
Abstract. In this review, the formation, evolution, and decay of
the large-scale structure of the Universe is discussed in the
context of observational data, numerical simulations, and the
Cosmological Standard Model (CSM). Problems concerning
measuring and interpreting cosmological parameters, determin-
ing the composition of matter, and normalizing density pertur-
bation spectra are especially highlighted.

1. Introduction

This review describes the processes of generation, evolution,
and degradation of structuresÐ linear, quasilinear, and
nonlinearÐand relaxed halos of dark matter (DM) in the
Universe, based on theoretical developments and compar-
isons with observations and numerical simulations. Special
attention is paid to: (1) the characteristics of dark energy (DE)
and methods of measuring it, (2) DE, which gravitationally
affects the growth of cosmological inhomogeneities and
drastically influences the dynamics of DM structure forma-

tion, and (3) questions of normalizing density perturbation
spectra on the basis of observations of the Universe's large-
scale structure. We separately consider the current status of
DM equilibrium halos (their internal structure, density
distribution, rotation curves, etc.) in review [1].

Turning to the most challenging questions of physical
cosmology, we do not attempt to highlight all aspects related
to the formation and decay of large-scale structure in the
Standard Model (in particular, we do not elaborate on the
baryon history of the structure). Both reviews rely on the
original research of the authors and follow respective
chapters of monograph [2]. Here, we propose a more
complete account of the aforementioned topics, invoking
new observations and comparisons to the theory, and
avoiding detailed analytical manipulations whenever possi-
ble (all necessary theoretical results are formulated in the
Appendices; the interested reader will find proofs in book [2]).

2. What the structure is

The Hubble flow (recession, rushing outward, expansion) of
matter observed on large scales bears no structure: it is
compatible with spatially homogeneous and isotropic field
of distributions of density, pressure, velocities, and other
characteristics of matter. The structure is, by definition,
inhomogeneous and is associated with distortions of the
Hubble flow that have evolved from initial seeding inhomo-
geneities of the flow metric under the action of gravitational
field gradients, which influence themotion and distribution of
matter in space (see Appendices A and B). Spatial gradients
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grow if scales decrease. Relatedly, one distinguishes between
linear, quasilinear, and nonlinear structures.

By the large-scale structure of the Universe is meant the
observed inhomogeneous matter distribution which determi-
nistically evolved from the initial small geometric scalar
perturbations (the S-mode of cosmological perturbations)
`imprinted' in the gravitational potential of the Hubble
flow. 1 The modern Universe exhibits a well-developed non-
linear structure in the form of halos of galaxies, groups, and
clusters at small scales (R < 10 Mpc), and shows a more
regular, quasilinear distribution of matter on larger scales up
to hundreds of megaparsecs, exemplified by superclusters and
cosmological voids. There are numerous transition forms
between nonlinear and quasilinear structures.

Gravitationally bound halos are distributed nonuniformly
in the Universe. They are frequently observed in sheet-like
formationsÐ `walls' whose transverse size does not exceed
10Mpc.Awall does not expand transversely andappears to be
a nonlinear formation. It can be quasilinear along the other
two more extended directions, continuing to expand along
them.Thewalls themselves are inhomogeneous, and appear as
a collection of elongated `filaments' which may intersect,
forming `nodes'Ð the rich clusters of galaxies. The mean
inhomogeneity scale in the Universe measures 10 Mpc (the
density contrast variance in a sphere of this radius is close to
1, s10 ' 1), varying locally by increasing in the vicinity of
clusters, and decreasing away from them.

The observed structure is associated with the development
of gravitational instability in nonrelativistic collisionless
matter. Initial quasiisotropic expansion of matter is accom-
panied by the development of anisotropy. In regions of
augmented density, the expansion of gravitating matter
slows down, comes to rest, and is superseded by a collapse.
The initial stage of collapse proceeds mainly along one of
three directions and leads to self-crossings (caustics) and the
formation of one-dimensional oppositely directed flows.
Later on, the regions of matter self-confined by its gravita-
tional field relax, gradually acquiring a spherical shape and
forming multistream systems trapped by gravityÐ the halos
of DM. These processes, both well understood and studied,
are corroborated by numerical experiments simulating
billions of collisionless gravitating particles (the N-body
simulations), and agree largely with observations (see, for
example, Refs [3, 4]).

Quasilinear structures (the density contrast dL < 1 [see
Eqn (62) in Section 13] are subject to a rigorous analytical
treatment since there is a small parameter enabling the
machinery of perturbation theory in this case. There are two
analytical approximations describing nonlinear formationÐ
that of Zel'dovich [5] (exact in the one-dimensional case), and
Press±Schechter [6] (exact in the spherical case). As indicated
by numerical simulations, the Zel'dovich approximation
describes well the large-scale matter distribution in regions
where the collapse has just begun. In contrast, the Press±
Schechter formalism pertains to fairly small scales and
describes the distribution of virialized halos of DM.

3. Why galaxies form

We observe the state of the Universe billions of years after the
Big Bang. On large scales, the expansion of matter follows
Hubble's law, which does not make a distinction between
spatial points of the medium because the relative recessional
velocity dV of any two neighboring elements of matter is
proportional to the proper distance dr between them:

dV � qdr
qt
� Hdr : �1�

The proportionality coefficientH � H�t� does not depend on
the spatial coordinates or mutual location of these elements,2

but depends on the proper physical time t. This law of matter
expansion is preserved as a relict from the early history of the
Universe, being, in essence, synonym of the notion of the
Universe. It conceals all the information on the formation of
the Universe and the seeds in its structure.

Even though H is independent of spatial coordinates x,
the metric described by Eqn (1) is homogeneous and isotropic
only locally, 3 i.e., it still depends on x � x i �i � 1; 2; 3�. The
Hubble flow (1) can be conceived of geometrically as a three-
dimensional spatial (initially curved) hypersurface that
uniformly stretches with time, preserving local isotropy at
all spatial locations, with the factor of local stretching
a�t� � ai j�x�, where a � a�t� and ai j � ai j�x� are some
smooth continuous functions of class C 2.

Indeed let us assume by definition

H j
i � _aika

k j ;

where aik and akj are direct and inverse symmetric positive
definite matrices (the dot over a letter implies a partial
derivative with respect to t). From Eqn (1) we understand
that they admit the factorization

H j
i � Hd j

i : ai j � a � ai j ; a � exp
��

H dt
�
; �2�

and correspond to the interval squared between medium
points:

ds 2 � dt 2 ÿ dr 2 � dt 2 ÿ a 2gi j dx
i dx j ; �3�

dr � dri � a � ai j dx
j ; gi j � gi j�x� � aikal jd

kl

[the Kronecker symbol here follows from Eqn (2)]. The
converse statement is also true: differentiating dr from
Eqn (3) with respect to time we recover Eqn (1) with
H � _a=a. Relatedly, Eqns (1) and (3) are equivalent. They
describe a homogeneous distribution of matter with a laminar
Hubble flow such that the linear law of velocity superposition
holds in the vicinity of any of its points. Passing from one
spatial domain to another one, we have to redefine the rules of
distance addition with regard to functions gi j.

1 These perturbations are also called adiabatic or growing adiabatic

density perturbations. Theoretically, one may also conceive of primary

perturbations coming from inhomogeneities in the matter composition

under invariable gravitational potential (so-called isometric perturba-

tions). There are, however, no observational data (within the arrow-bars

of the measurement) which indicate that a part of the initial conditions

might be described by these perturbations.

2 The modern value isH0 ' 70 km sÿ1 Mpcÿ1.
3 Summing up vectors of distances and velocities on the hypersurface

t � const, one readily concludes that if law (1) holds true for a particular

observer, this same law is then also valid for all other points with just the

same coefficient H. This, however, does not prove the global homogeneity

of space: we are dealing with a tautology, because an isotropic and

homogeneous hypersurface is assumed a priori in this conjecture in the

form of linear superposition of distances and velocities. Notice that the

dependence of H on x can manifest itself on scales in excess of the size of

the observable Universe. The real scale of the Friedmann worldÐ the

region of homogeneity where the linear superposition of velocities is

validÐexceeds the Hubble radius [see Eqn (7) below]. Finding it is a

question of the accuracy of observational data.
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Themodern value of the scale factor is taken to be equal to
unity: a � �1� z�ÿ1, where z is the redshift. In order to
determine the boundaries of the Friedmann world, we
expand gi j in the Taylor series in some finite neighborhood
of an arbitrary point:

gi j�x� � ci j � k0 ci jkx
k � 1

2
k 2
0 ci jklx

kx l � . . . ; �4�

where the coefficients k0 and ci j... depend on the selected
point, which we have placed at x � 0 in this case, and kÿ10 is
the scale of variation of trace gii or the convergence radius
k0jxj < 1 within which the first term ci j of the series exceeds
the remaining sum. Since we are dealing with the form
gi j dx

i dx j, we can always reduce ci j to the unity form
ci j � di j by an appropriate choice of coordinates and leave
only nonvanishing coefficients ci jk.... Expression (4) reduces
then to the following:

gi j�x� � exp �ÿ2q0��di j ÿ 2Si j� ; �5�
where the irreducible scalar q0 � q�x� and small tensor
S0 � Si j�x� depend on x and are close to zero at x � 0 (the
subscript `0' on these functions implies the absence of the
functional dependence on time). 4

According to Eqn (5), the quantity q�x� is defined up to an
additive constant, and the difference in its values between
distant points can be arbitrarily large. It is usually assumed
that its mean value q0 in the observed domain equals zero. In
that case, the deviations of q�x� from zero grow with the
distance from the observer, and the upper bound on the
Friedmann world is set by the condition��q�kÿ10 �

�� � 1 : �6�
This size is a fortiori larger that the radius of external
curvature (k0 < H0), since jq�x�j5 1 within the scale of
observable cosmology: 5

qH �
��q�Hÿ10 �

�� � 10ÿ4 : �7�

Functions (5) encode information on the S andTmodes of
cosmological structure, which define the anisotropy of cosmic
microwave background radiation (q0 andS0) and the seeds of
galaxies (only q0). It should be borne in mind that there are
small corrections � Hq0= �H to the metric (3) and that in this
order the Hubble flows are weakly distorted. The gradients of
q0 may evolve and disrupt the laminar flow at small scales,
leading to its breakup into self-gravitating nonlinear clumps
of matter.

We see that the early Universe is deterministic and all its
motions can be considered in the framework of the Cauchy
problem. By solving dynamical equations, we uncover the
cause±consequence chain of events fully determined by the
initial cosmological conditions (functions q0 and S0), which
in fact gives rise to the cosmological time arrow. 6

In summary, there are two regimes of matter organiza-
tion, which are evolutionarily connected with each other and
describe opposite processes: Hubble flows (large scales), and
structure (small scales). From the GRT equations it follows
that the metric (3)±(5) represents the leading term in the
expansion of the exact solution in the small parameter

bk
�H
< 1 ; �8�

where b is the mean speed of sound in the medium, and k and
�H � aH � _a are the spatial and Hubble frequencies, respec-
tively. Of principal importance is the answer to the question
of whether corrections to expression (3) grow or decay with
time. The evolution leads to the breakup of existing Hubble
flows in the first case, and to their creation in the latter.

The answer to this question depends on the sign of
function �g, where

�g � ÿ
_�H
�H 2
� ÿ d ln �H

d ln a
� 1

2

�
1� 3p

e

�
; �9�

g � ÿ
_H

H 2
� 1� �g � 3

2

�
1� p

e

�
:

Indeed, in the first order in gradients of q0 we have [2]

q � q0 �
�
dp

da

a
; �10�

vpec � ÿnHq0 ; d � gDq0 ; F � fq0 ; �11�

where q � q�t; x� is the curvature potential [10, 11], F is the
gravitational potential, vpec is the peculiar velocity of matter
motion relative to Hubble flow (1), and dp and de � d are the
comoving perturbations of total pressure ( p) and matter
energy density (e) (see Appendices A and B). The growth
factors n � n�a�, g � g�a�, and f � f�a� depend only on time
or the scale factor a�t�, respectively:

n � 1

a 2

�
da

H
; f � g �H 2g � 1ÿH

a

�
da

H
: �12�

A critical regime for the growth functions is the linear
cosmological expansion for which

�g � 0 ; a / t :

4 To be fully rigorous, we have to add to the right-hand side of Eqn (5)

some scalar B; i j and vector xi; j terms depending on x (the comma in

subscripts denotes a partial derivative over x). These terms, however, lack

physical sense and can be removed through coordinate transformations.

Vector modes, as well as decaying branches of scalar (S) and tensor (T)

perturbation modes, are incompatible with isotropic expansion (2). In

contrast, the growing branches of S and T modes of geometric inhomo-

geneities are preserved in the form (3) on large scales and do not violate

Hubble's expansion law (2). Actually, these `frozen' gravitational poten-

tials q0 and S0 constitute the seeds of cosmological structure. The

decaying modes had already faded out before the formation of the

Hubble flow began and certainly had been negligibly small by the

beginning of the galaxy formation epoch.
5 To derive relationship (7), one needs to make use of the Sachs±Wolfe

formula [7]

dTSW � qHZ

5
' 10ÿ5

and estimate qH with the help of spectral integral

hq 2
Hi �

�1
H0

q 2
k

dk

k
� q 2

HZ ln

�
keq
H0

�
' �2 qHZ� 2 ' 10ÿ8 ;

where qHZ � qk�H0
is the large-scale Harrison±Zeldovich spectrum [8, 9],

and keq � _aeq ' 0:01 Mpcÿ1 is the Hubble scale at the instant of time

when radiation andmatter densities are equal. Notice that relationship (6)

is valid under the assumption of jS0�kÿ10 �j4 1. The function S0 carries

information on cosmological gravitational waves and partly on the pre-

inflational geometry of spacetime (the other part is hidden in the function

q0). It is not, however, related to galaxies and, according to observations, is

much smaller than q0. We do not consider it in detail for these reasons.

6 The time arrow can be violated in certain regions of spacetime where the

relativistic effects are important (for example, in black holes or worm-

holes).
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In this case, n, g, andf are constant in time, and the evolution
regimes mentioned above are separated: the Hubble flows are
preserved at locations where they have existed, and no
generation of new structures takes place.

For a decelerated expansion (�g > 0), the functions n�a�
and g�a� grow with time, a gravitational instability takes
place, the initially laminar medium flows become disturbed,
and the conditions arise for inhomogeneous structure forma-
tion on the side of small wavelengths (the function �H
monotonically decreases).

For an accelerated expansion (�g < 0), the functions n and
g decay with time, and a new structure is not created but, in
contrast, the build-up of Hubble flow and function q�x� over
an increasing range of scales k0 < k < �H continues (the
function �Hmonotonically grows).

One may conclude that gravity in equal degree spawns
two dynamical properties: repulsion (the generation of
Hubble flows), and attraction (the generation of structure).
Which of them will prevail depends on the equation of matter
state [see Eqn (9)]: the inflation (repulsion, the generation of
the Hubble flow) is realized for �e� 3p� < 0, and the
deceleration (attraction and the development of collapse) in
the opposite case for �e� 3p� > 0. Being inherent to GRT,
both inflation and collapse occur for rather general initial
distributions and properties of matter and lead to the
emergence of ordered geometrical configurations on var-
ious scalesÐ the Hubble flows, and nonlinear halos of
matter.

The convergence of integral (10) at the lower limit assumes
the dominance of initial adiabatic perturbations. If the
isometric pressure scalar is neglected, the relationship
between dp and d takes a simple form: dp � b 2d, and the
dynamics of scalar q obey the independent harmonic
oscillator equation [10, 11] (see Appendix B)

�q�
�
3H� 2

_a
a

�
_qÿ b 2 Dq

a 2
� 0 ; a 2 � g

4pGb 2
; �13�

where G is the Newtonian constant of gravitation. For small
velocities of sound jbj < 1, the leading solution q � q0�x�
continues into the causally connected domain [cf. expression
(8)]. Spectral amplitudes of scalar curvature q0�k� in the post-
recombination epoch and those of initial perturbations of the
S-mode qk are linked linearly:

q0 � T �k� qk ; �14�

where T�k� is the transfer function of linear density perturba-
tions that accounts for their evolution in the pre-galactic
medium (for details, see Ref. [1]).

4. Boundaries of homogeneity

In the course of inflation in the early Universe, the stretching
of the space-like hypersurface with the size of kÿ10 , already
born by the preceding evolution, and the building-up of
function q�x� from the side of small scales k4 k0, which
enter the zone k < �H�t� from the microscopic region if _�H > 0
took place. In this case, the growth of scales/ a�t� takes over
the Hubble radius Hÿ1�t� (Fig. 1), all folds and irregularities
of the initial hypersurface within kÿ10 are smoothed out, and
the newly emerging small scales appear embedded into the
already existing large-scale framework of the hypersurface
being isotropizied. We can argue that in the course of

accelerated expansion of matter the minimum comoving
scale of the Hubble flow decreases.

The maximum size of Friedmann hypersurface kÿ10 is
determined by the conditions at the beginning of inflation
and, as follows from observations, exceeds the modern
horizon (k0 < 2� 10ÿ4 Mpcÿ1, see Eqns (6) and (7)). The
minimum size kÿ1m is linked to the end of the inflationary
period of the Big Bang; it is certainly less than the size of the
observable structure and compares to the wavelength of the
background radiation quantum. In the process of post-
inflationary decelerated matter expansion, the opposite
process took place: the Hubble flow broke up from the side
of small scales and its minimum size grew with time.

In order to determine the minimum scale of current
Hubble flow (1), we write down the first terms of metric
expansion in the Lagrangian coordinates �tc; x� (the label `c'
of comoving time is dropped where possible):

ds 2 � �1ÿ 2dp� dt 2 ÿ dr 2 ; �15�
dr � dri � a exp �ÿq��di j ÿ b q0; i j� dx j ;

�16�

and rewrite Hubble's law in amore precise form [cf. Eqns (92)
and (93) in Appendix A]

dVi � qdri
�1ÿ dp� qt � Hi j dr j ; �17�

where

Hi j � H�di j ÿ �h q0; i j� ; �h � n
�H
; b �

�
�h
da

a
: �18�

Neglecting the effective speed of sound, we have at the lower
boundary k1 of the Hubble flow:

d � 1 ; vpec �
�H

k1
; q0 �

�H 2

k 2
1

5 1 : �19�

Recalling that the observed mean inhomogeneity scale
k1 � 0:1 Mpcÿ1 (Fig. 2), we obtain for the spectral amplitude
of the curvature potential at the lower boundary of the

a=k

Hÿ1
2

1

B r m E

1 a

Figure 1. The Hubble radius Hÿ1 (the line with bends) and sizes of

perturbations / a (inclined straight lines: 1Ða galaxy, 2Ða super-

cluster) as functions of a, from the Big Bang (B) to periods of radiation

(r), DM (m), and DE (E).
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current flow:

q0�k1� � 5� 10ÿ6 ; �20�
in agreement with the required value of the transfer function
T�k1� � 0:1.

Of interest is the question of determining experimentally
the size kÿ10 of the Friedmann `background' of our Universe.
Doing so is possible, in principle. In fact, the scale kÿ10 need
not be very large, because it is connected with the last period
of accelerated expansion in the chain of inflationary stages of
the Big Bang, 7 and this period could be relatively short. In
that case, kÿ10 can, in principle, exceed the radius of external
curvature Hÿ10 only slightly. In this situation, the total
curvature potential q0�x� generated toward the end of
inflationary explosion and determining the geometry of the
observable world would be composed of two components: a
non-Gaussian, strongly-correlated smooth part of size kÿ10 ,
linked to global pre-inflationary geometry, and small-scale
(with respect to kÿ10 ) ripples of a Gaussian field of inhomo-
geneities born in a quantum-gravitational way. The non-
Gaussian component of density perturbations grows with an
increase in the distance from the observer and manifests itself
in the large-scale anisotropy of cosmic microwave back-
ground. The Gaussian perturbations do not decay as the
scale is reduced, and are responsible for the formation of
galaxies. 8

The post-inflationary matter-dominated stage of deceler-
ated expansion, accompanied by a reduction in the speed of
sound, leads to the conditions for collapse at small scales,
where a `window' of gravitational instability opens. In
contrast to the inflation, where initial conditions are
forgotten, certain seed perturbations of curvature are
required for the onset of collapse. They define domains of
matter inflow and outflow.

Thus, the scale interval k1 < k5 km in the modern epoch
belongs to nonlinear cosmological structures, and the
undisrupted quasi-Hubble flow of matter, albeit already
distorted, still persists at scales k < k1 (in the mean in the
Universe).

5. The quasi-Friedmann equations

A weakly inhomogeneous Universe is described by the
generalized Friedmann equation [2] (see Appendix A)

H 2
v �

8pG
3

eÿ K
b 2

; �21�

in which the geometrical scalar variables

Hv � Hv�t; x� �
_b

b
� 1

3
u m

; m

(the semicolon indicates the covariant derivative) and
b � b�t; x� correspond to the local Hubble and scale factors
of medium volume expansion, e and um are the total energy
density and matter four-velocity, the small function

K � K�t; x� � 2

3
Dq �22�

is the internal space curvature, and the dot above the symbols
implies partial derivative with respect to the comoving time tc.
The time evolution of matter density obeys the conservation
law

_e� 3Hv�e� pv� � 0 ; �23�

where pv is the volume pressure [see Eqns (77) and (85)].
Equations (21) and (23) describing the evolution of the

quasi-Friedmann Universe in geometrically invariant vari-
ables are valid for small spatial curvature jKj5 1 and include
the zero the first orders of magnitude in deviations of weakly
inhomogeneous geometry from Friedmann's one. These
equations have a scalar form, although the geometry
described by them is anisotropic [see Eqn (89)].

In order to solve Eqn (21) in the volume factor b, the
defining scalar of curvature qmust be known. Assuming that
the small function q is known to us, we seek the solution in the
form

Hv � Hc � DFÿ Dq
3a �H

; �24�

e � ec � DF
4pGa 2

; pv � pc � DS
12pGa 2

;

where Xc � X�tc� are the background functions of comoving
time, and F and S are arbitrary small functions of all
coordinates. Substitution into Eqns (21) and (23) results in
the correct coupling between scalars F and q [cf. Eqn (86)]:

F � H

a

�
a�gqÿ S� dt ; �25�

with the arbitrary function S being not linked to the Einstein
equations.

It should be emphasized that quasi-Friedmann Eqns (21)
and (23) imply no constraints on the medium physical
properties. Similarly to the original Friedmann equations,
they link the spacetime curvature with total energy density, its

103

102

101

100

10ÿ1

100 101 102
R, Mpc

N
u
m
b
er

o
f
ga

la
xi
es

1

2

Figure 2.The spatially mean number of galaxiesN�R� in a sphere of radius
R (according toRef. [12]). The accuracy of power-law asymptotics is about

10%: 1ÐN / R 3, the uniform distribution of matter, and 2ÐN / R 2,

the nonlinear structure of the Universe.

7 Inflationary stages could have alternated with those dominated by

matter which formed through the decay of intermediate short-lived

inflatons.
8 The resultant amplitude of quadrupole anisotropy of relic radiation can

be both lower and higher than the value expected for this extrapolation of

the short-wave spectrum. This effect could explain the low quadrupole

anisotropy of the cosmic microwave background radiation (if, of course,

this anomaly is confirmed by future observations and rigorous data

analysis).
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time derivative, and the pressure of matter. As concerns the
physical state of the matter, it needs to be considered only in
the derivation of the equation of motion for the curvature
scalar q (see Refs [2, 11] and Appendix B).

6. Dynamical properties of the structure

Aphysical reason for the emergence of nonlinear structureÐ
the formation of galaxies from small primary curvature
perturbationsÐ is the gravitational instability of dark mat-
ter, most vigorously developing in the post-recombinant
period of DM dominance. 9 Since the initial pressure in
nonrelativistic matter is low (relative particle velocities are
close to zero at any point in space), the cold medium freely
moves in own gravitational field of quasi-Hubble flow and the
initially small peculiar velocities and the contrast of matter
density grow with time on all scales. Consider at a greater
length the dynamics of the quasi-Friedmann model at the
linear stage of developing scalar inhomogeneities.

Let us turn to a simple model of the late Universe, which
accounts only for nonrelativistic matter `m' (with density
inversely proportional to the local volume, rm / bÿ3) and
dark energy `E' of constant density (rE � const). In this
case, the mean speed of sound in the post-recombinant
epoch is equal to zero [see Eqn (95), b � dp � 0] and,
consequently, the scalar q and spatial curvature K do not
depend on time, and equation (21) simplifies. Multiplying it
by �b=HE�2 and recasting in terms of dimensionless vari-
ables, we arrive at� _b

HE

�2

� f 2�b� ÿ K̂�x� ; �26�

where

f 2�b� � 8pGb 2

3H 2
E

� rm � rE� �
�
cm
b
� b 2

�
0 1 ; �27�

q � q0�x� � 3

2
H 2

Eq̂ ; K̂ � K̂�x� � K
H 2

E

� D q̂ ; �28�

HE � H0

������
OE

p ' (5 Gpc)ÿ1 is the Hubble constant of dark
energy, cm � Om=OE ' 0:4 is the constant coefficient, one
sixth of which is linked to baryons and the remaining 5/6 to
DM (in this approximation, both components move
together). Obviously, the function f �b� attains a minimum
fmin ' 1 at bÿ1min ' 1:7

An arbitrary small function of spatial coordinates K̂
describes the local normalized space curvature. We are
interested in domains with the positive right-hand side of
equation (26):

K̂�x� < 1 : �29�

In these domains, the matter density decreases monotonically
with time [see Eqn (42) for details]. They comprise both
superclusters (K > 0) and cosmological voids (K < 0).

The volume and background scale factors coincide at
points K � 0 (the expansion anisotropy can be large in this
case):

b � a�t� � 1

1� z
; H � HE

f �a�
a

; �30�

where f � f �a� is the growth factor of the Hubble velocity
component

VH � fHEx : �31�

In a general case, in the linear order in K̂ we obtain

b � a

�
1ÿ 1

3
ĝ K̂
�
; dm � ĝ K̂ ; �32�

Hv � H

�
1ÿ 1

3
ĥ K̂
�
; ĥ � �n

f
�

_̂g

H
; �33�

where dm � d is the density perturbation, ĝ � ĝ�a� and
�n � �n�a� are, respectively, the growth factors of density
perturbations and peculiar velocity (Fig. 3):

ĝ � g �H 2

cm
a � 1

cm

�
aÿH

�
0

da

H

�
;

�34�
�n � 3

2
HEn � 3HE

2a 2

�
0

da

H
:

For

a5 1 : ĝ ' 3a

2
; �n ' ���

a
p

;

a4 1 : ĝ � ĝmax ' 1:56 ; �n ' 3

2a
;

a � 1 : ĝ ' 1:13 ; �n ' 0:67 :

Equations (26)±(34) describe quasi-Hubble anisotropic
flows with the effective Hubble function Hv which depends
on the observer's location. In the modern epoch, the function
�n shows a wide maximum, which is an indication of the period
of most intense structure generation. The position of its
maximum corresponds to z ' 0:2, the 90% level of its
maximum value of �nmax ' 0:68 is reached at a ' 0:5 and 1.4,
and the 50% level is reached at z ' 0:1 and 4.

The current epoch is therefore that of maximum peculiar
velocities, which will persist for the cosmological time [13].

9 It should be recalled that in the CSM the initial perturbations in

composition are absent, the background curvature equals zero, and the

parameters of the energy density of components take the following values:

DE (OE � 0:7), nonbaryonic DM (OM � 0:25), baryons (Ob � 0:05), and
radiation (Or ' 10ÿ4). Notice that the 10% accuracy level of today's

observations does not yet enable distinguishing the cosmological constant

and evolving DE. This witnesses in favor of its slow evolution and allows

considering general models of DE in the form of expansions in terms of the

small parameter jw� 1j5 1, where the cosmological constant is the

leading term in the series [see Eqn (44), w � pE=rE].
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Figure 3.Growth factors of density ĝ�a� and peculiar velocity �n�a� [13].
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The function �n will decrease twofold when the age of the
Universe reaches 35 billion years. Only then will it be possible
to speculate about the beginning of the epoch of the fading
out of peculiar velocities in all space domains where K̂ < 1.

The function ĥ�a� determining the deviation of the local
Hubble factor from its background value is plotted in Fig. 4.
The maximum ĥmax ' 0:65 is reached at z ' 0:4, while the
interval of the values of ĥ > ĥmax=2 is within the limits
a 2 �0:1; 1:8�, which corresponds to the range of the Uni-
verse's age, from 0.6 to 22 billion years. Figure 4 explicitly
demonstrates that ourUniverse is at the stage whereHubble's
expansion law is maximally distorted [ ĥ�a � 1� '
0:87 ĥmax ' 0:57], and that the recovery of Hubble flows in
quasilinear domains of space will take about ten billion
years.

We can conclude that the formation of large-scale
structure in the Universe lasts for the period from 1 to
22 billion years after the Big Bang. The stage of suppression
of the Hubble flow inhomogeneities, caused by the gravita-
tional influence of DE, has not begun yet, although dark
energy has been dominating in the density of matter for
3.5 billion years already. The delay hinges on the fact that
the dynamic influence of DE on the structure generation in
the Universe has just begun. Indeed, the characteristic time of
this influence exceeds the current age of the Universe and
amounts to Hÿ1E ' 17 billion years.

7. Anisotropic cold flows

The field of peculiar velocities can conveniently be described
by passing to the Eulerian coordinates in which the gravita-
tional field is locally isotropic in a linear order in K at any
space point (see Appendix B). The relationship between the
Eulerian (y) and Lagrangian (x) coordinates we are interested
in has the form

y � x� ĝ Ŝ ; �35�

where Ŝ � Ŝ�x� � ÿHq̂ is the vector of displacement for an
element of the medium relative to its unperturbed position:
K̂ � ÿH � Ŝ � Dq̂. The Lagrangian coordinate x does not vary
here with time along the trajectory of themedium element and
coincides with the Eulerian coordinate y, as t! 0. The
growth factor for the displacement, ĝ � ĝ�a�, is simulta-
neously that for the density perturbation (32). The fact that
thematter displacement relative to the laminarHubble flow is
factorized as a product of two functions (one dependent on
time, and the other dependent on space coordinates) indicates

that the rate of perturbation growth is the same for all
wavelengths.

The net displacement of medium elements with respect to
the unperturbed Hubble positions grows monotonically with
time and amounts today to 14 Mpc. The mean net displace-
ment will approach its limit value of about 22Mpc (see Fig. 3)
in the future, provided that the DE density does not change.

Using equation (35), we obtain the following representa-
tions for the interval on the Eulerian and Lagrangian grids:

ds 2 � �1� 2F� dt 2 ÿ a 2 dy 2

� dt 2 ÿ a 2�di j ÿ 2ĝ q̂;i j� dx i dx j ; �36�
where t � tÿ a�nHEq̂, and a � a�t��1ÿ q� � a�t��1ÿ F� is
the local scale factor [2]. The function b�t; x� [see Eqns (21)
and (32)] is proportional to the trace of the spatial part of the
Lagrangian metric tensor, and the gravitational potential of
density perturbations is equal to F � 0:6�f q, where

�f � 5cm
3a

ĝ � 5

3

�
1ÿH

a

�
da

H

�
: �37�

For a5 1, we get �f � 1. The temporal factor �f � �f�a� of the
gravitational potential decay under the action of DE is
plotted in Fig. 5. The magnitude of �f can serve as a measure
of DE dynamic influence on the structure generation. By the
current epoch, the potential �f�a � 1� ' 0:77 has already
dropped by 23% off its constant value in the matter-
dominated phase.

Interval (36) determines the physical Eulerian coordinate
of medium element r � ay ' ay (cf. Eqn (105)). Differentiat-
ing rwith respect to the proper time, we arrive at the following
formula for the peculiar matter velocity:

vpec � _rÿHr � ĝ 0Ŝ � �nHEŜ : �38�

Expression (38) coincides with the definition of 3-velocity as
the spatial component of the 4-velocity of matter in the
Eulerian reference frame:

vpec � ÿ qt
a qy
� ÿ�nHEHq̂ � ÿHq

�H
:

Thus, the quantity �n featuring in Eqn (33) is indeed the growth
factor for the peculiar velocity.

According to Eqn (38), the total velocity of matter is
defined as

V � Hr� vpec :

0.6

0.4

0.2

0 1 2 3 4 5
a

ĥ

Figure 4. Function ĥ�a� setting the distortion of the Hubble flow [13].
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Figure 5. Decay of the gravitational potential �f�a� of the large-scale

structure of the Universe under the action of dark energy (see Ref. [2]).
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The first component Hr describes the Hubble velocity of the
nonuniform Universe. It can also be split into two parts. One
of them, VH � �Hx [see Eqn (31)], is connected with the
homogeneous component of density, and the other, ĝ �HŜ, is
connected with the perturbed one. The growth factor for the
second component is proportional to the growth factor ĝ for
density perturbations, whereas the peculiar velocity is / ĝ 0.

We turn now to local flows of matter. In regions of the
inhomogeneous Universe constrained by the condition (29),
the flows of matter are described by the tensor field
Hi j � Hi j�t; x� generalizing the function H�t� of the Fried-
mann model. Indeed, as follows from relationship (35), the
coordinate distance between nearby points of the medium at
time moment t is given by

dyi � �di j ÿ ĝq̂;i j�dx j : �39�

Differentiating the physical distance dr � ady over time, we
obtain the field of pairwise velocities:

dVi � q
qt
�dri� � Hi jdr j ; �40�

Hi j � Hdi j ÿ _̂gq̂;i j � H�di j ÿ ĥq̂;i j� :

The trace of the tensor field represents the volumeHubble
function Hv � Hii=3 [see Eqn (33)]; however, the tensor Hi j

itself is strongly anisotropic. The anisotropy of local expan-
sion (variations of projections of Hi j onto the radial
directions emanating from the given point x) has the same
order of magnitude as the deviations of Hv from the mean
value of the Hubble parameter H. At the boundary of
quasilinear regions (29), these variations reach 100% (up to
a point of stopped expansion in some directions). For
example, in the vicinity of the Local Group, at a distance in
excess of 2Mpc from its barycenter, the principal values of the
Hubble tensor are Hi j � diag�48; 62; 81� km sÿ1 Mpcÿ1

(Fig. 6).
The field Hi j describes regular cold flows of matter. It is

noteworthy that Eqn (40) is valid under the assumption that
the distance between galaxies is small, below the correlation
radius of the two-point correlation function for the displace-
ment vector. For different projections of this vector relative to
the direction of dy, the correlation radius varies from 15 to

50Mpc. The deviations from the velocity field (40) grow with
distance. The spectrum of cosmological velocity perturba-
tions is shaped namely in this manner: it decays toward
shorter wavelengths for k > 10ÿ2 Mpcÿ1 (see, for detail,
Ref. [1]). For this reason, random deviations from mean
velocities (40) in this domain grow with an increase in scale.

It should be kept inmind that deviations from dependence
(40) amount to � 40 km sÿ1, i.e., about 25% of the mean
velocity (see Fig. 6) at a distance of � 2:5 Mpc from the
barycenter of the Local Group. At the same time, the total
peculiar velocity of the Local Group relative to the cosmic
microwave background radiation comprises 600 km sÿ1. The
scales of inhomogeneities responsible for so high velocities are
in the interval from 15 to 70 Mpc.

We see that the standard theory of the Universe's
structure formation encounters no difficulties in explaining
the observed motions of matter in quasilinear regions of the
Universe (K̂ < 1). The local flows are regular, smooth, and
strongly correlated. The smallness of random galaxy velocity
deviations from mean cold flow rates is explained by the
shape of the initial spectrum of spatial density perturbations.
These flows bear the quasi-Hubble character at small
distances, preserving its main features: the flows are cold
and radial, and the speed of galaxy recession is proportional
to distance. However, the Hubble `constant' depends on the
observer position and the direction in space. We have already
mentioned the neighborhood of the Local Group as an
example. The principal values of the Hubble tensor Hi j at a
distance of several megaparsecs from its barycenter are
related as 3 : 4 : 5.

As the radius grows, the deviations of galaxy velocities
from themean correlated flow rates increase too, beginning to
saturate from distances of about 10 Mpc, which corresponds
to the minimum correlation radius at which deviations of
velocities reach the order of magnitude of the Hubble velocity
proper. The deviations do not grow further, whereas the
Hubble velocities continue to grow. At large distances, the
flow of matter approaches the ideal Hubble law (1).

8. How the collapsing flows form

As shown earlier, dark energy, though not a component of
structure, cardinally influences the structure generation rate
and the history of galaxy formation. Figure 7 illustrates the
behavior of growth factors of Hubble and peculiar compo-
nents of matter velocity at the quasilinear stage of evolution.
Because of the peculiar velocity growth, the expansion in
certain regions of the Universe turns into a collapse which
starts in certain directions and proceeds then toward the
formation of gravitationally confined halo systems with
various masses. The spectrum of initial perturbations is
shaped so that increasingly larger masses may collapse at
later time moments (see also Ref. [1]).

If DE were absent, the Hubble velocity would continue to
decrease with time, and the peculiar velocity would continue
to grow. As a result, in any spatial domain where at least one
of three principal values of tensor q̂ ;i j � diag�l1; l2; l3� is
positive [for example, l1 > 0, where l1 5l2 5l3; see
Eqn (35)], sooner or later there will come an instant when
the negative peculiar velocity in this direction becomes equal
to Hubble's one and the expansion is halted [the principal
value H11 turns to zero; see Eqn (40)]. In this case, the
gravitational confinement of matter and its subsequent
collapse ensue. However, because of the dynamical influence
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Figure 6. Radial velocities V�r� of galaxies in the vicinity of the Local
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of DE not all domains succeed in evolving into the collapse
stage: the Hubble velocity reaches a minimum at z ' 0:7, and
then increases sharply as / a [see Eqn (31)], whereas the
peculiar velocity saturates and then slowly decreases (see
Fig. 7). With account for DE influence, the process of galaxy
formation resembles a fire burned out and lacking new
firewood.

Thus, the nonlinear structure has a chance to form in
those spatial zones where condition (29) is violated, namely

K̂ � l1 � l2 � l3 > 1 : �41�

Notwithstanding the threshold character of this inequality, it
does not imply that regions occupied with nonlinear struc-
tures are topologically compact. Indeed, l3 (or l2;3) can
appear to be negative, and then the expansion of matter will
continue in that direction (or directions).

How can the transition from the quasilinear stage to the
collapse phase be described? The answer is surprisingly
simple: solution (35) can analytically be continued up to the
first self-crossing (dy1 � 0) and even further by `matching' the
arising multistream flows across caustics (the Zel'dovich
approximation [5]).

This analytical approximation leads to correct qualitative
conclusions, while quantitative deviations from the real
evolution (until the first self-crossing) do not exceed 20±
30% according to different criteria. The success of the
approach, which is so simple, hinges on the potential q being
small under cosmological conditions (the formation of black
holes is exponentially suppressed). Moreover, the solution
(35) proves to be exact in the nonlinear one-dimensional case,
and namely this variant of initial collapse development is
most typical in the Universe.

Relatedly, when computing the quantitative characteris-
tics of a newly forming nonlinear structureÐdistribution
functions for cosmological voids, superclusters, filaments,
etc.; mean distances between the walls, nodes, etc.; correlation
functions; evolution based on redshifts, and so onÐone can
rely on linear perturbations and their Gaussian statistics
because solution (35) is naturally set by the field of small
initial density inhomogeneities.

We give below two examples. First of all, we can exactly
specify those domains where caustics fail to form, i.e., the
expansion continues forever:

l1 < ĝÿ1max ' 0:6 : �42�

As long as density perturbations remain small, the two
conditions (29) and (42) are equivalent. Condition (29),
however, by no means ensures the absence of collapse: if
l1 > 0:6, this direction, even if only in the future, will turn to
the collapse. In a similar way, we can refine the density field.
From relationship (35) we obtain the comoving matter
density

rm�Z; x� �
cmrE

a 3 det�dyi=dxj�
� cm rE

a 3�1ÿ ĝ l1� �1ÿ ĝ l2� �1ÿ ĝ l3� :

Formula (32) follows obviously from the last one for ĝ5 1.
We will return to nonlinear structures in the subsequent

sections, and now proceed with the measurements of DE.

9. How to measure dark energy

DE can be measured only by means of observational
cosmology. Its detection in the laboratory (similarly, for
example, to attempts at laboratory detection of dark matter)
seems to be implausible because this ever-penetrating sub-
stance (field) only weakly interacts with all objects, be they
interiors of stars, compact objects, the early Universe, or
others, during the entire world history known to us. Only
indirect measurement methods are possible. Luckily, they
have already proven their efficiency and led to impressive
resultsÐ the discovery of DE proper.

What does it mean to measure DE? The answer to this
question is hinted at by cosmology. The known constraints on
the main DE parameter, viz.

j1� wj < 0:1 ; �43�

(see, for example, Ref. [15]) point to the constancy of function
w � pE=eE � const both in time and in space. Condition (43)
simplifies the approach to DE detection to some extent. The
DE clustering effects are of small significance and escape
detection at the current level of technological development.

Today, we can only discuss actual experiments dealing
with the dependence of function w on time: w�a�. Taking into
account the slowness of evolution, this function can be
replaced by the set of constant coefficients cn of its Taylor
expansion around ÿ1:

w�a� � ÿ1� c0 � c1Da� . . .� cn
�Da�n
n!
� . . . ; �44�

whereDa � 1ÿ a � z�1� z�ÿ1. At the current level of knowl-
edge, the physical information on DE available to us is stored
in these coefficients. From inequality (43) we find jcnj < 0:1.
Certainly, first of all, a pending question is the measurement
of c0 and the leading expansion coefficients. Theoretical
predictions, based on connections of cn with physical
parameters of models (j0, m, and others), in no way
discriminate their range of values. Hence, the question
hangs solely on the possibility of experimental assessment of
the function w�a�.

We single out three main ways of measuring w�a�:
structural, dynamical, and geometrical. Let us consider
briefly each of them.

We have already discussed the structural method earlier.
Without being a part of the structure, DE cardinally

2
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Figure 7. Growth factors of Hubble f �a� (dashed line) and peculiar �n �a�
(solid line) velocities of matter [2]; a � 1 at z � 0.
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influences the galaxy formation rate. It is the structural
argument that has led to the discovery of the DE phenom-
enon. The achievements of all of 20th-century astronomy
established that only a small fraction of mass enters the large-
scale structure of the Universe. The remaining largest part is,
hence, contained in the form of unstructured DE. Figures 3±5
and 7 depict the growth curves for the seeds of structure in the
case where all cn � 0. For cn different from zero, the evolution
curves will deform, as can easily be computed with the help of
the GRT. The point, therefore, lies in maximally precise
observational measurements of real growth functions and in
determining the parameters cn with their help.

How can the growth curves be measured accurately?
Unfortunately, one can hardly rely on the traditional
astronomical methods of observing the compact sources at
different wavelengths (stars, including supernovae, quasars,
galaxies, clusters, and so forth) and assessing based on these
data the quantitative characteristics of inhomogeneous
matter distributions in space and time. The obstacle here is
uncontrolled nonlinear effects of coupling between density
distributions of matter and light. They, eventually, make
impossible the recovery of mass distribution, based on the
luminosity of its baryonic component, with necessary
accuracy.

The true breakthrough in the structural method of
detection of DE properties can be expected from dynamical
measurements which are sensitive to gradients of total
gravitational potential. An example can be furnished by
statistical measurements of background galaxies weakly
lensed by nearby structures, but even here barriers are met.
The point is that the retrieved surface density of total mass
(for a given redshift), which is the final product of themethod,
is still insufficient for a successful comparison with theory.
Notably, we are not in a position to compute the contribution
from baryons with necessary accuracy because of their
complex interaction with light (shock waves, stellar forma-
tion, supernovae, dissipation, ultraviolet background, ioniza-
tion, cooling, and so on).

In today's discussion of maximally precise methods of
measuring DE, the case in point is largely the exploration of
linear and quasilinear structures because, in this case, there is a
well understood and fully controllable theory. An example of

a breakthrough in this domain is furnished by measurements
of anisotropy and polarization of cosmic microwave back-
ground radiation (CMBR) that has led to the creation of
CSM. A similar breakthrough is also possible by further
developing this model based on accurate measurements of
cosmological parameters, including those of DE.

This breakthrough can be provided by any statistical
measurements of large-scale peculiar velocities of matter,
inhomogeneities of gravitational potential, and distributions
of matter density. In the first case, we have to do with the
Doppler effects pertaining to the motion of matter [16, 17],
and the measurement of the field of peculiar velocities based
on proper motions of galaxies on the celestial sphere [18]. In
the second case, it is the retrieval of gravitational potential
with the help of the weak lensing effect, but this time at larger
scales, where self-crossing of streams of matter is absent and
the contribution from baryons is easily assessed [19]. In the
third case, we are dealing with quantitative distribution of
structures as a function of redshifts, and the detection of
baryonic acoustic modulation of the density perturbation
spectra (see, for example, Ref. [20]).

Staying on this path, we arrive at the dynamical method of
measuring DE by virtue of the Sachs±Wolfe integral effect.
The influence of DE induces an additional source of the
CMBR anisotropy, related to the decay of the linear
gravitational field in the current epoch (see Fig. 5). By
measuring this effect, one can exactly determine the proper-
ties of DE, as has already been done when determining the
parameters of the early Universe from measurements of the
anisotropy parameters of CMBR in the recombination
epoch. Quantitatively, here we need to raise the measurement
accuracy only by one order of magnitude.

The dynamical integral effect predicts the existence of a
cross-correlation between two celestial mapsÐ those of
CMBR anisotropy, and the large-scale structure of the
Universe. Figure 8 shows superimposed fragments of
CMBR maps, projecting onto 50 voids (Fig. 8a) and 50
superclusters (Fig. 8b) set apart from the galaxy distribution
in the SDSS catalogue. Themean size of voids/superclusters is
about 100 Mpc. Summation of respective regions with
reduced and increased densities of matter is performed to
amplify the cross-correlation signal against the background
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Figure 8. Superimposed portions of a cosmological microwave background map, which are projected onto 50 voids (a) and 50 superclusters (b)

� 100 Mpc (4�) in size, based on results of Ref. [21]. The colorbar of the anisotropy of cosmicmicrowave background radiation (the insert at the top) is in

microkelvins.

992 V N Lukash, E V Mikheeva, A MMalinovsky Physics ±Uspekhi 54 (10)



of a random field of primary perturbations. We observe an
apparent valley in the temperature of relic radiation (a cold
spot) in directions towards voids, and a hot spot of the
appropriate angular size in the direction towards super-
clusters, in full agreement with theoretical predictions.

These are only the first results which demonstrate the
correspondence with what we already know well from the
structural studies. Here, however, the precise cosmological
information is encoded; it can be deciphered in future
observations and used to construct a more precise model of
the Universe. Realization of this wonderful opportunity
requires two exact maps of linear cosmological perturba-
tions: the anisotropy of CMBR, and the gravitational
potential of the large-scale structure. All this is possible at
the already available technological level, but hinges on
building new-generation telescopes, both ground-based and
operating in space.

10. How to measure the Universe

Impressive successes in exploring the Universe rely on
differential and dynamical measurements of gradients of
gravitational potential, peculiar velocities, and matter den-
sity perturbations by methods of observational cosmology.
There are also, however, direct astronomical methods of
measuring the zeroth-order geometry bypassing the struc-
ture. For brevity, we will call them geometrical. These
methods are advantageous at large scales because the Hubble
flows build up with distance, while deviations from them
decrease.

Geometrical tests deal with measurements of distances
and times between events. In the zeroth order, these intervals
are controlled by the function a�t� � �1� z�ÿ1 and its
derivatives. Both the properties of DE and other parameters
of matter can be reconstructed by the measured cosmological
functions H�z� and g�z�.

There are two classical astronomical methods of deter-
mining geometrical sizes: the measurement of radial distances
or angular scales as functions of z. In the first case, we are
dealing with the dependence `visual stellar magnitude±red-
shift', m � m�z�, and in the second, the `angular size±red-
shift', y � y�z�. Other geometrical tests exist, too (for
example, counting the number of galaxies inside spheres of a
given radius; see Fig. 2), but in this reviewwe consider inmore
details only the two mentioned above.

The relationship m � m�z� is called the Hubble diagram
in astronomy. It allows determining the scale factor a�t� of
the Universe if the absolute luminosity is known for the
objects being analyzed. Indeed, �aÿ1 ÿ 1� is the redshift of
the source, and �t0 ÿ t� is the distance to it in light years
measured along the light cone of the past. Astronomers
frequently use the luminosity distance r, which defines the
flux F of radiation from a point source of luminosity L0

recorded on Earth, as if both the source and observer were
in the Euclidean space:

F � L0

4pr 2
:

Instead ofF andL0, one may use the apparent m and absolute
M stellar magnitudes, which are related to the distance r
between the source and the observer as

m �M� 5 �lg r � pc � ÿ 1� : �45�

In order to estimate the absolute magnitude of the source
luminosity, one needs to understand the source structure and
the way it shine, i.e., to have a predictive theory. As a rule, this
task is not solvable with the necessary accuracy, as we are
dealing with a complex gasdynamic nonlinear system with
many parameters, be it a galaxy or cluster of galaxies, a
quasar, or a star. For this reason, one frequently resorts to
empirical relationships that offer an estimate of object
luminosity based on its other observable characteristics.
These phenomenological relationships are built and vali-
dated on the nearest sources and then used to calibrate
distant objects of the same class. It is implicitly assumed that
near and distant sources of the same class are alike (the
standard candle hypothesis).

While different objects have been proposed to play the
role of the standard candle over years, 10 this research cannot
be used in rigorous cosmology as long as there is no theory for
a system of that complexity, the theory based on numerical
simulations and taking into account numerous, as yet little-
studied, factors which pertain not only to the physical nature
of objects (for example, star formation, nonstationarity,
chemical composition, and nuclear fusion), but also to their
environment, conditions of light propagation, and so on. For
such data, a probability will always exist that we are dealing
not with the effects of geometry or composition of the
Universe, but rather with the internal properties of sources
and their evolution (uncontrolled systematics).

While a standard candle is required for making use of
Hubble diagrams, one needs to know the physical size of the
observed object (the standard size hypothesis) in order to
measure distances by its angular size. Let the physical size of
an object be d, and its angular size y. The distance based on the
angular size, D, is then defined as

D � d

y
:

Making use of the interval of the Friedmann geometry, we get
a relationship between the distances introduced above:

r � �1� z�2D � �1� z�R ; �46�

where R is the geodesic comoving distance to the object:

R �
�R

H0
� Z0 ÿ Z�z� ; �R � H0

�
0

dz

H
�47�

(Z is the conformal time). Apparently, the cosmological
function �R�z� depends only on the properties of matter,
not on H0.

With the help of formula (46), any diagram m�z� can
formally be recast as the dependence y�z�, and vice versa. This
is in no way surprising, as we are exploring unified geometry,
even if resorting to various observational tests. In summary,
the recipe for measuring the Universe is simple: construct
diagrams y�z� and _y�z�, or m�z� and _m�z�, or others. If the
physical size of the source or its absolute stellar magnitude are
known, we will manage to determine the distance to it and,
hence, the dimensions of the Universe. This will enable us to
reconstruct the functions H�z�, g�z�, along with other

10 By way of example, the brightest cD galaxies in centers of rich clusters

were used in the 1970±1980s as the standard candle. Currently, super-

novae, gamma bursts, X-ray clusters of galaxies and other bright sources

that yield to observations at large distances pretend on this role.
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functions of the scale factor, and, in turn, determine the
composition and properties of matter and their evolution
with time.

The realization of this program requires highly accurate
measurements and knowledge of the nature of the objects
under study. In so doing, these objects can be very diverse.
Figure 9 presents a cumulative diagram of y�z� for several
geometrical tests reduced to the standard size of d � 9:5 pc.
Shown are the results of measuring distances based on the
luminosity of distant Ia supernovae (points to the left of the
minimum), the angular size of ultracompact radio sources
(bases of jets from active galactic nuclei: six crosses in the
lower part of the curve), and the anisotropy of CMBR
(spectrum acoustic modulation: the cross in the upper-right
part). The dashed line corresponds to the CSM.

The most reliable point of observational data in this
diagram is the right cross determined by the angular size of
the acoustic horizon at the moment of recombination
zrec � 1100. The points and crosses found from observations
of supernovae and ultracompact radio sources rely, respec-
tively, on the standard candle and size hypotheses. There are
certain physical grounds for using them. In the first case, we
are dealing with the thermonuclear explosion of a binary
white dwarf with total mass in excess of the Chandrasekhar
limit setting the maximum luminosity of a Ia supernova. The
second case pertains to the limitingmass of a central accreting
black hole (� 1010M�, M� is the mass of the Sun), which
defines the `standard size' of radio bright quasars. Note,
however, that the available models of supernova explosions
and active quasars do not meet for the moment the
requirements placed on accurate geometrical measurements.
Rather, the opposite approach can be beneficial: by knowing
the answer (the parameters of CSM), we can inquire into the
proper cosmological evolution and the nature of compact
sources of that type.

Figure 10 demonstrates the image of an ultracompact
radio source with minimum resolution on the order of a
parsec, attained with the help of a terrestrial radiointerfero-
metric network. The base of a jet can be seen well, but the
internal structure of the source itself is indistinguishable. This
example illustrates that exploration of compact objects,
which lays the basis for direct geometrical measurements in

the Universe, calls for the development of new techniques.
Their realization is possible by making use of cosmic radio
interferometry.

With the help of space telescopes, the interferometric
baseline can be increased and, respectively, its resolution can
be improved. Such instruments not only are capable of
measuring distant compact objects but will also detect time
changes in their angular sizes and redshifts, accompanying the
expansion of the Universe. The last two factors are directly
linked to the Hubble function 11:

_y
y
� ÿH�z�

1� z
;

_z

1� z
� H0 ÿ H�z�

1� z
: �48�

This opens new prospects for determining H0 and H�z� at
cosmological distances.

Notice that if theDE density were constant, the redshift of
the sources of the Hubble flow located at z0 ' 2:3 would not
change: _z�z � z0� � 0. As this takes place, the redshift of
more distant objects (z > z0) decreases with time, and
increases [ _z�z < z0� > 0] for less distant objects. The bound-
ary z � z0 is rather sensitive to the evolution of DE. Its
detection will help answering the question of how the DE
density varied in the past.

Determining the evolution effects (48) at cosmological
distances will require several years of monitoring at angular
resolution on the order of microarcseconds, which is
technically challenging. However, even the first cosmic
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Figure 9. Diagram of y�z� based on three geometrical tests reduced to the

standard size d � 9:5 pc (according to Ref. [22]).
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Figure 10. Ultracompact central radio source in Cygnus A (adapted from

Ref. [23]). Lyrs is the distance expressed in light years.

11 These relationships follow upon differentiating the functions

y � d

Ra�Zÿ R� and 1� z � a�Z�
a�Zÿ R�

over Z for constant d andR, where Z is the observer time, and �Zÿ R� is the
conformal time of the source (Fig. 11).
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interferometers will be in a position to measure distances to
nearby galaxies by their proper motion relative to the cosmic
microwave background [18]. Moreover, one may measure
distances by observing superluminal motion of the nodes of
jets in active galactic nuclei, directed at a small angle to the
line of sight. Such measurements are already being conducted
on Earth (see, e.g., Ref. [24]) but can be essentially improved
with the help of cosmic interferometers.

Let us clarify this effect in Fig. 12. Let a be a small angle
between the motion direction of a jet node (the arrowhead)
and the line connecting the observer O with the source S
(quasar), and Z and x � �R; y; 0� be the conformal coordi-
nates of the node (R is the geodesic distance from the observer
to the jet; see Eqn (47)). The observation time for the jet node
moving with the intrinsic velocity v is given by

dt � dZÿ dR � �1ÿ v cos a� dZ ;

and the apparent velocity of its displacement in the observer
tangent plane is defined as

v? � dy

dt
� v sin a

1ÿ v cos a 4 vG : �49�

This function passes through a maximum at cos a � v, equal
to the jet gamma-factor G � �1ÿ v2�ÿ1=2 for the velocity
v � jvj approaching the speed of light.

The jet displacement on the celestial sphere takes then the
form

_y? � v?
R

4
0:3
�R

�
G
20

�
arcms yearÿ1; �50�

which constitutes milliarcseconds per year for the super-
luminal velocities of bursts from quasars observed in reality
(Fig. 13). By having extensive statistics of such objects, we
will be able to determine the geometrical characteristics
�R�z� (47) using the upper envelope of function (50).

We offered several examples illustrating the potential of
direct assessment of geometry and composition of the
Universe from observations of nonlinear objects. They can
be augmented by observations of bright galaxies, compact
groups of galaxies, rich X-ray clusters, gamma bursts, binary
quasars, and other active systems. Exploring the Universe
with their assistance remains not as efficient as that using
quasilinear systems and based onmeasurements of large-scale
structures, microwave background, and nonrelativistic mat-
ter. We may hope that the development of theory and
numerical experiment will make the geometrical methods
competitive in accurately solving the tasks of observational
cosmology.

Z

a�Z�

a�Zÿ R�

0 R x

Figure 11. Trajectories of light rays in the Friedmann model in conformal

coordinates �Z; x� from the source �x � R� to the observer �x � 0� (see
Ref. [2]).
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Figure 12. The plane �R; y� of observer O and the jet node (the arrowhead)

moving with velocity v relative to the source S [2].
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Figure 13. Superluminal ejections from quasars (see Ref. [25]): (a) the jet transverse velocity v?�z�, and (b) angular displacement _y?�z�.
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11. Formation of galaxies in the inhomogeneous
Universe

How do the gravitationally bound halos of matter, reached
hydrostatic equilibrium, emerge out of the quasi-Hubble
flow 12 and how is the mass distribution of these nonlinear
objects linked with the initial field of density perturbations?

In contrast to the large-scale structure bound up with
relatively small matter density variations and staying at the
beginning of its nonlinear development, the galaxies have
evolved from high density peaks typical for the field of small-
scale perturbations (less than several megaparsecs) and have
already passed through the period of nonlinear relaxation.
The reason for that is the amplitude and shape of the initial
density perturbation spectrum which increases toward short
wavelengths (see Ref. [1]). This property of spectrum
facilitates early fragmentation of matter into `halo-blocks'
of small mass and their subsequent agglomeration in more
massive halos of galaxies, groups, and clusters.

The hierarchical formation of nonlinear structures from
small to large masses finds support in numerous observations
and in numerical modeling. A critical observational argument
in favor of the sequential formation of halo systems is the
absence of a large number of far emission Lya lines. The
explanation is that massive systems, in their past, did not
undergo a single powerful burst of star formation involving
all halo gas, but formed by way of subsequent merges of
numerous small-mass blocks that passed through their star
formation phases at different times.

By virtue of the existing properties of the spatial S
spectrum, the observable structure of the Universe possesses
the following important features.

Ð The formation of galaxies and groups is largely
completed; they contain the dominant part of DM. The
process of galactic cluster formation still continues.

Ð Halos and their characteristics are distributed non-
uniformly in space: their number and masses are modulated
by the large-scale structure of the Universe.

The first feature offers physical motivation for establish-
ing a simple linkage between emerging nonlinear halos and
peaks in linear seed density perturbations, based on themodel
of a quasispherical collapse [6]. The second feature invites us
to apply the Press±Schechter method to finite-size domains
and, in this way, to couple the mass function of halos with the
large-scale structure of the Universe.

Before discussing theoretical predictions related to the
halo mass functions and their validation against observations
and numerical experiments, we remind the reader of the main
characteristics and elements of the large-scale structure of the
Universe. As we have already stressed, turning to large scales
moves us to the initial stages of structure formation and the
first phases of collapse, which are predominantly one-
dimensional. Long-term observations of the spatial distribu-
tion of gravitationally bound virialized DMhalos on scales of
up to 300 Mpc demonstrate that the large-scale structure of
the Universe possesses the following typical elements:

Ð filamentsÐlinear structures of varying richness 13

with lengths of up to tens of megaparsecs, and thickness of
several megaparsecs;

Ð wallsÐflat formations reaching hundreds of mega-
parsecs over elongated directions and several megaparsecs in
thickness, and filled with filaments;

Ð nodesÐrich clusters of galaxies several megaparsecs in
size occurring at intersections of filaments;

Ð superclustersÐextensive domains of space from tens
to hundreds of megaparsecs in size filled with walls, filaments,
and nodes;

Ð cosmological voids 14 Ð extensive domains reaching
several hundred megaparsecs, where bright galaxies and
galaxy clusters are absent.

The last two formation types are quasilinear because of
their large size. Under the action of gravity, matter moves
towards superclusters which expand more slowly than the
mean Hubble flow. The matter `flows off' the voids in
different directions, and their local volume grows faster than
the mean. The mean displacement of matter elements for the
entire history of the Universe is smaller than the sizes of these
structures andmakes up 14Mpc. The voids occupy the largest
part of the Universe (more than 50%) and their forms in
contours of low density are close to spherical, whereas
superclusters are dense formations with a flattened shape.
Both types of structures can naturally be characterized by the
mean substance density within a given volume. It is smaller
than the Universe's mean value in voids, and larger in
superclusters.

Observational assessment of the parameters of voids and
superclusters is ambiguous. The reason for the blurring in
voids and superclusters reconstructed from the spatial light
distribution resides in a nontrivial physical coupling between
luminous matter and the DM composing the backbone of the
structure. The resolution of these formations through the
threshold density contrast of the matter contained in them
compared to the mean level is more rigorous and accurate.
We define voids (and superclusters) as three-dimensional
spatial domains with a given negative (positive) level of
matter density contrast. When the absolute value of thresh-
old contrast decreases, the sizes of structures grow, and their
number decreases. For r < rc, we obtain a single void filling
the whole Universe.

An important characteristic of voids and superclusters is
the mass function of the halos populating them. Observations
indicate that the cosmological voids nearest to us are
impoverished in normal and dwarf galaxies, but weakly
emitting galaxies and gaseous clouds are encountered. They
are observed both through the ultraviolet absorption lines in
the spectra of quasars or bright galaxies placed behind them
and the absorption line of neutral hydrogen (21 cm) in the
spectra of distant radio sources. Galaxies in voids are of
reduced luminosity on average, compared to those in super-
clusters, though the slopes of their luminosity functions differ
but slightly from each other [26].

The theory predicts that voids and superclusters contain
weak galaxies of small mass that have not passed the stage of
active stellar formation, as well as primordial objects of the
hierarchical clustering model with masses up to 105M�. Such
objects are incapable of holding gas, so that stellar formation
in them is practically impossible. With growth in measure-

12 We also call the equilibrium halos relaxed or virialized systems, with the

understanding that it is the virialization over velocities, not energies.
13 The richness of an element of a large-scale structure is defined by the

number of galaxies composing it.

14 The term cosmological `void' reflects the fact that on celestial maps

some regions seems to be empty. In reality, these cosmological empty

domains can contain a significant (yet not dominant) fraction of the

Universe's matter, i.e., they are not really empty. That is why, instead of

referring to cosmological `empty domains', the term `voids', borrowed

from oral speech, is frequently used.
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ment sensitivity, observers are succeeding in finding pre-
viously unknown weak galaxies with masses of 107ÿ109M�
in the Local Group and the nearest neighborhood [14]. Their
number agrees well with the predictions of the CSM, yet the
question of finding lessmassive galaxies remains open to date.

The minimum cutoff scale for the spectrum of initial
density perturbations is linked to the physics of DM and is
still unknown. The region of small masses that yields to
exploring by means of observational cosmology (for exam-
ple, by observing multiple absorption lines in the spectra of
distant quasars) can be linked to the temperature T of the
Universe at an instant of time when the comoving size R of a
given mass MR coincides with Hubble's radius of the
Universe:

R ' 10

�
10 keV

T

�
kpc ; MR ' 105

�
10 keV

T

�3

M�:

Numerical modeling of processes pertaining to the
formation of structure from cold matter has led to substan-
tial advances in exploring the mass functions of nonlinear
halos in different domains of the Universe. In beginning
simulations of the formation process at z � 20 with seed
massesM � 105M�, to z � 0 one manages to obtain a spatial
distribution of gravitationally bound systems with typical
masses in the range 1012 ± 1013M� (see Refs [27±32]), which is
similar to the distribution observed. In this case, all dark
matter proves to be involved in the virialized halos of all sorts
of masses, while the mean matter density inside the halos at
the instant of their formation exceeds the mean density in the
Universe by a factor of � 200. This corresponds to the
predictions of quasispherical collapse.

12. Mass function of relaxed halos

The Press±Schechter approximation relies on two assump-
tions.

(1) The linear perturbation field is Gaussian: the volume
fraction of the Universe where the density contrast dR�z; x�,
smoothed over a sphere of radius R [see Eqns (61), (62)],
exceeds a certain threshold value dc is given by

f �M; z� � 1������
2p
p

�1
n

exp

�
ÿ n 0 2

2

�
dn 0 ; �51�

where

n � n�M; z� � dc
sR�z� �52�

is a monotonically increasing function of argument
M�MR� 4prmR

3=3, and

sR�z� � �g�z� sR �53�

is the variance of density contrast in a sphere of radius R (see
Ref. [1] for more detail). The connection of the normalized
factor of density perturbation growth with those introduced
earlier is defined as

�g�z� � g�a�
g�1� �

ĝ�a�
ĝ�1� : �54�

(2) The matter in density peaks collapses and stays
confined in gravitationally bound objects: there is such a
value dc whereat the mass fraction of matter in the Uni-

verse 15, F�>M; z� � 2f �M; z�, turns out to be involved in
virialized halos with individual masses in excess ofM by time
moment z:

F�>M; z� � 2f �M; z� � 1

rm

�1
M

n dM ; �55�

where

n � n�M; z� � rm
M

fM �56�

is the differential mass function (the mean number density of
halos with masses M in the interval dM �M), and

fM � fM�z� �
���� d lnsRd lnM

���� f �n� �57�

is the fraction ofmatter that resides in halos withmassesM by
time moment z.

A comparison of expressions (51) and (55) allows us to
determine the mean mass function of nonlinear halos in the
Universe:

f �n� � fPS �
���
2

p

r
n exp

�
ÿ n 2

2

�
: �58�

The normalization condition of the function fM is written
down as�1

0

fM
dM

M
� 1 ; �59�

and it implies that for any z all the dark matter is confined in
nonlinear halos.We can only inquire about the distribution of
these halos over masses and about the typical halo objects for
a given z, containing a dominant part of the Universe's
matter. For large z, all the matter is decomposed into small
masses, but the share of large halos grows with time. Themass
of typical halos,M�, at any epoch is defined by the condition

n�M�; z� � 1:

For the modern Universe, one has M� ' 1013M�. For small
M, the function fM � n5 1. This implies that halos of small
mass are seized by more massive ones in the course of
hierarchical clustering, i.e., they leave the set of M objects
and are taken into account only in newly forming halos of
larger mass.

The approximation of linear density contrast in the CSM
at the instant of halo formation in the framework of
homogeneous collapse 16 gives the threshold contrast value

15 The numerical coefficient 2 implies that in the course of hierarchical

clustering all the cold substance proves to be caught in virialized halos of

all possible masses: F�> 0; z� � 1 for any z. The argument M is more

convenient than R because M is preserved both for linear perturbations

and for halo objects. If the component of massive neutrinos is included in

the matter, we need to take into account the dependence of growth factor

(53) on the spatial scale.
16 In a simple cycloid model of a collapsing dust sphere a �
a0�1ÿ cos� ���Kp Z��, the time moment z of halo formation coincides with

that of collapse, t�z� � �0 a dZ � 2pa0=
���
K
p

. Taking into account that the

radius of a virialized halo is half that of the radius enclosing the samemass

at themoment the cycloid stops, we conclude that the density of the halo at

the instant of its formation exceeds that of a collapsing sphere at the

instant of its stopping by a factor of 8. Hence, inter alia, a useful estimate

follows for the halo radius at the halo formation instantÐ it is approxi-

mately six times smaller than the radius of a sphere enclosing themassM in

the unperturbedUniverse. Speaking figuratively, a halo at its inception is a

fragment of the unperturbed Universe compressed sixfold in scale.
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dc � 1:675, which only weakly depends on variations of
cosmological parameters within their error bounds [33].

Long-term investigations have shown that the results
obtained with the help of this method agree well with the
numerical N-body experiment. Nevertheless, the basic form-
alism does not include mechanisms of merging and tidal
breakup of objects. Hence, as a rule, the Press±Schechter
method is applied to analyzing the spatial distribution of
objects with a sufficiently high mass (such as clusters of
galaxies), for which these effects are insignificant.

In order to apply this method in precise cosmology,
account must be taken of corrections for the nonsphericity
of collapse. Analytical estimates show how the function f �n�
is modified in this case. For constructing an accurate
analytical approximation, we need to use a more general
empirical formula enabling a nonspherical correction (the
Sheth±Tormen approximation [34]):

f �n� � fST � f0

���
2

p

r
~n�1� ~nÿp� exp

�
ÿ ~n 2

2

�
; �60�

where ~n � n=n0, and find numerically the correction factors

f0 � 0:32; n0 � 1:2; p � 0:6

( f0 is the normalization coefficient obtained from Eqn (59)).
Such a corrected approximation, accounting for the

Gaussian perturbation field and the collapse of density
peaks, ideally describes the results of numerical simulations
and is widely used in modern cosmology (Fig. 14). Appar-
ently, the Press±Schechter approximation somewhat over-
estimates the number of gravitationally bound halos with
masses near the characteristicM� (n � 1), but underestimates
the number of massive halos with M > 5� 1014M�. The
intersection of two functions happens at n � 2:3, which
corresponds to the mass of order 1014M� in the current
epoch (the precise value depends on the normalization of the
spectrum; see Section 14).

In its standard form, the Press±Schechter formalism offers
expressions only for the mean mass function of virialized
halos, andmisses such large-scale inhomogeneities as voids or
superclusters, in which the local density rL of matter on the
scale L differs from the background one, rm. In the next
section we will obtain mass functions for halos populating the
inhomogeneous Universe [35].

13. Modulation of galaxies
by the large-scale structure

Local extended domains in the Universe can conveniently be
characterized by the mean matter density inside a sphere of
comoving radius L centered at a point r:

rL � rL�r; z� �
�
r�r 0; z�WL�jrÿ r 0j� dr 0 ; �61�

where

WL�r� � 3

4pL 3

1 ; r4L ;
0 ; r > L :

�

Let us introduce the parameters of mean density contrast and
local matter density in the domain L:

dL � rL
rm
ÿ 1 ; OL � Om

rL
rm

: �62�

Adding up expression (62) with OE, we obtain the mean
density of matter in the domain L. Subtracting from it the
equality Om � OE � 1 for a flat Universe, we obtain the
parameterDL characterizing themean curvature of domainL:

DL � OL ÿ Om � OmdL : �63�

Distinct fromR, the free parameterL is assumed to exceed
the inhomogeneity scale (L > 10 Mpc), so that spatial
domains with rL < rm (voids `v', Fig. 15) and rL > rm
(superclusters `s') are still in the phase of quasi-Hubble
expansion (jdLj < 1). As L!1, rL tends to the mean
matter density in the Universe, rm � rm�z�.

In order to construct the local halo mass function we
should:

Ð resolve the field of linear perturbations of the density
contrast dR into a large-scale background dL and a small-scale
part dRjL which characterizes the seed perturbations leading
to halo formation in a given spatial domain of size L > R (see
Fig. 15):

dR � dL � dR jL ; �64�

Ð describe a quasispherical collapse on the background
rL instead of the homogeneous background of density rm.
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Figure 14. Functions f �n� in the Press±Schechter (PS, dashed line) and

Sheth±Tormen (ST, solid line) approximations of halo mass functions (see

Ref. [2]).
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Figure 15. Spatial field of density contrast dR�r� (solid line) as the sum of

long-wave background dL (dashed line) and short-wave residual dR jL
(dotted line) [35]; dc is the threshold contrast.
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From a physical viewpoint, we are considering the
influence of the local large-scale structure of the Universe on
the local process of hierarchical clustering. Assuming the
scale of the structure is large (L > R), its influence on the
collapse can be represented in the form of a power series in
spherical harmonics. The monopole term in this series is the
main factor influencing the local statistics of virialized halos,
which lays the basis of this method. The dynamics of collapse
depend only on the mass of the substance confined within a
sphere of radius R; however, the regions where the density
contrast exceeds the threshold one are less abundant in voids
than in superclusters. Namely this information is contained in
the background offsetting theGaussian function dR jL. At this
stage, we ignore the dipole (density gradient), quadrupole
(tidal forces), and other terms in the structure expansion,
which are linked to the motion of the halo as a whole and the
nonsphericity of collapse. Their influence can be accounted
for as numerical corrections to the halo mass function [see
Eqn (60)].

The dispersion dR jL of a linear Gaussian field describing
the local properties of density perturbations for R < L takes
the form 17

s 2
R jL �

�1
0

P�k���W�kR� ÿW�kL���2 k 2 dk : �65�

Apparently, sR jL ! 0 for M �MR !ML (the mass in the
sphere of radius L).

Carrying out computations similar to those in Section 12,
we obtain the halo mass functionM 2 �0;ML� in the domain
L [35]:

nL � nL�M� � rL
M

fM jL ; �66�

fM jL �
���� q ln sR jLq lnM

���� f �nL� ; �ML

0

fM jL
dM

M
� 1 ;

where the function f �n� coincides with Eqn (58) (or Eqn (60)
in the case of correction for nonsphericity), and nL follows
from Eqn (52), with sR replaced by sR jL, and dc by dc jL.

The function nL � nL�M; z� growsmonotonically with the
mass growth and diverges when M!ML. The threshold
density contrast dc jL depends on the local density of back-
ground.When computing dc jL it should be borne inmind that
the domains of superclusters with dL > 0 (or voids with
dL < 0) expand more slowly (faster) than the homogeneous
background. A smaller (larger) threshold contrast dc jL with
respect to the actual background will assure the collapse of a
given domain of increased density up to a time moment z:

dc jL � dc ÿ dL : �67�

This formula is valid in the linear order in dL. Numerical
correction is needed to account for nonlinear contributions.

Figure 16 presents halo mass functions MnL=rm at z � 0
in a void, supercluster, and flat domain of space with
dimensions L � 140 Mpc and different values of mean
density contrast dL. As can be seen, small-mass halos form
the main population of zones with a reduced matter density.
For example, the fractions of substance in a void with
dL � ÿ1=2, existing in the form of primary isolated blocks

Ð halos with masses 107M�, 109M�, and 1011M�Ð
constitute about 1, 10, and 30%, respectively. It is easier,
therefore, to discover low-mass primary objects of DM,
which are not confined in more massive halo systems, in
voids than in other parts of the Universe.

The solid line for spatially flat domains of the CSM in
Fig. 16 characterizes the modern Universe as a whole. We see
that the range �5� 1011 ± 5� 1013�M� of halo masses
(massive galaxies and groups of galaxies) hosts 30% of the
total DM in the Universe, and massive halos with
M > 5� 1014M� (rich clusters of galaxies) include no more
than 10% of its nonrelativistic matter ( fM < 0:1).

Thus, the process of hierarchical gravitational clustering,
collecting the dominant part of low-mass objects into more
massive systems with M95� 1013M� and observed as a
phase of the active merging of galaxies, is completed in the
Universe on the whole. For more massive formations with
M01014M� this process, seen as the interaction of groups
and clusters, still continues and is far from completion. 18

If we consider separate domains of space, the coalescence
of galaxies and interaction of galaxies there followed their
ownways in the past and continue to do so. Indeed, clustering
of halos in voids fully ceases with time [see the limit massML

in Eqns (65) and (66)]. In contrast, in `flat' zones and in
regions of augmented density, the clustering and coalescence
are progressing and gradually shift toward larger masses. We
may argue that the activity in the form of coalescences,
accompanying the process of galaxy formation everywhere
in the Universe since its beginning, degenerates with time,
continuing in flattened superclusters and breaking down in
voids. The process resembles a burning out fire.

As a result, the morphology of galaxies proves to be
different at various locations in the Universe. Notably,
finding isolated galaxies which lack adjacent partners of
comparable mass is, for instance, more probable in voids
and close to their boundaries than in superclusters. In
contrast, interacting galaxies are more common in super-
clusters, beginning with pairs and ending with large associa-
tions or clusters.

Summarizing, we can conjecture that the theory consider-
ing the formation of the nonlinear structure from DM agrees
well with observations and numerical experiments and has a
predictive skill valuable for further research. There still
remain some problems related to the evolution of the baryon

17 Here, the field crosscorrelation between dR jL and dL is neglected. It is

significant only at R � L.

18 The patchy structure of most galaxy clusters in X-ray spectral region

offers an additional argument in favor of this statement.
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Figure 16. The DM fraction �1� dL� fM jL in the halo of masses M (in the

interval dM �M) in the domains of the modern Universe with the size of

L � 140 Mpc and density contrast dL (see Ref. [35]). The curves corre-

spond to a supercluster (dashed, dL � 1=2), flat background (solid,

dL � 0), and void (dotted, dL � ÿ1=2).
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component. Solving them hinges on further development of
computer facilities, observational techniques, and data
processing methods.

The halo mass functions in voids and superclusters differ
substantially. In particular, the spatial density of massive
(M � 1012M�) halos in voids is several times less than in
superclusters, and the distinction in mass functions is even
larger for larger masses. In regions of galaxy clustering, the
observational statistics worsen:

n�M� ' 2� 10ÿ5 exp
�
ÿ M

M �

�
Mpcÿ3; �68�

whereM � ' 4� 1014M� on the average in the Universe. For
this reason, the comparison of theory against experiment
relies on integral functions of halo masses, possessing more
extensive data statistics.

The integral mass function describes the full number of
halos NL in the domain L (reduced to a unit volume) with
masses in excess of a given one:

NL�>M� �
�ML

M

nL�M� dM

M
: �69�

The differences between the integral functions in voids and
superclusters diverge exponentially with increasing M,
because the characteristic values M �

L of halo masses are
different there (Fig. 17). In the region of small masses (dwarf
galaxies), the integral functions are hardly distinguishable,
and the fM jL functions appearmore appropriate (see Fig. 16).
The actual distinction betweenmass populations of voids and
superclusters is stronger because of the nonlinear galaxy
coalescence effects and tidal destruction of galaxies, which
partly suppress the small-mass part of the mass function in
superclusters.

The main population of voids is primordial objects (POs)
with small masses. The share of thematter in voids in the form
of isolated galaxies withM < 109M� reaches 10%, whereas it
does not exceed 1±2% in other domains of the Universe.
Globular clusters in the central regions of massive galaxies
can be stellar remnants of POs: they could have formed in
molecular clouds of the first small-mass halos and then
accumulated in the central regions of massive galaxies in the
process of hierarchical clustering.

The primordial objects in voids can manifest themselves
as weak dwarf galaxies or in the form of Lya absorption
systems. Indeed, we can estimate their spatial density and
dimension, assuming that their formation epoch z0 � 10 and

mean massM � 107M�, as

nPO � rm
M
� 104 Mpcÿ3;

rPO � 1

6
n
ÿ1=3
PO �1� z0�ÿ1 � 1 kpc:

As can be seen, these primary formations are rather loose, so
that lensing effects on them are unimportant. The possibility
of discovering them depends on their subsequent evolution.
One may hope that such objects have retained their gaseous
component in voids and that their column hydrogen density
appears sufficient for the emergence of weak Lya absorption
lines. The probability of picking such objects up in the line of
sight in a void of size L � 100 Mpc is on the order of unity:
nPOr

2
POL � 1.

14. Normalization of scalar perturbations

Data on the anisotropy of the CMBR give exact information
on theamplitudeandshapeof the initial S spectrum in the early
Universe and on certain parameters of composition (densities
of nonrelativistic components, and the curvature of space).
However, to trace the transformation of initial inhomogene-
ities into the observed galaxies, we also need to know the
growth factor for density perturbations in the late Universe,
which depends on the Hubble radius and DE (see Sections 6
and 7). The number and mass distribution of gravitationally
bound relaxed halos, formed through the development of the
gravitational instability of DM, depend exponentially on the
amplitude of initial scalar inhomogeneities in the curvature
and growth factor of density perturbations (see Sections 12
and 13). Owing to this dependence, we have at our disposal a
sensitive test enabling us to determine the amplitude and shape
of the S spectrum together with the most important supple-
mentary parameters of the Universe's composition from the
quantitative characteristics of the structure.

This test is frequently referred to as the normalization of
the spectrum of cosmological density perturbations. For a
given observed mass distribution of gravitationally bound
DM halos, the amplitude of the power spectrum is a function
of cosmological parameters (Om;OE, and others) within their
variability bounds admitted by the data accuracy.

For historical reasons, the normalization `to sigma 8'Ð
the dispersion of density contrast within a sphere of radius
8hÿ1 (in this section, h � H0=100 km sÿ1 Mpcÿ1), which
represents the integral function of the density perturbation
spectrumÐ is used most widely. We denote this dispersion as
s11 here to emphasize its actual value: 8hÿ1 ' 11 Mpc. The
sphere encloses the mass of an unperturbed Universe,
M11 ' 2� 1014M�, which is close to that of a typical cluster
of galaxies. This normalization test is therefore ideally
oriented to using observational data on the abundance of
galactic clusters. Moreover, the theoretical analysis of halo
mass functions in this mass range relies on an elaborate
analytical formalism (see Sections 12, 13).

The magnitude of dispersion s11, which ensures the
observed spatial number density of clusters, essentially
depends on the total matter density Om in the Universe,
whereas changes in all other cosmological parameters affect
s11 only within 10±20% of its magnitude. We will demon-
strate below the technique of normalizing the density
perturbation spectrum to the abundance of galaxy clusters
at z � 0, which satisfies the current requirements of precise
cosmology [36].
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Figure 17. Integral mass functions NL�>M� of equilibrium halos in the

range 1012ÿ1015M� for the same domains of the Universe as in Fig. 16.
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All cosmological parameters can be spread between two
levels according to their impact on the quantity s11:

Ð Om (the first level);
Ð OE, h, n, fn, Ob, wE, and others (the second level),

where fn � On=Om is the fraction of matter in the form of
massive neutrinos. Among the free parameters of the second
level, the first four are statistically significant (within intervals
of their variability). The rest are fixed for simplicity
(Obh

2 � 0:023, and wE � ÿ1).
A class of models to be utilized represents a rather

advanced variant of the CSM extension at the modern
knowledge level: it includes the nonzero spatial curvature
(OK � 1ÿ Om ÿ OE), hot, cold, and baryonic components of
matter (Om � On � OM � Ob), the cosmological constant,
and nonflat (but power-law with the slope n) spectra of the S
mode. In this class of models, the exact dependence of the
threshold density contrast dc on Om and OE in the curved
Universe is also taken into account [33].

The subsequent study is split into two stages. At the first
stage, an optimum value of s11 with accompanying individual
error was computed through the comparison of theoretical
and observational differential functions of cluster masses for
every realization of the extended model (with its own set of
cosmological parameters).19

At the second stage, all the computed values of s11 (they
are tens of thousands in number, and each has its own error)
were fitted by the approximating dependence of the form [36]

s11 � OA1�A2Om�A3OE
m

�
A4 � A5�Om ÿ A6�

� �1ÿ A7hÿ A8nÿ A9 fn�
�
: �70�

The optimal values of parameters Ai (i � 1; 2; . . . ; 9� were
determined by the Levenberg±Marquardt method of w 2

minimization. Notice the important distinction of this stage
from the previous one. In the first case, n�M� was a function
of a single variable (massM). In the second case, the function
s11 depended on multiple variables (Om, OE, h, n, and fn).

Figure 18 illustrates the second phase of normalization. It
shows the `cut' of the cosmological parameter space of the
extended model in the two-dimensional plane of main
parameters (s11;Om). In this case, the standard values were

taken for other cosmological parameters (OE � 1ÿ Om �
h � 0:7, n � 1, fn � 0). The plot confirms the expected,
strong dependence of s11 on Om.

The experience of working with different data indicates
that the value obtained for s11 depends on the selection of
observations. We have already mentioned that this is,
unfortunately, a common story accompanying work with
nonlinear objects (clusters of galaxies in this case). This
should be borne in mind when mentioning the `standard
values' of, first of all, such parameters as s11,H0, and Om (or
OE). They, to a larger degree than any other quantities,
depend on observations of astronomical objects (stars,
quasars, galaxies, and clusters). There is only one way out:
improvement in the quality of observational data and control
of systematic effects related to the evolution of the baryonic
matter component.

We now turn to other parameters. The fact that their
contribution to s11 is statistically significant is vividly
illustrated, besides by formulas [see Eqn (71) below], by
Fig. 19. All the space of models is projected there onto the
plane (s11;Om). As can be seen, the height of bars s11 for
various values of parametersOK, h, n, and fn is comparable to
the size of statistical error, and exceeds it for some sets of
cosmological parameters. This emphasizes the importance of
a thorough account of the contributions from all model
parameters mentioned above.

An interesting result, also seen from Fig. 19, is the
increasing influence of the second-level parameters as the
values of Om reduce. Since the interest of modern cosmology
is focused namely on this domain, this once again confirms
the necessity of simultaneous account of all cosmological
parameters when solving cosmological tasks at a high level of
accuracy. The scatter of s11 upon variations of second-level
parameters looks tighter for the Sheth±Tormen approxima-
tion, which says something about its advantage: it ensures the
most accurate power spectrum normalization in work with
mass functions of galaxy clusters (see, for instance, Ref. [39]).

We specify the form of formula (70) for the normalization
of the scalar perturbation spectrum as obtained in Ref. [36],
which compared the abundance of optical galaxy clusters
with the theoretical halo mass function derived in the Sheth±
Tormen approximation in the extended CSM:

s11O 0:54�0:15Omÿ0:04OE
m ÿ 0:2�Om ÿ 0:75�
� �1ÿ 0:2hÿ 0:2n� 0:8fn� � 0:53� 0:08 : �71�
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Figure 18.The dispersion s11�Om� of density contrast in a sphere of 11Mpc

in radius for the CSM [36]. The vertical lines show the accuracy of

observational optical data on the abundance of near clusters of galaxies

(a confidence level of 95%).

19 The approach presented here can work with arbitrary observational

data pertaining to virial masses of galaxy clusters. In the particular case

considered here the results of optical observations of the speeds of galaxies

in the nearest 150 clusters with a median value of redshift z ' 0:05 (see

Refs [37, 38]) were utilized.

0.9

s11

0.8

0.7

0.25 0.30 0.35 0.40
Om

1

1

1

1

2

2

2

2

Figure 19. Projection of the space of cosmological parameters in the

extended CSM onto the plane (s11;Om) for the Sheth±Tormen (bars

labelled with 1) and Press±Schechter (labelled with 2) approximations

(from Ref. [36]).
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Here, the left-hand side contains combinations of cosmologi-
cal parameters, whereas all errors are mapped into the right-
hand side and attributed to the normalization (a confidence
level of 95%).

This example illustrates the specifics of cosmological
research with respect to observational data:

Ð the need for multidimensional spaces of parameters to
determine the main model characteristics,

Ð the need for numerous multivariate observational tests
to lift the problem of parameter degeneration.

As follows from the example above, formula (71) alone is
insufficient to normalize the S spectrum amplitude itself: we
only know the relationship between the parameters, and
need additional data to solve the normalization task. Note
also an interesting feature of this formula: it has the form of
a `plane' for the second-level parameters. The coefficients of
this plane may be refined by more complete data of future
observations.

15. Conclusions

Summing up, we can argue that the standard theory for the
structure formation in the Universe in the framework of the
CSMdoes not encounter principal problems in explaining the
observed matter motions and distributions. The theory of
nonlinear structure formation hinges on the dominance of
DM. It agrees well with observations and numerical experi-
ments and has predictive skills for further research. There
remain complex problems pertaining to the nonlinear
dynamics of DM and the evolution of the baryonic compo-
nent (we consider some of them in Ref. [1]). Solving the
problems listed above and those related to them will benefit
from the development of computer facilities, new methods of
observation and data processing, and the refinement of
cosmological parameters aimed at further improvement of
the theory and extension of the CSM.
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16. Appendices

A. Quasi-Hubble flows in the GRT
Appendices A, B, and C present the main features of
inhomogeneous cosmological models in which the Fried-
mann symmetry is fully broken, yet the departure from it
remains small [2]. Such models, deviating only slightly from
the spatially flat Friedmann model, are called here weakly
inhomogeneous or quasi-Friedmann, the flows spawning them,
quasi-Hubble, and the geometrical departures proper, con-
sidered in the linear order of smallness, cosmological
perturbations.

One of the most important geometrical characteristics in
the GRT is the Einstein tensor, or the stress±energy tensor of
matter T n

m . Energy and momentum are carried in spacetime
along timelike world linesÐ flow trajectories. A vector
tangent to them, u m, is the eigenvector of tensor T n

m :

T n
m u

m � eu n ; �72�

and its eigenvalue e � rc 2 is the scalar of total comoving
density. 20 The unit vector um (umu

m � 1) describes the
transport velocity of total flow energy. By definition, one has

panu
mT n

m � 0 ;

where p n
m � dn

m ÿ umu
n is the projective tensor orthogonal to

u m. Accordingly, the symmetric tensor panT
n
b describes the

pressure structure.
In the Friedmann Universe, solution (72) is unique for all

forms of matter: the components of amediummove along the
vector u m (in Friedmann's coordinates u m � dm

0 ). The stress±
energy tensor of matter has a universal form which contains
the only `new' scalar p � p�t�, the effective pressure in the
medium:

T n
m � �e� p� umu n ÿ pdn

m � eumu n ÿ pp n
m : �73�

For weak perturbations of the Friedmann group, differ-
ent medium components move in different directions, but
deviations of their velocities from the mean velocity u m are
small. Under this condition, solution (72) is unique and we
obtain the general form of T n

m in the quasi-Friedmann
geometry:

T n
m � �e� p� umu n ÿ pdn

m ÿ s nm � eumu n ÿ � pp n
m � s nm� ; �74�

which contains, in addition to the form (73), a small stress
tensor s nm orthogonal to the flow u m (u ms nm � 0). As we see, the
total tensor of quasi-Hubble flow pressure comprises two
terms: the diagonal tensor r, and the anisotropic stress tensor
s nm . The total pressure can be determined by the trace of the
pressure tensor:

ptot � 1

3
p mnTmn � p� 1

3
s nn : �75�

In a weakly inhomogeneous model, as in the Friedmann
model, the rules of linear superposition are valid for matter
components interacting only gravitationally:

e �
X
m

em ; p �
X
m

pm ; u m �
X
m

fm u m
m ; �76�

where scalars fm of partial contributions of matter compo-
nents have the form

fm � em � pm
e� p

;
X
m

fm � 1 ; m � 1; 2; . . . ;M :

For general nonlinear interactions, the resolution of densities
and pressures into components is ambiguous; however,
notions of partial enthalpies Wm � em � pm and component
velocities u m

m, as well as total e and p, are preserved. Notice
that these simple linear superpositions of medium component
velocities are valid for terms of zeroth and first orders of
smallness with respect to deviations of velocities u m

m from the
mean one u m.

20 In the energy units of measurement adopted by us, energy and mass
densities coincide (c � 1). Their different notations e and r, respectively,
are only important for dimensionality recovery and passages to the limit.
For example,Gr does not contain the physical constantì speed of light in
vacuumìand possesses the same dimensionality asH 2.
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Projecting the Bianchi identities T n
m;n � 0 onto u m and

orthogonal directions, we arrive at equations for the energy
and momentum of the total flow:

u ne; n � 3Hv�e� ptot� � 0 ; �77�

am � u num; n � u n�um; n ÿ un; m� �
p n
m p; n

e� p
; �78�

where Hv � u n
; n=3 is the Hubble factor of medium local

volume expansion, and am is the flow acceleration (anu
n � 0).

To make the resolution of pressure into isotropic and
anisotropic parts unique, we demand that the scalar part of
s nm be of zero divergence [see Eqn (81)].

In the class of quasi-Friedmann coordinate splits �t; x�,
where the three-dimensional flow velocity is always small (D
and v are small functions):

um � �1�D; v; i� ; �79�

the decomposition of geometrical variables into the back-
ground and perturbation parts yields

gmn � g �F�mn � hmn ; �80�

g�F�mn � diag�0;ÿa 2di j� ;
1

2
hmn �

D C; i=2

sym a 2�Adi j � B; i j�
� �

;

e � e �F� � de; p � p �F� � dp ; �81�

s nm � diag

�
0;

DS di j ÿ S; i j
8pGa 2

�
; s nm;n � 0 ;

where sym denotes a symmetric matrix, and the letter F
(discarded below when possible) labels the Friedmann
variables. They are functions of t and obey the equations

3

2
H 2 � 4pGe �F� ; _e �F� � 3H

ÿ
e �F� � p �F�

� � 0 : �82�

The scalar sector of perturbations is fully described by four
gravitational (A, B, C, D) and four material potentials (v, de,
dp, and S for arbitrary physical fields!). The scalar S of
anisotropic pressure is gauge invariant, while the remaining
seven functions are not. 21

The gauge invariant variables for the dimensionless
velocity potential and perturbations of density and pressure
in the matter have the form

q � A�Hv ; d � dec
e� p

; dp � dpc
e� p

; �83�

where the Lagrangian variables are

dec � deÿ _ev � eÿ ec ; �84�

dpc � dpÿ _pv � pÿ pc � ptot ÿ pv : �85�

The scalar of a volume pressure pv � pc � s nn =3 and back-
ground functions Xc � X �F��tc� describe distributions on
spacelike hypersurfaces of constant comoving time tc � t� v.

The field q � q�t; x� plays a central role in the description
of density perturbations [10, 11]. It has a double physical
sense: on the one hand, it is the dimensionless potential of the
total matter velocity (laboratory interpretation), while, on the
other hand, it is the potential of spatial curvature (cosmolo-
gical interpretation). From the Einstein equations in the
lowest order one derives the relationship between the
potentials of the S mode and the field q:

DF
a 2
� 4pGdec ; F � H

a

�
�gqÿ S� da

H
; �86�

vÿ C� a 2 _B � q
H
; _vÿD � _q

H
; �87�

dp � _q

H
; �88�

where q � qÿ F is the potential of the peculiar velocity of
matter [see Eqn (101) below]. Hence, notably, having chosen
v � C � 0, we obtain the metrics in the Lagrangian orthogo-
nal reference frame �tc; x�:

ds 2 � �1ÿ 2dp� dt 2c ÿ a 2�di j ÿ 2B; i j� dx i dx j ; �89�

where

u m � �1� dp� dm
0 ; B �

�
q

dZ
a 2H

;

a � a�1ÿ A� � ac�1ÿ q�

is the scalar scale factor. The proper time ds in geodesic
x � const is connected to the comoving one, tc, by the
condition ds � �1ÿ dp� dtc.

The key equation (86) is the relativistic Poisson equation
and links the Laplacian of gravity potential F with the
comoving density perturbation dec. Equation (88) represents
the relativistic Euler equation, or Newton's second law. It
connects the flow acceleration _qwith the pressure gradient dpc
acting on it.

Wehave four gauge invariant scalars q,d, dp, andS, but the
four metric potentialsA, B,C, andD are not gauge invariant:
any two of them can arbitrarily be chosen by appropriately
selecting the functions X and Y (see footnote 21). Thus, in
total we end with six independent scalars describing density
perturbations in the Friedmann model. Gravitational equa-
tions (86)±(88) impose four constraints on the six potentials of
an S mode. Apparently, the gravity equations alone are
insufficient for describing the dynamics of S perturbations.
One needs information on the physical state of matter in the
form of two missing relations (equations of state). However,
even without imposing constraints on the state of matter, we
can derive general evolution equations for the quasi-Fried-
mann model, similar to the Friedmann equations in the
homogeneous cosmology.

21 It should be reminded that the vortex and tensor parts of s nm are linked

with V and T by perturbation modes and are not considered here.

Decompositions (80) and (81) of geometrical objects into a background

and perturbations are not unique: under a small coordinate transformation

x m ! x m ÿ xm we will obtain a new background (the same background

functions, but for other time t) and new perturbations, but the total

geometry will be preserved. Expanding a small arbitrary vector

xm � �X; a 2Y; i� in two potentials X and Y, we get the following gauge

transformations for scalar variables:

hmn ! hmn � xm; n � xn; m ; um ! um � X; m ;

A! AÿHX ; B! B� Y ; C! C� X� a 2 _Y ;

D! D� _X ; v! v� X ; t! tÿ X :
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In order to describe the geometry of weakly inhomoge-
neous flows, let us use scalar variables, including both orders
(the zeroth and first) of perturbation theory. For the matter,
these are the scalars of total density e and pressure p, while for
the metric they are the scalar scale factor a and the Hubble
function Hv of the volume expansion. Their relationship is
defined as

Hv �
_b

b
� 1

3
u m

;m � u m�ln av�;m �90�

(the dot above a letter denotes a partial derivative over tc),
where we have introduced the following factors of medium
volume expansion:

av � adet1=3�di j ÿ B; i j� � b �1ÿ q� ;
b � ac

�
1ÿ DB

3

�
: �91�

The generalized Friedmann equation (21) for a weakly
inhomogeneous Universe follows after direct summation of
the first equations (82) and (86) and grouping terms in the
function Hv and e. The other equation (23) follows from
Eqn (77) with account for the relationship e� ptot �
�1� dp��e� pv�.

Consider the structure of quasi-Hubble flow. According
to Eqn (89), the proper distance between two neighboring
medium elements, separated by coordinates dx i, is given by

dri � a�di j ÿ B; i j� dx j ; det

�
dri
dx j

�
� a 3

v : �92�

Differentiating dri over the proper time s, we obtain the field
of paired velocities of matter motion in the weakly inhomo-
geneous Universe:

dVi � qdri
qs
� Hi j dr j ; Hv � 1

3
Hi

i ; �93�

Hi j � Hc di j ÿ hi j ; Hc � _ac
ac
; hi j � 1

a 2H
q; i j ;

where Hi j is the matrix of gauge invariant Hubble functions
describing the recession of matter in space. Only one feature
here reminds us of the Hubble expansion: the relative
recessional velocity for points of the medium is proportional
to the distance between them. Yet these velocities are
anisotropic and depend on spatial location.

B. Dynamics of cosmological scalar perturbations
If motions of quasi-Hubble flow obey Friedmann equation
(21), then the cosmological perturbations behave as oscilla-
tors. In order to derive the evolution equation for the
adiabatic scalar q, we write the general relationship between
perturbations of comoving pressure and matter energy
density in the following form:

dp � b 2d� d̂p ; �94�

where the function b 2 describes the speed squared at which
scalar perturbations propagate in the medium (the speed of
sound). For the Pascal media (S � 0), it is as follows:

b 2 �
X
m; l

fmb
2
ml ; �95�

where b 2
ml is the acoustic matrix of linear medium perturba-

tions. 22 The scalar of isometric pressure perturbation d̂p
describes the part of pressure which is not related to
perturbations of the total energy density d. Indeed, if initially
only adiabatic perturbations are present, then d̂p � 0, and for
d � 0, one finds dp � d̂p. The relationship between d̂p and
field variables of medium components depends on the
equation of state of matter.

From relationships (88) and (94) it follows that

dec � �e� p� d � a 2H� _qÿHd̂p� ; �97�

a 2 � e� p

H 2b 2
� g

4pGb 2
:

Substituting these formulas into the Poisson equation (86), we
arrive at

a 2a 3� _qÿHd̂p� �
�
a 2b 2Dq

da

H
:

Direct differentiation of this relationship provides the
equation for q [2]:

�q�
�
3H� 2

_a
a

�
_qÿ b 2 Dq

a 2
� I�d̂p;S� ; �98�

I � I �d̂p;S� � �a
2a 3H d̂p��
a 2a 3

ÿ DS
4pGa 2a 2

:

On the left-hand side of equation (98), we have the acoustic
d'Alambert operator for the scalar q describing the general
adiabatic density perturbation. The right-hand side contains
the source of dynamic action of isometric perturbationmodes
on the evolution of q. For an ideal Pascal media (S � 0), a
more compact form of equation follows:�

ga 2bÿ2�q 0 ÿ �Hd̂p�
�0

ga 2
ÿ Dq � 0 ; �99�

where the prime stands for the derivative over the conformal
time Z, and �H � aH.

Equations (98) and (99) are valid for a broad variety of
media (in particular, for fundamental scalar fields). We did
not refer to the information on the microscopic structure of
matter. The only geometric characteristic of amedium needed
for the derivation of key equation (98) is b 2, themean velocity
squared of propagation of scalar perturbations in themedium
(95). Neglecting isometric perturbations (for example, in the
case of a single medium, matter and L-term, and others),
d̂p � 0 and the equation for q acquires a closed form [10, 11]:

�q�
�
3H� 2

_a
a

�
_qÿ b 2 Dq

a 2
� 0 : �100�

C. Eulerian coordinates and the Newton limit
The Eulerian reference frame �t; y� is uniquely set by the
conditions B � C � 0 and is of interest, in particular, because

22 It connects partial amplitudes of comoving perturbations of pressure

and matter density, d �m�p � b 2
mld

�l�
e , and the following relationships hold

true (see Chapter 6 in book [2] for details):

fmb
2
ml � flb

2
lm ; flb

2 � �fl �
X
m

fm b 2
ml ;

X
m

�fm � 0 : �96�
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the peculiar velocity of matter

vpec � ÿHu
a
� ÿHq

�H
; um � �1�C; u; i� ; �101�

where u � q=H, C � Fÿ S, is defined relative to this grid.
From the relationship between Lagrangian and Eulerian
coordinates:

t � tE � tc ÿ u ; y � x� S ; �102�

we obtain the metric tensor in the Eulerian representation:

ds 2 � �1� 2C� dt 2 ÿ a 2 dy 2 ; �103�

where S � ÿHB is the displacement vector of a medium
element relative to its initial position. Apparently, the metric
in the Eulerian coordinate system is independent of the
gradients of potential q, and the scalar scale factor

a � a�t� �1ÿ F� �104�

fully describes the locally isotropic observer space filled with
inhomogeneous matter. Metric (103) is the relativistic limit of
the weak field in the Friedmann model, and for the
nonrelativistic substance (jS=Fj5 1) we obtain the New-
tonian limit C � F.

Since the curvature scalar and gravitational potential are
small (q � F910ÿ5) in the real Universe within the observed
structure scale, we can drop terms u,C, and F in Eqns (102)±
(104), respectively, and introduce the physical Eulerian
coordinate for the position of medium points r ' ay. Hence
we obtain a convenient approximation for the description of
the quasilinear stage of structure formation in the Universe:

r � �1� z�ÿ1�x� S� ; vpec � _rÿHr � a _S : �105�

Under the additional assumption of the smallness of the speed
of sound, from equation (100) it follows that q ' q0 � q0�x�.
Substituting it into formula (105), we obtain the Zel'dovich
approximation (see Ref. [1] for more detail):

S � ÿgHq0 ; vpec � ÿnHq0 ; d � gDq0 ; F � f q0 ;

�106�

where the growth factors are introduced [see Eqn (12)]. They
depend only on time and the relationship af=g �
� 3OmH

2
0 =2 � const holds true.
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