theDorokhov distribution function,
it is possible to obtain the relation hPn Tn�1ÿ Tn�i �
�1=3�hPn Tni and the Fano factor F � 1=3 [85]. Experiments
[115, 116] confirmed these calculations.

The energy dependence of transparency gives rise to some
additional effects. In the case of ideal resonance at a voltage
exceeding the width of the resonance, i.e., in the plateau of the
current±voltage characteristic (Fig. 18b), the Fano factor F is
1=2. This result is obtained because the energy dependence of
the transparency distribution function is nontrivial (see also
Section 15.2, where noise in the hybrid INIS junction is
considered). We also note that for a certain energy depen-
dence of the transparency, noise can begin to decrease at a
nonzero voltage: in other words, the `excess noise' can become
negative [117].

Finally, we see that expression (188) for noise contains the
electron charge, and therefore the discreteness of the charge
carried by quantum particles is also significantly manifested
in the shot noise. Schottky was the first to point out this
circumstance in 1918 and to derive the famous formula

S�0� � ehI i �190�

for the classical shot noise, assuming that the random electron
transfer process is Poissonian (i.e., all electrons escape
independently of each other) with the escape probability for
m electrons Pm � � �Nm=m!� exp �ÿ �N�, where �N � It=e. The
mean-square deviation for the transferred charge in this
process is h�dQ�2i � e 2h�dN �2i � e 2hN i. Using the relation

lim
t!1


ÿ
dQ�t��2�

t
� S�0� ; �191�

Schottky obtained formula (190).
The ratio S�0�=I of the noise intensity to the mean current

is used for experimental measurements of the charge of an
elementary current carrier, which is not always an isolated
electron. Important measurements of a fractional charge in
the fractional quantum Hall effect were performed by two
groups [118±121]. A more complete bibliography on noises is
presented in reviews [122, 123].

11. Full counting statistics

Typical quantities that were studied until recently in the
quantum transport are the time-averaged current and noise,
i.e., a pair current correlator. However, it is known from the
theory of random processes that to characterize a random28 To extract expression (188) from paper [112], some care is required.
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process completely, it is also necessary to study higher-order
correlators and the distribution function for the transferred
charge (which requires the knowledge of current correlators
of all orders at low frequencies). This knowledge provides the
maximally complete information on a system, taking into
account that the process is nondeterministic. One of the
sources of uncertainty, as pointed out in Section 10.3, is
related to the probabilistic nature of quantummechanics, and
another to the inaccurate knowledge of the reservoir states.
Hence, along with the mean current hI i, transferred charge
hQ�t�i � hI it, or mean-square deviation h�dQ�2i [and, corre-
spondingly, noise S�0�], it is also interesting to study the
higher-order moments

hQni �
� t

0

dt1 . . . dtn


I�t1� . . . I�tn�

� �192�

and the characteristic function, as was first done in [24, 124].
The characteristic function for the distribution function of the
transferred charge (we define it for the dimensionless number
Q=e of transferred particles),

w�l� �
X
n


�Q=e�n�
n!

�il�n �
�
exp

ilQ
e

�
; �193�

contains information on all moments because it is a generat-
ing function, and all the moments are determined by
differentiating this function:��

Q

e

�n�
� dn

d�il�n w�l�
����
l�0

: �194�

A random process can be more conveniently characterized by
cumulants instead of moments. The cumulant is defined by
the expression���

Q

e

�n��
� dn

d�il�n log w�l�
����
l�0

: �195�

Cumulants have the following important properties: (i) those
with n > 1 do not change when a random variable is shifted
by c, hh�Q� c�nii� hhQnii, (ii) they are homogeneous of
degree n, hh�cQ�nii�cnhhQnii, and (iii) they are additive,
hh�Q� ~Q�nii� hhQnii � hh ~Qnii, if Q and ~Q are independent
variables. It follows from the last property that hhQnii / t for
large times t exceeding correlation times in the system. The
argument is as follows: the whole process at large times can be
divided into independent subprocesses contributing to the net
result. Because the number of subprocesses increases linearly
with increasing t, the total cumulant behaves similarly.

Knowing all the cumulants, for example, we can describe
the Josephson generation frequency shift [125] and accurately
describe the influence of noise in a wire on near quantum
systems (for example, qubits) without assuming that the noise
distribution is Gaussian, as is usually accepted [126±128]. In
addition, it becomes possible to accurately describe the
properties of a QPC as a detector related to a quantum bit
[129]. A third-order correlator can indicate asymmetry in a
two-level system, affecting conduction electrons [125, 126],
and the presence of other effects. 29

We now determine the number n of electrons transferred
in time t, which are related to the charge as Q � en. The
random process is defined by the probabilities Pn that exactly
n particles are transferred in time t, i.e.,

w�l� �
�
exp

ilQ
e

�
�
X
n

Pn exp �iln� : �196�

We note that the assumption that n is an integer leads to the
periodicity of w�l� with the period 2p.

The probabilities Pn can be obtained from the character-
istic function via the Fourier transform

Pn �
� 2p

0

dl
2p

exp �ÿiln� w�l� : �197�

In the quantum case, the relation between current
correlators and moment observables (192) and charge
cumulants is not as simple as in the classical case. Different
definitions are found to lead to different results, and to obtain
unambiguous results, it is necessary to describe not only a
wire but also a detector and a measurement scheme. In the
calculation of the characteristic function defined similarly to
the classical expression as w�l� � hexp �il � t0 Î�t 0� dt 0�i, the
problem of time ordering of current operators appears. If we
follow this definition literally, current operators in the
expressions for moments and cumulants should be symme-
trized. This definition was used in 1992 in the first paper [124]
on the full counting statistics. The result obtained for a one-
channel conductor with a transparency T at a finite voltageV
and zero temperature has the form

w�l� �
�
exp

�
il
� t

0

dt 0
Î�t 0�
e

��
�
h
cos �l

����
T
p
� � i

����
T
p

sin �l
����
T
p
�
iN
; �198�

where N � 2eVt=h4 1 is the `number of attempts'. This
expression is periodic with the period 2p=

����
T
p

, which can be
interpreted by saying that the distribution function exists for a
fractional charge e � � e

����
T
p

, which appears in some way in a
system, but is manifested neither in the mean current nor in
the noise. Although result (198) is formally correct and
follows from the definition of the characteristic function, a
further analysis has shown that such a distribution function
was not directly realized in all the measurement schemes
considered.

To solve the problem of determining the characteristic
function in the quantum case, it was necessary to analyze the
measurement scheme, and the authors of [69, 130] proposed
the analog of a classical galvanometer measuring (counting) a
chargeÐa quantum galvanometer represented by a spin 1=2
located near the wire and precessing in a magnetic field
induced by the current. The precession angle allows measur-
ing the chargeQ � � t0 I�t 0� dt 0 that has flown. The interaction
between the spin and an electron in the wire is described by the
Hamiltonian

Ĥint � ÿ 1

c

�
dx Î�x�A�x� ; �199�

where A�x� is the component of the vector potential induced
by the spin 1=2 in the quantum conductor (along the wire). In
the general case, such an interaction is long-range, but to
simplify calculations, it can be replaced with a local interac-

29 We do not present here the list of all possible effects in which the non-

Gaussian distribution of fluctuations is manifested, because this question

is outside the scope of our review.
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tion by representing A�x� in the form30

A�x� � A0 d�xÿ x0�sz ; �200�

where sz is the Pauli matrix, x0 is the position of the
measuring spin, and A0 specifies the strength of interac-
tion with electrons in the wire. Correspondingly, the
interaction Hamiltonian takes the form Ĥint �
Ĥint;�j"ih"j � Ĥint;ÿj#ih#j, where

Ĥint;� � �l �hI�x0�
2e

; �201�

l � 2eA0=�hc, and j"i and j#i are spin states.
We assume that the initial state of the measuring spin is

specified by the density matrix r̂ s�0� at the instant t � 0. The
transfer statistics can be `rewritten' in terms of the angle of
spin rotation for time t, which can be obtained from
nondiagonal elements of the spin density matrix. The time
evolution of nondiagonal elements of the spin density matrix
[assuming that it is independent at the instant t � 0 of the
density matrix r̂ e�0� of the electron system] is described by

r̂ s
"#�t� � Tre

(
exp

�
ÿ i�Ĥe � Ĥint;��t

�h

�
r̂e�0�

� exp

�
i�Ĥe � Ĥint;ÿ�t

�h

�)
r̂ s
"#�0�

� Tre

(
T
�
exp

�
il
� t

0

dt 0
I�x0; t 0�

2e

��
r̂ e�0�

� ~T
�
exp

�
il
� t

0

dt 0
I�x0; t 0�

2e

��)
r̂ s
"#�0� ; �202�

where the trace �Tre� is taken over the electron degrees of
freedom and Ĥe is the Hamiltonian of the electron subsystem.
The expression after the second equality sign in (202) is
written in the interaction picture in which the free energy
operator Ĥe determines the time dependence of the current
operator I�x0; t�, while T and ~T respectively denote time
ordering and antiordering.31 Defining w�l� as r̂ s

"#�t�=r̂ s
"#�0�, 32

we obtain the characteristic function of the transfer statistics:

w�l��
�

~T
�
exp

�
il
� t

0

dt 0Î�t 0�
2e

��
T
�
exp

�
il
� t

0

dt 0 I�t 0�
2e

���
:

�203�

We see that this definition differs from (198) by the presence
of time ordering of current operators.

Characteristic function (203) at zero temperature and a
finite voltage has the form [24]

w�l� � �1ÿ T� T exp �il��N �204�

and has the period 2p as a function of l, which leads to the
charge quantization in units of e. However, although the
characteristic function determined by the measuring spin 1=2
is 2p-periodic in this particular case, there are no grounds to
believe that this result is general for arbitrary Ĥe and r̂e�0�.
Moreover, an explicit example is presented in [132] where the
initial state is a superposition of the left and right scattering
states and the characteristic function has the period 4p (which
means the charge quantization in units of e=2). Nevertheless,
although the chosen definition (203) does not always give an
integer charge quantization, the quantity w�l� is measurable
and, in particular, describes the decoherence of a qubit (spin)
coupled to a quantumwire. Indeed, according to the accepted
definition, w�l� is a nondiagonal (normalized) element of the
spin density matrix, and the absolute value jw�l�j specifies the
decoherence degree. From relation (204), we obtain��w�l��� � ��1ÿ T� T exp �il���N � �1ÿ 4T�1ÿ T� sin2 l

2

�N=2
:

�205�

Since the value of l is determined by the interaction strength,
the decoherence rate is a nonmonotonic function of the
coupling between the conductor and the measuring spin. In
reality, a phase or a charge qubit can play the role of a spin
(see the discussion in [133]).

Shelankov and Rammer [132] proposed an alternative
definition of w�l�, which always gives the period 2p and
positive probabilities Pn. This definition corresponds to the
approach in which Pn is measured directly, as proposed in
[134]. The same definition was used in [100, 135] (also see the
discussion in [131]). By performing the measurement corre-
sponding to the operatorQ � � 1x0 dx jxihxj, which determines
a charge to the right of the detector at t � 0, and comparing
the measurement result with a charge at time t, we can obtain
the number of electrons that have passed in the time t. The
formulation of the problem in this way leads to the
characteristic function

w�l� �
�
exp

�
ilU yQU

e

�
exp

�
ÿ ilQ

e

��
; �206�

where U � exp �ÿiĤet� is the unitary evolution operator; the
angular brackets denote averaging over the eigenstate of Q
in which particles are initially certainly located either on the
left or on the right of the scatterer (in particular, such a
definition allows avoiding the states leading to periodicity
with the period 4p).

11.1 Analysis of statistics in the one-electron example
To understand better how the transport statistics are
described by means of the formalism presented (or rather
outlined) above, which is based on the use of a measuring
spin, we consider a simple problem for one electron. We
assume that a wave packet with the wave function f �k� in the
k space concentrated near some k0 > 0,

Cin�x; t� � Cf�x; t� �
�
dk

2p
f �k� exp �i�kxÿ okt�

�
; �207�

located on the left for t! ÿ1, moves to the right and
incidentes on a scatterer having the transmission amplitude
tk and reflection amplitude rk. The function f �k� is normal-
ized by the condition

� �dk=2p�j f �k�j2 � 1;ok � �hk 2=2m. We
locate a measuring spin near the scatterer. Then the

30 Strictly speaking, a potential of this form can give rise to certain

difficulties caused by the fact that the interactionHamiltonian should take

not only linear terms but also terms quadratic in A�x� into account. This

leads to some peculiarities in the description of statistics in the many-

particle perturbation theory, which we do not consider here.
31 If themeasuring spin is located near the scatterer, themore complicated,

so-called Matthew time ordering is required [131].
32 During the flow of a classical current near the measuring spin, this

quantity exponentially depends on the charge that has flowed (in units of

the charge e), exp �ilN�.
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transmitted part of the wave packet acquires an additional
phase due to the interaction with the spin: in the case of
magnetic interaction, the additional phase at the point x has
the form dfA�x� � 2p

� x
ÿ1 dx 0 Ax�x 0�=F0 and does not

depend on k; as x!1, we obtain the full phase
l=2 � 2p

� 1
ÿ1 dxAx�x�=F0. We note that fA has opposite

signs for particles moving in opposite directions �k! ÿk�.
Scattered waves, which have the form (for t!1)

C�out�x; t� �
�
dk

2p
f �k� exp �ÿiokt�

�
rk exp �ÿikx�Y�ÿx�

� exp

�
� il

2

�
tk exp �ikx�Y�x�

�
; �208�

acquire an additional phase, depending on the spin state j�i
(or, in reality, a qubit state). The characteristic function for
the full counting statistics is described by the expression

w�l; t� �
�
dxCÿ�out �x; t�C�out�x; t�

�
�
dk

2p

�
Rk � exp �il�Tk

��� f �k���2
� hR if � exp �il�hT if ; �209�

where Rk � jrkj2 and Tk � jtkj2. We neglected the nondiago-
nal term

�
dk f ��ÿk� f �k�, which is typically exponentially

small. The Fourier transform of the characteristic function
gives the probabilities P0 � hR if and P1 � hT if, coinciding,
as expected, with the reflection and transmission probabilities
for particles. We see from this simple example that the
definition (with the measuring spin) works correctly. Of
course, this method offers no advantages over standard
probability calculations in this simple case, the advantages
being manifested only for a large or infinite number of
particles.

11.2 Analysis of the full counting statistics
for two electrons
Following [136] and using the wave-packet formalism, we
calculate the characteristic function for the full counting
statistics for two particlesÐ the simplest case where the
Fermi statistics of particles is already manifested. Incident
particles are described by the wave packets

cin;m�x; t� �
�1
0

dk

2p
fm�k� exp

�
ik�xÿ vFt�

�
; �210�

with wave functions f1�k� and f2�k� in the momentum space
satisfying the normalization condition

� �dk=2p�j fm�k�j2�1.
Because we eventually consider electrons at low temperatures
in the vicinity of the Fermi energy, it is convenient to linearize
the spectrum E � vFjkj, where vF is the Fermi velocity, �hk is
the momentum, and �hE is the energy. After propagation
through the scatterer, wave packet (210) is split into reflected
and transmitted parts:

cs
out;m�x; t� �

�1
0

dk

2p
fm�k� exp �ÿikvFt�

�
�
rk exp �ÿikx�Y�xs ÿ x�

� exp

�
isl
2

�
tk exp �ikx�Y�xÿ xs�

�
; �211�

where we introduce the phase exp �isl=2� in the transmitted
part of the wave packet; the sign s � �1 corresponds to the
spin state, as in Section 11.1. The two-particle wave function
symmetrized (antisymmetrized) in the proper way has the
form

Ca;��x1; x2; t� / ca; 1�x1; t�ca; 2�x2; t� � �x1 $ x2� ;
a � in; out ;

here, we use the sign � to distinguish the triplet and
singlet states of two electrons. The characteristic function
has the form

w��l� �
�
dx1 dx2 Cÿ1 �out;�C

�1
out;� :

From this, we obtain

w��l�

�
�
1� ÿexp �il� ÿ 1

�

1jT j1���1�ÿexp �il� ÿ 1

�

2jT j2i�

1� jS j2

�
�
S� ÿexp �il� ÿ 1

�

1jT j2���S �� ÿexp �il� ÿ 1

�

2jT j1��

1� jS j2
�212�

with the matrix element

njT jm� � � dk

2p
f �n �k�Tk fm�k� ;

where Tk � jtkj2; the overlap integral is

S �
�
dk

2p
f �1 �k� f2�k� :

The transmission probability for n particles is determined by
the Fourier transform of the characteristic function

Pn �
�
dl
2p

w�l� exp �ÿiln� :

For the amplitude tk � t independent of energy, the denomi-
nator in (212) cancels with the factor in the numerator that
depends on the exchange term, and, as a result, the transfer
statistics is independent of the exchange symmetry of the two-
particle wave function. This property is typical for the one-
dimensional case, whereas such a cancelation does not occur,
generally speaking, in the multichannel case, and the
interference (exchange) term is not zero even if the transmis-
sion amplitude is independent of energy.

If the transmission amplitude depends on energy, the
exchange terms lead to significant effects in the transfer
statistics. For simplicity, we consider two packets of the
same form separated by a distance dx. The Fourier compo-
nents of the packets satisfy the relation f2�k� �
f1�k� exp �ÿik dx�, whence


1jT j1� � 
2jT j2� � hT i � � dk

2p
Tk

�� f1�k���2 :
The overlap integral S � � dk=�2p� �� f1�k���2 exp �ikdx� is the
Fourier transform of the packet distribution function in the
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momentum space. The transmission probabilitiesPn;�, which
have the form

P0;� �
ÿ
1ÿ hT i�2 � ��Sÿ h1jT j2i��2

1� jS j2 ;

P1;� � 2
hT iÿ1ÿ hT i���Re

ÿh1jT j2iS ��ÿ ��h1jT j2i��2�
1� jS j2 ;

P2;� �
hT i2 � ��h1jT j2i��2

1� jS j2 �213�

(with
P

n Pn;� � 1), depend on the exchange symmetry if
h1jT j2i 6� ShT i.

Probabilities (213) can be easily transformed into the
cumulants of the transmitted charge Q � � dt I�t�. The first
two cumulants for two particles incident on the scatterer have
the form

hni� � P1;� � 2P2;� ; �214�
hhn 2ii� � P1;��1ÿ P1;�� � 4P2;�P0;�

(with n � Q=e), and they both depend on the exchange
symmetry. Strangely enough, the effect caused by the
exchange symmetry in the mean charge hQi was discovered
[136] considerably later than in the noise and charge
fluctuations hhQ 2ii [137±139].

To analyze the effect quantitatively, it is necessary to
specify the form of the wave packet f1 and the dependence of
Tk on the momentum. We do not resort to the standard
approximation of the Gaussian wave packet, but consider a
more realistic example.

Recently, a method has been developed for sending
isolated electrons on demand in quantum wires [140, 141].
In this case, electrons move not very high over the Fermi
surface. Otherwise, the electron transport becomes incoher-
ent due to the emission of phonons and photons (plasmons)
by electrons. The presence of the Fermi sea bocks these
inelastic processes, and the coherence length can reach a few
micrometers, exceeding the size of a conductor, for example, a
QPC.

Strictly one-particle excitations over the Fermi surface
can be produced by applying a Lorentzian voltage pulse [69,
142] 33 Vt1�t� � ÿ�2vFxF0=c�=�v 2

F�tÿ t1�2 � x 2�, where the
pulse duration x=vF is expressed in terms of the length
parameter x, and F0 � hc=e. Such a voltage pulse gives rise
to a wave packet with the amplitude

f1�k� �
��������
4px

p
exp

�ÿx�kÿ kF� ÿ ikx1
�
Y�kÿ kF� �215�

�x1 � vFt1� and the Lorentzian profile in the usual space,

jc1j2 �
x=p

�xÿ x1 ÿ vFt�2 � x 2
: �216�

The overlap integral for the wave packets separated by a
distance dx has the form

S � exp �ÿikFdx�
1� idx=2x

:

We consider scatterers of two types:
(i) with a transparency resonance, which we write in the

form

T res
k �

a

1� b 2�kÿ kF ÿ k0�2
;

where a4 1 is the amplitude of the resonance and k0 > 0 is its
position relative to the Fermi wave vector kF. The resonance
width bÿ1 should be much smaller than the wave-packet
width xÿ1 in the k-space, bÿ1 5 xÿ1. The transparency hT resi
for one packet with the amplitude f1�k� for bÿ1 5 k0 takes
the form

hT resi � 2pax
b

exp �ÿ2xk0� ;

which is a resonance away from the Fermi level. Although the
small parameter k0x provides a strong total signal, it leads to
the suppression of exchange effects because the transparency
is already maximal; we therefore consider intermediate and
large values of k0x;

(ii) with a sharp transparency step �bÿ1 5 xÿ1�, for
example, in a QPC. In this case, we use the Kemble formula
considered above, which can now be conveniently written in
the form

TQPC
k � a

1� exp
�ÿb�kÿ kF ÿ k0�

� :
The mean transparency here is hTQPCi � a exp �ÿ2xk0�; a
small factor x=b is absent in this case.

For a pronounced (narrow) resonance, the exchange term
takes the simple form


1jT resj2� � exp
�ÿi�kF � k0�dx

� hT resi ;

and its product with the overlap integral S � is proportional to
exp �ÿik0dx� and independent of kF. The mean number of
particles oscillates as a function of the distance dx:

hnires� � 2hT resi
�
1�

�
dx
2x

�2

�
�
cos �k0dx� � dx

2x
sin �k0dx�

���
1�

�
dx
2x

�2

� 1

�ÿ1
:

�217�

For wave packets with a large delay, dx4 x, the exchange
term decays as �dx�ÿ2, while the number of transmitted
particles is hnires � 2hT resi, irrespective of the exchange term
sign. On the other hand, for strongly overlapped wave
packets, dx! 0, the result hnires� � 2hT resi obtained for
independent particles in the singlet case is reproduced. In the
asymmetric case (a triplet), the number of particles

hniresÿ � 2hT resi�1ÿ 2xk0 � 2x 2k 2
0 � �218�

decreases for narrowwave packets with xk0 < 1 and increases
for packets with xk0 > 1. The decrease can reach 50% for
xk0 � 1=2, 34 while the (relative) increase for xk0 > 1 is
unlimited. We note that this increase occurs because P1;ÿ
and P2;ÿ almost vanish.

33 Generally speaking, a pulse with an arbitrary profile excites an infinite

number of electron±hole pairs, which is a phenomenon quite similar to the

so-called Anderson catastrophe (see the discussion in [69]).

34 It follows from the exponential decrease of hT resi/ exp �ÿ2k0x� that
hÿQ=eires 5 2 for xk0 > 1.
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In the case of a QPC, the result is similar: the nondiagonal
matrix elements take the form


1jTQPCj2� � exp �ÿik0dx�ShTQPCi ;
and the interference term in P2 vanishes. The number of
transmitted particles

hniQPC
� � 2hTQPCi 1� �dx=2x�

2 � cos �k0dx�
1� �dx=2x�2 � 1

�219�

oscillates with k0dx. Different limits discussed above are also
reproduced, except for the case of antisymmetric exchange
and strongly overlapping packets [see (218)], in which the
mean number of transmitted particles is

hniQPC
ÿ � 2hTQPCi�1� 2x 2k 2

0 � : �220�

Equations (218) and (220) contain the most surprising
results: for a large parameter xk0, the mean number of
particles can increase very strongly compared to that of two
independent packets. This is the case when all characteristic
lengths are smaller than the dephasing length Lj. Finally, we
present the expression for the characteristic function in the
case of the transfer statistics for two particles:

w res
� � 1� hnires�

�
exp �il� ÿ 1

�
� hT resi2 �1� 1���dx=2x�2 � 1

�
�dx=2x�2 � 1� 1

�
exp �il� ÿ 1

�2
; �221�

wQPC
� � 1� hniQPC

�
�
exp �il� ÿ 1

�� hTQPCi2�exp �il� ÿ 1
�2
:

�222�
The increase in hniÿ is completely caused by the increasing

P1. This effect is determined by the Pauli principle and the
energy dependence of the transparency. The energy depen-
dence of the transparency leads to the wave packet broad-
ening, which, in conjunction with the Pauli principle, causes a
decrease in P0 and P2, and therefore an increase in P1.
Nevertheless, situations are possible where P2 also increases.

For example, a high probability P2;ÿ [see (212)] is
obtained for wave packets with the amplitudes shifted in the
k-space, f2�k� � f1�k� dk�, and the large overlap integral S
of the transmission amplitude is suppressed for k belonging to
the overlap region. A large increase in the transmission
probability P2 for two electrons was also observed in [143].

We note that exchange effects in the transfer statistics at
constant voltages are considered in [24], where, in particular,
a simple example with a `Y-joint' containing three channels is
discussed and the characteristic function is found (pair
correlators in this geometry are studied in [23, 137]).

11.3 Statistics for N particles
Following [136], we extend the previous analysis to the case of
N particles with the (incident) wave function C�k� defined in
the momentum space; the vector k � �k1; . . . ; kN� determines
N momenta of particles. We consider independent noninter-
acting particles scattered from a barrier. The scattered wave
function in the asymptotic region (for t!1) takes the form

c�out�x; t��
�YN

m�1

�
dkm
2p

�
rkm exp

�ÿikm�xm � vFt��Y�ÿxm�
� tkm exp

�
ikm�xm ÿ vFt�

�
exp

�
� il

2

�
Y�xm�

��
C�k� ;
�223�

which means that the evolution of the total wave
function reduces to the individual evolutions of one-
particle wave functions, and we obtain the product of
asymptotic states (208). The characteristic function
wN�l� �

�
dxcÿ�out �x; t�c�out�x; t� is expressed as

wN�l� �
�YN

m�1

�
dkm
2p

�
1ÿ Tkm � Tkm exp �il�

����C�k���2 :
�224�

So far we have not specified the exact form of the
incident wave function. If we restrict ourselves to the Slater
determinant composed of orthonormalized one-particle
functions fm,

C�k1; . . . ; kN� � 1�����
N!
p detfm�kn� ; �225�

then expression (224) can be represented as the determi-
nant

wN�l� � det

�
dk

2p
f �m�k�

�
1ÿ Tk � Tk exp �il�

�
fn�k�

� det


fm

��1ÿ T� T exp �il���fn

�
; �226�

containing one-particle matrix elements hfmjOjfni of the
operator O � 1ÿ T� T exp �il�.

The nonorthogonal basis. Real situations are typically
described using the occupation of orthogonal states in the
Slater determinant, as demonstrated above. But, for exam-
ple, in the case presented in Fig. 25, electrons fill the states
f1 and f2 that have a finite overlap, i.e., are not
nonorthogonal. However, the N-particle Slater determinant
can also be composed of nonorthogonal states j fmi if they
are linearly independent, i.e., det h fmj fni 6� 0. The correctly
antisymmetrized and normalized wave function (225) takes
the form

C f �k1; . . . ; kN� � 1����������������������������
N! det h fmj fni

p det fm�kn� : �227�

Substituting this expression in (224) and repeating the
calculations leading to (226), we obtain the characteristic

xs � 0 xc x

Tk

vFS

f1�k� f2�k�

xV

eFeV�t�

n

Figure 25. Quantum wire with a scattering center at xs providing the

momentum-dependent transparency Tk. The time-dependent potential

eV�t� applied at the point xV (to the left of the scatterer) gives rise to the

incident wave packets f1 and f2 with the overlaps S � h f2j f1i. A

detector located at the point xc (to the right of the scatterer) measures

the statistics of the number n of particles propagated to the right. We

considered incident packets with k > 0 outside the Fermi sea. As a

result, the Fermi sea remains unperturbed in the asymptotic regime. The

presence of the Fermi sea at finite times produces additional noise,

which we neglect.
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function as the ratio of determinants of two N�Nmatrices

wN�l� �
det


fm
��1ÿ T� T exp �il��� fn�

det h fmj fni

� det
ÿ
S f ÿ T f � T f exp �il��

detS f
; �228�

where the matrices S f and T f are defined by

S f
mn � h fmj fni ; T f

mn � h fmjT j fni : �229�

11.4 Invariance of the Slater determinant
under linear transformations
Expression (228) for the characteristic function can be
considerably simplified and represented in the form describ-
ing a generalized binomial distribution [26, 144, 145]. A
significant feature of such a representation of the character-
istic function is the fact that the Hilbert space HN of
dimension N spanned by the set of one-particle states with
the wave functions fn�k� determines the only correctly
antisymmetrized wave function (unentangled state) or, in
other words, only one Slater determinant exists (up to a
phase) forN particles (with states fromHN). The antisymme-
trizedN-particle (unentangled) state is thus determined by the
Hilbert space HN, i.e., by all states in the set, and is
independent of the particular choice of an orthonormalized
basis [146].

To clarify this, we consider a simple case of the two-
particle Slater determinant in the secondary quantization
representation jCi � a

y
2a
y
1 j0i with the vacuum state j0i and

fermion operators a1; 2. Defining the new operators
a� � �a1 � a2�=

���
2
p

, we see that the two-particle state

a
y
�a
y
ÿj0i �

1

2
�a y1 � a

y
2 ��a y1 ÿ a

y
2 �j0i � a

y
2a
y
1 j0i � jCi �230�

remains invariant.
We now consider the N-particle Slater determinant in

form (227). After the passage from basis states fm�k� to new
states gm�k� via a complex linear transformation

gm�k� �
X
n

Amn fn�k� ; detA 6� 0 ; �231�

the antisymmetric combination

det gm�kn� � �detA� det fm�kn� �232�

remains invariant up to the factor detA; here, we took into
account that the determinant of the product of matrices is
equal to the product of their determinants. In addition, the
normalized N-particle determinant states C f and C g satisfy
the relation

C g�k1; . . . ; kN� � sign �detA�C f �k1; . . . ; kN� ; �233�

where sign x � x=jxj. The only effect of using the new basis is
the appearance of the overall factor sign �detA�, which does
not enter expression (224) for the characteristic function. The
full counting statistics in bases f and g is therefore the same.

Diagonalization.The invariance of the determinant can be
used to simplify the full counting statistics. In addition, even
without specifying the scatterer type, it is possible to under-
stand the full counting statistics qualitatively. In particular,
we can assert that the statistics for states of the Slater

determinant type always reduces to a generalized binomial
form (which is valid for a single-lead conductor (two-contact
wire), but not, generally speaking, for multilead conductors
[147]).

We first consider how the invariance of determinant (232)
is manifested in (228). We note that any one-particle matrix B
of form (229) is transformed by A as

Bg � AyB fA ; B � S;T : �234�

Because det �AB� � detA detB, it follows that wN is invariant
under the change of basis

wN �
detX f

detS f
� j detA j

2 detX f

j detA j2 detS f
� detXg

detSg
; �235�

where X f � S f ÿ T f � T f exp �il�. This invariance can be
used to pass to a new orthogonal set gm�k� with the overlap
matrix Sg

mn � dmn and the transparency matrix taking the
diagonal form Tg

mn � tmdmn. The possibility to diagonalize
the matrices Tg

mn and Sg
mn simultaneously follows from

transformation law (234) for bilinear forms (in contrast to a
linear transformation L, which acts as Lg � Aÿ1L fA), taking
the positive definiteness of Sg

mn into account. The correspond-
ing basis gm and the eigenvalues tm of the Tg

mn matrix are
found from the generalized eigenvalue problem

�T f ÿ tmS f �am � 0 �236�

with the normalization a ymS
fam � 1. 35 The eigenvectors am

compose the columns of the transformation matrix A �
�a1; . . . ; aN�. The eigenvalues are determined by the roots of
the characteristic polynomial det �T f ÿ tS f � � 0. Expres-
sion (228) for wN, written in the basis gm�k� becomes a
generalized binomial function,

wN�l� �
YN
m�1

�
1ÿ tm � tm exp �il�� ; �237�

where the determinant is calculated explicitly, and the result
depends only on the eigenvalues tm.

The generalized eigenvalue problem can be reduced to
the usual one by passing to the orthonormalized basis
fm�k� with Sf � 11N, which can be obtained using the
Gram±Schmidt diagonalization procedure, with fm�k� �P

n��S f �ÿ1=2�nm fn�k�.
We see from the foregoing that eigenvalue problem (236)

is independent of the basis, while the eigenvalues and
eigenvectors are specified by the transparency operator T
acting in the Hilbert space HN endowed with the scalar
product h f jgi. Using the language of quadratic forms, these
conclusions mean that the eigenvalues and eigenvectors can
be found by using the positive definite quadratic form
T�g� � hgjT jgi and S�g� � hgjgi, g 2 HN. Representing the
bilinear form T�g� with S�g� � 1 as a polar plot with the
radius T�g�, where g determines the direction in HN, we
obtain an ellipsoid in the N-dimensional space. The lengths
of the major axes of this ellipsoid are given by the eigenvalues,
while the corresponding directions are the eigenvectors of our
problem (236) [148]. The eigenvalues tm are restricted to the

35 This is used, for example, in the Bogoliubov transformation, where a

quadratic Hamiltonian is diagonalized under the condition that the form

of commutation relations be preserved (see Section 12).
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interval �0; 1� and 04T�g�4S�g� by virtue of the unitarity
property. Such a description can be used to analyze the
general properties of the generalized binomial distribution
function [136].

11.5 Description of statistics at a constant voltage
The measurement of scattering characteristics of individual
electrons in meso- and nanoconductors, as it is performed,
for example, for particles in accelerators, is complicated.36 It
is much simpler to study the mean current or current
correlators measured at a constant voltage (in this case, a
large number of electrons are involved in transport). At the
same time, this case of the full counting statistics is much
more complicated than the cases with a fixed number of
particles considered in Section 11.3 and described by wave
packets with the known shape. The problem is that a
fermion reservoir emits the number of particles that is
unknown beforehand, and we can assume that this number
experiences quantum fluctuations. However, these fluctua-
tions are small enough and the transfer statistics (at zero
temperature) is almost binomial, as in the case of a fixed
number of particles considered in Section 11.3. Since the
pair correlator at constant voltage in the quantum case
exactly coincides with the pair correlator for the Bernoulli
process, the hypothesis that the distribution function for the
number of transmitted electrons is binomial appeared soon
after the result for noise was obtained in [21].

But the confirmation of this hypothesis proved not to be
simple [24, 69]. We do not derive the binomial statistics
rigorously here, although almost all the elements required
for this derivation have already been presented above, and
only briefly outline the corresponding stages of the derivation
in the spirit of [26], which we followed above (and then
present the results). Describing a constant voltage requires
not the localized packets withN particles used in Section 11.3,
which are all scattered from a barrier after a long time, to
describe a constant voltage, but type (2) packets, which are
displaced for the observation time over a distance much
smaller than their width. To obtain the characteristic
function, matrices (229) still have to found. The determinant
of a Toeplitz matrix obtained as a result can be calculated
using the Szego theorem [26] or, as in [100], with the help of
the relation log �det �1�M ��� Tr �log �1�M ��.

We present the result obtained in [24, 69] using the second
quantization representations (and also other elements used in
the subsequent versions of the derivation). Calculations for
t0Y4 �h and t0eV4 �h give the characteristic functions

log w�l� � 2t0
h

X
n

�1
ÿ1

dE log
n
1� Tn�E �

�
exp �il� ÿ 1

�
� fL�1ÿ fR� � Tn�E �

�
exp �ÿil� ÿ 1

�
fR�1ÿ fL�

o
: �238�

For the distribution function

fL;R � 1

exp
��E� eV=2�=Y�� 1

and the energy-independent transparency, the integral
in (238) is ÿY log x1 log x2, where x 2

1; 2 ÿ ux1; 2 � w � 0,

w � exp �eV=Y�, u � G�l� exp �eV=Y� � G�ÿl�, and G�l� �
1� T �exp �il� ÿ 1�. In the limit Y5 eV, the result is
simplified, and we obtain for the shot noise statistics

w�l� �
n
1� T

�
exp �il� ÿ 1

�o2eVt0=h

: �239�

To find the probability Pm of the transfer of m electrons, it is
necessary to perform the Fourier transform of w�l� to obtain
the binomial distribution PmN � pmqNÿmCm

N with p � T,
q � 1ÿ T, and N � 2eVt0=h.

In the two limit cases t! 0 and T! 1, the binomial
distribution reduces to the Poisson distribution. The first case
corresponds to the classical shot noise, and the second one to
transport in a system almost without reflections.We note that
in the second case, the distribution of reflected particles,
rather than the transmitted ones, is Poissonian.

For Y � 0 and eV 6� 0, the distribution is close to the
binomial Bernoulli distribution with the `success' probability
p � T, the `failure' probability q � 1ÿ T, and the number of
eventsN � 2eVt0=h linearly increasing in time. This is caused
by the almost regular sequence of `tunneling attempts'
occurring at the frequency n0 � eV=h. While the result for
the probability of tunneling events is quite clear intuitively,
the smallness of fluctuations of the number of events during
the measurement time is somewhat unexpected, suggesting
the existence of an almost periodic process in the system with
the frequency weakly fluctuating about o0 � eV=�h.37

It is clear that the regularity of tunneling attempts is
caused in one way or another by the Pauli principle. But the
literal interpretation of the electron transfer process in the
spirit of the consideration presented in Section 11.3, where a
particle incidents the barrier once during the time interval
tV � h=eV, encounters difficulties. The wave packets of such
particles should have a size of the order of dk � eV=�hvF in the
k-space, which means, as we have seen, that the tunneling
probability is the mean of the transparency over the energy
interval dE � eV. This picture does not correspond to
expression (238), in which the characteristic function is the
product of components for each energy and the charge
transfer processes at different energies are independent.38

The characteristic frequency o0 � eV=�h specified by voltage
can be directly manifested only over short times, for example,
if we study the corresponding charge fluctuations.We present
the general relation useful in this case:

d2



Q 2

x0
�t���

dt 2
� 

 jx0�t� jx0�0���� 

 jx0�0� jx0�t��� ; �240�

where x0 is the detector coordinate. For the excess current
correlator (for the difference between current coordinates
Dx5 vF=o0 and the energy-independent transparency), we
have [68]




j �0� j �t��� � 2e 2

p2
T�1ÿ T � sin

2 �o0t=2�
t 2

: �241�

36 As mentioned in Section 11.2, methods for sending isolated electrons

[140, 141] at specified instants (`on request') in quantum conductors were

developed only recently.

37 Such fluctuations are related to fluctuations, logarithmic in time, in the

number of tunneling attempts (see the details in [24] and the discussion of

logarithmic corrections to cumulants in [26, 100]).
38We note that such a factorization is in fact valid only for energy intervals

specified by the inverse observation time dE � �h=t and, according to

Levitov±Lesovik formula (238), is correct only if transparencies are

independent of energy at such scales.
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Interference between different Fermi surfaces occurs at short
times, resulting in current and transferred charge oscillations.
Similar oscillations also occur in higher-order correlators. A
time-unordered third-order correlator was calculated in [149]
(this result was used in [131]). The third-order correlator
depends on coordinates in amore complicated way because of
specific interference in the scatterer region. We present the
results for two different cases here. In the first case, where
current is measured far from the scattering region,
jxij4 vFtV, jti ÿ tjj � tV, the correlator with coinciding
coordinates and at zero temperature has the form


Î�t1; x� Î�t2; x� Î�t3; x�

�� � ÿ e 3

4p3
T�1ÿ T ��1ÿ 2T �

� sino0�t1 ÿ t2� � sino0�t3 ÿ t1� � sino0�t2 ÿ t3�
�t1 ÿ t2��t3 ÿ t1��t2 ÿ t3� : �242�

The second case is possible near the scattering region.
Formally precisely at the scattering point x � 0 at zero
temperature, the dependence of the correlator on the
transparency differs from that measured away from the
scattering region,


Î�t1; x� Î�t2; x� Î�t3; x�

��
x�0 �

e 3

2p3
T 2�1ÿ T �

� sino0�t1 ÿ t2� � sino0�t3 ÿ t1� � sino0�t2 ÿ t3�
�t1 ÿ t2��t3 ÿ t1��t2 ÿ t3� : �243�

We note that the dependence of this correlator on the
transparency T 2�1ÿ T � coincides with that for the third-
order charge cumulant determined from expression (198).
The layout of a thought experiment for measuring a
symmetrized third-order correlator is considered in [150].

Transfer statistics at short times have been poorly
investigated to date, although they are no less interesting
than those at long times. We know only two papers [26, 100]
in which the short-time statistics were considered.

For the long-time statistics, the third-order charge
correlators were measured in [151, 152]. Third-order current
correlators were measured in [153] by detecting variations in
the dynamics of a Josephson contact; the voltage correlators
were also measured earlier in [154].

At the same time, more complicated measurements of
the total statistics or the characteristic function have been
performed so far only for incoherent transport: the authors
of [155] have managed to literally count individual
electrons. We note, however, that this situation is not
desperate, and qubits available at laboratories today can
be used as measuring spins. For example, charge qubits
based on double-well potentials with one electron [156] can
be used for measuring statistics at relatively short times,
which, however, can be longer than comparable to �h=Y
and �h=eV.

As we mentioned above, the presence of a wire near a
qubit leads to the qubit decoherence. It is interesting that
because the characteristic function is periodic in l, the
decoherence should also be periodic, or at least its depen-
dence on the coupling constant should be nonmonotonic.
From (205), in particular, we can obtain the phase breaking
time for a qubit as

tÿ1 �
���� eVh log

�
1ÿ 4T�1ÿ T � sin2 l

2

����� : �244�

We see that the phase breaking is especially large at T � 1=2,
when noise is maximal. Then

tÿ1 �
���� eVh log

�
cos2

l
2

����� �245�

and the phase breaking is completely absent if l � 2np, while
for l � �2n� 1�p, the time formally tends to zero. In this case,
it is more correct to return to the definitions of the
characteristic function presented above, from which it
follows that the spin (qubit) phase rotates after the passage
of one electron through exactly p, which can be treated as the
complete phase breaking, because the obtained spin (qubit)
state is orthogonal to the initial state. In this case, the
maximal entanglement of the qubit state with the flying-
electron state occurs (if the state of the latter is characterized
only by one discrete variable taking `transmitted' or
`reflected' values; see [157]).

The appearance of singularities of the characteristic
function for T � 1=2 on the formal level was pointed out in
[158] and interpreted as a `phase transition' between thermo-
dynamic phases in the time space. We have described the
physical nature of this phenomenon.

11.6 Complete description of the full counting statistics
for the known transparency statistics
As we discussed in Section 11.5, if the probability of
transmission of electrons through a quantum conductor is
known, then the full counting statistics at large times can be
described completely. In turn, the transparency, which can be
treated as a random quantity (meaning an irregular depen-
dence on the scattering potential parameters), can also be
described for some conductors by its own distribution
function. Therefore, we can introduce the `total' charge
distribution function, taking both dynamic fluctuations and
transparency fluctuations from sample to sample into
account.

We begin with the simple example of a ballistic conductor
with a cavity, for which the transparency distribution
function in the quasi-one-dimensional case is trivial [159]. In
the presence of a weakmagnetic field, but such thatmore than
one flux quantum passes through a two-dimensional asym-
metric cavity connected with reservoirs by two one-channel
leads, the probability T of transmission through this system is
uniformly distributed over the segment �0; 1�, i.e.,

P�T � � 1 : �246�
The probability of transferring the charge en in time t, when
the transparency is unknown beforehand but the distribution
functionPT�T � is known, reduces to the integral of the charge
distribution function PQ�Q� over transparencies with the
weight PT�T �:


P�Q�� � � 1

0

dTPT�T �P�Q� : �247�

The characteristic function is averaged similarly.
The characteristic function of the binomial distribution

averaged with (246) has the form



wb�l�

� � � 1

0

dT

�
1� T

ÿ
exp �il� ÿ 1

��N
� exp

�
il�N� 1��ÿ 1ÿ

exp �il� ÿ 1
��N� 1� : �248�
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For an integer N, characteristic function (248) can be easily
integrated, and we obtain a interesting result for the
distribution function

P�k� �
XN
n�0

1

1�N
d�k� n� ; �249�

which means that the transfer of any number of electrons,
beginning from zero and ending with the maximum value
N � 2eVt=h, is equiprobable. This is caused, in particular, by
the boundedness of the binomial distribution function.

The more important case is the dirty conductor consid-
ered in Section 8.2, for which the transparency distribution is
described by the Dorokhov function. The second cumulant
was calculated in [85], while the results for the characteristic
function, allowing the calculation of all the moments, were
obtained in [160].

For a dirty conductor in which transparencies are
described by the Dorokhov distribution function, noise is
three times lower than the Poisson noise, or, in terms of the
Fano factor, F � 1=3, as was shown in [85]. This is a
consequence of the bimodal nature of the transparency
distribution function. Higher moments (cumulants) can
also be obtained quite simply by integration; moreover, the
generating function for all cumulants, i.e., the mean of the
logarithm of the characteristic function, can be obtained as
in [160],

log w�l� � GVt

e
arsinh2

������������������������
exp �il� ÿ 1

p
: �250�

In [160], the first 10 cumulants are also presented explicitly.
We present the first four cumulants:



N�t��� � N0 ; �251�


N 2�t��� � N0

3
; �252�




N 3�t��� � N0

15
; �253�




N 4�t��� � ÿ N0

105
. . . : �254�

The first cumulant simply gives the first transferred charge,
the second gives the result for noise specifying the dispersion,
which we already know, the third characterizes the asymme-
try (skewness) of the distribution function (with respect to its
top), and the fourth determines the deviation of the distribu-
tion function from being Gaussian. The higher cumulants are
described by the expressions


Nk�t���
� N0

�2p�kÿ1
�kÿ 1�!���

k
p �ÿ1� �k�2�=2 for even k ;

�ÿ1��k�1�=2 for odd k :

(
�255�

For comparison, in the case of the Poisson distribution, we
have hhNk�t�ii � N0 for k > 0, while for the Gaussian
distribution function, as is known, all the cumulants higher
than the second are zero.

11.7 Description of the full counting statistics in graphene
It is surprising that the transparency distribution in pure
graphene (in the case of many conducting channels and a zero

doping level) is the same as that for a dirty conductor. This
property of the transport `pseudodiffuseness' is confirmed by
the measurements of noise [161], for which the Fano factor
turned out to be 1=3, as had been predicted in [162]. Scattering
in pure graphene occurs at its boundaries, in the absence of
doping, the transport being completely provided by decaying
modes, which we always neglected above.We do not consider
the difference between scattering properties for the Dirac and
SchroÈ dinger equations here, but we return to this question in
Section 14. The Landauer approach to the description of
transport in graphene was used in [163].

11.8 Description of the full counting statistics
in the presence of interaction
The problem of the scattering statistics for two electrons can
also be solved in the presence of the electron±electron
interaction when it is concentrated in the quantum dot
region. In this case, the scattering matrix can be found either
exactly [164] or by using the perturbation theory [165]. This
allows describing the result of scattering of two particles in
detail, notably, the entanglement appearing in this process
[164] and transport in two conductors indirectly interacting
via quantum dots [165]. It is interesting that in the
problem with a constant voltage, the interaction (in the
low-voltage limit) does not change the form of character-
istic function (238), although transparencies turn out to be
renormalized in a complicated way [166]. (But we note that
it is not quite clear at the moment how universal this result
can be.)

The description with the help of scattering matrices can be
extended to the case of electrons interacting with other
degrees of freedom. It has been found that, by developing
the theory of emission of photons (or other electromagnetic
modes, for example, plasmons) by coherent conductors, it is
possible to express photon emission rates [104] or correlators
of the number of photons at different points [167, 168] in
terms of scattering matrices in the conductor. This possibility
appears because the wavelengths of emitted photons greatly
exceed the characteristic length of a scatterer. Under these
conditions, the interaction Hamiltonian

Ĥint � ÿ 1

c

�
dr ĵ�r� Â�r� ; �256�

containing integrals over the coordinates of exact wave
functions (scattering states), reduces to integrals of the
coefficients of the scattering matrices and second-quantized
operators. In intermediate calculations, all the quantities for
photon correlators are reduced to the convolutions of current
correlators at low frequencies, which are independent of
coordinates and are expressed in terms of scattering
matrices. The same approach (which can be called the
perturbation theory in the interaction based on exact
scattering wave functions) can be used to describe the
electron±phonon interaction if the characteristic wave-
lengths of phonons are much longer than the characteristic
length of the scatterer.

An important case where the interaction can be described
by scattering matrices is the contact of a superconductor with
a normal quantum conductor or a Josephson contact of two
superconductors through a normal interlayer, which can be a
barrier, a two-barrier system, a dirty (coherent) conductor, or
a graphene film. We consider these cases in detail in Sections
13 and 14.
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12. The Bogoliubov±de Gennes equations

We turn to the description of quantum transport in super-
conducting systems. In this section, we describe a super-
conducting (in the general case, spatially inhomogeneous)
system using the Bogoliubov transformations [169±171].

We first consider the many-particle effective Bardeen±
Cooper±Schrieffer (BCS) Hamiltonian

Ĥ �
X
s

�
dx ĉys�x�

�
P̂ 2

2m
ÿ �m�x�

�
ĉs�x�

�
�
dx
�
D�x� ĉ y" �x� ĉ y# �x� � h:c:

�
; �257�

where integrals are taken over the entire volume of the
system and x � �x; y; z�. The first term in the right-hand
side of (257) is kinetic, containing the operator P̂ 2=2m
determining the quadratic dispersion of the system; here,
P̂ � ÿi�hHHÿ �e=c�A. Summation is performed over spins
s �"; #, �m�x� � mÿ eV�x� is the chemical potential (in a
superconductor or a normal conductor), and m is still the
electrochemical potential (which is assumed to be a constant
defined in a superconductor).39 The second term in the right-
hand side of (257) is responsible for superconductivity; it is
associated with the complex order parameter in the super-
conductor; D�x� � jD�x�j is the superconducting gap. In the
general case, the superconducting parameter D�x�, which is
found by averaging over phonon degrees of freedom
responsible for superconductivity, depends on the state of
the electron system. Below, we use the self-consistent field
approximation.

We replace the wave functions by a linear combination of
new wave functions un�x� and vn�x�:

ĉs�x� �
X
n

�
un�x�ân;s � sign s v �n �x� â yn;ÿs

	
;

�258�
ĉ ys�x� �

X
n

�
u �n �x�â yn; s � sign s vn�x� ân;ÿs

	
:

The summation over states n means summation over the
discrete spectrum and integration over the continuous
spectrum. Such a substitution in the Hamiltonian is called
the Bogoliubov transformation.

The operators of free electrons satisfy the standard
commutation relations for Fermi particles:�

ĉ ys�x�; ĉs 0 �x 0�
� � ds; s 0 d�xÿ x 0� ; �259�

�ĉs�x�; ĉs 0 �x 0�
� � 0 : �260�

We require that new operators also satisfy commutation
relations for Fermi particles, which reflects the canonical
character of transformation (258) [171]:�

â yn;s; ân 0 ;s 0
� � ds; s 0dn; n 0 ; �261��

ân;s; ân 0 ;s 0
� � 0 : �262�

Then hâ yn;s ân 0; s 0 i � ds;s 0dn; n 0 f �en�, where, as above, f �e� is
the Fermi distribution function. It can be shown that
conditions (259)±(262) lead to relations for the coefficients
u�x� and v�x� in (258):X

n

�
u �n �x� un�x 0� � vn�x� v �n �x 0�

	 � d�xÿ x 0� ; �263�

X
n

�
u �n �x� vn�x0� ÿ vn�x� u �n �x 0�

	 � 0 ; �264�

�
dx
�
un�x� u �n 0 �x� � vn�x� v �n 0 �x�

� � dn; n 0 ; �265��
dx
�
un�x� vn 0 �x� ÿ vn�x� un 0 �x�

� � 0 : �266�

Transformation (258) diagonalizes Hamiltonian (257),
reducing it to the form

Ĥ � U0 �
X
s; n

enâ yn; s ân; s �267�

if the coefficients un�x� and vn�x� satisfy the second-order
differential equations�

P̂ 2

2m
ÿ �m�x�

�
un�x� ÿ D�x�vn�x� � enun�x� ;

�268��
P̂ 2
c

2m
ÿ �m�x�

�
vn�x� � D��x�un�x� � ÿenvn�x� ;

where P̂c � P̂
��
e!ÿe. The energy U0 plays the role of the

ground-state energy of the system,

U0 �
�
dx
X
n

�
vn�x�

�
P̂ 2

2m
ÿ �m�x�

�
v �n �x�

� u �n �x�
�
P̂ 2

2m
ÿ �m�x�

�
un�x�

�
ÿ
X
n

en : �269�

Equations (268), which are called the Bogoliubov±de Gennes
(BdG) equations, can be interpreted as the wave equation for
the two-component wave function

Ĉn�x� � un�x�
vn�x�
� �

of a quasiparticle with dispersion en. The first component
un�x� can be treated as the electron-like part of the wave
function, and the second component vn�x� as the hole-like
component. This interpretation can be useful, for example, in
the consideration of Andreev scattering [172±174].

In the western literature, Eqns (268) are usually written in
the matrix form

Ĥ0�x� D�x�
D��x� ÿĤ0�x�

" #
Ĉn�x� � enĈn�x� ; �270�

where Ĥ0�x� � ÿ�h 2q2x=2mÿ �m�x� is the Hamiltonian of the
system in the normal state with the chemical potential
�m�x�.

The BdG equations are invariant under the transforma-
tions en ! ÿen, un ! ÿv �n , vn ! u �n , and therefore the set of

39 The quantities relevant in Sections 2±11 were electrochemical potentials

m and their differences determining the deviation of the system from the

equilibrium, but here we additionally consider the chemical potential �m
related to the local density of the charge involved in the formation of

superconductivity.
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solutions of Eqns (268) is redundant. This can be simply
explained by the example where the superconducting
parameter is zero. It is clear that in this case, the same
initial electron state in terms of Bogoliubov quasiparticles
can be described either by the creation of an electron-like
state or by the annihilation of a hole-like state with the
opposite energy. In practice, one of the following variants is
usually chosen: (i) e > 0: in this case, summation over spins
is performed (taking both the electron-like and hole-like
states into account), which is convenient, for example, for
the description of Josephson contacts and most natural for
the description of excitations above the Fermi sea; (ii) e 2 R:
in this case, only electron-like states are taken into account,
which can be convenient for describing contacts of a normal
conductor with a superconductor. We note that other
variants are also possible in principle. These approaches
are equivalent and are chosen in accordance with their
practicality.

In the general case, the superconducting parameterD�x� is
not free and depends on the state of the electron system and
hence on the solutions of the BdG equations. To solve the
BdG equations, the parameterD�x�must therefore be known,
but at the same time these equations determine D�x�. The
corresponding self-consistent solution can be obtained, for
example, by the iterationmethod, choosing an initial function
D0�x� as the initial approximation. We here present the
expression for the superconducting gap in terms of un, vn,
and en without derivation: 40

D�x� � ÿjgj
X
n

un�x� v �n �x� tanh
en
2Y

; �271�

where Y is the system temperature and jgj is the electron±
phonon coupling constant, g < 0. The thermodynamic
potential of the system (also given without derivation) has
the form

O � 1

jgj
�
dx
��D�x���2 ÿ 2Y

X
n

log

�
2 cosh

en
2Y

�

�
�
dx
X
n

�
vn�x�

�
P̂ 2

2m
ÿ �m�x�

�
v �n �x�

� u �n �x�
�
P̂ 2

2m
ÿ �m�x�

�
un�x�

�
: �272�

The superconducting gap can sometimes be specified
`manually' and the problem can be solved quite accurately
without resorting to self-consistency41 [in other words, we
can select a very good initial function D0�x�], for example, in
the case of a small normal contact (island) connected to a
massive superconductor (or superconductors) via tunneling
junctions. Such an island forms a small number of states that
cannot considerably affect superconductivity in massive
reservoirs with a huge number of states. The same takes
place for a contact between a normal (massive) conductor and
a superconductor via a quasi-one-dimensional conductor.We
note that this situation is quite similar to that discussed in
Section 2 in the problem of two massive conductors
connected via a quasi-one-dimensional conductor, with the
distribution function (density matrix) in a reservoir also

changing negligibly due to the presence of the second
reservoir.

The current density operator is given by

ĵ�x� � ie�h

2m

X
s

n�
Hĉ ys�x�

�
ĉs�x� ÿ ĉ ys�x�Hĉs�x�

o
ÿ e 2

m
A�x�

X
s

ĉ ys�x� ĉs�x� : �273�

We rewrite (273) in terms of the coefficients un�x� and vn�x� in
the Bogoliubov transformation and average with the density
matrix of the system:
̂
j�x�� � ie�h

m

X
n

n�
v �n �x�Hvn�x� ÿ vn�x�Hv �n �x�

�
� �1ÿ f �en�

�ÿ �u �n �x�Hun�x� ÿ un�x�Hu �n �x�
�
f �en�

o
ÿ 2e 2

m
A�x�

X
n

n��vn�x���2ÿ1ÿ f �en�
�� ��un�x���2 f �en�o :

�274�

13. Electron transport
in normal metal±superconductor (NS) junctions

The electron dephasing time at low temperatures in suffi-
ciently pure structures can exceed the travel time through the
normal part of a normal metal±superconductor system and
wave functions can be assumed coherent not only in the
superconductor but also outside it. In this case, the scattering
matrix approach is especially convenient.

In the standard theory of the proximity effect, the
influence of a superconductor on a normal metal can be
described as the penetration of the condensate wave function
from the superconductor to the normal metal over the
coherence length. This phenomenon can also be interpreted
as the appearance of a coherent coupling between electrons
and holes in a normal metal caused by the Andreev
reflection [172] from the boundary of an NS junction, and
can be described by BdG equations (268). The Andreev
reflection causes the transformation of a quasi-particle
current to the superconducting current at the NS interface
[172, 175]. 42

The scattering-matrix approach involves the concept of
Bogoliubov quasiparticles with thewave functions containing
both electron and hole components [25, 180, 181]. Bogoliubov
free quasiparticles here play the same role as free electrons in
the theory of normal conductors, and all the aspects of the
theory developed for normal conductors can be extended to
hybrid systems. In addition, other effects exist, for example,
the Josephson effect, which can also be successfully described
by the scattering matrix method.

Normal scattering near an NS junction, in particular, the
quality of the boundary, determines the proximity effect

40 See the detailed derivation, for example, in [171].
41 We consider just these cases.

42 Recently, another standpoint has appeared according to which the

proximity effect is caused by Cooper electron pairs flying into the normal

conductor. The electron wave functions in these pairs are mutually

entangled in a complicated way. The entanglement is inherent both in

spin variables (similarly to the entanglement in a Bohm singlet) and in

orbital variables (similarly to the Einstein±Podolsky±Rosen entangle-

ment). The entanglement of Cooper pairs penetrating into a normal

conductor was studied in [176±179].
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strength, affecting the shape of the current±voltage �IÿV�
characteristic. In NIS junctions, which differ from NS
junctions by the presence of a normal scatterer I reflecting
electrons to electrons and holes to holes, the IÿV character-
istic was already studied in [175] (see the references to earlier
papers therein), where linear transport was considered based
on the BdG equations in the quasi-one-dimensional model in
the presence of one barrier at the boundary.

The scatteringmatrix approach allows taking an arbitrary
scatterer into account in a systemwith a superconductor. This
description was first used by Takane and Ebisawa [15, 16] and
Lambert [17, 18], while Beenakker [180] derived the formula
for the linear conductance of NS junction using the scattering
matrix in normal metal. 43 Unlike Green's function methods
[183±186], which were used, notably, to describe the experi-
ments in [187, 188], the scattering matrix approach cannot
take all inelastic processes into account. However, this
approach is more illustrative in the case of simple scattering
potentials; for complex potentials, it allows representing the
result in the general form.

Following [189], we consider the conduction of an NXS
junction in which region X is a scatterer in the normal part at
arbitrary temperatures and voltages. We also introduce
general relations, consider the example of dirty contacts,
and analyze systems with one or two scatterers in region X
in detail.

13.1 Current±voltage relation
and the spectral conductance
We consider a quasi-one-dimensional multichannel NXS
junction (Fig. 26). The structure of the scattering matrix of
quasiparticles for this contact is much more complicated than
that for the normal NXN junction. Here, in addition to usual
scattering occurring in the normal part, Andreev scattering
takes place from the NS boundary, where the gap is assumed
to jump from zero to the bulk value, and electrons can be
reflected to holes and vice versa. To clarify the structure of
scattering processes, we first describe scattering matrices in
both parts of the contact individually and then consider the
full matrix.

Coherent scattering in the normal part is described by the
4N� 4N scattering matrix (we neglect decaying modes in

ballistic segments)

SN �

r11�e� 0 t12�e� 0

0 r �11�ÿe� 0 t �12�ÿe�
t21�e� 0 r22�e� 0

0 t �21�ÿe� 0 r �22�ÿe�

26666664

37777775 : �275�

The SN matrix connects N input electron (hole) channels I e
i

�I h
i �, i � 1; 2, on each side to the output channels at the same

energy O e
i �O h

i � (see Fig. 26): 44
O e

1

O h
1

O e
2

O h
2

2666664

3777775 � SN

I e
1

I h
1

I e
2

I h
2

2666664

3777775 : �276�

Here, ti j�e� and rii�e� are the N�N matrices of transmission
and reflection amplitudes in electron channels. The number of
channelsN is determined by the number of transverse modes;
we neglect a change in the number of modes with changing
voltage. 45 Matrix (275) can also be written in the block form

SN � r̂11�e� t̂12�e�
t̂21�e� r̂22�e�

� �
; �277�

where r̂ii and t̂i j are extended 2N� 2N matrices containing
complex conjugate amplitudes for holes. Following the usual
procedure, we include the propagation of particles in the
ballistic segment between the scatterer X and the NS
boundary into the scattering matrix (see Fig. 26).

The scattering matrix can often be conveniently repre-
sented in the electron±hole parameterization

SN
� � Se 0

0 Sh

� �
; �278�

where the Se and Sh submatrices describe the scattering of
electrons with energy e and holes with energy ÿe. These
submatrices are composed of the corresponding compo-
nents of matrix (275), with the states in (276) somewhat
modified:

O e
1

O e
2

O h
1

O h
2

266664
377775 � SN

�

I e
1

I e
2

I h
1

I h
2

266664
377775 : �279�

Scattering described by the Se and Sh submatrices is shown
schematically in Fig. 26.

43 We also recall Anderson's paper [182], in which the independence of the

critical temperature of a weak disorder (the Anderson theorem) was

formally proved using exact wave functions.

44 Hereafter, it is more convenient to measure all energies in the arguments

of functions relative to the electrochemical potential m in a massive

superconductor, for example, t �12�ÿe� means t �12�mÿ e�. The complex

conjugate amplitudes for holes appear because the propagation direction

of holes is opposite to the wave vector. The corresponding amplitudes are

obtained from the electron amplitudes by complex conjugation, resulting

in the appearance of quantities t ��ÿe� rather than t�ÿe�.
45 In principle, the scattering matrix can depend on the applied voltage.

This can be used, for example, to take a change in the scattering states into

account in the case of a voltage-dependent shape of the Schottky barrier.

O e
1 exp �ÿik�x�

I h
1 exp �ÿikÿx�

O h
1 exp �ikÿx�

I e
1 exp �ik�x�

N

Sh

Se

X

SNS

I h
2 exp �ikÿx�

I e
2 exp �ÿik�x�

O h
2 exp �ÿikÿx�

O e
2 exp �ik�x�

N S

Figure 26. NS junction diagram. The left normal reservoir has the

electrochemical potential m� eV, while the right, superconducting reser-

voir has the potential m; X is an arbitrary normal scatterer, k� and kÿ are

the wave vectors of an electron and a hole, respectively.
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The scattering matrix on the NS interface can be defined
in general as

SNS �

ree�e� reh�e� t 0ee�e� t 0eh�e�
rhe�e� rhh�e� t 0he�e� t 0hh�e�
tee�e� teh�e� r 0ee�e� r 0eh�e�
the�e� thh�e� r 0he�e� r 0hh�e�

266664
377775 : �280�

The SNS matrix relates the wave functions in the normal part
and the superconductor, 46

I e
2

I h
2

O e
S

O h
S

26664
37775 � SNS

O e
2

O h
2

I e
S

I h
S

26664
37775 : �281�

The input and output channels are labeled in accordance with
Fig. 26. This matrix can be written in the block form

SNS �
r̂NS�e� t̂ 0NS�e�
t̂NS�e� r̂ 0NS�e�

" #
; �282�

where r, r 0, t, and t 0 are the N�N matrices describing
reflection and transmission for the states normalized to the
unit flux in normal and superconducting segments and are
grouped into the 2N� 2Nmatrices r̂NS, r̂

0
NS, t̂NS, and t̂ 0NS.

We calculate the current by consideringmatrix (275) in the
general form and refining it, if necessary, for specific models.
We find matrix (280) explicitly with the help of BdG equation
(268). We temporarily assume that both these matrices are
arbitrary. The complete result for all types of scattering can be
described by the SNXS matrix like (280), which is also unitary.
We restrict ourselves to its 2N� 2N submatrix

RNXS � Ree Reh

Rhe Rhh

� �
; �283�

describing reflection to the normal region,

O e
1

Oh
1

� �
� RNXS

I e
1

I h
1

� �
: �284�

Here, Ree, Reh, Rhe, and Rhh are N�N reflection matrices.
Below, we calculate the matrix RNXS � RNXS�e;V � for the
scattering matrices given in (275) and (280).

We now derive an expression for the current using total
scattering matrix (280). The contribution to the current from
the state coming from the normal conductor with a given
energy e is

In�e;V � � e�hkn
m

�
1ÿ

X
m

��Ree;mn�e;V �
��2

�
X
m

��Rhe;mn�e;V �
��2� : �285�

This contribution depends on the voltage because a change in
the electrostatic potential causes a change in the scattering
state. But the deformation of the scattering state caused by
the applied voltage does not itself lead to the appearance of a
nonzero total current. 47

It is important that the applied voltage produces a
difference of electrochemical potentials in the normal part
and the superconductor, resulting in the finite total current

I � ÿ
�
de

Gs�e;V �
e

�
f �e� ÿ f �eÿ eV �� ; �286�

where the spectral conductance

Gs�e;V � � 2e 2

h
Tr
n
1ÿ R yee�e;V �Ree�e;V �

� R
y
he�e;V �Rhe�e;V �

o
�287�

describes the contribution to the current from the input states
with the energy e for a specified voltage V (the energy is
measured from the electrochemical potential in the super-
conductor). The factor 2 in the right-hand side of (287) takes
the spin degeneracy into account.

Expressions (286) and (287) determine the differential
conductivity

dI

dV

����
V

� ÿ
�
de f 0�eÿ eV �Gs�e;V �

ÿ
�
de

1

e

qGs�e;V �
qV

�
f �e� ÿ f �eÿ eV �� : �288�

At zero temperature, Eqn (288) can be conveniently repre-
sented as a series

dI

dV

����
V

� Gs�eV; 0� � 2V
qGs�e;V �

qV

����
e�eV;V�0

� . . . : �289�

Unlike the definition of the differential conductance
dI=dV � Gs�eV; 0� in [175], expression (289) takes the
change in transparency into account.

To complete the general derivation, the matrix RNXS

in (283) must be expressed in terms of scattering matrices
(275) and (280):

RNXS�e;V � � r̂11�e� � t̂12�e�
�
1ÿ r̂NS�e� r̂22�e�

�ÿ1
r̂NS�e�t̂21�e� :

�290�

The simplest process contributing to the resistance, apart
from direct scattering in the normal part, is the propagation
through the normal part �t̂21�, reflection from the NS
interface �r̂NS�, and propagation back through the normal
segment �t̂12�. All subsequent processes can be treated as
multiple reflections from the normal scatterer and the NS
interface. Expressions (286), (287), and (290) determine the
general form of the IÿV characteristic without any assump-
tions about the scattering type; for example, the shape ofD�x�
on the NS interface can be arbitrary.

We now calculate spectral conductance (287) using the
Andreev approximation and assuming that D�x� is a step
function.

We briefly consider the IÿV characteristic symmetry
under the change of the sign of V. We take into account
that for jeV j < D, the incoming quasiparticles cannot
penetrate into a massive superconductor. The probability
flux in states with jej < D is completely reflected, and
therefore the total scattering matrix RNXS�e;V � in
Eqn (283) is unitary. The unitarity property leads to the
relations R yeeRee � R

y
heRhe � 1 and ReeR

y
ee � RehR

y
eh � 1. The

symmetry of the solutions of the electron and hole BdG

46 In Fig. 26, the states in the superconductor are not indicated because we

mainly consider scattering amplitudes for those states coming to the

superconductor from the normal part.
47 This can be shown by using the total scattering matrix that takes

Andreev scattering into account.
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equations guarantees that Reh�e;V � � ÿR �he�ÿe;V �. Hence,
the conduction for jeV j < D can be written as

Gs�e;V � � 4e 2

h
Tr
n
R
y
he�e;V �Rhe�e;V �

o
� 4e 2

h
Tr
n
R
y
eh�e;V �Reh�e;V �

o
� 4e 2

h
Tr
n
R
y
he�ÿe;V �Rhe�ÿe;V �

o
� Gs�ÿe;V � :

�291�
However, this symmetry does not lead to the IÿV character-
istic symmetry under the change of the bias-voltage sign [190].
Such an IÿV characteristic symmetry would mean the
fulfillment of the condition Gs�e;V � � Gs�ÿe;ÿV �, which
requires that Gs�e;V � be independent of the voltage. In this
case, we would obtain Gs�e�

��
e�eV� dI=dV

��
V
, and the differ-

ential conductivity would therefore be symmetric with respect
to voltage.

In reality, however, experiments with SNS junctions [191,
192] revealed an IÿV characteristic asymmetry for jeV j > D,
which can be explained in the context of the previous
discussion, taking the voltage dependence of the Schottky
barrier into account (on the SN boundaries). The asymmetry
degree is determined by a quantity of the order of eV=m or
eV=U, where U characterizes the height of the scattering
potential. To take the voltage dependence of Gs into account
explicitly, it is necessary to calculate the scattering matrix SN

taking the applied electrostatic potential into account. In
principle, this problem requires a self-consistent solution of
the scattering problem and the Poisson equation [193]. In
many practically interesting cases, it is possible to take the
voltage dependence of the scattering matrix into account only
approximately.

13.2 Conductance in the Andreev approximation
We use expression (287) and evaluate it under boundary
conditions for a pure NS interface in the Andreev approxima-
tion. Stationary states in the ballistic segment are plane-wave
solutions of the BdG equations [170, 171]. We assume that
D�x� � D exp �ij� for x > 0 and D�x� � 0 for x < 0, which
means that the gap suppression in the contact region in the
superconductor is neglected.

The NS boundary couples holes and electrons from one
spatial channel with the scattering amplitude depending on
the excitation energy and the effective chemical potential.
Taking transverse quantization into account, the effective
chemical potential has he form �mn � �mÿ �h 2k2?; n=2m. In the
limit e;D5 �mn, the BdG equations are reduced to linear
equations by linearizing the dispersion law k

�0�
n � �����������

2m�mn
p

=�h.
The matrix of scattering from the ideal NS boundary has

the form (Fig. 27)

r̂NS � 0 reh
rhe 0

� �
� 0 exp �ij�L�e�

exp �ÿij�L�e� 0

� �
; �292�

where

L�e� �
eÿ sign �e�

����������������
e 2 ÿ D 2
p

D
� D

2jej ; jej > D ;

eÿ i
����������������
D 2 ÿ e 2
p

D
� exp

�
ÿi arccos e

D

�
; jej < D :

8>>><>>>:
�293�

The total N�N reflection matrices Ree and Rhe can be
determined from Eqn (290). Using (287), we obtain the
expression for the spectral conductance for all energies:

Gs�e;V � � 2e 2

h

ÿ
1� ��L�e���2�

� Tr

�
t
y
21�e�

h
1ÿ �L��e��2r>22�ÿe� r y22�e�iÿ1

�
h
1ÿ ��L�e���2r>22�ÿe� r �22�ÿe�i

�
h
1ÿ L2�e� r22�e� r �22�ÿe�

iÿ1
t21�e�

�
: �294�

Here, the superscript > denotes transposition.
Equations (286) and (294) specify the IÿV characteristic

in the Andreev approximation. The spectral conductance
depends on the electron scattering matrix at energies �e,
indicating the presence of Andreev reflection. The depen-
dence of conductance (294) on the phases of transmission
and reflection amplitudes is extremely important for deter-
mining resonance peaks in the conductance. Elementary
processes contributing to these phases are the propagations
of electrons and holes between the NS interface and the
normal scatterer.

If the channels do not mix and the matrices ti j and ri j are
diagonal, the conductance reduces to the quasi-one-dimen-
sional conductance

Gs�e;V � �
XN
n�1

Gn�e;V � ; �295�

where

Gn�e;V � � 2e 2

h

�
1� ��L�e���2�Tn�e;V �

� �1ÿ ��L�e���2Rn�ÿe;V �
�n

1� ��L�e���4Rn�e;V �

� Rn�ÿe;V � ÿ 2Re
�
L2�e� rn�e;V � r �n �ÿe;V �

�oÿ1
; �296�

rn � �r22�nn are the amplitudes of normal reflection on the
superconductor side, and Rn � jrnj2 and Tn � 1ÿ Rn are the
reflection and transmission probabilities in the nth channel.
The last term in curly brackets in the right-hand side of (296)
describes the important scattering process involving the
propagation through a sector between the superconductor
and the normal scatterer twice: once by an electron and once
by a hole.

For high energies, jej4D (ad jej5 �m), the Andreev
scattering is strongly suppressed, decaying as L�e� �
D=2jej ! 0. In this case, spectral conductance (294) tends to

Normal
metal

Superconductor

Cooper
pair

rhe exp�ikÿx�

ree exp�ÿik�x�

exp�ik�x�
a

rhh exp�ikÿx�

reh exp�ÿik�x�

exp�ÿikÿx�

b

Cooper
pair

Figure 27. Scattering on the NS interface. (a) Scattering of an electron to

a hole. (b) Scattering of a hole to an electron. The light (red at

www.ufn.ru) arrows indicate nonzero amplitudes in the case of the

ideal NS boundary.
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the normal limit (the usual Landauer formula),

Gs�e;V � � 2e 2

h
Tr
�
t
y
21�e;V � t21�e;V �

	
: �297�

We note that conductance (297) is not necessarily symmetric
under the change of the voltage sign.

For voltages smaller than the gap width, jej < D, reflec-
tions of an electron to a hole and conversely occur with
probability one, jL�e�j � 1, and then expression (296) takes
the form [189]

Gn�e;V � � 4e 2

h
Tn�e;V �Tn�ÿe;V �

n
1� Rn�e;V �

� Rn�ÿe;V � ÿ 2Re
�
L2�e� rn�e;V � r �n �ÿe;V �

�oÿ1
: �298�

The reflection and transmission amplitudes at energies �e
enter (298) symmetrically, providing the IÿV characteristic
symmetry (with the voltage dependence of the scattering
potential neglected).

By contrast, for voltages exceeding the gap, spectral
conductance (295) becomes asymmetric in general. An
important difference between the conductance of the NS
junction (298) and normal conductance (297) is dependence
(298) on the scattering amplitude phases in the normal part.

In the linear response limit �e; eV! 0�, which can be
obtained by setting L2�0� � 1 in (298), the conductance takes
the remarkably simple form [180]

G�0� � 4e 2

h

X
n

T 2
n �0��

2ÿ Tn�0�
�2 : �299�

This expression is also valid for mixed channels: in this case,
Tn�0� are the eigenvalues of the transparency [see (51)].

13.3 Linear conductance in particular cases
We analyze expression (299) in limit cases. The best-known
limit is the weak tunneling limit for T5 1, in which

G�0� � e 2

h

X
n

T 2
n �0� : �300�

In this case, the subgap conductivity is strongly suppressed
and a current appears either at high voltages, as in the
experiments in [194±196], or at finite temperatures and
voltages comparable to the gap. Until recently, only such
NS junctions could be studied experimentally.

In the opposite limit, when the NS boundary is ideal, we
obtain

G�0� �
X
n

4e 2

h
: �301�

We see that in this last case, the conduction per channel is
twice the normal conduction. This result is sometimes
interpreted by saying that due to electron pairing into
Cooper pairs and spin degeneracy, the factor 2 in the
expression for the conductance is lost, but the factor 4
appears since the charge of the elementary carrier doubles.
Such an interpretation has the right to exist; but we believe
that the situation here is most likely as follows: the spin
degeneracy does not disappear at all (which can be seen, for
example, from the analysis of injections of single electrons
from the normal region to the superconductor); in this case, a

pair in the superconductor can be found for each electron
with any spin direction (in other words, a hole is reflected).
But in contrast to a normal contact, no electrons with energies
in the interval from mÿ jeV j to m escape from the super-
conductor. This can be explained by the fact that electrons
escaping from the normal reservoir below the Fermi level are
paired with electrons above the Fermi level and are absorbed
in the superconductor, resulting in the appearance of an
uncompensated current in the energy interval 2jeV j, which
leads to the doubled total current.

We finally consider the contact between a dirty normal
conductor and a superconductor. In this case, we know the
transparency distribution function [34, 38], and, as for other
quantities, we can obtain the mean conductance of the NS
junction. If the transparency of the normal part is described
by the Dorokhov function, then the conductance accidentally
coincides with the normal conductance [197]

GNS� 4e 2

h

X
n

�
T 2
n �0��

2ÿ Tn�0�
�2� � GN� 2e 2

h

�X
n

Tn

�
: �302�

This result was already obtained by the Green's function
method in [198].

13.4 NINIS junction conductance
In the 1990s, several very interesting experiments [187, 188,
199] were performed in which the dependences of the NS
junction conductance on temperature, voltage, and magnetic
fluxes were studied. It is interesting that the ratio of scattering
intensities at the contact boundary and in the normal part
determines the IÿV characteristic profile. This ratio deter-
mines whether a peak in the conduction appears at the zero
temperature or at small but finite voltages [186, 200, 201].
Such peaks, which are called the zero anomaly and the finite-
voltage anomaly, were studied in a number of interesting
experiments [191, 192, 202±205].

We consider a model NINIS junction, whose analysis is
useful for understanding IÿV characteristic anomalies in
dirty NS junctions. In addition, this system is of interest as
an example of rather complicated scattering in the normal
part and can be used as amodel for studying the interaction of
smeared normal levels in an I1NI2 interferometer and
Andreev levels in an INS Fabry±Perot interferometer. We
describe mechanisms giving rise to zero and finite-voltage
anomalies [189] under certain conditions imposed on the
scattering intensity in barriers, which allows a qualitative
understanding of the nature of these anomalies.

We first discuss the conductance structure in a single-
channel NI1NI2S junction and then present numerical results
for a multichannel case in which the resonance structure does
not disappear after averaging over channels, unlike that in
INI junctions [189].

As before, we assume that channels are separated48 and
the result in (295) can be used for the conductance Gs, which
depends on the phases w r

� of reflection amplitudes r��e� and
the complex amplitudeL�e� of Andreev reflection.We use the
notation r��e� � �������

R�
p

exp �iw r
�� for the reflection amplitude,

where the phase factors w r
� are determined by barriers I1 and

I2 and propagation between them (for simplicity, the voltage
dependence of scattering is neglected).

48 In considering a single channel, we omit the subscript n.
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We represent the Andreev reflection amplitudes as
L�e� � jLj exp �ÿi#�e�� with the phase #�e� � arccos �e=D�
for e < D and #�e� � 0 for e > D. The expression for the
conductance then reduces to the form

Gs�e� � 2e 2

h

ÿ
1� jLj2�T�ÿ1ÿ jLj2Rÿ�n1� jLj4R�Rÿ

ÿ 2jLj2
�������������
R�Rÿ

p
cos
�
w r
� ÿ w r

ÿ ÿ 2#�e��oÿ1 : �303�
It follows from (303) that the conductance is always less than
or equal to 4e 2=h. We note that for e > D, Andreev scattering
is suppressed, jLj < 1. For e < D, the phase #�e� is defined for
resonances. Conductance (303) takes the maximum value
4e 2=h, which is twice the normal value, when the reflection
probabilities R� and Rÿ are equal and the phases w r

� satisfy
the resonance condition

cos
�
w r
� ÿ w r

ÿ ÿ 2#�e�� � 1 : �304�
A similar condition is known for the normal two-barrier
systemNI1NI2N, inwhich the transmission probabilityT � 1
and the maximum conductance 2e 2=h can be achieved if the
probabilities of reflection from barriers at the resonance
energy are equal.

Using expression (303) for the conductance, we consider a
single-channel NINS junction consisting of a ballistic NS
junction containing one barrier at a distance d from the ideal
NS boundary. In the high-barrier limit, R� and Rÿ are
approximately equal. The reflection amplitudes r��e�
describing the propagation of electrons and holes have
almost constant absolute values, while the phases are w r

� �
p� 2k�d. Substituting the wave number k� � mvF � e=vF
(where vF is the Fermi velocity in the channel) in (304), we
obtain the positions of Anderson resonances:

en � vF
2d

�
np� arccos

en
D

�
: �305�

Expression (305) predicts resonances in the conductance with
a typical width proportional to the barrier transparency T
[similar Rowell±Macmillan resonances with a width of the
order of T=L�e� are located at en � npvF=2d at voltages
exceeding the gap width]. The phase #�e�, changing from
p=2 to 0 as e changes from 0 to D, ensures the existence of at
least one Andreev resonance for an arbitrarily small d. In the
limit d! 0, the resonance position coincides with the gap
voltage, which is in accordance with the result obtained for
the NIS junction in [175]. Hence the peak that was assigned in
[175] to a singularity in the density of states near the gap can
be interpreted in the picture considered here as an Andreev
resonance shifted to the gap at d! 0.

We now introduce an additional barrier at the NS
boundary and analyze a two-barrier NI1NI2S junction
obtained in this way, still using expression (303).

According to the adopted definitions, w r
� are the reflection

phases of an electron incident on a two-barrier potential from
the superconductor side. The corresponding reflection ampli-
tudes are given by

r��e� � r2 � t 22 r1 exp �2ik�d �
1ÿ r1r2 exp �2ik�d � ; �306�

where ri and ti are the amplitudes of the left �i � 1� and right
�i � 2� (on the NS interface) barriers [also see expression
(97)]. The phases of these reflection amplitudes play an

important role in the formation of the conductance structure
because they control the existence of resonances according to
(304). We fix the barrier I1 and gradually increase I2, keeping
the inequality R1 > R2. In this case, the INI interferometer
produces noticeable Andreev resonances. For r1 4 r2, the
phases w r

� of reflection amplitudes r��e� � t 22 r1 exp �2ik�d �
linearly depend on energy and change by 2p on the scale
hvF=d, giving rise to equidistant resonances, in accordance
with (305).

The positions of resonances can be found from the known
phase function w r�e�: they are determined by the energies �e
for which the phase difference is dw r�e� � w r

� ÿ w r
ÿ � p� 2np.

The doubled period of dw r�e� compared with the period of
w r
��e� takes the pairing of resonances into account.

When barrier strengths are equal, R1 � R2, due to a large
phase gradient near the normal resonance with energy e, the
Andreev resonances tend to be pinned by normal resonances
and are located at the energies �e or ÿe. This rule is violated
when the normal resonance coincides with the electrochemi-
cal potential. In this case, the Andreev resonances are
separated from the electrochemical potential by a finite value.

As the strength of the second barrier increases further,
R2 > R1, Andreev resonances become weaker and finally
disappear. Although normal resonances are still present in
this regime in the normal INI interferometer, only weak
Andreev resonances are manifested in the conductance. The
phase function becomes almost constant for R2 4R1 [see
(306)] and condition (304) for resonance phases cannot be
satisfied.

We now compare transport in two-barrier systems
NI1NI2S and NI2NI1S, i.e., in systems with the reversed
sequence of barriers I1 and I2. We note that the transparency
T�e� is the same in both cases. Hence, unlike the nonlinear
conductance of the NINIS junction, the nonlinear conduc-
tance (297) of the normal NININ junction, as the linear
conductance (299) of the superconducting NINIS junction, is
independent of the sequence of barriers I1 and I2. We assume
that R1 4R2. For the direct barrier sequence �NI1NI2S�, the
energy dependence of the phase w r�e� is strong, resulting in the
appearance of Andreev resonances at a finite voltage.
Electrons entering the INI interferometer on the normal side
have enough time to form Andreev resonances and escape,
typically to the superconductor. For the reversed barrier
sequence �NI2NI1S�, the barrier I1 on the NS boundary
becomes the main one. The weak energy dependence of the
scattering phase w r�e� prevents the formation of narrow
resonances. This reflects the fact that electrons entering the
INI interferometer escape through I2 to the normal part
without forming Andreev resonances.

We now analyze a multichannel NINIS junction numeri-
cally with the help of expression (295). This expression allows
the analysis to be performed for finite voltages and tempera-
tures beyond the scope of a linear response studied in [206].
We consider anNI1NI2S junction with two delta barriers with
scattering probabilities Ri from 0.2 to 1 �i � 1; 2�. We change
the relative strength of the barriers to cover the interval
between the two limits R1 > R2 and R1 < R2, which were
discussed in Section 13.4. The distance L between the barriers
was chosen to be of the order of the coherence length
L � x � vF�h=D in the superconductor, such that one or
several Andreev resonances can be formed in the first
channel (with the maximal longitudinal velocity). The
number of resonances increases upon increasing the angle of
incidence (counted from the normal to the NS interface) or,

1046 G B Lesovik, I A Sadovskyy Physics ±Uspekhi 54 (10)



equivalently, upon increasing the channel number. The
contact cross section was set equal to �100=kF�2, while the
ratio of the gap width to the chemical potential was
D=�m � 0:002.

Each channel yields the typical structure of paired
Andreev resonances discussed at the beginning of this
section. Their position and width depend on the strength
ratio of barriers I1 and I2 and the longitudinal kinetic energy
in each channel. We note that the total conductance obtained
by summation over channels still has the structure produced
by Andreev resonances. In contrast, the total conductance of
the corresponding normal NI1NI2N junction is almost
constant, i.e., normal resonances are averaged out almost
completely.

The numerical study of three-dimensional NINS junc-
tions shows that the position and number of resonances in
the total conductivity coincide with those in the first channel
[207]. 49 In NINIS junctions, such a direct dependence has
not been found.

We now consider expression (298) for the conductivity,
which is valid for voltages lower than the gap, and the
properties of the IÿV characteristic near zero voltage. For
R1 > R2, the denominator in (298) changes rapidly because
of a strong energy dependence of the phase of the reflection
amplitude rn�e�, which is responsible for the appearance of a
peak in the IÿV characteristic at nonzero voltage. The IÿV
characteristic structure after summation is shown in Figs 28
and 29 (solid curves). The repulsion of Andreev levels from
zero energy gives a minimum of dI=dV for zero voltage. For
R1 < R2, the phase of the reflection amplitude rn�e� is almost
independent of the energy, and the conductance structure is
determined by the numerator in expression (298). The
expansion of the product Tn�e�Tn�ÿe� � T 2

n ÿ w 2
n e

2 near

zero energy indicates the presence of a maximum at zero
(zero anomaly). 50

The manifestation of the zero-voltage anomaly is shown
in Figs 28 and 29 (dashed curves). These figures illustrate
crossovers from the zero to finite anomaly for two different
distances d between barriers upon increasing the barrier
strength I1 for a constant barrier strength I2. If d exceeds the
coherence length in the superconductor, several resonances
appear (see Fig. 29). In the case of the reversed barrier
sequence, the local minimum of the conductance at zero
voltage transforms into a local maximum, but the conduc-
tance value at zero does not change. This is shown in Fig. 29
by two solid curves near the zero voltage: the upper curve
corresponds to the direct barrier sequence �NI1NI2S� and the
short lower curve is the reversed sequence �NI2NI1S�. To
understand what determines the width of the peaks and the
position of the finite anomaly, we compare them with the
Thouless energy. The Thouless energy ETh [208, 209] in a
disordered system can be defined as the dimensionless
conductance g times the distance dE between levels (in a
closed system), ETh � g dE. In a system with weakly trans-
parent barriers, good correspondence exists between this
energy, the width, and the position of the finite bias
anomaly. The width of the peak at zero voltage coincides
with the characteristic correlation energy hG�E� e�G�E �iE
in the conductance correlator and with the Thouless
energy.51 In this case, the transparency distribution function
of the two-barrier system is bimodal and resembles that of a
dirty system [206]. But as the total transparency approaches
unity, thewidth of the resonances no longer coincides with the
energy ETh. In this limit, the two-barrier system poorly

49 This occurs due to a decrease in the transparency with an increase in the

angle of incidence and the nonuniform distribution of the angle of

incidence over channels [207].
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Figure 28. Differential conductance (averaged per channel) in a multi-

channel NINIS junction of the width d � 2vF=D � 2px as a function of the
applied voltage at the temperature Y � 0. The curves (from top down)

correspond to the probabilities of reflection from the first barrier

R1 � 0:2, 0.5, 0.7, and 0.8 for the constant reflection probability

R2 � 0:5 for the second barrier. The corresponding conductances in the

normal state, indicated by horizontal segments in the left part of the figure,

are virtually independent of voltage in the limits indicated. As the strength

I1 of the first barrier increases, an anomaly appears at zero voltage,

because a new Andreev resonance arises at R1 > R2 [189].

50 The dominator cannot affect this property as long as the total

transparency of a two-barrier system is not too large, Tn < 0:55.
51 Angular brackets h�iE denote averaging over energies.
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Figure 29. Differential conductance (averaged per channel) in a multi-

channel NINIS junction of the width d � 4vF=D � 4px as a function of the
applied voltage at the temperature Y � 0. The curves (from top down)

correspond to the probabilities of reflection from the first barrier

R1 � 0:04, 0.2, 0.4, and 0.54 for the constant reflection probability

R2 � 0:2 from the second barrier. The corresponding conductances in

the normal state are indicated by horizontal segments in the left part of the

figure. As the strength of the first barrier increases, the zero-voltage

anomaly transforms into a finite-voltage anomaly and several Andreev

resonances appear. For R1 � 0:54 and R2 � 0:2, we interchanged scat-

terers I1 and I2 in the INI part (R1 � 0:2 and R2 � 0:54) (the lower short
curve); in this case, the conduction at zero voltage remains the same, but

the local minimum transforms into a local maximum [189].
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simulates the bimodal distribution for a dirty system and the
Thouless energy is no longer the characteristic energy of the
problem. At finite temperatures, the anomaly at a finite bias is
smeared to form the zero bias anomaly.

The behavior of the zero bias and finite bias anomalies in
disordered NS junctions has been studied in many experi-
ments [191, 202±205]. The theoretical consideration of dirty
NS systems showed that this behavior is determined by the
relation between scattering rates on the NS interface and in
the normal part [186, 200, 201, 210]. In the case of a small
disorder, the zero bias anomaly appears, while in the case of
a strong disorder, a peak appears in the normal part at a
finite bias [201] of the order of the Thouless energy ETh,
which has been confirmed experimentally [192]. Such a
behavior of the anomaly is similar to the behavior in a
ballistic two-barrier NINIS junction, described in [189]. The
`ballistic' model of a dirty NS junction considered above
therefore assumes the interpretation of the peak at a finite
bias as a superposition of the smeared Andreev levels
appearing between the superconductor and the strongly
reflecting normal part.

14. Electron transport in SNS junctions

In this section, we consider nondissipative transport in
superconductor±normal metal±superconductor junctions
(SNS), i.e., the Josephson effect [211]. Recently, it has
become possible to manufacture such contacts at meso-
and nanoscales, for example, based on a two-dimensional
electron gas in heterostructures [36, 37, 212±215], with the
help of an electron tunneling microscope [216] and litho-
graphy [217, 218], based on atomic contacts [219±221],
carbon nanotubes [222±225], single molecules [226, 227],
and graphene [228±230]. It is very interesting to use these
contacts in applications [231].

The specific features of these systems are mainly
manifested in the regime when the conduction is determined
by several conducting channels (or even a single channel). As
the number of conducting channels changes, quantization of
the superconducting critical current [20, 213, 220, 232±235]
and charge [236±238] can be observed. The current is
quantized in units of eD=�h [232, 233, 239] and the charge in
units of 2e [236]. As a rule, the potential of the gate serves as
a control parameter in experiments. The effective chemical
potential in two-dimensional gases is varied by changing this
potential; by varying the gate potential in structures with
resonances, it is possible to shift resonances with respect to
the electrochemical potential, thereby opening and closing
conducting channels. Interesting phenomena also occur in
the intermediate state, when the channel is opened only
partially. In this case, the current and charge strongly
depend on the phase and are in a state intermediate between
their quantized values.

The interest in such structures is additionally stimulated
by the possibility of their practical application in super-
conducting quantum interference devices (SQUIDs) [240±
244], in which Josephson contacts inserted into a super-
conducting ring act as sensitive elements converting mag-
netic flux into current. SQUIDs are fabricated based on well-
known multichannel macroscopic Josephson contacts [245,
246]. The study of Josephson nanocontacts can help decrease
the size and increase the sensitivity of such devices. Other
applications are also possible, such as a Josephson transistor
[235, 247±251].

Below, we consider the SXS junction with the nonsuper-
conducting part X of an arbitrary structure and derive the
equation for energy levels (carrying almost all the current)
expressed in terms of the scattering matrix of this part, and
analyze this equation in the most interesting cases.

14.1 Energy levels and current in an SXS junction
We consider the problem of two superconductors separated
by a distanceL (Fig. 30).We assume that a normal scatterer X
with the scattering matrix SN given by expression (277) in
general is located between NS interfaces. Since we are going
to look for the quantization conditions, we consider only one
conducting channel.52 We write the scattering matrix SN in
the convenient form

SN

�

�������
R�
p

exp �iw r
�� 0

�������
T�
p

exp �iw t
�� 0

0
�������
Rÿ
p

exp �iw r
ÿ� 0

�������
Tÿ
p

exp �iw t
ÿ��������

T�
p

exp �iw t
�� 0

�������
R�
p

exp �iw r
�� 0

0
�������
Tÿ
p

exp �iw t
ÿ� 0

�������
Rÿ
p

exp �iw r
ÿ�

26664
37775;

�307�
where T and R are the transmission and reflection probabil-
ities for the scatterer X, and w t and w r are the corresponding
gained phases. The subscripts � correspond to the energies
�e. For the convenience of calculations, we assume that
normal metal regions with an infinitely small length are
located between the normal scatterer and the NS interfaces.

We now define matrices similar to (282), describing
scattering on the left and right NS boundaries in the Andreev
approximation. On the left and right NS interfaces, expres-
sion (292) takes the respective forms

r̂
�1�
NS �

0 r
�1�
eh

r
�1�
he 0

" #
� 0 exp �ij1�

exp �ÿij1� 0

� �
L�e� ; �308�

r̂
�2�
NS �

0 r
�2�
eh

r
�2�
he 0

" #
� 0 exp �ij2�

exp �ÿij2� 0

� �
L�e� : �309�

Sh

Se

X

O e
1 exp �ÿik�x�

I h
1 exp �ÿikÿx�

Oh
1 exp �ikÿx�

I e
1 exp �ik�x�

S
�1�
NS

NS

I h
2 exp �ikÿx�

I e
2 exp �ÿik�x�

O h
2 exp �ÿikÿx�

O e
2 exp �ik�x�

S
�2�
NS

N S

Figure 30. States of Bogoliubov particles in an SXS junction. Calculations

are performed by using themodel S ~NX ~NS systemwith the ~N region length

tending to zero. Andreev reflection, occurring on the NS boundaries, is

described by the respective scattering matricesS
�1�
NS andS

�2�
NS on the left and

right boundaries. The normal part X is characterized by a scattering

matrixSN, which is separated for clarity into two parts, the electronmatrix

Se and the hole matrix Sh.

52 Assuming that a normal metal is connected to a superconductor

adiabatically, we believe that transverse modes are well defined, and we

solve the one-dimensional BdG equations for each channel.
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The states below the gap, jej < D, form a discrete
spectrum, while the states above the gap, jej > D, form a
continuous spectrum. We consider the first case and write the
quantization condition for discrete Andreev levels:

det
�
1ÿ Ser̂

�1�
eh Shr̂

�2�
he

� � 0 ; �310�

where we again use the electron±hole parameterization in
(278) and (279). Processes described by this equation are
illustrated in Fig. 30. As mentioned in Section 12, in solving
problems of this type, it is convenient to set e > 0, taking both
electron-like and hole-like states into account. As previously,
L�e� � exp �ÿi#�e�� and #�e� � arccos �e=D�.

Substituting expressions (307)±(309) in (310), we obtain
the quantization condition

cos �S� ÿ Sÿ ÿ 2#� �
�������������
R�Rÿ

p
cos b�

�������������
T�Tÿ

p
cosj ;

�311�

determining the excitation spectrum en of Hamiltonian (267)
in the SXS system. Here, j � j2 ÿ j1 is the difference
between the superconducting phases of the left and right
superconductors and S� � w t

� � k�L is the phase gained by
electrons and holes in the normal region, where k� ����������������������
2m��m� e�p

=�h are the corresponding wave vectors. In the
case of symmetric barriers, the phase b � �w t

� ÿ w r
��ÿ

�w t
ÿ ÿ w r

ÿ� is an integer multiple of p and gives rise to a
continuous function

�������������
R�Rÿ
p

cos b changing its sign at each
resonance [234, 235].53

The total current in the ground state is �2e=�h�qjU0. The
ground-state energy U0 of the system is given by expression
(269). We note that the last term in the right-hand side of
(269) is the sum of all excitation energies taken with the
opposite sign. It is interesting that only this term depends on
the superconducting phase difference j, allowing the
calculation of the ground-state Josephson current if the
excitation spectrum en is known. Using this specific feature
in the phase dependence of the ground-state energy U0, we
obtain the Josephson current equal to I �Pn In, where In are
found by differentiating the energy en with respect to the
superconducting phase, taken with the opposite sign,
In � ÿ�2e=�h�qjen.

The total nondissipative current flowing through the SXS
junction consists of two parts, one of which originates from
discrete energy levels below the gap and the other from the
continuous spectrum above the gap. We consider the
contribution of only the `discrete' component, because it
typically dominates [234, 253]. After implicit differentiation
in (311), we obtain

In � ÿ 2e

T n

�������������
T�Tÿ

p
sinj ; �312�

where the factor 2 is due to the double spin degeneracy,

T n � sin �dSÿ 2#� �hqe�dSÿ 2#� � �hqe�
�������������
T�Tÿ

p
cosj

� �������������
R�Rÿ

p
cos b�

has the dimension of time and represents the generalized
quasiparticle travel time in the normal part of the contact, and
dS � S� ÿ Sÿ.

Expressions (311) and (312) are valid for any scattering
matrix. We use them below to describe particular systems.

14.2 SNS junction: constriction in a two-dimensional gas
We first consider a multichannel SNS junction with ideal NS
boundaries. The simplest (and best known) case is a short
SNS junction without inner scatterers. In this case, substitut-
ing T� � Tÿ � 1, R� � Rÿ � 0, and dS � 0 in (311), we
obtain the energy e � D cos �j=2�. If the transparency T of
the normal part is not equal to unity but weakly depends on
the energy in the interval ��mÿ D; �m� D�, then the electron and
hole transparencies coincide, T� � Tÿ � T, and expression
(311) gives one level per channel [20]:

en � D

���������������������������
1ÿ Tn sin

2 j
2

r
; �313�

where Tn is the transparency of the nth channel.
For example, for a length-L rectangular barrier specifying

the effective chemical potential �mx; n (with the chemical
potential �m at infinity), the transparency has the form

Tn �
4�m�mx; n

4�m�mx; n � ��mÿ �mx; n�2 sin2
h ����������������������

2m�mx; n=�h 2
q

L
i ; �314�

where n is the transverse mode number. Below, we omit the
subscript n for simplicity.

We consider an SNS junction based on a QPC in a two-
dimensional electron gas (Fig. 31a). A one-dimensional
contact is formed by two gates determining the electron
density of the two-dimensional electron gas. Figure 31b
shows the effective one-dimensional chemical potential �mx
corresponding to a channel n. As the `top' �mx�0� of this
potential increases, the channel n gradually closes: first for
holes and then for electrons.

Expression (314), which describes a potential with breaks,
is rarely realized in practice. The system outlined in Fig. 31a
can be described by the parabolic potential

�mx�x� � �mx�0� �
mO 2x 2

2
;

where �hO � �4=p� ���������������������������
eL��mÿ �mx�0��

p
describes the `curvature' of

the potential at x � 0 and eL � �h 2p2=2mL2 is the quantiza-
tion energy over the contact length. The value of O is selected
such that the relation �mx��L=2� � �m is satisfied. In this case,
the transparency T is described by Kemble formula (63) and
depends only on the effective chemical potential maximum
and its curvature:

T � 1

1� exp �ÿ2p�mx�0�=�hO�
: �315�

53 Equation (311) was obtained in a somewhat simplified form in [252]].
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Figure 31. SNS junction. (a) Adiabatic constriction in a normal metal

between two superconductors. (b) The corresponding one-dimensional

smooth effective potential [235].
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In the typical case, the expansion of the potential near its
maximum can be restricted to the quadratic term because, as
the transparency changes according to the Kemble formula
from small �T5 1� to large �T � 1�, scattering is determined
by the potential in a rather small vicinity of the potential
maximum (see Section 4.3).

For a channel of an arbitrary length, it is necessary to
calculate dimensionless actions S� involved in quantization
condition (311). The action for a parabolic barrier can be
calculated explicitly [234]:

S�E �
�h
� 2E

�hO

(
k 2

��������������
1� 1

k 2

r
� log

�
jkj
�
1�

��������������
1� 1

k 2

r ��)
;

�316�
where

k 2 � Q
�hO
E
� p2�h 2O 2

16EeL
: �317�

In this case,S� � S�E � �mx�0� � e� andQ � �p=4�2�hO=eL is a
dimensionless parameter, typically, Q4 1. We also note that
the additional change in the action S�E� by p after passing
through zero energy in the interval �hO cannot be obtained in
the semiclassical model.

Figure 32a shows the results of solving quantization
equations (311) numerically for the model described above.
For a large positive chemical potential �mx�0� > e� �hO
(region I), the system can be described by expressions
(313) and (315). As �mx decreases (region II), only the
electron levels remain, as shown in Fig. 31b; in this case,
the energy levels are split, even for j � 0. In region III, the
channel produced by an electron-like level is closed. In
regions with �mx�0� < ÿeÿ �hO, the energy levels no longer
depend on the phase and hence represent closed channels. The
behavior of the system is described in more detail in [235].

In semiclassical region I, each Andreev level produces a
nondissipative current with the amplitude 2jej=�t� � tÿ�
2�h=

����������������
D2 ÿ e 2
p

�, where t� � �h qeS� are the travel times of
electron-like and hole-like quasiparticles in the normal part.
For the parabolic potential,

t�E� � Oÿ12 log �jkj�1�
����������������
1� kÿ2

p
�� :

For small energies, the travel times increase logarithmically,
t�E � � Oÿ1 log �4Q�hO=E �, in the interval �hO < E < Q�hO
and are saturated at t0 � Oÿ1 log �4Q� and energies E < �hO,
at which the system can no longer be considered in the
semiclassical approximation.

We find the dependence of the current on the phase
difference of superconducting banks. For j � 0, double
degeneracy occurs, and levels in a pair make contributions
to the current with the same modulus but opposite signs;
therefore, for j � 0, the discrete spectrum makes no con-
tribution to the current. As j increases, the degeneracy is
lifted and each split pair contributes to the nondissipative
current, monotonically increasing with increasing j and
reaching the maximum at j � pÿ 0. This means that the
current takes the critical value at the point j � pÿ 0.54 For
j � pÿ 0, all the levels except the lowest one become
degenerate again and none of the degenerate pairs of levels
contributes to the current.

Finally, we obtain a simple expression for the critical
current Ic � maxjfI g in semiclassical region I:

Ic � jej
t0 � �h=D

; �318�

where t0 is the travel time calculated for a parabolic potential,
which is constant in an opening channel, and t0 � Oÿ1 log 4Q
decays as t0 � Oÿ1 log 4Q�hO=�mx�0� for �mx�0� > �hO, and
becomes equal to the free-travel time, t0 � L=vF; x for
�mx�0� > Q�hO. In the last case, for a channel opened at large
energies, we obtain the known formula Ic � jejvF=�L� px0�
for the critical current. The critical current increases by Ic with
the appearance of each new open channel (Fig. 33).
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Figure 32. Subgap spectrum for a parabolic potential in the normal part

and scatterers with the strength Z on NS boundaries. (a) Ideal NS

boundaries �Z � 0�. (b) Weak scattering �Z � 0:1� leads to the appear-

ance of weak resonances and Andreev spectrum splitting. In the case of

strong scattering �Z � 1�, an Andreev quantum dot is formed. In regions I

and II, the spectrum depends on the difference between superconducting

phases j (solid curves correspond to the phasej � 0 and dashed curves to

the phase j � p) [235].

54 It is quite difficult to prove that the contribution of the continuous

spectrum to the critical current is insignificant. The discrete and contin-

uous spectra can be simultaneously taken into account by using the Crane

theorem, as in [254, 255]. At the same time, it can be shown relatively easily

that the contribution from the continuous spectrum vanishes at j � p
[234]. However, this does not mean that the critical current through the

contact, determined by both the discrete and continuous spectra, is then

caused only by the discrete spectrum at j � pÿ 0. To prove this

statement, it is necessary to show that the sum of discrete and continuous

spectra reaches a maximum at j � pÿ 0. For example, this can be done

for the contact length L and the chemical potential �mx�0� in the middle of

the contact distant from the point � ������������
x0=kF

p
;D� in the �L; �mx�0�� coordi-

nates [234].
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The basic qualitative features of the critical current
quantization predicted theoretically were confirmed experi-
mentally in [213].

14.3 SINIS junction: the Andreev quantum dot
In Section 14.2, we considered quantum constriction,
assuming that only Andreev reflection occurs on NS
boundaries �Z � 0�. We now consider the case where the
boundaries contain scatterers with Z > 0. Figure 32b,
showing an intermediate case with Z � 0:1, demonstrates
the appearance of oscillations with a period L and an
amplitude de caused by weak resonances of a double
barrier. Figure 32c shows the case of strong normal
resonances, Z � 1 (the corresponding system based on a
carbon nanotube is shown in Fig. 34). We can see the distinct
resonance structure of Andreev levels, which is determined
by the resonance structure of the normal part. An important
parameter is the resonance width G given by (106). We
restrict our analysis to the case �mx�0�4Q�hO, where the
curvature O of the potential no longer plays any role, and the
potential only shifts normal resonances.

The excitation spectrum in the Josephson contact with the
normal part of any structure can be determined from
expression (311). We introduce the quantization condition
for a double barrier with O � 0. Substituting transmission

coefficients (98) and phases (97) in (311), we obtain

�R1 � R2� cos
�
2p

e
d

�
ÿ 4

�����������
R1R2

p
cos

�
2p

eD
d

�
sin2 #

� T1T2 cosj � cos

�
2#ÿ 2p

e
d

�
� R1R2 cos

�
2#� 2p

e
d

�
:

�319�
Here, we choose the resonance with some number n and
energy En and omit the index n for brevity. The energy
eD � En ÿ �m�0� [where �m�0� � mÿ eVg] determines the reso-
nance position En � eL�nÿ �w r

1 � w r
2�=2p�2 with respect to the

chemical potential in the normal part, which is in turn
controlled by the external gate potential Vg. We assume that
the distance to neighboring resonances d � �En�1 ÿ Enÿ1�=2
greatly exceeds the superconducting gap D.

The dependences of the energy states on the effective
chemical potential �mx�0� are shown in Fig. 32. The parameter
Z [see (91)±(93)] specifies the `strength' of normal scatterers.
For a symmetric contact, we have T1 � T2 � 1=�1� Z 2� and
R1 � R2 � Z 2=�1� Z 2�. For Z � 0, expression (319)
describes an SNS junction; for Z � 0:1, it describes a contact
with weak scatterers at the NS boundaries, and for Z � 1, it
describes a contact with quite strong scatterers at the NS
boundaries.

Figure 32 shows that as the scatterer strength increases, a
resonance structure appears, as was to be expected. The most
interesting case is that of a strong phase dependence of
energy, which occurs when some normal resonance passes
through the chemical potential. Expression (319) can be
simplified in the vicinity of this point and an analytic
expression for the Andreev level can be obtained [237, 249,
256] as

e �
�����������������
e 2D � ~G 2

q
; �320�

where

~G � G

�������������������������
cos2

j
2
� A2

r
; A � jT1 ÿ T2j

2
�����������
T1T2

p ; �321�

and G � �T1 � T2�d=4p is the half-width of the normal
resonance. Expression (320) is valid when the resonance En

approaches the chemical potential �m by a distance of the
order of the normal resonance half-width jeDj9G, while
the half-width itself is much smaller than the superconduct-
ing gap, G5D (Fig. 32c). In this case, the current through
the Andreev quantum dot is

I � 2e

�h

G 2 sinj

4
�����������������
e 2D � ~G 2

q : �322�

The critical current is given by

Ic � jejG
�h

( ��������������������������
1� A2 � e 2D

G 2

s
ÿ

�����������������
A2 � e 2D

G 2

s )
: �323�

14.4 SGS junction
and the Dirac±Bogoliubov±de Gennes equations
This section is devoted to the Josephson current in a
superconductor±graphene±superconductor (SGS) junction
(Fig. 35a). The method for preparing a graphite (graphene)
monolayer was developed a few years ago [257]. Later, a

0

1I�j
ejD

=�h
�

2

L � 1 mm

L � 0:1 mm

2pp 3p
kFd

4p

Figure 33.Quantization of the superconducting current. As the width d of

the normal channel increases, the superconducting current increases by

quanta jej=�t0 � �h=D� [234].

Additional gates

Superconductors

SWNT
t1 t2

D exp �ij=2�D exp �ÿij=2�

Figure 34.Outline of the experimental realization of the Andreev quantum

dot based on a single-wall nanotube (SWNT). Two additional gates form

the electron density in certain regions and produce effective barriers with

transmission amplitudes t1 and t2.
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current through a graphene Josephson contact was measured
[228]. Below, we describe the electron transport and calculate
the critical current in the SGS system.

Graphene is described by the relativistic Dirac wave
equation. In this case, low-energy quasiparticles have the
linear dispersion e � kv and zero mass, while the velocity v is
independent of energy and is constant. This leads to a number
of interesting physical phenomena such as theKlein tunneling
[258±260].

Calculations for the SGS junction are quite similar to
those for the SNS junction; however, in BdG equations (270),
we must now substitute the Dirac Hamiltonian [261±263]

Ĥ0 � ÿi�hv�sxqx � syqy� ; �324�
which describes graphene in the absence of superconductors.
The resulting system of four first-order differential equations
is called the Dirac±Bogoliubov±de Gennes (DBdG) equa-
tions.

The coefficients u � �u1; u2�> and v � �v1; v2�>, as pre-
viously, describe the electron and hole parts of the wave
function, but now each of them consists of two components, u
and v, which have the opposite spin and valley indices related
to the two sublattices in the hexagonal graphene lattice.
Solving the DBdG equations on ideal GS boundaries, we
obtain the coefficients of the scattering matrix responsible for
reflection on the graphene side. The coefficients for the left
and right boundaries are respectively given by

r̂
�1�
GS �

0 r
�1�
eh

r
�1�
he 0

" #
� 0 exp �ij1 ÿ i#ŝx�

exp �ÿij1 � i#ŝx� 0

� �
;

�325�

r̂
�2�
GS �

0 r
�2�
eh

r
�2�
he 0

" #
� 0 exp �ij2 � i#ŝx�

exp �ÿij2 ÿ i#ŝx� 0

� �
:

�326�

Similarly to matrix (284), reflection matrices (325) and (326)
relate the wave functions incident on the GS boundary and
reflected wave functions. However due to the presence of the
valleys, the matrix size doubles compared to the size of the
analogous matrix for the NS boundary. Expressions (325)
and (326) describe the subgap scattering, with # �
arccos �e=D� as previously.

We note that Andreev reflection from the ideal NS
boundary transforms an electron to a hole (or a hole to an
electron) with the opposite velocity vector. This means that
the reflected hole (electron) propagates along the same path
as the incident electron (or hole), but in the opposite direction
(Fig. 35b) [172, 173, 240]. After reflection from the ideal GS
boundary, only the normal component of the velocity
changes, i.e., specular reflection occurs [261] (Fig. 35c),
which is called specular Andreev reflection to distinguish it
from the well-known usual Andreev scattering from the NS
boundary (retro Andreev reflection).55

We assume that a graphene sheet is ideally rectangular
and use the boundary condition for transverse quantiza-
tion [162]

ky; n �
�
n� 1

2

�
p
W

; �327�

where ky; n is the transverse component of the wave vector in
the nth channel. The effective chemical potential �mx; n in the
nth channel is determined by the relation �m 2

x; n � �m 2ÿ
��hvky; n�2, where �m is the chemical potential measured with
respect to the Dirac point, i.e., the graphene doping level. A
particle with an energy e has the wave vector k � ��m� e�=�hv
and the corresponding longitudinal component kx; n �
�k 2 ÿ k 2

y; n�1=2. Solving the Dirac equation �D � 0� for a
rectangular potential of length L (with the wave vector equal
to kx; n in the potential region and k outside that region), we
obtain the scattering matrices describing this potential

Se � 0 ~tee
~tee 0

� �
; Sh � 0 ~thh

~thh 0

� �
; �328�

where

~t �
cos �kxL� � ky

kx
sin �kxL� ik

kx
sin �kxL�

ik

kx
sin �kxL� cos �kxL� ÿ ky

kx
sin �kxL�

2664
3775 :

�329�

The opposite energy signs correspond to electrons and holes,
~tee � ~t�e� and ~thh � ~t�ÿe�. In the general form, the quantiza-
tion condition for the SGS junction has the form

det
h
1ÿ ~teer̂

�1�
eh

~thhr̂
�2�
he

i
� 0 : �330�

Substituting (325), (326), and (329) in (330), we can obtain the
quantization condition determining energy levels in the
system under study [262, 263].

In the case of a short contact �L5D; x�, the energy levels
are described by the simple expression

en � D

���������������������������
1ÿ Tn sin

2 j
2

r
; �331�

which completely coincides with expression (313) for a short
SNS junction, the only difference being in the definition of the
transparency

Tn �
k 2
x; n

k 2
x; n cos

2 �kx; nL� � ��m=�hv�2 sin2 �kx; nL�
: �332�

S G
a

L

W

S

h

b

NS
e

c
h

e
GS

Figure 35. (a) SGS junction: a graphene sheet G of length L and width W

connected to two superconductors S. (b) The usual Andreev reflection of

an electron to a hole from the ideal NS boundary in the Andreev

approximation. The hole repeats the electron trajectory in the opposite

direction. (c) Specular reflection from the ideal GS boundary followed by a

change in the normal component of the velocity.

55 These statements are valid in the Andreev approximation on the NS

boundary and a low graphene doping level on the GS boundary.
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It follows that transparencies in this case differ considerably
from those in (314) for quadratic dispersion.

Each channel makes a contribution to the current, which
can be found by differentiating (331) with respect to j. The
total current has the form

I � eD
�h

X1
n�0

Tn sinj�����������������������������������
1ÿ Tn sin

2 �j=2�
q : �333�

We note that unlike the summation in the case of an SNS
junction, the summation in (333) extends to infinity over the
propagating (real kx; n) and evanescent (imaginary kx; n)
modes. For L5W; x, summation can be replaced by
integration.

The numerical results obtained for the critical current are
presented in Fig. 36. The main feature is that the critical
current does not vanish at the zero doping level, which is
confirmed experimentally [228]. For �m � 0, the total current is
determined by the first nonvanishing term in the expansion of
current (333) in the small parameter j�mj5 �hv=L [262]:

I � eD
�h

2W

pL
cos

j
2

artanh

�
sin

j
2

�
: �334�

In this case, the critical current (shown by the horizontal
dashed straight line in Fig. 36) is described by the expression

Ic � 1:33
eD
�h

W

pL
: �335�

Away from the Dirac point ��m4 �hv=L�, the critical
current is proportional to the doping level (see the inclined
dashed asymptotes in Fig. 36):

Ic � 1:22
jejD

�h

j�mjW
p�hv

: �336�

The case of a nonzero temperature is considered in [264,
265].

15. Shot noise in NS systems at a finite voltage

In this section, we present general expressions for the
differential shot noise in a nonideal NS junction in terms of
the scattering matrix of the normal part. As mentioned in
Section 10, shot noise appears due to the discreteness of the
charge carried by a particle and the probabilistic nature of
scattering. Shot noise in nonideal NS junctions is produced

both in normal scattering processes and in nonideal Andreev
scattering [112, 266±268]. The latter process for transport at
low temperatures (caused only by the transfer of electron
pairs) can be represented as the tunneling of Cooper pairs as a
whole, similarly to the tunneling of usual particles. The
Andreev scattering leads to fluctuations whose amplitude is
proportional to the double electron charge. In this case, the
fluctuation amplitude in SNS junctions with applied voltage
can increase to a value proportional to the large number of
charge quanta [269, 270].

We consider an NXS junction. As above, X denotes a
region with an arbitrary normal scattering matrix. The
current fluctuation power spectrum at low frequencies is
determined by irreducible current±current correlator (183)
foro! 0. The time-dependent current operator is defined as

Î�t� � exp
�
i�Ĥÿ mN̂ �t� Î exp �ÿi�Ĥÿ mN̂ �t� ; �337�

where N̂ is the particle number operator. Expression (337)
differs from formula (179) used previously in that the
Hamiltonian determining the time evolution is replaced by
an effective Hamiltonian that can be diagonalized in the
mean-field approximation via a Bogoliubov transformation.
This approach neglects order parameter fluctuations in the
superconducting region and assumes that Bogoliubov quasi-
particles coherently propagate through the entire system, not
changing their energy.

Time-dependent current operator (337) can be expressed
in terms of solutions of BDG equations (268) and the
Bogoliubov creation and annihilation operators,

Î�t� � ÿ ie

m

X
n 0; n

�
dy dz

ÿ
u �n 0 q̂xunâ

y
n 0 ân

ÿ v �n 0 q̂xvnânâ yn 0
�
exp

�
i�en 0 ÿ en�t

�
; �338�

where the new operator uq̂xv � uqxvÿ vqxu is introduced. As
before, we take only states with the positive energy en > 0 into
account, omitting the channel number n where it is insignif-
icant. For simplicity, we calculate expression (338) in the
normal region.

For voltages smaller than the superconducting gap
�jeVj < D�, quasiparticles can appear only from a normal
reservoir, and the wave functions are still dependent only on
the parts of the scattering matrix responsible for scattering
(ree, rhe, reh, and rhh). Each of these N�N matrices describes
the NXS junction as a whole.

The noise power is determined by transitions (due to the
operator Î ) between the states

jsi � j fb; n; n � 1; fb 0; n 0;m � 0i ;
jii � j fb; n; n � 0; fb 0; n 0;m � 1i

that differ only by the occupation of two one-particle states
with the energy subscripts n and n 0 in the respective nth and
mth channel. The subscripts b and b 0 indicate the electron �e�
of hole �h� states. For example, a transition between the
incident electron �b � e� from the nth channel and the
incident hole �b � h� from the mth channel occurs due to
the presence of a nonzero matrix element describing the
interaction between reflected electrons (and holes),
hsjÎ jii / fe�1ÿ fh��r yehree ÿ r

y
hhrhe�mn. Here, the occupation

numbers fb for electrons and holes are given by the Fermi
distribution fe=h � f �e� eV �; the voltage is measured relative

0

1

2

3

ÿ10 0 10
�m��hv=L�

I c
�je
jD
W
=
�h
L
�

Figure 36. Critical current Ic in an SGS junction as a function of the

graphene doping level �m [262].
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to the electrostatic potential in the superconductor. Summa-
tion over the channels gives the contribution to fluctuationsX

m; n

��hsjI jii��2 / fe�1ÿ fh�

� Tr
��r yeereh ÿ r

y
herhh��r yehree ÿ r

y
hhrhe�

	
� fe�1ÿ fh�Tr

�
r
y
herhe�1ÿ r

y
herhe�

	
:

Considering similar processes, allows obtaining the expres-
sion for the low-frequency power spectrum [19, 271] valid for
Y5 jeV j < D:

S � 4e 2

h

� D

0

de
n�

fe�1ÿ fh� � fh�1ÿ fe�
�

� Tr
�
r
y
herhe�1ÿ r

y
herhe�

�
� � fe�1ÿ fe� � fh�1ÿ fh�

�
Tr
��r yherhe�2�o : �339�

The first term in the right-hand side of (339) describes
transitions between the states making contributions to the
current with opposite signs, while the second term describes
transitions making contributions with the same signs. At zero
temperature, the second term vanishes and the shot noise is
determined by the first term. At a nonzero temperature, both
terms contribute, in particular, to the Johnson±Nyquist noise
[272, 273] due to thermal fluctuations.

As in the calculation of theNXS junction conductance, we
express the scattering matrix rhe�e� in terms of the scattering
matrix of the normal part X and the Andreev scattering
amplitude. Substituting the result in (339), we obtain the
general expression for shot noise in a multichannel NXS
junction. We restrict ourselves to the case where the contact
has a constant cross section, with the differential conductance
Gn�e� � �4e 2=h��r yherhe�nn described by expression (298). At
zero temperature, the power spectrum of shot noise takes the
form

S � 1

jej
� jeV j
0

de
X
n

zn�e� ;

where zn is the differential shot noise in the nth channel,

zn�e� �
2jej3
h

4
�
r
y
herhe�1ÿ r

y
herhe�

�
nn

� 2jej3
h

4Tn�e�Tn�ÿe�
n
Rn�e� � Rn�ÿe�

ÿ 2Re
�
L2�e� rn�e� r �n �ÿe�

�on
Tn�e�Tn�ÿe� � Rn�e�

� Rn�ÿe� ÿ 2Re
�
L2�e�rn�e� r �n �ÿe�

�oÿ2
: �340�

In the limit as e! 0 �L! ÿi�, the dependence on the phases
gained by quasiparticles between the scatterer X and the NS
boundary disappears, and we obtain the linear response [274]

zn�0� �
2jej3
h

16T 2
n �0�

�
1ÿ Tn�0�

��
2ÿ Tn�0�

�4 : �341�

Now, again using theDorokhov distribution function, we can
find the total noise in a dirty contact as [197]

S � 2

3
jejI : �342�

We can see that the Fano factor F � 2=3 is twice the Fano
factor for noise in a normal dirty conductor (see Section 10.3),
which, of course, indicates the presence of the charge 2e in the
system. This effect was observed in experiments [275, 276].

15.1 Noise in an NINS junction
We consider a strong scatterer I �T5 1� without the internal
resonance structure, located at a distance d from the NS
boundary, X � NIN.56 In this case, the reflection amplitude
r�e� � ����

R
p

exp �iw r�e�� depends on energy weakly, the energy
dependence being completely determined by the phase
w r�e� � 2�k� e=v�d� w0 that is gained between the scatterer
I and the NS boundary; k and v are the wave vector and
velocity in a quasi-one-dimensional channel. Differential shot
noise (340) in the nth channel, which takes the form

zn�e� �
2jej3
h

4T 22R
�
1ÿ cos an�e�

��
T 2 � 2R

�
1ÿ cos an�e�

�	2 ; �343�

depends only on the phase difference an�e� � w r
n�e�ÿ

w r
n�ÿe� ÿ 2#�e�. The resonance structure of zn is reflected in

the differential conductance

Gn�e� � 4e 2

h

T 2

T 2 � 2R
�
1ÿ cos an�e�

� : �344�

Figures 37a and b show the dependences of the conduc-
tance and spectral noise on the phase difference an. The
minimal value of the denominator in (343) and (344), reached
at en; n � vn=2d �np� arccos �en; n=D��, corresponds to the
resonances shown in these figures. Differential shot noise zn

0

14 1816p 3pÿp
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Figure 37. (a, d) Conductance at zero temperature, (b, e) shot noise, and

(c, f) noise power spectrum for the NINS junction (solid curves) with�
dxV�x� � 3�hvF, mean transparency T � 0:05, EF � 500D, and d �

20vF=D, vF=d5D5EF. Plots in Figs a±c are determined by Eqns (343)

and (344) for one channel, and in Figs d±f by Eqns (298) and (340)

averaged over 8� 104 channels. The conductance (d) and noise (e)

asymptotically approach the corresponding values (dashed straight lines)

in the NIN junction. The ratio S=jejI shown in Figs 37c, f approaches the

classical value S=jejI � 1 at high voltages [278].

56 This model describes, for example, a thin NS film and a metal needle

brought near itÐ the system in which Rowell±McMillan resonances were

observed [277].
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in (343) vanishes at these resonances and reaches a maximum
at cos an � �2Rÿ T 2�=2R, when energies are still close to
resonances.

It is remarkable that such a nontrivial structure is
preserved even in the multichannel case,57 which is shown in
Figs 37d, e. This can be explained by the fact that levels
`adhere' to the electrochemical potential (of the superconduc-
tor). Comparing Figs 37b and e, we see that a sharp double
peak in the noise (Fig. 37b) disappears in the multichannel
case (Fig. 37e), while the noise S takes the maximum value
(instead of the minimal) at the resonance, repeating the
corresponding conductance curve (Fig. 37d).

For large voltages jeV j4 vF=d, the noise and conduc-
tance can be estimated by averaging the phase an in Eqns (343)
and (344),

�z � 1

2p

� 2p

0

da z�a� � 2jej3
h

T ; �G � 2e 2

h
T : �345�

The sum over channels is replaced by the integral in
(345), �1=N �Pn ! �1=2p�

� 2p
0 da. This means that both

the noise and the conductance reach their normal values
(in the corresponding NIN junction) at the voltages
vF=d5 jeV j5D.

We now consider the Fano factor F � S=jejI, where S �� jeV j
0 de z�e�, I � � jeV j0 deG�e�. At low voltages, F � 2, which
reflects the fact that charge carriers are Cooper pairs. At high
voltages �vF=d5 jeV j5D�, the Fano factor decreases to the
normal value F � 1. Such a decrease in F, which occurs
immediately after the first Andreev resonance (as shown in
Figs 37c, f), is caused by the noise suppression in the
resonance region. A similar noise suppression was observed
in [120].

15.2 Noise in the NINIS junction
As mentioned in Section 13, the NINIS junction can be
interpreted as a qualitative model of a disordered conductor
[34, 206].

The resonance structure appearing in an INI scatterer
leads to the bimodal distribution of the transparency T. For a
symmetric INI scatterer �T1 � T2 5 1�, the transparency
distribution is given by [274]

r�T � � 1

p
T1

2

1����������������������
T 3�1ÿ T �p ; T 2

�
T 2
1

p2
; 1

�
: �346�

Expression (346) has an analogue in the case of a disordered
conductor [34, 206]. The structure of r�T � in the NININ
junction does not affect macroscopic transport properties.
The differential shot noise and linear conductance that can be
calculated for bimodal transparency distribution (346),

z � 2jej3
h

�
dT r�T �T�1ÿ T � � 2jej3

h

T1

4
; �347�

G � 2e 2

h

�
dT r�T �T � 2e 2

h

T1

2
; �348�

describe coherent transport [279]. In the incoherent case, the
resistance is a sum of two resistances determined by barriers I,
connected in series. In this case, z=jejG � 1=2, as a conse-
quence of charge conservation [85]. In the coherent case, the

linear response of the NINIS junction can be found from
expressions (298), (340), and (346):

z�0� � 2jej3
h

�
dT r�T � 16T

2�1ÿ T �
�2ÿ T �4 � 2jej3

h

T1

2

3

4
���
2
p ; �349�

G�0� � 2e 2

h

�
dTr�T � 2T 2

�2ÿ T �2 �
2e 2

h

T1

2

1���
2
p : �350�

The ratio of the spectral noise density to the conductance in
this case is z�0�=jejG�0� � 3=4 [274]. The noise-to-conduc-
tance ratios in the coherent case forX � I andX � IN and for
a contact with X � D (where D is a diffusion conductor) are
compared in Table 1. The transparency distribution for a unit
barrier has a maximum at T5 1. The ratios zN=jejGN � 1 in
the NIN junction and zS=jejGS � 2 in the NIS junction
characterize the carrier as an electron or a Cooper pair. In
the presence of disorder, superconductivity in the NDS
junction produces twice the noise determined by the normal
NDN junction.However, in the case of a double barrier, noise
in theNINIS junction increases 3=2 times compared with that
in the NININ junction (see Table 1). Therefore, we can
conclude that noise doubling is not universal and can depend
on the features of the transparency distribution function. This
is explained by the fact that noise is caused by channels with
mean transparencies 09T9 1, while the current is related to
open channels with T! 1.

At finite voltages, the differential noise is determined by
Eqn (340) with reflection amplitudes (306) of the double INI
barrier. This noise for a symmetric barrier,T1 � T2 � 0:05, is
shown in Fig. 38. For voltages of the order of the Andreev
level, jeV j � vF=d, the resonance structure is independent of
the number of channels, while the resonance peaks are
reflected in both the noise and conductance. At higher
voltages, jeV j4 vF=d, resonances disappear due to dephas-
ing of electrons and holes. In this case, the difference between
NIN and NIS junctions also disappears.

16. Conclusions

We have considered mainly all basic aspects of the scattering
matrix application for electron transport description. How-
ever, because of the unavoidable size limitations, topics such
as multichannel cases, the transparency statistics for dirty
conductors, the integer quantumHall effect, and some others
have only barely been discussed or simply mentioned, as, for
example, problems with time-dependent fields. Although the
fundamentals of the method described here are presented in
books (see, e.g., [72, 73] and handbook [65]), a number of
issues have been mentioned only in articles, while some have

57 For example, the resonance structure of a normal double barrier is not

preserved in the multichannel case.

Table 1. The ratio z=jejG of the spectral noise density to the conductance
for NXN and NXS junctions. Results are valid [85, 112, 274, 279] for a
weak transparency T5 1 and many channels N!1.

Single
barrier*

Double
barrier**

Disorder***

NXN
zN=jejGN

1 1=2 1=3

NXS
zS=jejGS

2 3=4 2=3

* Single barrier without an internal structure, X � I.
** Symmetric coherent double barrier, X � INI.
*** X � D.
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not been considered at all. We hope that this review
compensates at least partially for this deficiency, especially
as regards the Russian literature. We note in conclusion that
the possibilities inherent in the approach initiated by Land-
auer in 1957 [5] are far from being exhausted, especially
concerning the description of systems with interacting
particles, while at the same time this approach has already
become a convenient tool in solving electron transport
problems in the noninteracting case.
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17. Appendix: properties of scattering matrices

A.1 Properties of scattering states
The basic properties of scattering states both in the purely
one-dimensional and in the multichannel and multilead cases
are obtained by the samemethods as in the three-dimensional
case, which is usually considered in textbooks. However, the
orthonormalization and completeness of a set of scattering
states can also be found from the following (not very

rigorous) considerations: we create scattering states from
plane waves, e.g., at an instant t � tin [the set of wave
functions ck�x; tin� � exp �ikx� at that instant] by adiabati-
cally increasing the scattering potential (localized in some
region) up to a specified value. Then both the orthonormali-
zation and the completeness of the set fck�x; t�g in the
subsequent instants automatically follow from the unitarity
of the evolution of the wave packets because the initial set of
plane waves had these properties (for plane waves, this can be
proved by direct explicit calculations). Because the states
ck�x; t� transform into Lieppmann±Schwinger scattering
states as t!1 (it is this statement that should be proved
more rigorously), we have obtained the orthonormalization
and completeness for them.

We note that these properties can be used only in the
region of wave packets that have already experienced
scattering from a potential with the required accuracy close
to the specified potential, i.e., jxj5 vkt, where t is the time
elapsed from the instant at which the potential was close to
the specified potential, with the required accuracy.58 It also
follows from these considerations that the type of normal-
ization (for example, to the energy delta function) of
scattering states can be determined from their asymptotic
forms: the flow density in the incident wave can be related to a
plane wave, for which the normalization can be done easily.

A.2 Unitarity of the scattering matrix
The scattering matrix S is parameterized as

S � r t 0
t r 0

� �
: �351�

The scattering matrix is unitary,

SS y � 1 ; �352�
which means that the amplitudes t, t 0, r, and r 0 are not
independent quantities:

r yr� t 0 yt 0 � t yt� r 0 yr 0 � 1 ; �353�
tr y � r 0t 0 y � 0 : �354�

For example, if t, t 0, and r are known, we can find from (354)
that

r 0 � ÿtr y�t 0 y�ÿ1 : �355�

The Hermitian conjugation symbol y is used here instead of
the complex conjugation symbol � to emphasize that
scattering amplitudes can be matrices in the multichannel
case.59 In the one-dimensional spatially symmetric case (with
the time reversal symmetry assumed), it follows from (354)
that

tr � � �i
�������
TR
p

: �356�

0 0.2 0.4 0.6 0.8

V�vF=d jej�

0

0.01

0.01

0.03

z�2
jej

3
=h
�

G
�2e

2
=
h
� a

b

Figure 38. (a) Differential conductance and (b) shot noise in the NINIS

junction with many channels �8� 104�. The transparencies of scatterers

are the same, T1 � T2 � 0:05, the distance between scatterers is

d � 20vF=D, and
�
dxV�x� � 3�hvF. Averaged shot noise per channel

(340) has local maxima at conductance resonances (solid curves). The

conductance and shot noise for the corresponding nonsuperconducting

NININ structure are shown by dashed curves [278].

58 The possible appearance of coupled states requires somemodification of

our arguments; however, we do not consider this question here because

such states rarely contribute to the transport phenomena under study.
59 In addition, scattering amplitudes are not always described by scattering

matrices. For example, the numbers of channels on the left and right sides

of the barriers can be different. The scattering amplitudes are alsomatrices

in the spin space in general. These matrices become nondiagonal in the

case of spin-flip scattering, which can be caused by the spin±orbital

interaction in the barrier or the action of an inhomogeneous exchange

field (caused by ferromagnetic barriers) on the electron spin.
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In the case of scattering from the delta function, the plus sign
in (356) corresponds to the attractive potential in which a
bound state exists, while the minus sign corresponds to the
repulsive potential I in which only a continuous spectrum
exists [see (91)]. In the case of scattering froma double barrier,
the sign changes after passing through the (ideal) resonance.
Such a behavior of the phase affects the general interference
pattern in the INIS structure (see Section 13.4).

A.3 Symmetry of the Hamiltonian under time reversal
When the system Hamiltonian is invariant under a symmetry
transformation, this invariance is extended in a certain way to
the scattering matrix. If the Hamiltonian in invariant under
time reversal, then the scattering matrix satisfies the relation

S � S> : �357�

It follows from (357) that t � t 0. Using relations (353) and
(354), we can also find that jrj � jr 0j and that the usual
relation exists between reflection �R � jrj2 � jr 0j2� and
transmission �T � jtj2 � jt 0j2� probabilities:

R� T � 1 : �358�

If we take a magnetic field into account, then, because time
reversal changes the direction of the magnetic field B to the
opposite [72, 280], we have

SÿB � S>B : �359�

For the transmission amplitude for a scatterer inside which
the magnetic field acts nontrivially on the orbital (one-
dimensional) motion of particles, we have tB � t 0ÿB.
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