
Abstract. Surface spin-flop transition is investigated for smooth
and rough uncompensated surfaces of a semi-infinite, two-sub-
lattice, collinear antiferromagnet. The influence of size effects
arising in the flat antiferromagnetic layer on the spin-flop and
spin-flip transitions is considered for smooth and rough sur-
faces. A principal difference is demonstrated between how the
spin-flop transition proceeds in the layer areas with an odd and
even number of atomic planes.

1. Introduction

The physical properties of a crystal near the surface are
known to differ from those in the bulk. This difference
makes possible phase transitions near the surface at the
temperature, external field strength or a value of other
governing parameter, the values of which do not correspond
to the phase transition point in an infinite crystal.

An example of such a difference is the spin-flop transition
in a two-sublattice uniaxial collinear antiferromagnet in a
magnetic field applied along the easy axis. It should be noted
that theoretical models of surface transitions described in the
literature as a rule consider flat smooth crystal surfaces. The
real surface of a crystal always contains atomic steps that
change the coordinate corresponding to the flat surface by the
height of a single atomic layer. Atomic steps present on an
uncompensated antiferromagnetic surface break it down into
regions of two types, in which the magnetization vector of the
upper atomic layer is parallel and antiparallel to the external
magnetic field, respectively. Scenarios of spin-flop transition

in regions of different types also depend on the relationship
between the correlation radius of the antiferromagnetic order
parameter and the region size. Investigation into these
scenarios are the primary objective of this review.

Its secondary objective is to consider spin-flop and spin-
flip transitions in plane-parallel antiferromagnetic layers a
nanometer thick under conditions in which the correlation
radius of the order parameter compares with the layer
thickness and size effects become essential. The model of the
plane-parallel antiferromagnetic layer fairly well describes
antiferromagnetic atomic chains at the ferromagnet surface
and multilayer magnetic structures with antiferromagnetic
interaction between adjacent ferromagnetic layers. Such
multilayer structures exhibiting giant magnetoresistance
effect have proved to be of great interest for researchers and
practising engineers which justifies the appearance of the
present review.

L NeÂ el was the first to predict spin-flop transition in the
bulk of an infinite antiferromagnet [1]. Let us consider a
system of quasiclassical localized spins for temperature
T5TN (where TN is the NeÂ el temperature), where localized
spin moduli may be regarded as constant. The exchange
interaction energy in the approximation of nearest neighbor
interactions has the form

Wex � ÿ 1

2
~zJN cosc ; �1�

where ~z is the number of nearest neighbors, J < 0 is the
exchange integral, with spin values being included in the
corresponding constants (in the present case, in J), N is the
number of spins, and c is the angle between sublattice
magnetizations.

The energy of single-ion anisotropy is given by

Wan � ÿN

2

X2
i� 1

K cos2 ji ; �2�

where K > 0 is the anisotropy constant, ji is the angle
between magnetization of the ith sublattice �i � 1; 2� and the
easy x-axis (Fig. 1a), and c � j1 ÿ j2.
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The energy of spins in the external magnetic field parallel
to the easy axis is expressed as

WB � ÿmB0
N

2

X2
i� 1

cosji ; �3�

where m is the atomic magnetic moment, and B0 is the
induction of the external magnetic field.

In the collinear phase, where j1 � 0, j2 � p, the total
energyW �Wex �Wan �WB equals [1]

W1 � ÿ
�
1

2
~zjJ j � K

�
N : �4�

In the spin-flop phase (Fig. 1b), j1 � ÿj2 � j, and the total
energyW takes the form

W2 � ÿ
�
1

2
~zJ cos 2j� K cos2 j� mB0 cosj

�
N : �5�

Minimizing W2 over j and introducing notations

a � K

~zjJ j 5 1 ; �6�

b � mB0

~zjJ j ; �7�

one comes to

cosj � b
2�1ÿ a� ; �8�

W2 � ÿ ~zjJ jN
2

�
1� b 2

2�1ÿ a�
�
: �9�

A comparison of W1 and W2 gives the value of magnetic
field induction corresponding to the first-order bulk spin-flop
transition from the collinear phase to the spin-flop phase:

b1 � 2
�����������������
a�1ÿ a�

p
� 2

���
a
p

: �10�

Angle j for b > b1 decreases as the field grows, and at
b � b2, with

b2 � 2�1ÿ a� ; �11�

sublattices collapse, i.e., angle j vanishes. This second-order
phase transition is called the spin-flip transition. For b > b2,
magnetizations of antiferromagnet sublattices are parallel,
and we shall refer to this phase as ferromagnetic.

Let us move to a consideration of the surface spin-flop
transition starting from an atomically smooth surface.
Sections through the antiferromagnet surface relate to two
classes. Compensated sections correspond to a case in which
atomic planes parallel to the surface contain an equal number
of atoms belonging to different sublattices. The magnetic
moment of such planes in the collinear phase is zero.

Uncompensated sections correspond to a case in which
atomic planes parallel to the surface contain atoms of a single
sublattice, while the adjoining atomic planes consist of atoms
belonging to different sublattices and have opposite magnetic
moments in the collinear phase.

In the case of a compensated section, there is no surface
phase transition, and spins of the atomic surface layer
undergo flop in the bulk spin-flop transition field b1. This
phenomenon is attributable to the atomic scale of the change
in the antiferromagnetic order parameter equaling the
difference between sublattice magnetization vectors and the
energetic inefficiency of such distortions [2].

In what follows, we shall consider uncompensated
sections alone. The surface spin-flop transition for this case
was investigated for the first time in Ref. [3], where it was
shown that the surface magnon dispersion law is softened at

bs �
b1���
2
p : �12�

Later authors [4, 5] studied the distribution of the antiferro-
magnetic order parameter in a field range of bs < b < b1
based on the assumption that bulk spin-flop orientation
occurring for b > b1 is realized at the antiferromagnet
surface; i.e., the antiferromagnetic vector in the atomic
surface layer is normal to the easy axis.

The bulk of an antiferromagnet for b < b1 being in the
collinear phase, a 90� exchange spring must form near its
surface, the structure of which coincides with that of the
Bloch domain wall.

The hypothesis of spin-flop orientation at the antiferro-
magnetic surface is redundant because spin distribution can
be found without additional assumptions. Moreover, it was
shown in Ref. [2] that such conjecture is erroneous because a
180� exchange spring rather than the 90� one forms near the
surface.

The surface spin-flop transition has not been a focus for
researchers for many years since the publication of Refs [4, 5].
A new impetus to investigations was given by the discovery of
giant magnetoresistance in multilayer magnetic structures
(see, for instance, works [6±8]), demonstrating that the
behavior of such structures with alternating ferromagnetic
and nonmagnetic layers a nanometer thick and with the
antiferromagnetic exchange sign between adjacent ferromag-
netic layers in a magnetic field is, in many respects, analogous
to the behavior of the plane-parallel layer of an antiferro-
magnet having uncompensated surfaces.

The review outline is as follows. Section 2 deals with
surface phase transition in a semi-infinite antiferromagnet
with an uncompensated surface. Size effects in the plane-
parallel layer of an antiferromagnet are described in
Section 3, with special reference to the essential difference
between the behavior of layers containing an even and odd

j2

j1

c

x

a

j

x

c

b

Figure 1. (a) Angles j1 and j2 characterizing directions of magnetization

vectors of antiferromagnetic sublattices, c � j1 ÿ j2. (b) Orientation of

magnetization vectors in the spin-flop phase.
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number of atomic planes. Section 4 is devoted to the study of
spin-flop transition at the rough uncompensated surface of a
semi-infinite antiferromagnet. Section 5 describes a phase
diagram of the plane-parallel layer of an antiferromagnet
with uncompensated rough surfaces. The closing Section 6 is
a synopsis of reviewed issues.

2. Smooth surface of a semi-infinite specimen

Because the number of nearest neighbors for spins located at
the antiferromagnet surface is smaller than in the bulk, they
are more amenable to the exposure to an external magnetic
field. It is this fact that explains why the field of spin-flop
transition is smaller than its bulk value.

Let us assume that the easy axis lies in the surface plane
and label the uncompensated atomic planes parallel to the
surface with the index j starting from the surface. Even and
odd j values correspond to different sublattices. The location
of the spins in the atomic plane is given by angle yj between
the easy axis and the spin magnetic moment. Atomic
magnetic moments are supposed to be confined to the
respective atomic plane. Then, the surface magnetic moment
resulting from spin-flop transition has no constituent perpen-
dicular to the surface. Otherwise, a magnetic field arises that
causes the system's energy to increase.

With this assumption in mind, the energy of exchange
interaction can be expressed as

Wex � njJ j~z
4

X1
j� 1

�
cos �yj ÿ yjÿ1��1ÿ d1; j� � cos �yj ÿ yj�1�

�
;

�13�

where n is the number of spins in the atomic plane, and di; j is
the Kronecker symbol. The number of nearest neighbors of a
given spin in preceding or subsequent atomic planes is ~z=2.
For section �100� across a tetragonal body-centered lattice
(with easy axis c lying in the section plane), one finds ~z � 8.

For the energy of single-ion anisotropy and Zeeman
energy we obtain the following formulas

Wan � ÿKn
X1
j� 1

cos2 yj ; �14�

WB � ÿmB0n
X1
j� 1

cos yj ; �15�

with the magnetic field applied parallel to the easy axis.
Minimization of the total energy W over parameters yj

yields the system of equations

sin �yj ÿ yjÿ1��1ÿ d1; j� � sin �yj ÿ yj�1�
� 2a sin 2yj � 2b sin yj : �16�

This system was solved in Ref. [2] by numerical methods.
It turned out that if the magnetic moment of the upper

atomic plane in a weak magnetic field is antiparallel to it
�y1 � p�, then surface spin-flop transition occurs in field bs,
giving rise to a 180� exchange spring near the surface:
magnetization of the upper atomic plane turns in the field
direction, while magnetizations of the second and third,
fourth and fifth, etc. atomic planes are pairwise compen-
sated. The magnetization of the first atomic plane being
parallel to that of the last even atomic plane, the spin-flop
transition near the antiferromagnet surface results in the

appearance of a magnetic moment equal to 2mn [2]. It is
possible to observe a 180� turn of the upper atomic plane
magnetization vector by magnetic force, spin-polarized
tunnel, and photoemission electron microscopies.

The characteristic scale at which the rotation of atomic
plane magnetizations takes place in the exchange spring of
interest can be estimated from the asymptotic behavior of
angles yj.

In the depth of an antiferromagnet, the values of yj are
slightly different from the bulk values (0 for even and p for
odd planes). This allows system (16) to be linearized with
respect to these deviations [2]:

w2n � y2n ; w2nÿ1 � y2nÿ1 ÿ p :

The linearized equation has the following solution

wn � kwnÿ1 ; �17�
where

k � 1ÿ
�����������������
b 2
1 ÿ b 2

q
; �18�

corresponding to the exponential decrease in distortions
toward the depth of the antiferromagnet:

wn � w1 exp
�
ÿ d�nÿ 1�

rc

�
; �19�

where d is the distance between the nearest atomic planes, and
rc is the correlation radius of the order parameter:

rc � d��ln jkj�� � d�����������������
b 2
1 ÿ b 2

q / �b1 ÿ b�ÿ1=2 : �20�

Such dependence of the correlation radius for b < b1 was first
obtained in Ref. [5]. Evidently, as b! b1, rc tends to infinity
as �b1 ÿ b�ÿ1=2, i.e., the surface spin-flop transition spreads
deep into the antiferromagnet as it approaches the bulk spin-
flop transition point.

For b > b1, i.e., after the bulk spin-flop transition has
already occurred, it is energetically preferred for the magne-
tization of the upper (first) atomic plane to be directed along
the field; therefore, the 180� spiral turns into a 90� one: the
antiferromagnetic vector is perpendicular to the easy axis in
the bulk, and collinear to it near the surface. A flop of
sublattices in the near-surface layer occurs in stronger
magnetic fields �b � 0:25�.

If themagnetic moment of the upper atomic plane in weak
magnetic fields is parallel to the field vector �y1 � 0�, the
surface spin-flop transition is energetically unfavorable and
the bulk transition occurs at b � b1.

The situation for b > b1 is totally analogous to the case of
y1 � p, the sole difference being in the direction of rotation of
the antiferromagnetic order parameter within the exchange
spring.

The characteristic scale of the exchange spring can also be
found from the asymptotic behavior of angles yj. In this case,
however, deviations of angles yj from their bulk values in the
spin-flop phase, viz. w2nÿ1 � y2nÿ1 ÿ j and w2n � y2n � j, are
small [j is given by formula (8)].

The solution of the linearized equation has the form (19),
where, according to Ref. [2], one finds

k � 1ÿ
�����������������
b 2 ÿ b 2

1

q
: �21�
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As b grows in the region of b > b1, the exchange spring near
the surface does not disappear, but the angle of turn in it
decreases. The dependence of w1 � y1 ÿ j on the magnetic
field induction is shown in Fig. 2.

Moreover, the spiral shrinks due to decreasing the
correlation radius rc. Parameter k, describing asymptotic
behavior of deviations wj within the field range b1 5 b < b2,
is given by the expression [2]

k � 1� 2b 2

b 2
2 ÿ 2b 2

�
���������������������������������������������
1� 2b 2

b 2
2 ÿ 2b 2

�2

ÿ 1

s
: �22�

It is easy to see that k! 0 as b! b � � b2=
���
2
p

, and the
correlation radius also vanishes. This situation corresponds
to that at b � b � when only angle y1 determining the
magnetization direction in the upper atomic plane undergoes
deviation from the bulk value. The sign of this deviation is
such that magnetization makes an angle with the magnetic
field vector smaller than in the crystal bulk.

At b � b �, the sign of k changes. If b < b �, the parameter
k > 0 [a minus sign in formula (22)], while for b > b � this
parameter is negative [a plus sign in formula (22)].

As the magnetic field grows within the b � < b < b2 range,
the characteristic size of the exchange spring increases and
tends to infinity as �b2 ÿ b�ÿ1=2 when b! b2 ÿ 0. Because all
angles yj and wj in the limit b! b2 tend to vanish, the solution
of system (16) can be found analytically [2].

Let us introduce a dimensionless parameter

D � 1ÿ b
b2
: �23�

It follows from formula (8) that

j �
������
2D
p

: �24�
Using expression (22), we obtain

k �
������
8D
p

ÿ 1 :

The linearized equation for w1 yields

w1 �
������
2D
p ÿ ������

2D
p

ÿ 1
�
: �25�

Then, we arrive at

y1 � 2D : �26�
Thus, the values of angle j in the bulk as b! b2 differ

from zero by approximately
����
D
p

, whereas the value of y at the
surface is on the order of D as expected because the magnetic

moment of the upper atomic plane makes an angle with the
magnetic field direction smaller than the respective angle in
the bulk.

The correlation angle rc � d=
������
8D
p / Dÿ1=2, in conformity

with themean field theory for second-order phase transitions.
It can be concluded that distortions of the antiferromag-

netic order parameter (supplemental to those in the bulk)
caused by a magnetic field near the uncompensated anti-
ferromagnetic surface emerge in the field bs of surface spin-
flop transition and persist as the field grows to a value
corresponding to the spin-flip transition to the ferromagnetic
phase.

3. Size effects in the plane-parallel layer
of an antiferromagnet with smooth
uncompensated surfaces

For a5 1, in the case of uncompensated antiferromagnet
surface, the order parameter correlation radius rc in fields
b � b1 is much larger than the interatomic distance; for this
reason, both in this field range and near the value of the spin-
flip transition field at which rc becomes comparable to or
greater than the antiferromagnetic layer thickness, marked
size effects are likely to arise.

As mentioned in Section 2, a system comprising alternat-
ing ferromagnetic and nonmagnetic metallic layers with the
antiferromagnetic sign of exchange between the nearest
ferromagnetic layers behaves in the magnetic field like the
antiferromagnetic layer under consideration.

Theoretical studies of such multilayer structures have
been undertaken using numerical methods by many authors
[9±16], whereas attempts at analytical consideration of size
effects are virtually absent.

A recent publication [17] reports on the investigation of
the ground state of an antiferromagnetic atomic chain on a
ferromagnetic substrate by numerical methods. The main
simplification made in work [17] reduces to the fact that the
spins of the ferromagnet are taken as unperturbed by
interaction with the chain. This assumption is valid provided
the energy of exchange interaction between the neighboring
spins in the ferromagnet is much higher than that of the
interaction between the spins of the substrate and the chain.
In this case, the exchange field created by the ferromagnetic
substrate plays the role of the external field for the anti-
ferromagnetic chain, and the problem of chain spin behavior
as shown in Ref. [18] reduces to the problem of spin-flop and
spin-flip transitions in the thin antiferromagnetic layer
considered in Ref. [19].

Changes in formulas (13)±(16) for the description of an
antiferromagnet of finite thickness are reduced to the number
of terms in the sum over j also being finite and equaling the
number M of atomic planes in the layer, while term
cos �yj ÿ yj�1� on the right-hand side of Eqn (13) and term
sin �yj ÿ yj�1� on the left-hand side of Eqn (16) must be
multiplied by �1ÿ dM; j�.

As shown in paper [19], layers containing even and odd
number of atomic planes behave quite differently. Such a
difference for multilayer structures withM � 15 andM � 16
was first described in Ref. [9]).

Even M. In this layer, surface atomic planes belong to
different sublattices of the antiferromagnet. In magnetic
fields b < bs, the layer is in the collinear phase. Spin-flop
transition in this layer occurs at b � bs and results in

0.2

0.4

0.6

0.8

1.0

w1

0.5 1.0 1.5 2.0b

Figure 2. Rotation angle of the magnetic moment of the surface atomic

layer versus magnetic field stronger than the bulk spin-flop transition field

for a � 0:005.
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appearing a 180� Bloch domain wall in its center [9, 19]. The
wall occupies only the middle part of the layer if correlation
radius rc�bs� given by formula (20) is smaller than the layer
thickness a (curve 1 in Fig. 3). The appearance of the wall
accounts for the magnetic moments of surface atomic planes
being directed along the magnetic field vector.

If the layer thickness a < rs � rc�bs� � dbÿ1s � d=
�����
2a
p

,
the layer accommodates only the central part of the domain
wall in which the rotation angle of the antiferromagnetic
vector changes linearly with distance.

As the effective field grows and b approaches b1, the
correlation radius tends to infinity as �b1 ÿ b�ÿ1=2. When
a4 rs, the domain wall broadens and extends over the entire
layer thickness in field ba, which can be found from the
condition

2rc�ba� � a : �27�
As rc grows further, the thickness of the domain wall ceases to
increase, and the antiferromagnetism vector turns uniformly
through angle p from one layer surface to the other, so that
magnetizations of extreme atomic planes are directed along
the external field vector (straight line 2 in Fig. 3).

Radius rc in exchange fields stronger than b1 begins to
decrease and the 180� domain wall in the layer center
transforms into two roughly 90� exchange springs near the
surfaces (curve 3 in Fig. 3).

Then, the middle of the layer is in the spin-flop phase. rc
decreases with growing field, size effects become immaterial,
and the behavior of the exchange spring near one of the layer
surfaces is described irrespective of the other's behavior.
Characteristics of this behavior were considered in Section 2.

The correlation radius rc increases as the field approaches
the value of the bulk spin-flip transition field b2 and the size
effect again becomes essential.

Simulation in work [19] demonstrated that spin-flip
transition in a layer of finite thickness is actually a second-
order phase transition and occurs in field b �2 < b2 (Fig. 4).

The dependence thus obtained can be approximated by
the formula

b �2 � b2

"
1ÿ 1

8

�
4:5

M

�2
#
: �28�

The phase diagram of a layer with an even number of
atomic planes in `magnetic field±layer thickness' variables is
presented in Fig. 5.

OddM. In this layer, both surface atomic planes belong to the
same sublattice of the antiferromagnet. We assume that the
total magnetic moment, and hence magnetic moments of
surface planes, are directed along the external magnetic field
vector.

As shown in Section 2, spin-flop transition in the surface
layer in this configuration is suppressed. Therefore, spin-flop
transition in a layer of finite thickness occurs for b �1 > b1;
furthermore, it is a second-order phase transition unlike
transitions in an infinite specimen or in a layer with an even
number of atomic planes [19]. The magnetization rotation
angle changes continuously following field variation, with its
maximum being located in the center of the layer (see Figs 6
and 7).

Theoretical dependence b �1 �M� plotted in Fig. 8 is
approximated by the expression

�b �1 �2 � b 2
1 �

�
4

M

�2

: �29�

The behavior of a layer with odd M for b > b �1 is similar to
that in the case of evenM.

The phase diagram of a layer with an odd number of
atomic planes is shown in Fig. 9.

0 5 10 15 20 25 30 j

0.5

1.0

1.5

2.0

2.5

3.0 1

2

3

y

Figure 3.Domain walls in a layer with an even number of atomic planes in

fields bs < b < b1 (curve 1), b � b1 (curve 2), and b > b1 (curve 3). The

dependence of the turn angle of the antiferromagnetism vector on the

atomic plane number is depicted.

1.95

1.97

b2

b�2

40 80M

Figure 4. Plot of the spin-flip transition field vs. the number of atomic

planes in the layer.

bsb1 b� b2 b

32

l

1

Figure 5. `Magnetic field±layer thickness' phase diagram for a layer with

an even number of atomic planes: collinear antiferromagnetic phase (1),

noncollinear phase (2), and ferromagnetic phase (3). Solid curves corre-

spond to phase transition lines.
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Thus, the character of spin-flop transition depends on the
parity of the number of atomic planes in the layer. At evenM,
spin-flop transition is a first-order phase transition and
always occurs in the surface spin-flop transition field. At
odd M, a second-order phase transition takes place in the
M-dependent field stronger than the bulk spin-flop transition
field.

Spin-flip transition in a layer of finite thickness occurs in a
field weaker than the bulk spin-flip transition field.

4. A semi-infinite antiferromagnet
with an uncompensated rough surface

The rough surface of an antiferromagnet has atomic steps as
high as one atomic layer. The upper atomic layer at either side
of the step belongs to different sublattices of the antiferro-
magnet (Fig. 10). Due to this, the entire antiferromagnet

surface is broken up by step edges into type 1 and 2 regions,
the type being determined by the number of the sublattice to
which the upper atomic layer belongs.

Given the sufficiently large characteristic longitudinal size
of the steps, R, application of magnetic field b satisfying
inequality bs < b < b1 parallel to magnetization of the first
sublattice does not change the magnetic structure of type 1
regions, whereas surface spin-flop transition occurs in type 2
regions. As a result, the surface is broken down into domains.

The nature of surface distortions of themagnetic structure
strongly depends on the relationship between characteristic
stepwidthR and the correlation radius of the order parameter
rc. The strong dependence of rc on b, in particular, the
tendency of rc to infinity as b! b1, accounts for a
sufficiently complicated phase diagram of magnetic struc-
ture distortions in variables �b;R�. It was examined in
Ref. [20] for the example of tetragonal body-centered lattice
of spins whose direction was given by unit vector sn; i; j, where
index n labelled planes beginning from the uppermost one of
those present in a sample with a rough surface, while indices i
and j gave spin positions in the plane where they formed a
rectangular lattice. The spin value was regarded to be
constant and included in the corresponding interaction
constants.

The Heisenberg exchange interaction described in the
nearest neighbor approximation by the expression

Wex � jJ j
2

X
n; i; j; d

�sn; i; j; s�n; i; j��d� ; �30�

where index d labels the nearest neighbors of a given spin, was
taken into account during computations, along with the

b

0.5

0.5 1.0 1.5

1.0

y11

Figure 6.Magnetic field dependence of the direction of the magnetization

vector in the middle atomic plane for a layer withM � 21 at a � 0:005.

10 20 j

0.7

1.3

y2jÿ1

Figure 7.Direction of magnetization vectors of odd atomic planes in field

b � 0:2 for a layer withM � 41 at a � 0:005.

b1

b�1

40 80
M

Figure 8. Plot of spin-flop transition field vs. the number of atomic planes

in a layer with an odd number of atomic planes.

l

1 2

b1 b� b2 b

3

Figure 9. `Magnetic field±layer thickness' phase diagram for a layer with

an odd number of atomic planes: collinear antiferromagnetic phase (1),

noncollinear phase (2), and ferromagnetic phase (3). Solid curves corre-

spond to phase transition lines.

Figure 10.Atomic step at the surface of an antiferromagnet. Arrows show

directions of atomic spins.
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uniaxial anisotropy energy in the form

WM � K?
X
n; i; j

�s zn; i; j�2 ÿ K
X
n; i; j

�s xn; i; j�2 ; �31�

where the z-axis of the orthogonal Cartesian system of
coordinates is normal to the surface, and the x-axis parallel
to the surface is the easy axis. The surface anisotropy constant
K? is introduced to take into account the energetic ineffi-
ciency of states in which the arising magnetic moment has a
z-component perpendicular to the surface. For K? > 0, spins
lie in atomic planes parallel to the surface and their direction
is given by angle yn; i; j which makes an easy axis with the
magnetic moment corresponding to the spin. Direct account
of dipole±dipole interaction between spins and arising
demagnetizing fields considerably complicates the problem
and increases computation time.

The Zeeman energy assumes the form

WZ � m
X
n; i; j

�sn; i; j; B0� : �32�

This expression takes into account that the spin vector is
antiparallel to the vector of the magnetic moment corre-
sponding to the spin. Equilibrium spin distributionwas found
by simulation of spin behavior based on the system of
Landau±Lifshitz±Hilbert equations

�hSaf
d

dt
sn; i; j � �sn; i; j; Heff� � gHeff ; �33�

where g is the attenuation coefficient, and Saf is the atomic
spin, and

H
p
eff � ÿ

qW
qs p

n; i; j

; �34�

p � x; y; z, andW is the total energy:W �Wex�Wan�WZ.
The initial state was chosen as either the collinear state of

the antiferromagnet, corresponding to the minimal energy in
the absence of the external field, or the homogeneous state
developing after bulk spin-flop transition. The solution of the
system (33) was sought by the `classical' fourth-order Runge±
Kutta method. Arrival at equilibrium was established from
the behavior of the total energy of the system.

Simulation was performed for the case in which step edges
were parallel to the y-axis of the orthogonal system of
coordinates; in other words, the two-dimensional problem
with boundary conditions periodic in xwas being solved. This
limitation did not qualitatively change the generality of the
results. They suggest formation of a near-surface 180�

exchange spring in the surface spin-flop transition field of
type 2 regions where the magnetic moment of the surface
atomic layer in weak fields is antiparallel to the external
magnetic field; these results were obtained under conditions
in which the characteristic size R of steps was much bigger
than the correlation radius rc of antiferromagnetic order
parameter (Fig. 11).

As R decreases but remains larger than rs, the spin-flop
transition field in a bounded type 2 region shifts toward
stronger magnetic fields (Fig. 12). ForR < rs, no domain wall
whatever forms in a separate region.

As the external field approaches the bulk spin-flop
transition point b1, the correlation radius rc !1; therefore,
relation R > rc breaks down with the growth of the magnetic

field even if the domain phase emerges. As shown in paper [20]
for the field range in which rc 4R, the problem in question
reduces to that of the distortion of order parameters at the
rough interface in a two-layer ferromagnet±antiferromagnet
system [21, 22] provided the ferromagnet is absolutely rigid
against magnetic distortions and interlayer exchange is
substituted by magnetic field b.

Calculations suggest the formation of static spin vortices
near the antiferromagnetic surface, spreading over the region
with jzj < R; their boundaries at this surface coincide with
atomic step edges. There appears another characteristic size
d0, besides R; it is the width of the surface region near an
atomic step in which yn; i; j is essentially different from its
optimal value (0 and p on either side of the step, respectively).

Let us estimate d0 for the case of R4 d0 on energetic
grounds. The fact that magnetization of the upper atomic
layer in the region of width d0 does not coincide withmagnetic
field direction accounts for the loss of Zeeman energy
(expressed hereinafter in ~zjJ j units) on the order of bd0=S0

per unit length of the atomic step, where S0 is the area of a
rectangular cell in the atomic plane. The loss of anisotropy
energy ad0=S0 is negligibly small compared with that of
Zeeman energy.

Within the range of d0 < r < R, where r is the shortest
distance from a point to the step edge at the antiferromagnet
surface, jHyj is inversely proportional to r. In this range, the
contribution of distortions of the antiferromagnetic order
parameter to the exchange energy per unit length of the
atomic step is on the order of bÿ1y ln �R=d0�, where by is the
parameter of crystal lattice along the atomic step edge [21, 22].
Minimization of the total energy over d0 leads to d0 � bx=b

B0

Figure 11. Exchange spring in the type 2 region. Solid arrows indicate the

local direction of the antiferromagnetism vector whose rotation occurs in

the plane parallel to the surface. Dashed arrow points to the direction of

the magnetic field.
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Figure 12. `Magnetic field±roughness' phase diagram in the field range

b4b1 for a � 0:04. Solid curve is the line of first-order phase transitions

from the collinear to noncollinear phase. Domain (1), vortex (2), and weak

distortion (3) regions are shown.
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(where bx is the crystal lattice parameter along the x-axis); in
the b � b1 range, the value of d0 is of order rs.

In the opposite case of R5 d0, magnetization has no
space to turn. This is the weak distortion region.

As mentioned earlier, atomic steps break up the entire
antiferromagnet surface into regions of two types having total
areas s1 and s2, respectively. If the mean value of y in the
range of R5 jzj5 rc is c, then y changes from zero to c in
vortices occupying type 1 regions and from c to p in vortices
of type 2 regions.

The total vortex energy can bewritten out by analogy with
that in Slonczewski's `magnetic proximity' model [23] as

W � C1c
2 � C2�pÿ c�2 ; �35�

where

Ck � sk
R
: �36�

In the case of s1 � s2, the vortex energy minimum corre-
sponds to c � p=2.

Thus, formation of a 90� exchange spring near the
antiferromagnet surface is needed to decrease the vortex
energy (Fig. 13). An additional surface energy

w �
�����������������
b 2
1 ÿ b 2

q
�37�

is associated with the appearance of the spring; it vanishes as
b! b1. In the field range under consideration, when
d0 5R5 rc, the newly formed exchange spring accounts for
the much higher gain in the vortex energy compared with its
loss.

For rs 5R, domain±vortex phase transition occurs
continuously in the field bR for which rc�bR� � R, i.e., at

tR � 1ÿ bR
b1
� r 2s

R 2
: �38�

The magnetic field±roughness phase diagram for b < b1 is
depicted in Fig. 12.

For R5 rs, a phase transition from the collinear state
occurs directly to the phase with weak distortions.

Simulation in the framework of a discrete model
demonstrated that the transition from the collinear phase
to the phase with weak distortions and 90� exchange spring
is a first-order surface phase transition in the field ~bR, the
value of which can be estimated from simple energetic

reasoning [20]:

~tR � 1ÿ
~bR
b1
�
�
R

rs

�2

5 1 : �39�

After the bulk spin-flop transition has already occurred in
the field range b > b1, the behavior of surface distortions is
virtually identical at allR. Because rc !1 as b! b1 � 0, the
system near the field value b1 is in the vortex phase or in the
phase of weak distortions, while surface distortions penetrate
inside the antiferromagnet to the depth of orderR. In the case
of s2 � s1, the bulk spin-flop transition results in elimination
of the exchange spring.

As the field grows, rc decreases as described by formula
(21), and d0 changes as b

ÿ1. At the values of b5 1 rather far
from the value of sublattice collapse field b2, the parameters rc
and d0 are of the same order comparable to the lattice
constant.

In the field b 0R with rc�b 0R� � R4 d0�b 0R�, a smooth
transition occurs to the domain phase where in the regions
of either type roughly 90� exchange springs form with an
oppositely rotating antiferromagnetic order parameter (from
y � 0 at the surface to y � 90� in the bulk in the type 1 region,
and from y � 180� at the surface to y � 90� in the bulk in the
type 2 region). For b 0R, the following estimate is valid:

t 0R �
b 0R
b1
ÿ 1 � r 2s

R 2
: �40�

As the field grows, rotation of magnetization of the upper
atomic layer deflects it from the magnetic field direction and
approaches the magnetization direction of the respective
sublattice in the bulk. The angle of rotation in the exchange
spring gets smaller, and its thickness decreases as the field
grows up to the value of b � � b2=

���
2
p

.
For b2 > b > b �, rotation of the antiferromagnetic order

parameter in regions of either type, unlike that in the field
range b1 < b < b �, has only one sign; due to this, the
difference between the regions becomes insignificant and
further evolution of surface distortions proceeds similarly to
their evolvement in the case of smooth surfaces considered in
Section 2.

Only weak surface distortions are apparent when
R < d0�b�. The phase diagram for the field range
b2 > b > b1 is presented in Fig. 14.

Now, let us consider the possibility of observing these
distortions in experiment. The positions of atomic step edges
at the antiferromagnet surface and the characteristic distance
between them can be found using atomic-force microscopy.

B0

Figure 13. Static spin vortices and the 90� exchange spring. The region

where the spring exists is shown in dark grey. Solid arrows indicate the

local direction of the antiferromagnetism vector rotating in the plane

parallel to the surface. The dashed arrow points to the direction of the

magnetic field.
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Figure 14. `Magnetic field-roughness' phase diagram in the field region of

b > b1. Weak distortion (1), vortex (2), and domain (3) existence regions

are shown.
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Unfortunately, parameter R is not prominent enough under
experimental conditions and only root-mean-square devia-
tion of the surface from its average position is usually
estimated. Indirect estimation gives the values from 1 to
10 nm for R. Improved crystal and nanolayer growth
technologies make it possible to decrease the concentration
of atomic steps and increase R. In weak magnetic fields, the
upper atomic planes on either side of an atomic step in the
collinear phase are magnetized in opposite directions, as can
be shown by magnetic microscopy. In the domain phase,
magnetizations of the upper atomic plane have identical
orientation in regions of both types. Due to this, the field of
spin-flop transition in type 2 regions can be found experi-
mentally. Magnetic microscopy can identify boundaries
between the regions and shows that they coincide with
atomic step edges. The magnetization direction at the
boundaries differs from that in the center of the regions; in
particular, at the center of the transition region it is normal to
the easy axis. The width d0 of the transition region varies from
10 to 100 nm, depending on the degree of anisotropy, and for
b4b1 is of the same order of magnitude as the width of the
domain wall in the absence of a magnetic field.

The phase with weak distortions is easy to identify based
on the deflection of the mean magnetization of the surface
atomic layer from the direction of the magnetic field and easy
magnetization axis. In fields b > b1, it is possible to observe a
transition from the phase with weak distortions to the vortex
or domain phase.

5. An antiferromagnetic layer
with uncompensated rough surfaces

Antiferromagnetic layers a nanometer thick find wide
application in modern magnetoelectronics. Hence, there is
great interest in the investigation of their properties.

The antiferromagnetic layer can be mentally divided into
regions whose boundaries are perpendicular to the layer
plane. The boundary plane passes across the atomic step
edge on one of the layer surfaces. The behavior of magnetiza-
tion in each region depends on the number of atomic planes
belonging to each of the two sublattices of the antiferro-
magnet. This number is constant within the region. The type
of the region is determined by a combination of two
parameters: parity (or nonparity) of the number of atomic
planes [even (E) or odd (O)], and the number of the
antiferromagnetic sublattice to which the upper atomic
plane (A or B) belongs. A total of four combinations are
conceivable, giving rise to four region types (EA, EB, OA,
OB).

As shown in Section 3, the character of a spin-flop
transition in the case of a layer with smooth boundaries
strongly depends on the parity of the number of atomic
planes:
� a first-order spin-flop transition in a layer with an even

number of atomic planes occurs in the surface spin-flop
transition field. It results in a state with the domain wall
centered in the middle of the layer;
� a second-order spin-flop transition in a layer with an

odd number of atomic planes occurs in a field stronger than
the bulk spin-flop transition field and dependent on the layer
thickness.

Given the sufficiently large distance R between steps, the
antiferromagnetic layer in a magnetic field is broken into
domains whose boundaries coincide with region boundaries,

i.e., are perpendicular to the layer plane and intersect the edge
of an atomic step on one of its surfaces. The magnetization
behavior in each domain is dictated by the type of the
respective region.

Magnetic structure distortions within the entire range of
variations of magnetic fields and R values were studied in the
framework of the model described in Section 4 in Ref. [24].

The chosen layer was cut out perpendicular to the
direction [100] of the tetragonal body-centered lattice. The
behavior of thin �a5 rs� and thick �a4 rs� antiferromagnetic
layers in the magnetic field b4b1 proved significantly
different. Therefore, these cases are described separately
below.

5.1 The thin layer
5.1.1R4 rs.We shall consider the spin distribution in regions
of all types on the assumption that the region size R is larger
than other characteristic lengths of the problem.

OA and OB regions possess a magnetic moment equal to
that of a single uncompensated atomic plane. Therefore, a
second-order spin-flop transition in the OA region occurs in
the field b �1 [see formula (29)]. In the case of a thin layer,
formula (29) takes the form

b �1 �
4

M
� 4bsrs

a
4 b1 : �41�

Upon field switching-on, the magnetic moment in the OB
region is directed against the field. In the OB type layer with
smooth boundaries, a change in direction of the antiferro-
magnetism vector to the opposite one occurs in an arbitrary
weak field. For this reason, such initial orientation was not
considered in Section 3. Reorientation of the antiferromag-
netism vector in a region of finite dimension is accompanied
by a substitution of the OA type for the OB one and the
appearance of a 180� domain wall along its perimeter, which
is perpendicular to the layer surface.

The characteristic field of this phase transition can be
found by equating the gain in the Zeeman energy to the
energy of the newly formed domain wall. The gain is on the
order of b per cell in the layer plane (expressed hereinafter in
~zjJ j units). The surface energy of the domain wall in the
antiferromagnet is on the order of

���
a
p

per elementary cell
area, and the wall thickness is on the order of rs. The area of
the region on the layer surface being � R 2, and that of the
domain wall � Ra, the characteristic reorientation field is
defined as

breor �
a
���
a
p
R
� a

R
b1 5b1 : �42�

As shown below, the arising domain wall is practically
totally confined to the region with an even number of atomic
planes because its formation in such a region is unaccompa-
nied by an appreciable increase in the Zeeman energy.

Domain walls perpendicular to the layer are described in
the continual approximation.

Let us carry out the change of variables ~y2nÿ1; i; j �
y2nÿ1; i; j, y2n; i; j � p� ~y2n; i; j. In fields much weaker than
spin-flip transition field b2, one finds��~y1�x; y; z� ÿ ~y2�x; y; z�

��5 1 ; �43�

where ~y1�x; y; z� and ~y2�x; y; z� describe the direction of spins
belonging to the first and second sublattices of the antiferro-
magnet, respectively.
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Minimizing the total energy W over variables ~yn; i; j and
moving to the continual representation in the resultant
equations, we find in the bulk of the antiferromagnet, with
regard for formula (43), that

~y2 ÿ ~y1 � 1

8
D~y2 � a sin 2~y1 � b sin ~y1 ;

�44�
~y1 ÿ ~y2 � 1

8
D~y1 � a sin 2~y2 ÿ b sin ~y2 ;

where D is the three-dimensional Laplacian in dimensionless
variables x � x=bx, Z � y=by, z � z=bz, and bz � by is the size
of a crystal tetragonal cell along the z-axis.

Introducing the variables

y �
~y1 � ~y2

2
; j � ~y2 ÿ ~y1 5 1 ;

while adding and subtracting equations (44), leads to

1

8
Dy � a sin 2yÿ 1

2
bj cos y ; �45�

j� 1

16
Dj � b sin y : �46�

We took into account in formulas (45) and (46) that a;j5 1
and neglected terms containing second and higher powers of
these parameters.

When the size of magnetic inhomogeneities is much
greater than the atomic size, Dj in equation (46) can be
neglected. Then, it takes the form

j � b sin y : �47�

Substituting the value of j into formula (45), we arrive at

Dy � 2�b 2
1 ÿ b 2� sin 2y : �48�

Let us consider now the situation at the antiferromagnet
boundary. If the atomic plane belonging to the first sublattice
is the upper one, a transition to the continual representation
turns the equation for spin belonging to this plane into

~y2 ÿ ~y1 ÿ 1

2

q~y2
qz
� 1

8
Dx; Z

~y2 � 2a sin 2~y1 � 2b sin ~y1 ; �49�

where Dx; Z is the two-dimensional Laplacian in the layer
plane. If the upper atomic plane belongs to the second
sublattice, the boundary condition assumes the form

~y1 ÿ ~y2 ÿ 1

2

q~y1
qz
� 1

8
Dx; Z

~y1 � 2a sin 2~y2 ÿ 2b sin ~y2 : �50�

Using the continuity of the functionj�x; y; z�, after passing to
variables y andj and substituting formula (47) intoEqns (49),
(50), we find

ÿ 1

2

qy
qz
� 1

8
Dx; Zy � �b sin y ; �51�

where the plus and minus signs on the right-hand side
correspond to those cases in which the upper atomic plane
belongs to the first or the second sublattices, respectively. On
the opposite layer surface, the sign in front of derivative qy=qz
in expression (51) must be changed.

Let us integrate Eqn (48) over the layer thickness, taking
into account inequality a5 rs and representing all terms with
the exception of q2y=qz 2 as averaged-over-the-layer quanti-
ties. Integral q2y=qz 2 is calculated by the Newton±Leibniz
formula using boundary conditions (51) to find qy=qz values
at the layer boundaries. For oddMwith the number of planes
in the layerM4 1, it gives

Dx; Zy � � 8b
M

sin y� 2�b 2
1 ÿ b 2� sin 2y : �52�

The plus and minus signs correspond to the OA and OB
regions, respectively.

For regions with evenM, one obtains

qy
qz

����
z�M=4

ÿ qy
qz

����
z�ÿM=4

� �2b
�
sin y

��
z�M=4

ÿ sin y
��
z�ÿM=4

�
� �bM cos y

qy
qz
� b 2M sin 2y : �53�

Averaging over layer thickness for the EA and EB regions
leads to

Dx; Zy � 2�b 2
1 ÿ 2b 2� sin 2y : �54�

The problem becomes one-dimensional in the case of a flat
domain wall parallel to plane yz.

It is easy to see that the domain wall in the OA and OB
regions, even in relatively weak fields b1 4 b > �a=rs�bs, has
the thickness

lodd � bx

�
M

8b

�1=2

; �55�

which is much smaller than both rc and wall thickness leven in
a region with an even number of atomic planes:

leven � bx

2
������������������������b 2

1 ÿ 2b 2
��q : �56�

Accordingly, the surface energy of such a wall is significantly
higher; due to this, essentially the entire domain wall
perpendicular to the layer surface, arising in the reorienta-
tion field at the boundary of the OB region, is in the region
with an even number of atomic planes. When atomic step
edges are parallel, the domain wall is located in the middle of
the EA(EB) type region separating the OA and OB regions.

The thickness of a domain wall increases with growing
magnetic field and tends to infinity as �bs ÿ b�ÿ1=2 in the
surface spin-flop transition field, in contrast to the order
parameter correlation radius that exhibits a similar trend in
the bulk spin-flop transition field. As b! bs, the domainwall
occupies the entire EA(EB) region; in fields stronger than the
surface spin-flop transition field, it gradually transforms into
two 90� domain walls at the region boundary (as shown in
Fig. 3). In the center of the region, the spin-flop state
considered in Section 3 is apparent.

If the EA(EB) region is enclosed between two OB regions,
in reorientation field in the region as well as in adjacent
regions the antiferromagnetic order parameter turns by 180�,
no domain wall forms, and the EA type region turns into an
EB one or vice versa.

A spin-flop transition in the EA(EB) region separating
OA type regions is a first-order phase transition. Due to the
interaction with the adjacent regions, the antiferromagnetism
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vector in the center of the EA(EB) region changes jumpwise
by a value smaller than p=2 and domain walls arise at its
boundaries. As the magnetic field grows, the antiferromag-
netism vector becomes oriented normally to it. The field b �s of
this phase transition is higher than bs and can be found from
the condition 2l�b �s � � R. It follows from expression (56) that

b �s �
"
b 2
s �

1

2

�
bx
R

�2
#1=2

: �57�

Thus, a sequential series of events occurs in a weakly
rough layer with the step width R4 rs in parallel to magnetic
field growth, viz. reorientation transition in OB type regions,
spin-flop transition in EA(EB) regions, and spin-flop transi-
tion in OA type regions, respectively. These phase transitions
will be somewhat blurred due to the mutual influence of
regions of different types, their finiteness, and size differences.

5.1.2 R5 rs. As shown in Ref. [24], strong roughness
precludes reorientation of certain OB type regions, while a
spin-flop transition is realized in the entire layer volume.

Let us find the characteristic field of `collective' spin-flop
transition forR5 rs. To this effect, we shall consider a case in
which the OA and OB regions occupy similar total areas sOA

and sOB on the layer surface. Otherwise, the behavior of the
system is dictated by the prevailing region type and con-
sideration is analogous to that in the previous case but takes
into account in the energy balance a factor equaling
�sOA ÿ sOB�=s, where s is the total area of the layer surface.

Suppose that the antiferromagnetism vector averaged
over the bulk of the layer makes an angle y with the easy
axis. In the OA and OB type regions, this vector additionally
turns in different directions through the angle w5 1, so that
magnetization of the extra (unpaired) atomic plane forms a
minimal angle with the magnetic field direction. The resulting
gain in the Zeeman energy is on the order of bwbx sin y=a per
cell, and the loss of the exchange energy for R4 a amounts
approximately to w 2b 2

x=R
2. Minimizing the total energy over

w, we find that w � bR 2 sin y=abx and a gain in total energy is
of order b 2R 2 sin2 y=a 2 per cell. This gain in the spin-flop
transition field must compensate for the energy loss
�b 2

1 ÿ b 2� sin2 y due to the spin flop phenomenon. There-
fore, the spin-flop transition field is given by

bsf � b1
a

R
5 b1 : �58�

It is easy to check that w�bsf�5 1 and lodd�bsf�4R over the
entire strong roughness region.

If R5 a, the nonuniformity of the antiferromagnetic
order parameter manifests itself only across the R-thick
regions near each layer surface, the loss of the exchange
energy is on the order of w 2b 2

x=Ra, w � bRbÿ1x sin y, and
finally

tsf � 1ÿ bsf
b1
� b1

R

a
/ R ; tsf 5 1 : �59�

The angle w increases with the field growth and becomes on
the order of unity at b � b0. In the case of b0 5 b �1 , equivalent
to the condition R4 a, the behavior of regions of different
types in fields stronger than b0 becomes `individualized' and
coincides with that considered in the preceding case. In the
opposite limit, R5 a, the system remains in the `collective'
spin-flop phase.

In fields b4 b �1 which are weaker than the spin-flip
transition field, when the correlation radius of the antiferro-
magnetic order parameter is rc 5 a, the bulk of the layer is in
the spin-flop phase and distortions of the order parameter
near one of the layer surfaces do not affect those near the
other. This regime has been considered in Section 4. Near the
spin-flip transition field, roughness does not play any
significant role and the size effect as b! b2 is similar to that
described in Section 3.

The `magnetic field±roughness' phase diagram for a thin
antiferromagnetic layer is depicted in Fig. 15.

5.2 The thick layer
5.2.1 a4R4 rs. In this case, subdivision into surface
domains occurs independently near each of the two layer
boundaries in field bs. Initial changes in the character of
magnetic structure distortions in a growing magnetic field
were described in Section 4. Correlation radius rc increases as
the field b strengthens and becomes equal to R in field bR
given by formula (38).

For b > bR, a system of static vortices forms near each
surface layer, which penetrate as deep inside it as approxi-
mately R; simultaneously, an rc-thick 90� exchange spring
arises parallel to the surface.

With a rise in the field strength, rc increases and exchange
springs occupy a progressively greater part of the layer.
Simulation showed that in field ba, when 2rc�ba� � a, the
middle part of the layer passes into the spin-flop phase as a
result of the first-order phase transition. The ba quantity is
given by the relation

ta � 1ÿ ba
b1
�
�
rs
a

�2

: �60�

5.2.2 a4 rs 4R. This case corresponds to the region of weak
vortex distortions. As shown in Section 4, weak distortions
and a 90� exchange spring develop near each layer surface in
field ~bR [see formula (39)]. Then, a bulk spin-flop transition
occurs in field ba. Such a scenario is realized for ta < ~tR,
which corresponds to the condition aR > r 2s .

The scenario is different in the opposite case of aR < r 2s .
At a certain value of field ~b, the entire volume of the layer

ES-F

PDW
C

bs

b1

b�1

Rrsaa

VS-F

VS-F

Figure 15. `Magnetic field±roughness' phase diagram for a thin layer: CÐ

collinear phase; PDWÐphase with domain walls perpendicular to the

layer surface and resulting from reorientation of OB type regions; ES-FÐ

phase in which spin-flop transition occurs only in EB and EA type regions,

and VS-FÐbulk spin-flop phase. Solid curves are phase transition lines.
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passes instantaneously into the spin-flop phase with weak
vortex distortions near the surface. The respective ~t value is
possible to estimate from the following line of reasoning:
characteristic energy gain due to the appearance of weak
distortions is of the same order of magnitude as Rbx=r

2
s per

layer surface cell, while the loss (per layer surface cell) due to
the formation of the spin-flop phase in a field weaker than the
critical one b1 is on the order of �a=bz��b 2

1 ÿ b 2� � abx~t=r 2s .
Hence it follows that

~t � 1ÿ
~b
b1
� R

a
: �61�

5.2.3 R4 a4 rs. In this case of weak surface roughness, the
realizable scenario is analogous to that for R4 rs for a thin
layer; namely, a sequential series of events occurs as the
magnetic field grows, including the reorientation transition
in the OB type regions in field breor [see formula (42)], spin-
flop transition in the EA(EB) type regions in field bs, and a
spin-flop transition in the OA type regions in field b �1 . The
following essential differences from the thin layer case need to
be noted:

(1) In the EA(EB) type regions in field bs, a 180� domain
wall as thick as rs and parallel to its boundaries arises in the
center of the layer; it occupies only part of the layer thickness.
To recall, the thin layer accommodated only the central part
of the domain wall. As the field grows and approaches the
value of the bulk spin-flop transition field, the wall overruns
the entire layer thickness due to increasing rc. This occurs in
field ba. While the field growth continues, the wall thickness
does not increase further and remains finite as b! b1.

Let us turn to formula (48) to illustrate this scenario. In a
one-dimensional case in the limit of rc 4 a, Eqn (48) assumes
the form y 00zz � 0, which suggests a linear dependence of the
sublattice rotation angle in the bulk of the layer. Angle
y � p=2 in the center of the layer changes by w on approach-
ing the layer surface, so that magnetization of the upper
atomic plane makes an acute angle with the direction of the
applied magnetic field. The value of w is derived from the
boundary condition (51): y 0z � �2b sin y, which is trans-
formed into the condition

w � o cos w ; �62�

where o � ab=bz � a=
���
2
p

rs. For o5 1, one has w � o, and
for o4 1, relation w � �p=2��1ÿ oÿ1� is valid.

In fields b > b1, the domain wall splits into two roughly
90� exchange springs localized near the layer surfaces.

(2) The domain wall perpendicular to the layer surface
and separating regions with even and odd numbers of atomic
planes in fields close to b1 has the following structure: its
width d near the layer surface containing the edge of an
atomic step is d0 � bx=b. The wall thickness increases linearly
with the distance from the surface, with dd=dz � 1, and
reaches the value of d � min �rc; a�. For rc < a, the wall
thickness does not change with further departure from the
layer surface containing the atomic step. For rc > a, the wall
continues to thicken till it reaches the opposite layer surface
(Fig. 16), and its energy per elementary cell length at the layer
surface is estimated at ln �a=d0� [22, 25].

The behavior of the system in fields b4 b �1 is similar to
that in the thin layer case. The `magnetic field±roughness'
phase diagram for a thick layer is demonstrated in Fig. 17.

To conclude, spin-flop transition in an antiferromagnetic
nanolayer with uncompensated rough surfaces gives rise to a
number of new types of domain walls whose thicknesses
strongly depend on the magnetic field strength. Experimen-
tal observations of these walls is of great theoretical and
applied interest.

6. Conclusion

We believe that this review provides convincing evidence that
the physics of surface spin-flop transitions in antiferro-
magnets calls for further research; in particular, investiga-
tions into size effects in nanometer-scale antiferromagnetic
specimens are far from complete.

The results of recent work already necessitate a revision of
some seemingly settled views of the surface spin-flop transi-
tion and the resulting state, even though studies of this
phenomenon for a real rough surface of antiferromagnet are
only in their infancy.

This is especially true of experimental studies because the
theory predicts a number of interesting objects, such as new
types of domain walls arising from spin-flop transition in one
part of a plane-parallel antiferromagnetic nanolayer and its
absence in the other. Such unusual behavior of regions with
an even and odd number of atomic planes parallel to the layer
surfaces is of interest for both experimental investigations and
possible practical applications. The width of these domain
walls varies from a few dozen to hundreds of nanometers.

As mentioned above, modern magnetic microscopy
techniques, such as magnetic-force, spin-polarization tunnel-
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Figure 16. Domain wall thickness plotted vs. distances to interface for

rs > a (curve 1), and rs < a (curve 2).
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Figure 17. `Magnetic field±roughness' phase diagram for a thick layer:

BSS-FÐphase with a surface spin-flop transition in type B regions, and

SCDWÐphase with surface 90� domain walls parallel to the layer; see

Fig. 15 for the remaining notations.
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ing, and photoemission electron microscopies, make it
possible to conduct relevant research and verify phase
diagrams predicted in the review. We would like to wish
success to our colleagues in this rather difficult work.
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