весь свой опыт для устранения паразитных спектральноселективных потерь в лазере, для того чтобы зарегистрировать только контролируемые потери. Этот результат воодушевил участников, они разработали метод высокочувствительной спектроскопии, который получил название внутрирезонаторной лазерной спектроскопии (ВРЛС). Сегодня известны многочисленные примеры использования метода ВРЛС с другими широкополосными лазерами для детектирования линий самых разнообразных веществ. Приоритет группы Э.А. Свириденкова в разработке и распространении метода признан в мире. В 1980-х годах цикл работ по ВРЛС номинировался на Государственную премию СССР, но из-за особенностей личных взаимоотношений за пределами авторского коллектива данная работа премию не получила.

7. Механизм работы СО₂-лазера

Электроразрядный СО2-лазер с момента создания в 1966 г. привлёк внимание исследователей новизной спектрального диапазона (10,6 мкм) и необычностью механизма создания инверсии: это был лазер на переходах между колебательными уровнями молекулы. Оптимизация СО2-лазера наталкивалась на трудности из-за отсутствия понимания механизма создания инверсии на колебательных уровнях в газовом разряде. Ситуация прояснилась с появлением статьи Н.Н. Соболева и В.В. Соковикова [21] и последовавшей за ней статьи [22]. Авторы сопоставили данные о средней энергии электронов в разряде с зависимостью сечения возбуждения соответствующих колебательных уровней молекул и увидели, что механизм электронного удара весьма эффективен. При этом инверсия между колебательными уровнями обеспечивается столкновениями с атомами и молекулами. После появления этих статей началась целенаправленная работа по теоретическому описанию СО2-лазера, и эксперименты по его совершенствованию получили новый импульс. В частности в русле этих работ был осуществлён пуск первого в СССР газодинамического СО2-лазера [23].

8. Заключение

Подводя итог представленному материалу, можно заключить, чем был обусловлен успех советской науки в создании лазеров.

• В СССР существовала среда высококвалифицированных учёных, которая постоянно подпитывалась исследовательскими кадрами из вузов (Московский физико-технический институт (МФТИ), Московский государственный университет им. М.В. Ломоносова, Московский инженерно-физический институт и др.). Только из МФТИ, созданного для подготовки физиковисследователей, за послевоенные годы в ФИАН пришло несколько сотен выпускников. Лидеры лазерной программы Н.Г. Басов и А.М. Прохоров смогли опереться на школы, созданные в ФИАНе С.И. Вавиловым, Г.С. Ландсбергом, Л.И. Мандельштамом.

• В СССР функционировала система финансирования научных исследований. Правительство реагировало на нужды науки и стимулировало научный прогресс. Для развития лазерных исследований были введены в строй новые мощности: корпуса на территории ФИАНа, подразделения ФИАНа в г. Троицке с жильём для учёных, Институт спектроскопии, Научно-исследовательский институт "Полюс" и другие лазерные научно-исследовательские институты. • Промышленность СССР была в состоянии обеспечить научные исследования элементной базой и приборами; в СССР существовали производства для создания крупных исследовательских установок, имелись технологии для создания уникальных материалов.

При известных недостатках системы власти тех времён в стране осуществлялась стратегически взвешенная программа научного и технического развития. Лазерные исследования были частью этой программы.

Список литературы

- Галанин М Д, Леонтович А М, Чижикова З А ЖЭТФ 43 347 (1962) [Galanin M D, Leontovich A M, Chizhikova Z A Sov. Phys. JETP 16 249 (1963)]
- 2. Maiman T H Nature 187 493 (1960)
- 3. Maiman T H et al. Phys. Rev. 123 1151 (1961)
- 4. Collins R J et al. Phys. Rev. Lett. 5 303 (1960)
- Chizhikova Z A et al., in *Quantum Electronics: Proc. of the Third Intern. Congress, Paris, 1963* (Eds P Grivet, N Bloembergen) (New York: Columbia Univ. Press, 1964) p. 1483
- 6. Басов Н Г О квантовой электронике (М.: Наука, 1987)
- 7. Раутиан С Г, Собельман И И ЖЭТФ 41 2018 (1961) [Rautian S G, Sobel'man I I Sov. Phys. JETP 14 1433 (1962)]
- 8. Kasper J V V, Pimentel G C Appl. Phys. Lett. 5 231 (1964)
- 9. Андреева Т Л и др. ЖЭТФ 49 1408 (1965) [Andreeva T L et al. Sov. Phys. JETP 22 969 (1966)]
- 10. Зуев В С История науки и техники (4) 69 (2009)
- 11. Малышев В И и др. *Письма в ЖЭТФ* **1** (6) 11 (1965) [Malyshev V I et al. *JETP Lett.* **1** 159 (1965)]
- 12. DeMaria A J, Stetser D A, Heynau H Appl. Phys. Lett. 8 174 (1966)
- Кузнецова Т И, Малышев В И, Маркин А С ЖЭТФ 52 438 (1967) [Kuznetsova T I, Malyshev V I, Markin A S Sov. Phys. JETP 25 286 (1967)]
- 14. Walter W T Bull. Am. Phys. Soc. 12 90 (1967)
- Исаев A A, Казарян M A, Петраш Γ Γ *Письма в ЖЭТФ* 16 40 (1972) [Isaev A A, Kazaryan M A, Petrash G G JETP Lett. 16 27 (1972)]
- Земсков К И и др. Квантовая электроника 1 863 (1974) [Zemskov K I et al. Sov. J. Quantum Electron. 4 474 (1974)]
- Земсков К И, Казарян М А, Петраш Г Г, в сб. Оптические системы с усилителями яркости (Труды ФИАН, Т. 206, Отв. ред. Г Г Петраш) (М.: Наука, 1991)
- 18. Земсков К И и др. Квантовая электроника 1 14 (1974) [Zemskov K I et al. Sov. J. Quantum Electron. 4 5 (1974)]
- 19. Сучков А Ф, Препринт № 126 (М.: ФИАН, 1970)
- Пахомычева Л А и др. Письма в ЖЭТФ 12 60 (1970) [Pakhomycheva L A et al. JETP Lett. 12 43 (1970)]
- Соболев Н Н, Соковиков В В Письма в ЖЭТФ 4 303 (1966) [Sobolev N N, Sokovikov V V JETP Lett. 4 204 (1966)]
- Соболев Н Н, Соковиков В В Письма в ЖЭТФ 5 122 (1967) [Sobolev N N, Sokovikov V V JETP Lett. 5 99 (1967)]
- 23. Дронов А П и др. *Письма в ЖЭТФ* 11 516 (1970) [Dronov A P et al. *JETP Lett.* 11 353 (1970)]

PACS numbers: **42.50.** – **p**, **42.65.** – **k**, 42.72.Ai DOI: 10.3367/UFNr.0180.201101k.0097

Лазерные методы генерации мегавольтных терагерцевых импульсов

С.В. Гарнов, И.А. Щербаков

1. Введение

Создание источников терагерцевого (ТГц) электромагнитного излучения связано с активно развивающимися в последнее десятилетие новыми методами и направлениями фундаментальных исследований в физике, химии,

С.В. Гарнов, И.А. Щербаков. Институт общей физики им. А.М. Прохорова РАН, Москва, РФ E-mail: garnov@kapella.gpi.ru биологии и медицине, а также в различных прикладных областях исследований, в том числе связанных с новыми промышленными технологиями и проблемами обеспечения безопасности (см. книгу [1] и ссылки к ней).

ТГц-излучение открывает новые пути и предоставляет новые уникальные возможности изучения свойств и строения веществ и объектов в ранее практически недоступном спектрально-временном диапазоне. Регистрация зондирующих ТГц-импульсов, прошедших через объект либо отражённых объектом, и их последующий амплитудно-временной и спектральный анализ позволяют получить данные о параметрах объектов и свойствах веществ в терагерцевой области, а также о протекающих в них процессах с высоким (пико- и субпикосекундным) временным разрешением. ТГц-импульсы находят, наряду с их использованием в фундаментальных исследованиях, практическое применение и в различных прикладных областях. Так, в последние годы был предложен ряд технических решений по использованию терагерцевого излучения для микроволновой локации и позиционирования малоразмерных объектов, для регистрации микроволновых изображений "скрытых" объектов, анализа лекарственных препаратов, обнаружения взрывчатых веществ и наркотиков и др. [1].

Согласно принятой в настоящее время классификации, излучение терагерцевого диапазона (1 ТГц = $= 10^{12}$ Гц) лежит в диапазоне длин волн от нескольких миллиметров до нескольких десятков микрометров (от нескольких сотен ГГц до нескольких десятков ТГц). В этом достаточно широком и информативном спектральном диапазоне успешно проводятся фундаментальные и прикладные работы по изучению свойств разнообразных объектов и веществ (включая твёрдые тела, жидкости, газы, биообъекты и т.п.), исследованию методов генерации, распространения и регистрации ТГц-излучения, а также по созданию новых ТГц-источников, систем ТГцви́дения и локации. Эти исследования проводятся в ведущих университетах и научно-исследовательских центрах США, странах Евросоюза, Китае, Японии. В России эти работы проводятся, в том числе, в Московском государственном университете им. М.В. Ломоносова, Институте прикладной физики РАН, Институте общей физики им. А.М. Прохорова РАН, Институте радиотехники и электроники им. В.А. Котельникова РАН, Институте физики микроструктур РАН, Институте спектроскопии РАН, институтах СО РАН, Санкт-Петербургском государственном университете информационных технологий механики и оптики.

Исследования по ТГц-тематике стали особенно активно развиваться с конца 1990-х – начала 2000-х годов, что было связано с созданием новых, главным образом лазерных, методов генерации импульсного и непрерывного ТГц-излучения, позволяющих на практике реализовать эффективные, компактные приборы и устройства.

За прошедшие годы было разработано и предложено несколько методов лазерной генерации электромагнитных импульсов терагерцевого (микро- и миллиметрового) диапазона длин волн. К числу таких методов относится:

— использование в качестве эмиттеров излучения сверхбыстрых оптоэлектронных полупроводниковых коммутаторов токов и напряжений (терагерцевых антенн, или так называемых остоновских ключей, впервые предложенных Д. Остоном ещё в 1970-х годах [2]); — использование явления оптического выпрямления (открытого М. Бассом и П. Франкеном [3] в 1962 г.) и генерации разностной частоты сверхкоротких (пико- и фемтосекундных) лазерных импульсов в нелинейных оптических средах;

— использование явления пространственного разделения зарядов с противоположным знаком (электронов и дырок), возникающего при оптическом возбуждении полупроводников пико- и фемтосекундными лазерными импульсами и сопровождающегося быстрым диффузионным дрейфом носителей тока в тонком приповерхностном слое материала;

использование квантово-каскадных лазеров, и лазеров, одновременно генерирующих двухволновое излучение (лазеры на оксиде углерода, твердотельные лазеры с широкой полосой усиления).

В последнее время в литературе стали широко обсуждаться возможности получения высокоинтенсивных (с электрическими полями амплитудой более чем 10^{6} В см⁻¹) ультракоротких (пико- и субпикосекундных) терагерцевых импульсов и их применение в исследованиях различного рода нелинейных процессов и явлений в физике, химии и биологии, а также в прикладных областях [1]. Одним из быстроразвивающихся методов генерации терагерцевого излучения в широком диапазоне частот (от нескольких сотен ГГц до нескольких десятков ТГц) является использование процессов нелинейного взаимодействия фемтосекундных лазерных импульсов с газообразными средами (формирование различного рода лазерно-плазменных образований, например протяжённых плазменных каналов — так называемых филаментов [1]), а также процессов их взаимодействия с нелинейно-оптическими кристаллами генерация ТГц-импульсов в кристаллах LiNbO₃, ZnTe, GaAs, GaP, GaSe [1]. Другой перспективный метод генерации ТГц-волн основан на создании новых твердотельных двухчастотных лазеров с последующим преобразованием их разностной частоты в ТГц-излучение в нелинейных кристаллах или оптоэлектронных эмиттеpax.

Оба этих метода генерации импульсного электромагнитного излучения ультракороткой, пикосекундной длительности активно развиваются в Институте общей физики им. А.М. Прохорова РАН (ИОФ РАН).

2. Терагерцевые источники

на основе двухчастотных лазеров

В основе работ, проводимых в ИОФ РАН, по созданию новых источников терагерцевого излучения лежит принцип получения двухчастотной генерации в твердотельном лазере с диодной накачкой на новых, созданных в ИОФ РАН, высокоэффективных активных кристаллических средах с широкими линиями общего контура усиления (гадолиниевый, иттриевый и смешанные ванадаты: Nd:GdVO₄, Nd:YVO₄, Nd:Gd_{0,7}Y_{0,3}VO₄) и последующего преобразования лазерного излучения в терагерцевый спектральный диапазон методами генерации разностной частоты в нелинейных кристаллах GaP и GaSe [4,5].

Одновременная двухчастотная лазерная генерация реализуется в одной и той же активной среде, обладающей широкой полосой общего контура усиления (до 5 нм в области 1 мкм), помещённой в селективный резонатор твердотельного лазера с диодной накачкой. Такой под-

Рис. 1. Схема пикосекундного Nd^{3+} :GdVO₄-лазера с одновременной модуляцией добротности и активной синхронизацией мод. ЛД — диодный источник накачки; В — волокно (200 мкм); О — объектив; M_1-M_4 — зеркала резонатора; АЭ — активный элемент, С — спектральный селектор (интерферометр Фабри–Перро или фильтр Лио); МД1 — акустооптический модулятор для модуляции добротности, МД2 — акустооптический модулятор для синхронизации мод.

ход не требует дополнительного совмещения двух лазерных пучков и временной синхронизации работы двух независимых лазеров. Двухчастотная генерация получена нами в непрерывном режиме, в режиме модуляции добротности (наносекундный диапазон) и режиме синхронизации мод (пикосекундный диапазон).

Для получения максимальной пиковой мощности излучения твердотельного двухчастотного лазера, а следовательно, и максимальной мощности генерируемого терагерцевого излучения в ИОФ РАН был разработан пикосекундный Nd³⁺:GdVO₄-лазер с продольной диодной накачкой активной среды, работающий в комбинированном режиме — с одновременной модуляцией добротности и активной синхронизацией мод. Такой режим работы лазера позволяет почти на два порядка увеличить пиковую мощность выходного излучения, по сравнению с таковой пикосекундного лазера, работающего только с активной акустооптической синхронизацией мод. Оптическая схема лазера представлена на рис. 1.

Лазерный кристалл Nd:GdVO₄ (0,5 ат. %) размерами $4 \times 4 \times 6$ мм был вырезан вдоль оси *c*. Накачка активного элемента осуществлялась линейкой лазерных диодов LIMO30-F200-DL808 с волоконным выводом излучения с максимальной мощностью до 25 Вт на длине волны 808 нм. Фокусирование излучения накачки осуществлялось системой объективов, которые позволяли получать диаметр пятна перетяжки в кристалле от 150 до 400 мкм. В экспериментах была использована схема Z-образного резонатора. образованого четырьмя зеркалами $M_1 - M_4$. Ирисовая диафрагма, размещённая внутри резонатора, обеспечивала работу лазера в режиме генерации основной TEM₀₀-моды.

Для активной модуляции добротности лазера использовался акустооптический модулятор (МЛ-321), управляемый высокочастотным генератором синусоидальных напряжений с максимальной мощностью 30 Вт.

Для синхронизации мод применялся акустооптический модулятор (МЛ-202) мощностью 8 Вт, частота модуляции которого составляла 70 МГц, что соответствовало частоте следования лазерных импульсов 140 МГц.

Длительность импульсов излучения измерялась с помощью электронно-оптической камеры с разрешением 0,7 пс.

Для получения двухчастотного излучения в резонатор помещались спектрально-селектирующие элементы

Рис. 2. Модуль терагерцевого преобразователя на основе кристалла GaSe с диаметром 50 мм, предназначенного для работы в составе мощного двухчастотного лазера, создаваемого в ИОФ РАН.

(эталоны Фабри – Перо) — плоскопараллельные пластинки из кристалла YAG толщиной 120 и 83 мкм. Такие селекторы позволили получать двухчастотное излучение с расстояниями между длинами волн соответственно 2,3 нм и 3,8 нм, что, в свою очередь, соответствовало генерируемому терагерцевому излучению с частотами 0,56 ТГц и 0,92 ТГц.

Данная лазерная система обеспечивала стабильную двухчастотную генерацию цугов пикосекундных импульсов длительностью 80-120 нс, содержащих 15-20 отдельных пикосекундных импульсов длительностью 30-40 пс, следующих друг за другом с частотой 140 МГц. Средняя мощность выходного излучения при частоте следования цугов 10 кГц достигала 350 мВт. Разработанная система имела стабильные параметры излучения, которые не изменялись в течение нескольких часов непрерывной работы, и была использована для эффективного нелинейного преобразования лазерного излучения в терагерцевый диапазон длин волн в кристаллах GaSe. При этом выходная мощность ТГц-излучения достигала нескольких микроватт, а энергия ТГц-гребёнки — нескольких десятых наноджоуля. Конечно, столь малые энергии ТГц-импульсов сами по себе ещё не обеспечивают достижения заявленных электрических полей мегавольтного уровня. Поэтому созданный двухчастотный лазер следует рассматривать в качестве задающего генератора мощной лазерной системы с энергией более чем в несколько сотен миллиджоулей с последующим преобразованием его высокоинтенсивного выходного излучения в ТГц-диапазон с использованием широкоапертурных нелинейных кристаллов GaSe. На рисунке 2 приведена фотография такого кристалла диаметром 50 мм, предназначенного для работы в составе мощного двухчастотного лазера, создаваемого сейчас в ИОФ РАН.

3. Терагерцевые источники

на основе фемтосекундных лазеров

Несмотря на многолетнее успешное использование фемтосекундных лазеров для генерации терагерцевого излучения, созданные на их основе (в том числе, коммерчески доступные) источники ТГц-импульсов, как правило, имеют низкую выходную мощность и пиковую интенсивность генерируемого излучения. Типичные значения энергии генерируемых ТГц-импульсов лежат в диапазоне от пико- до наноджоулей, средней мощности — от нанодо микроватт, напряжённости электромагнитного поля — от нескольких единиц до нескольких десятков кВ см⁻¹. Лишь на уникальных источниках ТГц-излучения, использующих принципиально другие методы генерации (например, лазеры на свободных электронах в Институте ядерной физики СО РАН (г. Новосибирск), в Лазерном центре Стэнфордского университета (Stanford Picosecond Free Electron Laser Center) (США), в Институте физики плазмы (FOM-Institute for Plasma Physics) (Нидерланды) и др.) удаётся получить уровни средней мощности до нескольких десятков ватт и достичь амплитуд напряжённости электромагнитного поля в несколько сотен кВ см⁻¹. Так, ТГц-импульсы с наиболее высокой энергией (несколько десятков микроджоулей) и пиковой мощностью (до 100 МВт) были получены в результате генерации переходного излучения релятивистских электронных пучков пикосекундной длительности в Брукхейвенской национальной лаборатории (Brookhaven National Laboratory) в США. Отметим, что уникальность таких установок (гигантские размеры и высокая стоимость эксплуатации) существенно ограничивают возможность их широкого применения. Что касается рассматриваемых лазерных фемтосекундных источников, то вплоть до недавнего времени рекордно высокими значениями, например, энергии ТГц-импульсов считались величины в несколько десятков нДж, а генерируемых полей — в несколько десятков кВ см⁻¹.

Низкая энергия и пиковая мощность фемтосекундных ТГц-источников существенно ограничивает их практическое применение. Так, например, при распространении в атмосфере ТГц-излучение в значительной степени ослабляется в результате поглощения пара́ми воды, что ограничивает его практическое использование в системах локации объектов, расположенных на расстояниях, превышающих несколько десятков метров. Даже в окнах прозрачности (200–300 ГГц) ослабление достигает нескольких десятков дБ км⁻¹ и, как следствие, существующие приёмники ТГц-излучения не могут обеспечить надёжной регистрации сигналов даже на таких небольших расстояниях.

Однако в последние годы ситуация коренным образом изменилась, благодаря успешной разработке и реализации нового метода генерации ТГц-излучения, основанного на оптическом выпрямлении фемтосекундных лазерных импульсов в стехиометрических кристаллах MgO:LiNbO₃ с поперечной групповой задержкой предварительно сформированным наклонным фронтом интенсивности ("optical rectification of femtosecond pulses with tilted wave front"), впервые предложенного в 2002 г. венгерским физиком Я. Хеблингом (J. Hebling) совместно с коллегами из Института исследований твёрдого тела им. Макса Планка (MPI for Solid State Researches) в Штутгарте [6]. Так, в 2007 г. учёным из Массачусетсского технологического института (MIT) удалось достичь рекордно высоких значений энергетических параметров ТГц-импульсов. С помощью фемтосекундных лазерных импульсов с энергией 20 мДж исследователями из МІТ были получены сверхкороткие ТГц-импульсы с энергией до 10 мкДж и пиковой мощностью 5 МВт [7]. Таким образом, было продемонстрировано, что использование

Рис. 3. Тераваттный параметрический лазерный комплекс ТЕРАФЕМ.

фемтосекундных лазеров позволяет генерировать импульсное ТГц-излучение с пиковой мощностью, превышающей пиковую мощность ТГц-излучения от синхротронных источников и лазеров на свободных электронах. Иными словами, метод оптического выпрямления фемтосекундных лазерных импульсов с поперечной групповой задержкой в кристалле MgO:LiNbO3 позволяет получить рекордно высокую на сегодня эффективность преобразования энергии фемтосекундных лазерных импульсов в энергию ТГц-излучения. (В частности, эффективность преобразования данного метода более чем на несколько порядков величины превышает эффективность преобразования в кристаллах ZnTe, которые сегодня используются в подавляющем большинстве источников ТГц-излучения, основанных на оптическом выпрямлении фемтосекундных лазерных импульсов.)

Фемтосекундные лазерные импульсы с наклонным фронтом интенсивности необходимы для выполнения условия их фазового синхронизма с генерируемым терагерцевым излучением. Поскольку в кристалле ниобата лития для используемого фемтосекундного лазерного излучения (например титан-сапфирового лазера) не реализуется коллинеарный синхронизм взаимодействия, авторами [6] было предложено использовать неколлинеарный синхронизм — условие равенства фазовой скорости генерируемой терагерцевой волны V_{THz} и проекции на неё вектора групповой скорости лазерного импульса $V_{\rm las} \cos \alpha$, где α — угол в кристалле между направлениями распространения лазерного и терагерцевого излучения. Такое соотношение может быть выполнено, в том числе, для лазерных импульсов с наклонным фронтом интенсивности, формирование которого легко осуществляется, например, при наклонном падении лазерного излучения на дифракционную решётку [6]. Интересно отметить, что данное соотношение для неколлинеарного синхронизма подобно соотношению для направления распространения черенковского излучения, генерируемого диполем, движущимся в среде со сверхсветовой скоростью, — процесса, впервые теоретически рассмотренного В.Л. Гинзбургом [8] в 1959 г. и впервые экспериментально реализованного лишь спустя 45 лет с начала лазерной эры [9].

В 2009 г. в ИОФ РАН создан основанный на принципе, предложенном в [6], лазерный источник высоко-

Рис. 4. Оптическая схема модуля генерации мегавольтных терагерцевых электромагнитных импульсов. Внешний вид кристалла стехиометрического ниобата лития (*Z* — направление оси кристалла).

интенсивных ТГц-импульсов, обладающий рекордно высокими в России энергетическими параметрами импульсной мощностью более 1 МВт и напряжённостью поля более 1 MB см⁻¹. Основу созданного источника составляют тераваттный лазерный комплекс (ТЕРАФЕМ), общий вид которого представлен на рис. 3, и модуль генерации мегавольтных терагерцевых электромагнитных импульсов, оптическая схема которого приведена на рис. 4. Пиковая мощность лазерного комплекса, основанного на принципе параметрического усиления излучения [10], достигает 1 ТВт при длительности импульса 45 фс на центральной длине волны 910 нм. Модуль генерации мегавольтных терагерцевых импульсов основан на принципе оптического выпрямления фемтосекундных лазерных импульсов с наклонным фронтом интенсивности в широкоапертурных (размерами $30 \times 10 \times 10$ мм) допированных магнием кристаллах стехиометрического ниабата лития (MgO:LiNbO₃). При энергии лазерного импульса 30-40 мДж генерируемая модулем энергия ТГц-импульсов достигает величин 2-3 мкДж, что после их фокусирования в пятно диаметром 500 мкм позволяет получить амплитуду электрического поля ТГц-волны, превышающую 10⁶ В см⁻¹.

Созданная система высокоинтенсивного терагерцевого излучения предназначена для исследования экстремальных состояний вещества в ТГц-области спектра и решения ряда прикладных задач. При этом лазерная часть комплекса самостоятельно используется для проведения экспериментов по генерации заряженных частиц, генерации рентгеновского излучения и изучения процессов плазмообразования и филаментации лазерного излучения.

4. Методы характеризации

высокоинтенсивных терагерцевых импульсов

Особое внимание в проведённых работах по созданию импульсных ТГц-источников уделялось методам и средствам измерения их энергетических и временны́х параметров.

Для регистрации энергетических параметров ТГцимпульсов были разработаны, изготовлены и аттестованы высокочувствительные $(1,9 \times 10^6 \text{ B } \text{Дж}^{-1})$ широкополосные (спектральный диапазон 0,1–3 ТГц) пироэлектрические датчики с линейным динамическим диапа-

Рис. 5. Пироэлектрический измеритель энергии ТГц-импульсов.

Таблица.	Параметры	пироэлектрических	измерителей	энергии	ТГц∙
импульсс)B				

Параметр	Значение
Спектральный диапазон	0,1-3 ТГц
Чувствительность к одиночным ТГц-импульсам	$S_{\text{имп}} = 1.9 \times 10^6 \text{ B Дж}^{-1} \ (\pm 15 \%)$
Чувствительность при частоте модуляции 22 Гц и нагрузке 1 МОм	20000 (±15 %) В Вт ⁻¹ на частоте 0,14 ТГц 16000 (±15 %) В Вт ⁻¹ для широкополос- ного излучения с полосой частот 0,2- 2 ТГц
Динамический диапазон	0,1 мкВт-0,35 мВт
Уровень шума	1,0 мВ

зоном более 10³ и порогом обнаружения 1 нДж. Внешний вид созданного пироэлектрического измерителя энергии ТГц-импульсов представлен на рис. 5, его параметры приведены в таблице.

Рис. 6. (а) Принципиальная схема метода пространственной визуализации ТГц-поля. (б) Зарегистрированные временные профили одиночных ТГц-импульсов.

Для измерения амплитудно-временно́го профиля ультракоротких (~ 1 пс) одиночных (частота следования ~ 1 Гц) ТГц-импульсов был выбран и реализован метод пространственной визуализации ТГц-поля, основанный на электрооптической регистрации "изображения" *одиночного* ТГц-импульса стробирующим *одиночным* фемтосекундным лазерным импульсом в результате наводимой ТГц-полем оптической анизотропии в электрооптическом кристалле ZnTe [11].

Принципиальная схема метода и результаты измерения временно́го профиля пикосекундного ТГц-импульса приведены на рис. 6.

5. Заключение

В лабораториях ИОФ РАН им. А.М. Прохорова созданы лазерные источники импульсного терагерцевого излучения ультракороткой длительности, позволяющие получать рекордно высокую напряжённость электрического поля — более 10^6 В см⁻¹. Достигнутые значения напряжённости терагерцевого поля мегавольтного уровня открывают широкие перспективы для нового направления физики — нелинейной оптики терагерцевых волн, которая начинает активно развиваться в последнее время именно благодаря появлению новых компактных лазерных источников высокоинтенсивных терагерцевых импульсов. Среди задач решаемых методами нелинейной ТГц-оптики можно выделить, в частности, нелинейные процессы плазмообразования — ионизацию веществ и "оптический" пробой материальных сред; процессы генерации высших гармоник токов и излучения; ускорение заряженных частиц высокоинтенсивным ТГц-полем; модуляционные и параметрические неустойчивости плазмы в поле терагерцевого излучения и самофокусировку терагерцевых импульсов.

Метод оптического выпрямления фемтосекундных лазерных импульсов с наклонным фронтом интенсивности в нелинейных кристаллах в принципе позволяет генерировать однопериодные пикосекундные ТГц-импульсы с ещё большей энергией (более 100 мкДж) и амплитудой напряжённости поля вплоть до 10⁹ В см⁻¹. Такие импульсы можно получать на уже существующих лазерных установках мультитераваттного уровня, в частности на установке "Луч" в Институте лазернофизических исследований Российского федерального ядерного центра "Всероссийский научно-исследовательский институт экспериментальной физики" (г. Саров).

В заключение авторы выражают глубокую благодарность своим коллегам, принявшим активное участие в проведённых исследованиях: А.Г. Степанову (Институт спектроскопии РАН), внёсшему значительный вклад на начальном этапе работы, сотрудникам ИОФ РАН В.В. Букину, А.А. Сироткину, А.И. Ритусу и А.И. Загуменному, а также Российскому фонду фундаментальных исследований, Президиуму РАН и Отделению физических наук РАН за материальную поддержку выполненных работ.

Список литературы

- 1. Zhang X-C, Xu J Introduction to THz Wave Photonics (New York: Springer, 2009)
- 2. Auston D H, Cheung K P, Smith P R Appl. Phys. Lett. 45 284 (1984)
- 3. Bass M et al. Phys. Rev. Lett. 9 446 (1962)
- Власов В И и др. Квантовая электроника 37 938 (2007) [Vlasov V I et al. Quantum Electron. 37 938 (2007)]
- 5. Sirotkin A A et al. Laser Phys. 19 1083 (2009)
- 6. Hebling J et al. Opt. Express 10 1161 (2002)
- 7. Yeh K-L et al. Appl. Phys. Lett. 90 171121 (2007)
- Гинзбург В Л УФН 69 537 (1959) [Ginzburg V L Sov. Phys. Usp. 2 874 (1960)]
- 9. Stepanov A G, Hebling J, Kuhl J Appl. Phys. B 81 23 (2005)
- Χαзанов Ε Α, Сергеев Α Μ *УΦH* 178 1006 (2008) [Khazanov E A, Sergeev A M *Phys. Usp.* 51 969 (2008)]
- 11. Shan J et al. Opt. Lett. 25 426 (2000)

PACS numbers: **01.65.** + **g**, 42.55.Px, **42.60.** - **v** DOI: 10.3367/UFNr.0180.2011011.0102

История создания инжекционного лазера

Ю.М. Попов

Одним из ярких достижений мировой науки, оказавших большое влияние на технический уровень современного общества, является генерация оптического излучения с использованием полупроводниковых материалов. Идеи и первые работы в этом направлении возникли в Физическом институте им. П.Н. Лебедева РАН (ФИАН), где созданная по инициативе Н.Г. Басова группа молодых учёных начиная с 1957 г. работала над проблемой создания полупроводникового лазера. Эти работы носили пионерский характер не только в нашей стране, но и в мире, наряду с работами Ч. Таунса и А. Шавлова в США.

Хотя молекулярные генераторы работали на газах, но уже парамагнитные усилители вынужденного излуче-

Ю.М. Попов. Физический институт им. П.Н. Лебедева РАН, Москва, РФ. E-mail: ympop@sci.lebedev.ru