
Abstract. A discussion is given of the use of the dual representa-
tion in solving multipole radiation and electromagnetic wave
diffraction problems in classical electrodynamics. In the meth-
od discussed, actual electric field sources are replaced by
`magnetic' ones. It is shown that despite the absence of Dirac
magnetic monopoles, this formalism allows a physical interpre-
tation of some frequently used methods.

1. Introduction

In various problems of classical electrodynamics, the method
that may conventionally called `dual' is often used. In this
method, the real sources of electromagnetic fieldsÐelectric
charges and currentsÐare replaced with fictitious magnetic
sources. This change, which makes no sense at first glance,
has nevertheless turned out to be rather efficient, for instance,
in the theory of electromagnetic radiation diffraction from
perfectly conducting surfaces. In particular, the well-known
method whereby a scattered wave field is represented as the
radiation field of a surface current [1, 2] can be related to the
method where the source of a diffracted field is the magnetic
current that flows over an opening in the screen under
consideration (see, e.g., Refs [2±5]). The possibility of such a
substitution of the integration surface is the essence of the
well-known principle of complementary screens, and the
mathematical formulation of dual methods is based on the
use of the so-called Kirchhoff±Smythe integral [4±8].

Another example can be adduced. In solving the problem
of the Vavilov±Cherenkov radiation generated by a magnetic
dipole, in one of his papers, I M Frank considered the
magnetic dipole as a Dirac dipoleÐa pair of magnetic

charges of opposite signs [9]. This method was also used in
one of the first reviews on Cherenkov radiation [10]. More
recently, it turned out that this representation is valid only in
the vacuum [11±13].

The equivalence of an ordinary magnetic dipole and the
Dirac one in the vacuum also follows from investigations of
the radiation of an arbitrarily moving point-like magnetic
dipole with a moment l [14±16]. Notably, in the studies
cited above, it was shown that the solution of this problem
can be obtained from the corresponding solution of the
problem of the radiation of an electric dipole with a
moment d by the simple substitution of fields E! H,
H! ÿE, with d! l (in the static case, this property is
well known [17]). This substitution corresponds to passing
from the ordinary strength tensor Fmn to its dual pseudoten-
sor ~F mn � 1=2E mnZrFZr. This is precisely the change involved in
passing from electric sources to magnetic ones (see, e.g.,
Ref. [2]).

The dualmethod of solutionwas also used to advantage in
problems of the diffraction radiation of a charged particle
flying past a perfectly conducting screen [18±20]. Its use
allowed a relatively easy derivation of an analytic expression
for the density of the surface current induced by the charge
field on the screen [20].

Interestingly, while the application of the dual method
in the theory of Cherenkov multipole radiation was repeat-
edly discussed (for instance, by Ginzburg [11] and Frank
[12]), this issue went unheeded in the radiation theory of a
point-like magnetic moment, despite the `dual symmetry' of
the radiation fields of electric and magnetic dipoles noticed
in [14]. On the other hand, the dual representation is
ordinarily not given a clear physical interpretation in the
diffraction theory (the exception is perhaps provided by the
well-known monograph by Vainshtein [2]), which sometimes
leads to serious misunderstandings. For instance, in many
textbooks on electrodynamics, the issues of diffraction are
treated based on the Kirchhoff±Smythe approach [5±7].
However, even in the well-known textbook by Jackson [7],
the physical aspect of this method is, in our opinion, discussed
inadequately. Recently, Drezet et al. [8] succeeded in produ-
cing a more rigorous mathematical proof of the Kirchhoff±
Smythe integral; however, its physical interpretation
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remained inadequate as before (see formulas (7)±(9) in
Ref. [8]). The aim of this paper is to discuss the use of the
dual representation in several problems of classical electro-
dynamics.

2. Dual representation in the theory of radiation

We consider a homogeneous isotropic medium in which the
electromagnetic field is described by the macroscopic dis-
placement tensor H mn � �ÿD;H�, i.e., H 01;02;03 � D�r; t� is
the electric displacement vector and H 23;31;12 � H�r; t� is the
macroscopic magnetic field.1 The Maxwell equations with a
given density of electric sources jme � fcre; jeg have the form

qn ~Fmn � 0 ; qnH mn � 4p
c

j me ; �1�

where qn � q=qr n and the first pair of equations, which does
not contain charges and currents, is written in terms of the
pseudotensor ~F mn � �ÿB;ÿE�. Here, E�r; t� is the electric
field and B�r; t� is the magnetic induction. As usual, the
pseudotensor ~Fmn, which is dual to the true tensor F mn �
�ÿE;B�, is ~Fmn � 1=2E mnZrFZr, E 0123 � 1. For the subsequent
discussion, it is expedient to also give the inverse relation:
Fmn � ÿ1=2E mnZr ~FZr.

In the wave zone, in view of the current density continuity
equation qm j me � 0, the solutions ofMaxwell equations (1) for
monochromatic fields produced by sources localized in a
domain with the size reff9l have the form (for simplicity, we
assume that the medium has only the frequency dispersion)

ER
e �r0;o� � ÿ

i�2p�3
o

1

e�o�
exp �ikr0�

r0
k� �k� je�k;o�

�
;

BR
e �r0;o� �

i�2p�3
c

m�o� exp �ikr0�
r0

k� je�k;o� ; �2�

where Ee�r0;o��De�r0;o�=e�o�, Be�r0;o�� m�o�He�r0;o�,
k � o=c

�������������������
e�o�m�o�p

is the wavenumber, and the wave vector
is aligned with the radius vector of the observation point:
k � kr0=r0 � ke. The vector je�k;o� is the Fourier transform
of the current density je�r; t�. As can be easily seen, fields (2)
have all the properties of radiation fields:

ER
e � ÿ�em�ÿ1=2�e� BR

e � ;
�e;ER

e � � �e;BR
e � � 0 ; ER

e � �em�ÿ1=2BR
e : �3�

We now write the equations for magnetic currents in the
absence of electric ones (see, e.g., Ref. [2]):

qn ~Fmn � 4p
c

~j mm ; qnH mn � 0 ; �4�

where ~j mm � fc~rm;~jmg is the magnetic current pseudovector.
We note that the first equation in (4) is easily obtained from
the Lagrangian L � �1=c� ~jm ~A m ÿ �1=16p� ~Fab ~F ab, and the
second equation follows from the definition of the dual
strength tensor in terms of `magnetic' potentials:
~Fmn � q m ~A n ÿ qn ~A m (see Section 3). Therefore, the dual
Maxwell equations are obtained from the ordinary ones by
the substitution

j me ! j mm ; H mn ! ~Fmn ; �5�

orEe ! Hm,He ! ÿEm, and e! m in terms of fields. Hence,
in view of the continuity equation qm~j mm � 0 [which follows
from the first of Eqns (4)], we can find the radiation fields of
magnetic currents in the wave zone:

ER
m�r0;o� � ÿ

i�2p�3
c

exp �ikr0�
r0

k�~jm�k;o� ;

BR
m�r0;o� � ÿ

i�2p�3
o

exp �ikr0�
r0

k� �k�~jm�k;o�
�
: �6�

The equivalence condition for electric and magnetic
sources from the standpoint of the equality of their generated
fields is easily obtained by comparing formulas (2) and (6). It
suffices to impose the requirement, for instance, that the
equality HR

e � HR
m hold. The equality between the electric

fields follows automatically due to (3). Therefore, for a given
magnetic current, the condition that the magnetic fields be
equal is satisfied when the electric current is defined as

je�k;o� � ÿ
c

o
1

m�o� k�
~jm�k;o� ; �7�

or, in spatial variables,

je�r;o� �
ic

o
1

m�o� rot
~jm�r;o� : �8�

The validity of this relation may be illustrated with the
example of the problem of magnetic moment radiation. Let
there be Dirac dipoles with a volume dipole-moment density
M�r; t� and a magnetic current defined by the expression

~jm�r;o� � ÿioM�r;o� ; �9�

which is similar to the conventional expression for the current
je � ÿioP of electric dipoles. According to expression (8), the
electric current

je�r;o� �
c

m�o� rotM�r;o� �10�

corresponds to this magnetic current. For nonmagnetic
media �m�o� � 1�, this current coincides with the current
produced in the vacuum by the current of an ordinary
magnetic moment, for instance, the intrinsic magnetic
moment of a particle. Therefore, the problem of the
radiation of Dirac dipoles with current (9) is exactly
equivalent to the problem of the radiation of electric
current (10). Hence, it follows that the solution of the
problem of magnetic-dipole radiation in the vacuum can be
obtained from the corresponding solution of the problem of
electric-dipole radiation by the duality transformation:
E! H, H! ÿE, with P!M. This property was con-
firmed by direct calculations in Refs [14±16].

We emphasize that in the special case of a point-like
magnetic moment with the density M�r; t� � l�t��
d�rÿ rm�t��, 2 currents (9) and (10) are defined in its rest
frame, because the expression for the current in the labora-
tory frame also comprises the electric dipole moment density
(see below). Indeed, because the volume densities of the
electric and magnetic moments P and M constitute an

1 We use the metric gmn�diag�ÿ1; 1; 1; 1�, in which r m�fct; rg,
rm�fÿct; rg.

2 The time dependence of the orientation of the vector l�t� � mf�t� is due
to a possible precession of the unit vector f�t� of the particle spin (see, e.g.,

Ref. [16]).
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antisymmetric second-rank tensor M mn � �P;M�, the exis-
tence of only the magnetic moment M 0mn��0;M 0� in the
particle rest frame automatically gives rise to an electric
moment in the laboratory frame: P � gb�M 0 (here,
g � 1=�1ÿ b2�1=2 is the Lorentz factor of the particle).

In the derivation of expression (7) for the electric current
equivalent to a given magnetic one, we imposed the require-
ment that the magnetic fields of the radiation of the currents
of both types be equal. We now impose the same requirement
on the electric fields. The magnetic fields are then also equal
due to relations (3). Comparing expressions (2) and (6), we see
that

~jm�k;o� �
c

o
1

e�o� k� je�k;o� ; �11�

or, in terms of spatial variables,

~jm�r;o� � ÿ
ic

o
1

e�o� rot je�r;o� : �12�

These formulas permit finding the magnetic current equiva-
lent to a given electric one, i.e., the current producing the same
radiation fields. For example, we consider the current
produced by electric dipoles with a density P:

je�r;o� � ÿioP�r;o� : �13�

According to formula (12), the magnetic current

~jm�r;o� � ÿ
c

e�o� rotP�r;o� �14�

corresponds to this current. In the case of a point-like dipole,
this implies that for e�o� � 1, the electric dipole in the rest
frame is equivalent to the Dirac analog of an ordinary
magnetic dipole.

Therefore, it is possible to put every problem of the
radiation of an electric current (of an arbitrary multipolarity
in general) into correspondence with its `dual' problem of
magnetic currents producing the same radiation fields. An
important illustration of this symmetry is the principle of
complementary screens in the theory of diffraction, which is
considered in Section 3.

3. Dual representation in the theory
of diffraction

Let a space (vacuum) be divided by a perfectly conducting
planar screen with openings in it through which the field from
one half-space can penetrate into the other one.We show that
the field of a plane wave diffracted by the openings in the
screen can be represented in two equivalent forms: first, as the
radiation field of the surface electric current induced on the
screen by the incident wave; second, as the radiation field of
the magnetic current flowing over the complementary screen
[i.e., the opening (see Fig. 1)]. To prove this, we proceed
similarly to the method of the vector diffraction theory; but
because we are concerned with the symmetry properties under
the duality transformation F mn ! ~Fmn, we use the tensor form
whenever possible.

We write the Gauss theorem for a third-rank tensor:�
qmTabmdU �

�
Tabmn

mds : �15�

The integration in the left-hand side is performed over the
4-volume (dU � dr 0 dr 1 dr 2 dr 3 � c dt d3r) bounded by a
closed hypersurface s with a unit outer normal n m (a space-
like vector). We choose the tensor Tabm as

Tabm � Sab qmGÿ G qmSab : �16�

Because external currents are nonexistent in the problem of
the diffraction of a plane wave, we take the quantities Sab to
be the `free'-field tensor Fab � �E;H�, which satisfies the
homogeneous Maxwell equations

qrFnm � qnFmr � qmFrn � 0; q mFnm � 0 �17�

inside the closed surface s and satisfies the boundary
conditions for a perfect conductor (see below) on the surface
itself. Formula (16) also involves the retarded Green's
function [21]:

G � y�ctÿ c�t �
2p

d
��r m ÿ �r m�2 � : �18�

Here, y�x� is the Heaviside function and the prime denotes
integration variables in (15). By substituting the tensor
Tabm � Tabm��r; �t � in form (16) in the left-hand side of Gauss
theorem (15), we obtain�

q mTabmdU �
� �

Fab &Gÿ G&Fab

�
dU ; �19�

where & � q mqm. By virtue of the homogeneity of Eqns (17),
the second term vanishes. Because the Green's function
satisfies the equation [21]

&G � ÿd �4��r m ÿ �r m� ; �20�

we obtain the value of the strength tensor at the point
r m � fct; rg in the left-hand side of (19):�

q mTabm dU � ÿFab�r; t� : �21�

~jm

je

Double electric layer
(electric charges)

Double magnetic layer
(magnetic charges)

Figure 1. The simplest geometry of diffraction from a planar screen with a

round opening (complementary screen).

August 2010 On dual representation in classical electrodynamics 819



Because n mqm � �n;H� in the right-hand side of (15) in the rest
frame of the screen, we finally obtain

Fmn�r; t� �
� ÿ

Fmn�n;H�Gÿ G�n;H�Fmn
�
ds ; �22�

where the normal n is now directed toward the interior of the
domain bounded by the surface s, whose integration element
is written as ds � c dt 0 dS, where dS is the integration element
of an ordinary two-dimensional surface. Because the tensor
F mn is made up of electric and magnetic field components,
expression (22) is an ordinary Kirchhoff integral written for
time-dependent quantities. It is easily seen that after the
integration over time and the Fourier transformation t! o,
formula (22) exactly coincides with the generally accepted
formulation of the Kirchhoff integral for monochromatic
fields (see, e.g., Ref. [7]):

Fmn�r;o��
� ÿ

Fmn�r 0;o��n;H�GoÿGo�n;H�Fmn�r 0;o�
�
dS;

�23�

whereGo � 1=�4p� exp fioj r 0 ÿ r j=cg=j r 0 ÿ r j is the Fourier
component of the retarded Green's function.

Quite frequently, the closed surface S is chosen as the
surface of the screen, with an infinite-radius half-sphere
bearing on the screen; on the half-sphere surface, the fields
satisfy the radiation conditions. But this choice requires
invoking additional assumptions about the field behavior at
the boundary between the screen and the openings. In the
general case, a line integral along the edge of the opening
should be added to surface integral (23) in order to obtain the
exact solution of the problem (see Refs [2, 6]). We note that a
similar situation also occurs when the Kirchhoff integral is
used to calculate the diffraction radiation of a charged
particle flying through an opening in a perfectly conducting
screen [22]. However, another way of choosing the integration
surface S in formula (23) exists, which leads to physically
more lucid results. Namely, the surface can be chosen in the
form of a `double layer' and an infinite-radius sphere, on
whose surface the radiation conditions for the fields Fmn are
also satisfied (see, e.g., Refs [7, 19]). In this case, after several
simple but rather cumbersome transformations, formula (23)
reduces to the form (to be compared with the three-
dimensional form in Refs [6, 7, 19])

Fmn�r;o� � qm

�
2FnZ n

ZGo dSÿ qn

�
2FmZ n

ZGo dS ; �24�

where integration is performed only over the screen surface
and where the property qmGo � qGo=q�r m � ÿqGo=qr m is
used, which permits eliminating the 4-gradient from the
integrand. The 4-vectors FnZ n

Z appearing here allow a simple
physical interpretation: they are surface currents and charges
induced by the incident wave on the screen.

We integrate Maxwell equations (1), by analogy with the
three-dimensional case, over the 4-volume bounded by the
surface of a hypercylinder whose bases, parallel to the surface
boundary, are assumed to be so small that the fields may be
considered constant on their surfaces. According to the four-
dimensional Gauss theorem, as the cylinder height d tends to
zero, we have�

U!0

qnH mn dU �
�
d!0

ÿ
Hmn

2 ÿH mn
1

�
dsn ; �25�

where dsn � nn ds is an element of the boundary; the minus
sign appears because the normals to the opposite cylinder
bases are directed oppositely. The right-hand side of the
second pair of Eqns (1), which contains currents and
charges, does not vanish upon integration over the infinitely
small hypercylinder volume only when there is a surface
current on the boundary. In other words, the equality j me �
j ms d�r i ÿ r is �must be satisfied, whence the boundary condition

�H mn
2 ÿH mn

1 � nn �
4p
c

j ms �26�

follows.Written in three-dimensional notation, this condition
takes the well-known form

�n;D2 ÿD1� � 4prs; �n�H2 ÿH1� � 4p
c

js : �27�

Similarly, by performing the integration of the first pair of
Eqns (1) with the use of the Gauss theorem, we obtain the
second boundary condition,

� ~Fmn
2 ÿ ~Fmn

1 � nn � 0 ; �28�

or, in the three-dimensional form,

�n;B2 ÿ B1� � 0 ; �E2 ÿ E1 � n� � 0 : �29�

If we introduce magnetic currents in lieu of electric ones,
boundary conditions (26) become homogeneous and the
conditions derived from the first pair of the Maxwell
equations take the form

� ~Fmn
2 ÿ ~Fmn

1 � nn �
4p
c

~j ms ; �30�

with the pseudovector of the surface magnetic current

~j ms �
c

4p

��n;B2 ÿ B1�; �E2 ÿ E1 � n�	 : �31�

Because the field inside a perfect conductor is nonexistent
in the problem of diffraction from a perfectly conducting
screen, the boundary conditions take the simple form

F mnnn � 4p
c

j ms ;
~F mnnn � 4p

c
~j ms ; �32�

where F mn is the field strength tensor in the vacuum.
In view of these equalities, as is easily seen, the integrals

entering formula (24) are the potentials of the radiation field
generated by the doubled surface current:

A m
rad�r;o� �

4p
c

�
2j ms Go dS ; �33�

or, in an explicitly covariant form,

A m
rad�r; t� �

4p
c

�
j mG dU ; �34�

where j m � 2j ms d�r i ÿ r is�. Therefore, the `free'-field tensor in
the presence of boundaries is expressed in terms of surface
currents flowing along these boundaries, which is sometimes
treated as the electrodynamic formulation of the Huygens
principle [2]. In this notation, formula (24) is rewritten as

F mn � q mA n
rad ÿ q nA m

rad : �35�
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The mechanism of the emergence of the `extra' factor 2 in the
right-hand side of expressions (24) and (33) was explained, for
instance, in Refs [2, 8, 23]. Physically, the selection of the
integration surface in the form of a double (rather than
simple) layer signifies that the surface current flowing over
the screen is formed by electric dipoles and that the surface
itself is a double electric layer [13]. This formalism also has the
effect that the integral over the opening surface is identically
zero due to the absence of a surface current. This obviates the
use of a line integral and leads to the same results [2, 6].

We now consider the formulation of the dual representa-
tion in the diffraction problem. Because the choice of the
tensor in formula (16) is arbitrary, we can choose the dual
pseudotensor ~F mn instead of the ordinary strength tensor (or
simply multiply Eqn (22) by a totally antisymmetric expres-
sion). It is evident that the equality following therefrom,

~Fmn�r;o� �
� ÿ

~Fmn�r 0;o��n;H�Go

ÿ Go�n;H� ~Fmn�r 0;o�
�
dS ; �36�

is exactly analogous to expression (23). But with the
corresponding choice of the integration surface in the form
of a double layer, expression (36) is transformed into a
formula that differs from (24) (to be compared with the
three-dimensional form in Refs [6, 7, 19]),

~Fmn�r;o� � qm

�
2 ~FnZ n

ZGo dSÿ qn

�
2 ~FmZ n

ZGo dS : �37�

Formula (37) differs from expression (24) in that the wave
field in (37) is represented as the radiation field of surface
magnetic current (32), which generates `magnetic' poten-
tials ~A m:

~F mn � q m ~A n
rad ÿ q n ~A m

rad : �38�

Because the tangential components of the electric field
vanish on the surface of a perfect conductor, the integral in
formula (37) reduces to the integral over only the opening,
i.e., over the screen complementary to the one under
consideration (see Fig. 1). This signifies that a replacement
of ordinary surface currents with magnetic ones corre-
sponds to the substitution of the complementary screen for
the integration surface, i.e., a transition to the dual
representation: F mn ! ~Fmn. In this case, the surface of the
opening, which carries the doubled magnetic current, is
equivalent to a doubled magnetic layer [13] because the
Dirac dipoles that make up this surface current are
equivalent to ordinary magnetic dipoles (to an elementary
current loop [2]). We emphasize that only this property
permits providing a physical interpretation to the mathema-
tical formalism widely used in diffraction theory (e.g., in
Refs [3±8, 18]).

4. Dual representation with Hertz potentials

The dual symmetry in diffraction theory indicated above
becomes even more evident when Kirchhoff integrals (23)
and (36) are written in terms of the antisymmetric Hertz
tensor (see, e.g., Ref. [16]) Zmn � �Ze;Zm�. Here, the electric
Hertz vector (potential) Ze is related to the volume density of
the dipole moment P � dd�rÿ rd� (for one dipole), and the
magnetic one Zm is related to the volume density of the

magnetic momentM � ld�rÿ rm� as
&Z mn � ÿ4pM mn : �39�

The antisymmetric tensor M mn � �P;M�, which enters
the right-hand side of Eqn (39), is sometimes referred to
as the polarization tensor. It is noteworthy that Eqn (39) is
easily derived from the Lagrangian L �MmnZmnÿ
�1=8p� q ZZ mnqZZmn [16], where the role of generalized coordi-
nates is played by the Hertz tensor Z mn and the role of
generalized velocities is played by its derivatives q ZZ mn. A
twofold increase in the number of the degrees of freedom in
comparison with the ordinary approach (six independent
tensor components in lieu of the three independent compo-
nents of a 4-potential A m that satisfies the Lorentz condition
q mAm � 0) is attributable to the fact that the electric and
magnetic dipole densities are defined independently of each
other.

Let the half-space bounded by the screen surface contain
no `external' dipoles and the tensor Zmn satisfy homogeneous
equation (39). Then, by selecting the tensor Sab in formula
(16) in the form Zab, we obtain the Kirchhoff integral written
in terms of the Hertz potentials:

Zmn�r;o� �
� ÿ

Zmn�r 0;o��n;H�Go

ÿ Go�n;H�Zmn�r 0;o�
�
dS : �40�

Evidently, this relation can also be written in terms of the dual
tensor ~Z mn. It was suggested recently that integral (40) written
in terms of the electric potential Ze can be used in solving
diffraction problems [24, 25]. On the face of it, when the
integration surface is taken in the form of a screen and an
infinite-radius half-sphere, the resultant relation contains the
same drawback: the necessity of fixing approximate values of
the Hertz potentials on the opening surface. But because the
initial sources of the potentials Zmn � �Ze;Zm� are dipoles,
there is no need to select the integration surface in the form of
a double layer. Indeed, the potentials entering the right-hand
side of Eqn (40) are taken from the screen surface and
therefore satisfy Eqn (39) with the right-hand side
M mn �M mn

s d�r i ÿ r is�, where M mn
s � �Ps;Ms� is the surface

density of the dipole moments induced on the screen by the
incident wave. The solution of this equation can be written
similarly to the solution of the ordinarywave equation forA m:

Z mn�r 0;o� � 4p
�
Mmn

s Go dS : �41�

It follows from the foregoing that we should setMs � 0 on the
screen surface and Ps � 0 on the opening surface. Then the
screen is a double electric layer, the surface of distributed
dipolemoment, and its complementary screen (the opening) is
a double magnetic layer. Therefore, the advantage of integral
(40) over the ordinary Kirchhoff integral (23) is that the
electric vectorZe in the right-hand side of (40) is nonzero only
on the screen surface and the magnetic potential Zm is
nonzero only on the opening. This obviates the necessity of
invoking additional assumptions in the solution of the
problem. This circumstance is not obvious; however, it
clearly follows from the foregoing analysis and may be
regarded as the principle of complementary screens in the
formalism of Hertz potentials.

We note that Eqn (39) has been used to advantage to
describe the symmetry properties of Maxwell equations with
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Dirac poles [26]. This stems from the fact that Eqn (39), unlike
conventional equations (1), is completely dual-symmetric in
form. We use this property here to once again demonstrate
the equivalence of certain electric and magnetic sources.
Passing from the Hertz potentials to the ordinary 4-potential
A m is effected as follows. We multiply both sides of (39) by qn.
By introducing the notation A m � qnZ mn, we obtain the
4-current components j me � c qnM mn as

j me �
�
ÿ c divP;

qP
qt
� c rotM

�
; �42�

which is the standard expression for the current density
written in terms of polarizations (see Ref. [10]). Expression
(39) then implies the standard formula

&A m � ÿ 4p
c

j me : �43�

By multiplying both sides of relation (39) by 1=2ErZmn, we
obtain a similar equation for dual quantities. Next, multi-
plying this equation by q Z, we find

&q Z ~ZrZ � ÿ4pq Z ~MrZ : �44�

The pseudovector ÿq Z ~ZrZ is naturally denoted as ~Ar and
termed the `magnetic' 4-potential, and the quantity
~jr � ÿc q Z ~MrZ can be referred to as the magnetic current
equivalent to the given electric one. Its components are

~j mm �
�
ÿ c divM;

qM
qt
ÿ c rotP

�
: �45�

Hence, it is evident that the magnetic current density
~jm � qM=qtÿ c rotP is in a sense equivalent to the given
electric current density je � qP=qt� c rotM. In the special
cases of only electric or only magnetic dipoles, this reduces to
the previously obtained results, formulas (10) and (14), where
we must set e�o� � 1, m�o� � 1. We emphasize that we are
dealing with the equivalence of electric and magnetic sources
from the standpoint of the equality of the fields they produce.
In this case, defining the field strength tensor in terms of the
4-potential A m � qnZ mn by the formula Fmn � q mA n ÿ q nA m

automatically leads to the equation qn ~Fmn � 0, i.e., to the zero
density of magnetic sources. In this case, the fields and the
Hertz potentials are related by the formulas

Ee�r; t� � rot

�
rotZe ÿ 1

c

qZm

qt

�
ÿ 4pP ;

He�r; t� � rot

�
rotZm � 1

c

qZe

qt

�
: �46�

Defining the dual tensor ~F mn in terms of the magnetic
potential ~A m � ÿqn ~Z mn by the formula ~Fmn � qm ~A n ÿ q n ~A m

automatically leads to the equation qnF mn � 0, i.e., to the zero
density of electric sources. In this case, the fields and theHertz
potentials are related as

Em�r; t� � rot

�
rotZe ÿ 1

c

qZm

qt

�
;

Hm�r; t� � rot

�
rotZm � 1

c

qZe

qt

�
ÿ 4pM ; �47�

whence it is evident that the quantity divHm � ÿ4p divM
plays the role of a magnetic charge density in accordance with
expression (45). A comparison of formulas (46) and (47)
suggests that the fields of electric and magnetic sources are

equal only at those points in space that are free from the
dipoles: P �M � 0. It is valid to say that sources of both
types are equivalent only for distances that exceed the size of
the system producing the fields. And this is precisely the
condition with which we started in deriving the formulas for
the radiation fields in Section 2.

5. Example: the dual method in the problem
of transition radiation of a charged particle

As an illustration, we consider the solution of the problem of
transition radiation of a charged particle with the use of the
dual representation. In the simplest case, this radiation
emerges when a charge that executes a uniform rectilinear
motion in the vacuum traverses a perfectly conducting
screen. To solve this problem (as well as its kindred problem
of the diffraction radiation emerging in the particle motion
near the screen), the representation of the radiation field as
the field of a surface electric current induced in the screen by
the field of the charge was used in several papers (by analogy
with the representation in the electromagnetic radiation
diffraction theory, see, e.g., Refs [27±29]). The dual repre-
sentation was proposed relatively recently for the solution of
problems of this kind, i.e., the use of a surface magnetic
current as the radiation source [18]. In this case, the
advantage of the dual method is that it enabled relatively
easily reproducing the results known from the literature,
which were obtained by other, quite often cumbersome
methods. On the other hand, it turned out that the solution
of the transition radiation problem with the aid of the
`ordinary' method of surface currents does not lead to the
correct result (see below), even in the simplest case of normal
particle incidence on the interface [19, 20].

We consider a charged particle moving at a constant
velocity b � v=c along the z axis (Fig. 2). As the particle
crosses an infinite perfectly conducting screen located in the
z � 0 plane, a burst of transition radiation emerges that may
be treated as the radiation of the surface current induced on
the screen by the field of the charge. To determine the surface
current density in the theory of plane wave diffraction, the
integral Fock equation is used [1, 29],

je�r 0;o� �
c

2p
n�HR ÿ 1

2p
n�

�
S

je�r 00;o�

� grad
exp

ÿ
ioj r 0 ÿ r 00j=c�
jr 0 ÿ r 00j dS 00 ; �48�

k

je

~jm
0

y

e

z

Figure 2. Schematic of the transition radiation generation by a charged

particle.
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where n is the normal to the screen surface. The derivation of
Eqn (48) involved conventional boundary conditions (27) and
the fact that the field HR satisfies the homogeneous Maxwell
equations (in this case, the mechanism of the emergence of the
`extra' factor 2 is the same as the mechanism discussed in
Section 3).When the particle is ultrarelativistic and its fieldE0

is virtually transverse, the charge fieldH0 may be taken asHR.
This approach to the transition radiation problem was used,
e.g., in Ref. [29]. In the general case, however, only the
radiation field given by the difference of the total field and
the intrinsic charge field, HR � HÿH0, satisfies the homo-
geneous equations in the problem with an external source. In
this case, Eqn (48) must be modified as [20]

je�r 0;o� �
c

2p
n�H0 ÿ 1

2p
n�

�
je�r 00;o�

� grad
exp �ioj r 0 ÿ r 00j=c�

jr 0 ÿ r 00j dS 00 � c

�2p�2 n

�
�
�n�H0��grad exp �ioj r 0 ÿ r 00j=c�

j r 0 ÿ r 00j dS 00: �49�

Using boundary conditions (31), which contain surface
magnetic currents, it is possible to derive a similar equation
for magnetic currents [20]:

~jm�r 0;o� � ÿ
c

2p
n� E0 ÿ 1

2p
n�

�
~jm�r 00;o�

� grad
exp �ioj r 0 ÿ r 00j=c�

j r 0 ÿ r 00j dS 00 ÿ c

�2p�2 n

�
�
�n� E0� � grad

exp �ioj r 0 ÿ r 00j=c�
j r 0 ÿ r 00j dS 00: �50�

In the classical theory of electromagnetic radiation diffrac-
tion, Eqn (48) is solved by the method of successive
approximations [1]. The problem under consideration is
substantially different in that Eqns (49) and (50) can be
solved exactly. These solutions have the form

je�r;o� �
c

2p
n�H0; ~jm�r;o� � ÿ

c

2p
n� E0 : �51�

By analogy with the diffraction theory, the solution of the
ordinary and dualMaxwell equations with currents (51) in the
right-hand side would be expected to yield exact expressions
for the transition radiation field. In reality, this is the case
only for the magnetic current.

The fields of surface currents in the wave zone are given by
the analogs of expressions (2) and (6):

ER
e �r0;o��ÿ

i

o
exp �ikr0�

r0
k�k�

�
je�r;o� exp �ÿikr� dS;

ER
m�r0;o� � ÿ

i

c

exp �ikr0�
r0

k�
�

~jm�r;o� exp�ÿikr� dS;
�52�

where the integrations are performed over the screen surface.
We have the following expressions for the particle field
strengths (see, e.g., Ref. [7]):

E0�r;o� � eo
pv2g

�
q

r
K1

�
or
vg

�
ÿ i

g
v

v
K0

�
or
vg

��
� exp

�
i
o
v
z

�
; H0 � b� E0; �53�

where e is the particle charge, q � �x; y�, g is the Lorentz
factor, and K0 and K1 are the Macdonald functions.
Integration in expressions (52) is performed in the polar
coordinate system using the well-known relations�2p

0

cosf exp �ÿia1r cosf� df � ÿ2ipJ1�a1r�;�2p
0

exp �ÿia1r cosf� df � 2pJ0�a1r�;�1
0

rJ1�a1r�K1�a2r� dr � a1
a2

1

a 2
1 � a 2

2

; �54�

where J0 and J1 are the Bessel functions, and a1 and a2 are real
positive constants. The energy radiated in a unit frequency
interval into a unit solid angle is given by the square of the
field modulus:

d2W

do dO

����
e

� cr 20 jER
e j2 �

e 2

p2c
b4 sin2 y cos2 y

�1ÿ b2 cos2 y�2 ;

d2W

do dO

����
m

� cr 20 jER
mj2 �

e 2

p2c
b2 sin2 y

�1ÿ b2 cos2 y�2 ; �55�

where y is the polar radiation angle measured from the
negative direction of the particle velocity (backward radia-
tion [see Fig. 2]).We see that only the last expression obtained
using the dual method coincides with the well-known
Ginzburg±Frank formula [11], while the formula obtained
on the basis of the `ordinary' approach has an additional
factor b2 cos2 y, which permits its use only in the ultrarelati-
vistic case, when the radiation is concentrated in the angular
interval y � gÿ1 5 1. It can be shown that in the more general
case of oblique charged-particle incidence on a screen surface,
the dual method also leads to the well-known results of
Korkhmazyan and Pafomov, while the method of electric
currents introduces an error, which increases with the angle of
incidence (i.e., with the angle between the particle velocity
vector and the normal to the screen surface) [19, 20].

Therefore, it turns out that just the dual method allows
obtaining reliable results in the problem of transition
radiation (as well as in the more general case of diffraction
radiation), while the application of the approach with electric
currents is limited to ultrarelativistic energies. The cause of
the apparent contradiction lies with the initially incorrect
physical formulation of the problem. In the theory of plane
wave diffraction from a perfectly conducting and infinitely
thin screen, it is assumed that the surface current has two
tangential components, because je / n�H by virtue of the
boundary conditions. In reality, all quantities in macroscopic
electrodynamics are averaged over a physically infinitely
small volume, and therefore even a macroscopically infi-
nitely thin screen nevertheless has a finite thickness that
exceeds the mean free path of conduction electrons, as well
as the dimensions of the averaging domain. Hence, it follows
that in the general case, there are no grounds to believe that
the electric current induced by the field of a charge has only
two components.

With the knowledge of the exact expression for magnetic
surface current (51), it is possible to find its corresponding
expression for the electric current by using the results in
Section 2. Indeed, from formula (7) for the electric current
equivalent to a given magnetic current, we find

je�r;o� �
c

2p
e� �n� E0� ; �56�
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where e � k=k. By substituting expression (56) in expres-
sion (52), we readily check that it leads exactly to the
Ginzburg±Frank formula, as well as to the corresponding
results in the case of oblique incidence (see also Ref. [20]). A
characteristic property of this expression is the existence of a
current density component perpendicular to the screen
surface, and the contribution of this component is significant
only for large radiation angles because jz / sin y. In the
relativistic case, the radiation is concentrated in the domain
of small y and the normal current component may be
neglected, which determines the applicability conditions for
the methods of the theory of plane wave diffraction in the
theory of transition and diffraction radiation (see, e.g.,
Refs [27±29]).

In conclusion, we emphasize once again: not only is the
use of the dual method helpful in solving several particular
problems in the theory of transition (or diffraction) radiation,
but it also permits relatively easily finding the exact expres-
sion for the density of the surface electric current induced by
the particle field on a screen.

6. Summary

The dual representation in classical electrodynamics, i.e., the
use of formulas of the form E / rot~A, is most frequently
encountered in the vector theory of diffraction; however, the
physical interpretation of this method is not given in the
majority of papers. As shown in this paper, the use of this
formalism is possible due to the equivalence of certain electric
andmagnetic sources. In this case, the use of the formalism of
Hertz potentials is especially lucid, which permits solving the
problems of the radiation of multipoles and the diffraction of
electromagnetic waves in a completely dual-symmetric form.
This method also proves to be highly beneficial for solving the
problems of the transition and diffraction radiation of
charged particles.
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