
Abstract. In 1909, Arnold Sommerfeld used geometric calcula-
tions to show that the relativistic addition of two noncollinear
velocities on an imaginary-radius sphere is a noncommutative
operation. Sommerfeld was the first to use the geometric phase
method to calculate the angle between the resulting velocities
depending on the order in which they are added. For this, he
related the value of this angle to the excess of the spherical
triangle formed by the two original velocities and their sum. In
1931, Sommerfeld applied his method to analyze the Thomas
precession.

1. Introduction

In 1909, Arnold Sommerfeld (1968±1951) disclosed that the
operation of the addition of relativistic velocities is non-
commutative [1, 2]. More than twenty years later, he
returned to this question [3] and showed that the method
developed by him in papers [1, 2] allows computing the
magnitude of the Thomas precession (TP) [4±11]. The results
produced in Refs [1±3] were considered earlier in reviews [12,
13]; however, their main focus was on the mathematical side
of the question.

The goal of this paper is to consider studies [1±3] from the
physical viewpoint and in particular demonstrate that
Sommerfeld was the first to apply the method of geometrical
phase (GP) (the topological phase sometimes referred to as
the Berry phase) [14±23] to compute the magnitude of
relativistic rotation of the velocity of a physical body or the
spin of a material particle, and was the second, after William
Rowan Hamilton (1805±1865) [24], to apply this computing
technique. As far as we know, Sommerfeld's role in creating
the GP method has never been discussed before.

2. The relativistic law of adding velocities
(1900±1908)

In the initial development phase of the special theory of
relativity (STR), the main efforts of researchers were devoted
to formulating the transformations that would connect three
spatial coordinates and time in a rest inertial reference frame
(IRF) K, wherein the observer is stationed, with those in an
IRFK 0 moving with velocity v; the relativistic law of addition
of velocities received much less attention. The exception was
themonograph by Joseph Larmor (1857±1942) [25] published
in 1900, but its author was limited to considering the addition
of collinear velocities in the limit v5 c.

The fundamental work [26] by Albert Einstein (1879±
1955) issued in 1905 proposed for the first time an expression
for the addition of the body velocity u with the velocity v of
the IRF for an arbitrary angle between u and v. Einstein
devoted a special section (æ 5) in Ref. [26] to this question,
where he notes, ``Thus the law of velocity parallelogram in
our theory holds only in the first approximation.'' In 1906,
this question was also addressed by Henri PoincareÂ (1854±
1912) [27].

Applications of Einstein's relativistic law of adding
velocities [26] followed practically immediately: already in
1908, Jakob Laub (1872±1962) derived an expression for the
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drag coefficient when an optical medium executes a transla-
torymotion, and in doing so its boundaries are not resting but
move, in contrast to those in the experiment by Fizeau [28].
(For details on the Laub drag coefficient, see Ref. [29].)

3. Sommerfeld's first study (1909)

The most interesting corollaries from the results of Ref. [26]
were obtained in 1909 by Sommerfeld [1, 2], who considered
the general case of adding noncollinear velocities. The result
proved to be so important that Sommerfeld submitted his
work to twoGerman scientific journals at once: it reached the
editorial office of Physicalische Zeitschrift on 30 September
1909, and that ofVerhandlungen derDeutschen Physicalischen
Gesellschaft on 21 October. Both journals published it before
the end of 1909. In order to compute the absolute value and
the direction of the sum of two orthogonal velocities,
Sommerfeld made use of an original mathematical
approachÐ the geometrical interpretation of Lorentz trans-
formations (LTs) in terms of rotations through imaginary
angles. The mathematical side of Refs [1, 2] was analyzed in
sufficient detail in Refs [12, 13]; we give in this paper only a
brief explanation of the Sommerfeld method. Instead of two
velocities v1 and v2 and their relativistic sum v3, Refs [1, 2]
proposed considering three imaginary angles j1, j2, and j3,
where tanj1; 2; 3 � i�v1; 2; 3=c�, c is the speed of light in
vacuum, and i � �������ÿ1p

. In this way, any LT with velocity v is
associated with the rotation through the angle j, while the
length of the corresponding segment of a great-circle arc on a
sphere with a unit imaginary radius is numerically equal to j.
Then, the orientation of the arc depends on the direction of v
in the real space (or in the Minkowski space).1 Sommerfeld
showed that j3 � j1 � j2 only if v1 and v2 are collinear. In
the case when v1 and v2 are orthogonal, one finds
cosj3 � cosj1 � cosj2, as follows from spherical trigono-
metry [31], with the direction of total velocity v3 being
dependent on the sequence of adding v1 and v2 [1, 2]. As a
consequence, two rotations in the same plane of Minkowski
space (corresponding to the addition of two collinear
velocities ) commute with each other, while two rotations in
different planes of Minkowski space (corresponding to the
addition of noncollinear velocities) does not do so [1, 2]. In
particular, if one performs two LTs in sequence, first in the
direction of the x-axis and then in the direction of the y-axis,
one arrives at a certain result, but if the same transformations
were performed in the reversed order, first in the direction of
the y-axis and then in the direction of the x-axis, the result
would differ from the other one. The absolute values of the
resulting velocities will coincide in both cases, but their
directions will be distinct.

In our opinion, the best interpretation of this phenom-
enon was suggested in a paper by V I Ritus (b. 1927) [11]:
``Asymmetry of the relativistic law of adding two noncol-
linear velocities with respect to their permutation leads to two
modified triangles which depict on an Euclidean plane the
addition of nonpermuted and permuted velocities and the
appearance of nonzero angle between the two resulting
velocities. The particle spin turns over the same angle as well
if the particle velocity is changed by a Lorentz boost with a

velocity not aligned with that of particle.'' Hence, it becomes
apparent that the phenomenon of spin rotation accompany-
ing the curvilinear motion of a material particleÐ the
Thomas precession (TP) [4±11]Ð follows from the results of
Sommerfeld's work [1, 2].

Sommerfeld also revealed [1, 2] that the sum of angles j1,
j2, and j3 of a spherical triangle formed by arcs of a great
circle is less than p since the spherical excess (the positive
difference between the sum of the angles of a spherical
triangle and p) [31] on a sphere with an imaginary radius is
negative. Moreover, Sommerfeld demonstrated that in
Euclidean space the angle between the velocities v a3 and vb3
(v a3 � v1 � v2, v

b
3 � v2 � v1, where the operator� denotes the

relativistic addition of velocity vectors) for two LTs with
orthogonal velocities v1 and v2, carried out in a different
sequence, is numerically equal to the spherical excess taken
with the opposite sign [1, 2]. Since the spherical excess of a
triangle is numerically equal to the area of this triangle on a
sphere of unit radius [31], it is obvious that this angle
represents a characteristic manifestation of the GP in STR.
At the present time, manifestations of the GP are being
discovered in various branches of physics, such as classical
and quantum mechanics, polarization optics, and some
others [14±23]. A characteristic feature of the GP is that the
most convenient way of evaluating it consists in computing
the area confined by a closed curve on a sphere, describing the
evolution of the state of a certain system parameter, in
particular, the area of an appropriate spherical triangle, for
instance, in the velocity space or on the PoincareÂ sphere [14±
23]. It is noteworthy that the angle between the directions of
total velocities can be computed by parallel translation of the
velocity vector on a sphere of unit imaginary radius along arcs
j1 and j2, and in the reverse order along j2 and j1.

Thus, as early as 1909 Sommerfeld applied theGPmethod
[1, 2] to compute the relativistic rotation of the velocity of a
body, resulting from two orthogonal LTs, and developed the
mathematical apparatus to compute the magnitude of TP.

4. Further application of the methods
of non-Euclidean geometry in special relativity.
Studies by �E Borel, and L FoÈ ppl and P Daniell
(1910±1914)

A period of rapid development of the methods of non-
Euclidean geometry in STR [13] followed the publication of
Sommerfeld's studies [1, 2]. By way of example, we can
mention the work by Sommerfeld himself [32, 33], V Vari�cak
(1865±1942) [34±37], M von Laue (1879±1960) [38],
E B Wilson (1879±1964) and G N Lewis (1875±1945) [39],
A A Robb (1873±1936) [40], EÂ Borel (1871±1956) [41±43],
KOgura (1885±1962) [44], LFoÈ ppl (1887±1976) andPDaniell
(1889±1946) [45], and L Silberstein (1872±1948) [46]. Studies
[34±43, 45, 46] were addressed in sufficient detail in Ref. [13]. 2

The works by EÂ Borel [41±43], and L FoÈ ppl and PDaniell [45]
are the most interesting.

Borel, who was aware of the results of Sommerfeld's work
[1], used the Lobachevskian geometry instead of a sphere with

1 Sommerfeld mentioned later that the spherical geometry with imaginary

arcs is equivalent to the planar Lobachevskian geometry [3]. Sommerfeld

was the second, afterMinkowski [30], to apply non-Euclidean geometry in

STR [13].

2 In particular, Sommerfeld's studies [32, 33] deal with vector analysis in

the Minkowski space; V Vari�cak [34±37] was the first to pass from the

Sommerfeld trigonometry on a sphere with a unit imaginary radius [1, 2] to

the Lobachevskian geometry, well known at that time (see also Refs [12,

13]), while E B Wilson and G N Lewis considered the rotation of vectors

and planes in non-Euclidean space [39].
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a unit imaginary radius. In Ref. [41], Borel considered
relativistic kinematic rotation which was later termed the
TP, proposed an intuitive physical explanation for it, and
obtained an approximate expression for the TP angular
velocity in the limit v5 c. Had Borel not worked in this
limit, he could have obtained the expression for the TP in the
general case. Later on, Ya A Smorodinskii (1917±1992)
derived the correct expression for the TP [47, 48] (see also
Ref. [9]) using the Lobachevskian geometry.

The work by FoÈ ppl and Daniell [45], which considers
relativistic rotation of a rigid body exerting circular motion,
as well as more recent work [49, 50], used the parallel
translation method for conical motion in the Minkowski
space to compute the relativistic rotation of an electron (i.e.,
the authors in fact made use of the well-known solid angle
theorem [24, 51]). In essence, if a body exerts circular motion
in the �x; y� plane of physical space, its world line in the
Minkowski space looks like a helicoidal spiral around the ict-
axis. Using this approach, the authors of Ref. [45] obtained
values larger by the factor g for the angular frequency of the
TP [6±11]. As shown in Ref. [9], the error committed by the
authors of Refs [45, 49, 50] stems from the fact that the world
line does not correspond to the trajectory of actual body
motion, so that making use of the solid angle theorem is not
valid in the case of considering body's rotation.

5. Sommerfeld's second study (1931)

After the discovery of electron spin by S A Goudsmit (1902±
1979) and G E Uhlenbeck (1900±1974) in 1925 [52] the
derivation of the expression for the relativistic precession of
electron spin (TP) became of interest. The Borel studies [41±
43]hadbeenforgottenbythat time. In1926±1927,LHThomas
(1903±1992) obtained an expression for the TP [4, 5] with the
help of Lorentz transformations, which, as became apparent
later [9], was in error: he (in the same manner as FoÈ ppl and
Daniell [45]) overestimated the angular frequency of the TP
by a factor of g.

In 1931, in the fifth edition ofmonograph [3] as well as in a
talk at a conference in Rome [53] Sommerfeld suggested the
derivation of the formula for TP using his own method [1, 2].
Let us consider expression (27) from his monograph [3,
Chapter 12]:

sin y � v1v2

c 2
�
1�

���������������������
1ÿ v 21 =c 2

q ���������������������
1ÿ v 2

2 =c
2

q � ; �1�

where y is the angle of electron spin rotation pertaining to the
TP, v1 is the orbital electron velocity, and v2 is the variation of
the electron velocity over an infinitesimal time under the
action of centripetal force (in this case, theCoulomb force due
to the positively charged atomic nucleus). 3

Consider the simplest but most interesting case of the
circular motion of an electron at a particular orbital velocity
�v1 4 c�. Then, v1 � Ro (whereR is the radius of the electron
orbit, and o is the angular velocity of orbital motion), and
v2 � Ro2 dt is the velocity increment for an infinitely small

time interval dt. The angular velocity of the TP in the IRF
connectedwith a resting observer is defined asOT � dy=dt [9].
Taking the derivatives of both sides of expression (1) with
respect to time, and noticing that d sin y=dt � cos y dy=dt,
one obtains a rather cumbersome expression for OT contain-
ing constant terms and terms proportional to �dt�2. The latter
can be omitted as infinitesimally small quantities of second
order. In this case, the expression for the TP takes the form

OT � �1ÿ gÿ1�o ; �2�

which is the correct result for the TP in the laboratory IRF [6±
11]. As far as we know, the Sommerfeld method [1±3] had not
been applied earlier to derive expression (2). In particular,
from Eqn (2) it follows that for v � c the spin of an electron
exerting circular motion will accomplish a single turn for each
orbital turn of the electron. Since expression (1) directly
follows from the results of Refs [1, 2], formula (2) could
have been obtained back in 1909. Admittedly, since Sommer-
feld was interested in 1931 in the motion of electrons in an
atom, which is characterized by fairly small velocities �v5 c�,
he limited the analysis to respective expansion in v=c.

As shown in Ref. [9], researchers long used the erroneous
Thomas expression for the TP [5]. In particular, C Mùller
(1904±1980) obtained an expression for the TP in his
monograph [54] in 1952, which coincides with that of
Thomas [5] up to the sign. Only in 1961 was the well-known
work by Ritus [55] published, showing that for a massless
particle moving along a curved trajectory with the speed c the
direction of its spin will always coincide with that of the
particle velocity, while the spin direction of a usual particle
moving with the velocity v < c will always lag behind that of
its velocity. It follows from the results of Ref. [55] that the spin
of a mass-less particle moving along a circular trajectory will
make a rotation for each orbital turn of the particle relative to
the laboratory IRF. Expression (2) can be obtained from the
results of Ref. [55] after little manipulations.

Soon after that followed the monograph by J D Jackson
(b. 1925) [56] and articles by Ya A Smorodinskii [47, 48] and
A Chakrabarti (b. 1928) [57], where expression (2) was
already written explicitly. Despite this, a considerable
number of studies were published later where, as shown in
Ref. [9], various incorrect expressions for the TP were used.

In 2007, V I Ritus in an interesting and important study
[10] gave a conclusive solution to the question as to which of
the expressions for the TP is the correct one, and, in
particular, pointed to an error in the analysis made byMùller
[54]. In the next study [11], Ritus considered the question of
the relativistic addition law for noncollinear velocities in the
most general case. References [10, 11] solve the problem of the
Thomas precession for the relativistic rotation of a rigid body
or the spin of a single material particle in a complete form.

6. Sommerfeld's role
in creating geometric phase methods

Since Sommerfeld's studies [1±3] occupy a prominent place in
the development history of GP methods, which are now
widely used in polarization optics, classical and quantum
mechanics, and other branches of physics [14±23], we shall
briefly highlight the milestones of the creation of the GP
methods.

(1) 1853: Hamilton formulated the so-called solid angle
theorem [24], which states that if an axis linked to a rigid body

3 As demonstrated in Ref. [3], one has y � p=2ÿ a1 ÿ a2, where a1; 2 are

the angles at two vertices of a spherical triangle composed by the great-

circle arcs j1, j2, and j3. Since the velocities v1 and v2 are in this case

orthogonal to each other, the arcs j1 and j2 are orthogonal too, and,

consequently, a3 � p=2. Then, y � pÿ a1 ÿ a2 ÿ a3 is the spherical excess
of the triangle, taken with the opposite sign [1±3, 31].

September 2010 Noncommutative nature of the addition of noncollinear velocities 925



describes a closed trajectory in the process of conical motion,
the body will turn around this axis over an angle numerically
equal to the solid angle described by the axis. The proof of this
theorem, based on the theory of quaternion multiplication,
occupies 140 pages of his monograph [24] (for details, see
Ref. [22]).

(2) 1909: Sommerfeld demonstrated that the angle
between vectors of the sum of two mutually orthogonal
velocities combined in a different sequence is numerically
equal to the excess of a triangle on a sphere with unit
imaginary radius, taken with the opposite sign [1, 2].

(3) 1913: Borel derived an approximate expression for
the TP using the parallel translation method for a body
velocity vector on the Lobachevsky plane [41]. In this same
year, FoÈ ppl and Daniell attempted to obtain an expression
for the TP by applying parallel translation of the axis
connected with the body in the Minkowski space [45], but
made an error.

(4) 1931: Sommerfeld obtained an approximate expres-
sion for the TP of electron spin by connecting it to the excess
of a triangle on a sphere with unit imaginary radius [3, 53].

(5) 1938±1941: S M Rytov (1908±1996) [58] and
V V Vladimirskii (b. 1915) [59] linked the rotation of a
polarization plane of light propagating along a nonplanar
trajectory with a solid angle described by the tangent to the
ray trajectory (for details, see Refs [22, 23]).

(6) 1942: A D Galanin (1916±2000) obtained an approx-
imate expression for the TP of the spins of an electron and
meson by passing from the wave equation to equations of
geometrical optics through the expansion in powers of a small
parameter [60], which allowed him further to exploit the
method employed in Refs [58, 59] (see Ref. [22] for details).

(7) 1944±1952: A Yu Ishlinskii (1913±2003) proved the
solid angle theorem by making use of the parallel translation
method in three-dimensional Euclidean space, and did it not
only for a rigid body, but also for a gyrocompass [51, 61].
Ishlinskii's proof, based on Green's function technique, is
very concise (for details, see Ref. [22]).

(8) 1956: S Pancharatnam (1934±1969) related the
magnitude of an additional optical phase appearing in the
process of cyclic evolution of the light polarization state to the
area on the PoincareÂ sphere described by the point which
maps the polarization state [62, 63] (for details, see Refs [14,
23]).

(9) 1984:MBerry (b. 1941) wrote an expression for theGP
in quantum mechanics (Berry phase) [64] (for details, see
Refs [14±18]).

The work by Berry [64] triggered the publication of an
immense number of papers exploring various manifestations
of the GP. In particular, the connection was established
between the phase difference coming from polarization
nonreciprocity [65] (and not linked to rotation) at the
output of a fiber ring interferometer (FRI) and the area of
a triangle on the PoincareÂ sphere, defined by the light
polarization state at the entrance to and both exits from
the FRI [19±21, 23]. It was also successfully shown that the
angle of a rigid body rotation which occurs because of the
TP as the body moves along a curvilinear trajectory is
numerically equal to the solid angle, observed in a rest
reference frame, which is described by an axis linked to the
body as a consequence of relativistic aberrationÐ the
change in the tilt of the body image pertaining to the
Lorentz length contraction and retardation of light emitted
by various parts of the body [7±9].

7. Conclusions

Sommerfeld was the second, after Hamilton, to employ in
1909 the geometric phase method and the first to apply this
method to computations of the relativistic sum of noncol-
linear velocities, and to demonstrate that this operation is
noncommutative [1, 2]. In 1931, Sommerfeld used the GP
method to compute the magnitude of the TP [3]. It is worth
mentioning that the results of Refs [1, 2] allowed deriving the
correct expression for the TP already in 1909. The technique
of computation on a sphere with an imaginary radius,
proposed by Sommerfeld, proved to be essentially simpler
and physically more apparent than the method based on the
Lobachevskian geometry [13].
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