
Abstract. Presented in translation from the German is Arnold
Sommerfeld's paper ``�Uber die Zusammensetzung der Gesch-
windigkeiten in der Relativtheorie'', Physikalische Zeitschrift
10 826 (1909), which retains its relevance a hundred years after
its publication, as is discussed by G BMalykin,Usp. Fiz. Nauk
180 965 (2010) [Physics ±Uspekhi 53 (9) 923 (2010)].

Minkowski has taught us to treat the Lorentz±Einstein
transformation as `rotation of space±time', i.e., as a transfor-
mation that takes the form of ordinary rotation, albeit not in
the space xyz, but in the four-dimensional space xyzl, where
l � ict is also the length pertaining to the light path multiplied
by imaginary unity. If a primed reference frame moves
relative to an unprimed one with a constant velocity v in the
direction of the x-axis, and if b denotes the ratio of velocities
v=c, the transformation of coordinates is written as

x 0 � x cosj� l sinj ; y 0 � y ; �1�
l 0 � ÿx sinj� l cosj ; z 0 � z ;

whereas the imaginary rotation angle and the ratio of
velocities are linked through the relationships

tanj � ib ; cosj � 1��������������
1ÿ b 2

q ; sinj � ib��������������
1ÿ b 2

q : �2�

Using a particular example, I would like to show how useful
this analogy (or equality if one does the analytical treatment)
between the rotations of space±time and ordinary rotations is
for the kinematics of the theory of relativity.

If we perform two rotations with respect to one axis, or
put another way, in the same rotation plane, the angles of
rotation, and not their trigonometric functions, add up.

This also takes place for two translations in one and the
same direction x (two rotations in space±time in the same
plane xl ); denoting (imaginary) angles of rotation as j1 and
j2, the resulting angle of combined operation as j, and the

respective ratios of velocities v1, v2, and v to the speed of light
as b1, b2, and b, we obtain

j � j1 � j2 ;

and hence

b � 1

i
tan �j1 � j2� �

1

i

tanj1 � tanj2

1ÿ tanj1 tanj2

� b1 � b2
1� b1b2

;

or

v � v1 � v2
1� v1v2=c 2 :

The last formula represents Einstein's famous velocity
addition theorem; in Minkowski's interpretation it loses all
its extraordinary character.

Two rotations in the same plane commute, i.e., their result
is independent of the sequence of operations. The same holds
true for two translations in the same direction because
j1 � j2 � j2 � j1. Two rotations in different planes do not
commute, nor do two translations in different directions.
Apparently, the reason is that the first rotationwill change the
plane of the second rotation in the general case. Indeed, this
occurs each time these planes do not coincide.

If we perform, for instance, the first rotation in the
xl-plane through the angle j1 and then the second one in the
plane yl with respect to the rotated system through the angle
j2 defined in the rotated system, then, according to formula
(1), it follows that

x1 � x cosj1 � l sinj1 ;

y1 � y ;

l1 � ÿx sinj1 � l cosj1

and

x2 � x1 � x cosj1 � l sinj1 ;

y2 � y1 cosj2 � l1 sinj2 � ÿx sinj1 sinj2 � y cosj2

� l cosj1 sinj2 ;

l2 � ÿy1 sinj2 � l1 cosj2 � ÿx sinj1 cosj2 ÿ y sinj2

� l cosj1 cosj2 :

The point x2 � const, y2 � const participating in the
composite motion j1 and j2 also describes in the system xy
a certain straight line, the direction of which is determined
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from

0 � dx cosj1 � dl sinj1 ;

0 � ÿdx sinj1 sinj2 � dy cosj2 � dl cosj1 sinj2 ;

which leads to

dx

dl
� ÿ tanj1 ; �3�

dy

dl
� tanj2

�
dx

dl
sinj1 ÿ cosj1

�
� ÿ tanj2

cosj1

;

or, according to formulas (2), to

1

c

dx

dt
� b1 ;

1

c

dy

dt
� b2

��������������
1ÿ b 2

1

q
: �4a�

In contrast, if operations are performed in the reverse order,
the result will be as follows

1

c

dy

dt
� b2 ;

1

c

dx

dt
� b1

��������������
1ÿ b 2

2

q
: �4b�

Let us place a right-angled ruler in the plane of Fig. 1 so
that its sides coincide initially withOA andOB.We shall draw
a line along the ruler sideOBmoving a pencil with the velocity
of v2 � b2c and simultaneously displacing the ruler in the
direction of its other side OA with the velocity v1 � b1c. In
this case, the pencil lead will describe a trajectory which
differs from the one obtained if we move the pencil lead with
the velocity v1 along OA, while displacing the ruler with the
velocity v2 in the direction OB. The difference between both
paths per unit time (OC in the first case, and OD in the
second) is a small quantity of the 2nd-order if b1 and b2 are
of the first order. The reason is that in the first case the
velocity v2 is estimated differently in the moving system (the
ruler), because of the dependence of the notion of time on
motion, than in the rest reference frame (the plane of Fig. 1);
the same is true of the velocity v1 in the second case. It is this
situation that was alluded to above by arguing that in the
space xyl the plane of the second rotation will be displaced
after performing the space±time rotation. The velocities AC
andBDare depicted in Fig. 1 so that they are seenwith respect
to the rest figure plane; the upper quantity given there
pertains to the velocity seen from the ruler, and the lower
one corresponds to the velocity determined with respect to the
rest figure plane.

For the combined velocity v � bc determined with respect
to the rest reference frame, Eqns (4a) and (4b) give the same

result:

b 2 � 1

c 2

��
dx

dt

�2

�
�
dy

dt

�2�
� b 2

1 � b 2
2 ÿ b 2

1 b
2
2 ;

or

1ÿ b 2 � �1ÿ b 2
1 ��1ÿ b 2

2 � ;

or, if we introduce, in addition to j1 and j2, the resultant
angle j, one will find with account for formulas (2):

cosj � cosj1 cosj2 : �5�

If a1 and a2 represent the slopes of trajectories presented in the
figure, it follows from formulas (3) that

tan a1 � tanj2

sinj1

and, respectively,

tan a2 � tanj1

sinj2

; �6�

while the following inequality is always satisfied:

a1 � a2 <
p
2
: �7�

Although they seem somewhat strange at first glance,
these results also become transparent if one departs from
the Minkowski viewpoint. Indeed, if we identify the rotation
angles j1 and j2 with arcs on a unit sphere (Fig. 2) so that
the vertex angle A of a triangle OAC, and B of a triangle
OBD are right angles, the resultant angle OC � OD � j
follows directly from the law of cosines as the hypotenuse of
congruent spherical triangles, in agreement with equality
(5). The fact that the resultant rotation plane depends on
the sequence of two rotations is apparent from Fig. 2.
Indeed, the great circle passing through B perpendicular to
OB does not, obviously, pass through C, but intersects AC.
The so-called Napier's rule for right-angled spherical
triangles gives formula (6) for the angles a1 and a2 with
catheti. The sum of the angles in a spherical triangle exceeds
two right angles, and the sum of the angles with catheti in a
right-angled spherical triangle exceeds the right angle, as
seen from Fig. 2. Moreover, the difference (spherical excess)
is equal to the area of a triangle on a sphere of radius one.
The sides of our spherical triangles in the case of space±time
rotations are purely imaginary, so that their area is negative.

v2

�������������
1ÿ b21

q
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�������������
1ÿ b22
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The spherical excess transforms to the spherical defect; this
underlies inequality (7) and the departure of trajectories OC
and OD in Fig. 1. 1

Summing up, we can argue that in order to add velocities
in the theory of relativity one should apply formulas of
spherical, not planar, trigonometry (with imaginary sides).
Bearing this statement in mind, the cumbersome algebra of
transformations, an example of which is given above,
becomes redundant and can be replaced by a transparent
construction on a sphere. We shall provide one more
example.

If velocities v1 and v2 are at arbitrary angle a with respect
to each other, the outer angle A in spherical triangle OAC in
Fig. 2 is also a, and from the law of cosines for spherical
geometry it follows for the resultant angle j that

cosj � cosj1 cosj2 ÿ sinj1 sinj2 cos a : �8�

Should we rewrite this expression in terms of velocities v1, v2,
and v, then according to Eqn (2) the result is

1��������������
1ÿ b 2

q � 1� b1b2 cos a��������������
1ÿ b 2

1

q ��������������
1ÿ b 2

2

q ;

�9�
v2 � v

2
1 � v 2

2 � 2v1v2 cos aÿ �1=c 2�v 2
1 v

2
2 sin

2 aÿ
1� �1=c 2�v1v2 cos a

�2 ;

the formula already derived by Einstein [1] from the
transformation relationships. As can be seen, formula (8) is
more transparent than formula (9), and in the same fashion
Fig. 2 turns out to be more helpful than Fig. 1. This is
explained by the fact that consideration in terms of rotation
angles and (in real circumstances) respective constructions
better reflect the sense of the theory of relativity than

operations in terms of projections on the tangent plane
comprising velocities v.

The only goal of this short note was to demonstrate that
Minkowski's profound viewpoint on space±time not only
facilitates the basic construction of the theory of relativity in
the methodological sense, but also serves as a convenient
principle in considering special questions.
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1 The following may serve as an explanation of the relationship between

the figures. Figure 1 is obtained when we perform a central projection of

Fig. 2 from the center of sphere M on a tangent plane drawn through the

point of contact O. In this case, vertex angles atO and right angles atA and

B are preserved, and sides j1, j2, and j issuing from O are replaced by

their projections on the tangent plane 1� and, respectively, by velocities v1,
v2, and v proportional to them. In contrast, vertex angles at C and D will

be modified by the projection (they are equal to a2 and a1, respectively, in
Fig. 1 but the respective angles are larger than a2 and a1), and sides CA and

BD cannot be simply replaced by their tangents. Figure 3 shows how this

projection is obtained in reality for triangle OAC.2
�

1* The word `Tangenten', the German for tangents, is translated here as

`projections on the tangent plane' as namely they are implied. (Translator's

comment).
2* Formulas (5) and (6) are valid for real-valued angles for right triangles

on the surface of the sphere drawn in Figs 2 and 3. In that case, one has

tan a1 tan a2 � 1

cosj1 cosj2

:

In order to change to right triangles on the surface of the pseudosphere

presented in Fig. 1, the angles j1, j2, and j should be made purely

imaginary. In that case, the right hand side of the equality just written will

be less than one and, consequently,

sin a1 sin a2 < cos a1 cos a2 ;

i.e., cos�a1 � a2� > 0, which leads to formula (7): a1 � a2 < p=2.
The vertex angles C andDof these triangles in Fig. 1 (we denote them as

a 02 and a 01, respectively) satisfy, obviously, equalities

a1 � a 02 �
p
2
; a 01 � a2 � p

2
;

which lead to a 02 > a2 and a 01 > a1 when compared to formula (7), which is

what Sommerfeld argues in footnote 1. (Comment by V I Ritus)
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