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Spin relaxation anisotropy
in two-dimensional semiconductors

N S Averkiev

1. Introduction

The main task of the new field in electronicsÐ spintronicsÐ
is the creation of devices which use spin degrees of freedom
for the storage, recording, and readout of information.
Contemporary electronics is oriented toward the use of two-
dimensional semiconductor structures with a highmobility of
charge carriers; therefore, a fundamental problem of studying
the processes of spin dynamics precisely in low-dimensional
nanostructures exists. The main difference between two-
dimensional structures and bulk semiconductors is the
anisotropy of physical properties caused by the restriction of
the motion of charge carriers along one crystallographic

direction. The main properties of spin dynamics are also
connected with this very feature, although the spin can be
oriented in any of the three spatial directions, even in two-
dimensional systems. Spin relaxation constitutes a process of
the disappearance of the ensemble-averaged spin of charge
carriers. Indeed, spin±orbit interaction in each microscopic
scattering event can result in a change of the sign of the
electron-spin projection onto a preferred axis to the opposite
sign. The total magnitude of the square of the spin
momentum remains unaltered in this case. The process of
the loss of the average spin upon the interaction of electrons
with, for example, impurities can be described in terms of the
following kinetic equations

_n" � ÿWn" �Wn# ; _n# � ÿWn# �Wn"; �1�

where n" and n# are the numbers of electrons with spins up
and down, respectively, and W describes the rate of transi-
tions with spin flips. It follows from Eqn (1) that _n" � _n# � 0,
and for the total spin S � �n" ÿ n#�=2 we obtain

_S � ÿ S

ts
; tÿ1s � 2W ; �2�

where ts is the spin relaxation time. Equation (2) describes the
disappearance of the average spin because of the spin flip in
each scattering event. The quantityW can be due to the spin±
orbit interaction (Elliott±Yafet mechanism of spin relaxa-
tion) or by the contactmagnetic interaction of an electron or a
hole with magnetic ions. However, in semiconductors at not
too low temperatures the most significant mechanism of spin
relaxation is the kinetic mechanism suggested by D'yakonov
and Perel' [1]. In terms of this mechanism, the disappearance
of the average spin occurs not at the instant of scattering, but
rather between the instants of collisions, because of the
precession of an electron spin in the effective magnetic field
caused by spin±orbit interaction. Indeed, in a magnetic field
the spin precesses about the field vector in such a manner that
only the spin projection onto the field direction is retained,
while the average values of the transverse components of the
spin are lost. However, if this effective field changes direction,
the relaxation of all spin components will occur. This process
can be described by the following equation

_S� S�X � hSi ÿ S

t
; �3�

whereX�k� is the frequency of spin precession in the effective
magnetic field; S�k� is the spin density of the ensemble of
electrons; hSi is the value of S averaged over the angles of the
vector k, and t is the time of isotropization of the electron
distribution function over the angles of the vector k. When
deriving Eqn (3), it was assumed that the time of energy
relaxation is much greater than t and, thus, S�k� represents
the spin density at a fixed energy. In addition, it was assumed
that in formula (3) the electron lifetime is much greater than
the spin relaxation time ts. Usually, the time t proves to be on
the order of the time of themomentum relaxation, andOt5 1
(with hXi � 0). In this case, the angle of rotation between
collisions proves to be small, so that the spin relaxation will
occur via particle diffusion. As is seen from Eqn (3), the
components of S that are dependent on the angles of the
vector k relax in a time t, and the average spin relaxes in a
longer time and, in view of the inequality Ot5 1, the time of
spin relaxation should be relatively large, ts 4 t. It can be
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shown that the equation for the average spin hS i takes on the
form [1, 2]

h _Sii � ÿt
h
hX2ihSii ÿ

X
j

hOiOjihSji
i
: �4�

Equation (4) was derived on the assumption that t is
independent of energy, and from this follows that tÿ1s � O 2t,
i.e., the relaxation becomes more efficient with increasing t.
This means that in samples with a high mobility, where t is
large, the spin relaxation can be efficient even at a weak spin±
orbit interaction.

It will be shown in Sections 2±4 how spin relaxation occurs
in two-dimensional semiconductor structures in terms of the
D'yakonov±Perel' kinetic mechanism.

2. Anisotropy of spin relaxation in asymmetric
quantum wells

In two-dimensional structures, the dependence of the preces-
sion frequency X�k� is determined by two factors. First,
because of the asymmetry of the well itself, the Rashba effect
occurs [3], which leads to the following X�k� dependence:

X � a�ky;ÿkx� ; �5�

where a is a coefficient. Second, for semiconductor structures
grown on the basis of semiconducting III±V compounds, even
in symmetrical wells grown along the (001) axis, there arises a
contribution to X�k� which is called the Dresselhaus con-
tribution [2, 4]:

X � b�kx;ÿky� ; �6�

where b is a parameter differing from a. The substitution of
expressions (5) and (6) into equation (4) makes it possible to
obtain the spin relaxation times. For asymmetrical quantum
wells grown along the (001) axis, the calculations of the
relaxation times for the spin orientation along the (001) axis
(tz), �1�10� axis (t�), and (110) axis (tÿ) yield

tÿ1z � C�a 2 � b 2� ; tÿ1� �
1

2
C�a� b�2 ;

tÿ1ÿ �
1

2
C�aÿ b�2 ; C � tk 2 : �7�

An important circumstance is that the parameter a is
determined by the shape of the quantum well and can change
upon application of an electric field. In addition, it is seen
from formulas (7) that at a � �b one of the times can become
infinitely large, which means the absence of spin relaxation
for spins oriented in the plane of the quantum well along the
direction (110) or (1�10). The possibility of such an anisotropy
was noted in Ref. [5], and was observed for the first time in
Ref. [6] in the dependence of the Hanle effect on the
orientation of the magnetic field in the quantum-well plane.
The effect has been demonstrated most vividly in Ref. [7],
where the spin relaxation of electrons was investigated in
double quantum wells in which the ratio a=b was controlled
using an external electric field (Fig. 1). It is seen from Fig. 1
that, at V � 1:2 V and a � 0, the times t� and tÿ coincide,
while at V � 0:7 V and a � b, they differ severalfold. In
addition, it follows from the results shown in Fig. 1 that the
lifetime t0 exceeds the spin relaxation times t� and tÿ
severalfold; therefore, the total time Ts of the spin

disappearance, which is equal to t0ts=�t0 � ts�, virtually
coincides with ts.

Another (more obvious) anisotropic effect is the depen-
dence of the relaxation time on the spin orientation relative to
the growth axis: the relaxation rate of spin oriented along the
growth axis is twice as large as the relaxation rate of spin lying
in the plane of the quantum well. The reason for this effect is
that if the spin is oriented along the growth axis (z), it is
subject, according to expressions (5) and (6), to the effective
field directed along the x- and y-axes. If the spin lies in the
plane of the well (e.g., along the x-axis), its relaxation is
affected only by the effective magnetic field directed along the
y-axis. This leads to an increase in the spin relaxation times t�
and tÿ. Notice that an exactly twofold difference in the
relaxation times is realized only if a � 0 or b � 0.

The anisotropy of the relaxation rate in two-dimensional
systems also arises in the case of the Elliott±Yafet mechanism
of spin relaxation. It can be shown that in two-dimensional
structures the spin-dependent electron scattering is described
by the expression [8]

V 0kk 0 � V0�kÿ k 0��r � �k� k 0��
z
; �8�

where k and k 0 are the initial and final quasimomenta of the
electron in the plane of the quantumwell; z is the growth axis;
V0�kÿ k 0� is the Fourier image of the scattering potential;
r � �sx; sy; sz�, and si are the Pauli matrices. A specific
feature of Eqn (8) is a linear dependence of V 0 only on the
transverse components of the vectors, kx and ky or k

0
x and k 0y.

As a result, the effective field leading to the relaxation of spin
oriented along the z-axis can be oriented along the x- and y-
axes, whereas in the case of spin that is parallel to the x-axis,
only along the y-axis. It is this feature that leads to a twofold
difference in the appropriate times. A calculation with
allowance for the `golden rule' yields the expressions [8]

1

tzz
� 2

txx
� 2

tyy
;

1

tzz
� 1

tp

D
Eg

kBT

Eg
; �9�

where D is the magnitude of spin±orbit splitting in the valence
band; Eg is the forbidden band width; tp is the momentum
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Figure 1. Anisotropy of spin relaxation in the plane of a quantum well

depending on an external electric field: ~ Ð t�, �Ð tÿ, & Ð a=b, and ($)

Ð radiative lifetime t0 of electrons.
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relaxation time, which is inversely proportional to jV0j 2; T is
the temperature, and kB is the Boltzmann constant. In a bulk
cubic crystal, all the times are equal and proportional to
�kBT=Eg�2.

3. Spin relaxation in degenerate semiconductor
structures

As follows from formulas (7), the spin relaxation time ts in
terms of the kinetic mechanism is inversely proportional to
the time t of isotropization of the distribution function,
which, in turn, is proportional to the momentum relaxation
time. This means that in heavily doped bulk crystals the
kinetic mechanism will be suppressed because of the small
momentum-relaxation time tp. In two-dimensional systems,
the impurities can be spatially separated from the electrons;
then, in heavily doped structures tp also proves to be large, so
that we obtainOtp � 1. In this case, the problem of the role of
electron±electron collisions in the process of spin relaxation
arises. A specific feature of the situation is also that electron±
electron interactions do not affect the momentum relaxation
time, since in such interactions the total momentum of the
system remains unaltered.

It was first shown in Ref. [9] that if in the collision integral
in equation (2) for S�k� we take into account only electron±
electron collisions, then the spin relaxation in the regime of
the D'yakonov±Perel' mechanism takes place. The micro-
scopic reason for the relaxation, as before, is the spin
precession in the effective magnetic field X�k�, and the
interaction of particles leads to the isotropization of the
distribution function, so that the time t of the isotropization
of the distribution function proves to be equal to
tptee=�tp � tee�, where tee is the isotropization time due to
electron±electron collisions.

An important feature of the D'yakonov±Perel' mechan-
ism during frequent electron±electron interactions is a sharp
temperature dependence of ts caused by the fact that in a
degenerate electron gas the isotropization time of the
distribution function may be estimated as t � 1=T 2. Com-
bined experimental and theoretical investigations (see Fig. 2)

have shown that such a relaxation of spins does take place. At
high temperatures, T � TF, the results of calculations with
allowance for electron±electron collisions demonstrate good
agreement with experimental data. The theoretical curve
(dashed line) was constructed using formulas analogous to
Eqn (7) at b � 0 under the condition that the time tp is
estimated from the temperature dependence of mobility. At
low temperatures, T � 5 K, electron±electron collisions are
suppressed and the result of the calculation (dashed line)
demonstrates agreement with the experimental data (open
squares). It has been shown in Section 2 that the anisotropy of
the processes of spin relaxation is caused by the dependence of
the effective magnetic field on the electron momentum rather
than by the processes of isotropization of the distribution
function. This means [10] that in the case of an efficient
electron±electron interaction as well, when X�k� is caused
simultaneously by the Rashba and Dresselhaus effects, a
dependence of the rate of spin relaxation on the spin
orientation in the plane of the quantum well arises.

4. Anisotropy of spin relaxation in structures
grown along the (110) axis

As is seen fromEqn (4), in the general form the spin relaxation
is described by a second-rank tensor relating the rate of
changes in the average spin to the spin magnitude itself. In
cubic crystals, such a tensor reduces to a scalar, but in low-
symmetry two-dimensional structures the tensor of the inverse
relaxation times is characterized by three independent para-
meters. The principal axes of the tensor of the spin-relaxation
times can be noncoincident with the natural geometric axes of
the sample. As was first indicated in Ref. [12], such a case is
realized in asymmetrical wells grown along the (110) axis. In
structures with such a crystal orientation, the relaxation of
spin oriented at the initial instant of time along the growth axis
will lead to the appearance of a spin component oriented in the
plane of the quantumwell.Amicroscopic reason for this effect
in structures with the growth axis (110) may be the combined
action of theRashba andDresselhaus effects. Indeed, for such
structures the effective magnetic field caused by the Dressel-
haus effect has only a z-component, but depends onkx (Fig. 3).
The Rashba field has components Bx and By proportional to
ky and kx, respectively. It is shown in Fig. 3 that one of the
proper axes of the tensor of spin-relaxation times will coincide
with the x-axis, and two other axes will make angles ywith the
y- and z-axes. The results of the calculations [12] (see Fig. 3)
demonstrate that at a � b and times of the order of ts the spin
component Sy can reach� 10% of the initial value Sz0.
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5. Conclusions

In this paper, we considered the main features of the
anisotropy of spin relaxation for electrons in low-dimen-
sional semiconductors. It has been shown that the anisotropy
arises both because of natural causes (the presence of a
growth axis, and the restriction of the free motion in this
direction) and as a result of the mutual action of the Rashba
and Dresselhaus effects. It is basical that the magnitude of a
can be controlled using technological means or an external
electric field.

Because of the anisotropy of spin-relaxation times, the
spin does not relax along some directions in the plane of the
quantum well, which opens up the possibility of using the
anisotropy effect for spin storage.

It can be shown that in quantum wells where the majority
carriers are holes such effects can also show themselves,
although some important features exist in this case, since the
total projection of the hole momentum, �3=2 or �1=2, is
always oriented along the growth axis.
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