
Abstract. Major applications of high-permittivity dielectric
materials in silicon devices are reviewed. The basics and soft-
ware implementations of the electron density functional method
are considered. Results of first-principle calculations of the
electronic structure are analyzed for the three most important
and promising high-permittivity dielectrics, Al2O3, HfO2, and
TiO2.

1. Introduction

One of the current priorities in science is the development of
advanced materials for microelectronics. The basic dielectric
material of modern microelectronics is silicon dioxide (SiO2).
However, the general fundamental trend in microelectronics
toward increasing the information capacity and speed of
silicon devices requires replacing SiO2 (with the dielectric
constant e � 3:9) with dielectrics with a higher dielectric
constant (so-called alternative, or high-k, dielectrics). Candi-
dates for alternative dielectrics are transition and rare-earth
metal oxides, such as HfO2, ZrO2, Y2O3, La2O3, Er2O3,
Gd2O3, and Sc2O3, as well as SrTiO3, HfSixOy, TiO2, and
Ta2O5.

Advances in the field of microelectronics heavily rely on
understanding the electronic structure of solids, which makes
this topic the subject of intense theoretical and experimental
studies. A powerful, and sometimes the only means of
obtaining detailed knowledge of processes at the atomic
level is the use of quantum mechanical methods that model

the electronic and atomic structure. But because of the
complex atomic structure of alternative dielectrics, the
electronic structure of these multielectron systems is very
difficult to study theoretically. Significant advances in this
area were made due to the development of a self-consistent
theory of the ground state of an inhomogeneous electron gas
by Hohenberg±Kohn±Sham [1, 2], the so-called density
functional theory (DFT). The basic ideas of this approach
were described in Kohn's Nobel lecture [3]. This method
allows using the first-principle approach to the quantitative
analysis of the diverse properties of solids and the phenomena
occurring in them that are inaccessible to experimental
investigation. We recall that first-principle calculations
neither involve fitting parameters nor use phenomenological
models, and their only input information is the number of an
atom in the periodic table, i.e., the number of electrons in an
atom and its atomic number. Currently, with the advent of
powerful computers, virtually all ordered systems, as well as
many disordered systems and interfaces, have become
accessible to calculation. As a result, band calculations play
an increasingly large role in understanding the physics of
complex systems and phenomena and in elucidating the
origin of quantitative differences between qualitatively
similar systems. To date, the electrical properties of crystals
have mostly been calculated using the DFT.

A major problem with practically all known alternative
dielectrics is prohibitively high leakage currents through the
film of a high-k dielectric. In the absence of defects, electron
transport is limited by the tunneling injection of electrons and
holes at junctions. The tunneling injection current running in
accordance with the Fowler±Nordheim mechanism depends
exponentially on the effectivemass of carriers in the dielectric.
Using theoretical values for the electron and hole masses in a
high-permittivity dielectric, admissible parameters can be
estimated for the corresponding structures. In addition,
first-principle quantum mechanical simulations provide
estimates for energy barriers, in particular, for the energy
gap width. All this is the basis for the first-principle
calculations of high-k dielectrics.
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Real high-k dielectrics usually contain defects that act as
traps for charge-carrying electrons and holes. While informa-
tion on the electronic structure of defects can be deduced from
the experimental characteristics of high-k films, its correct
interpretation is a nontrivial task. Volt±ampere character-
istics are usually interpreted in terms of a particular phenom-
enological model (for example, the Pool±Frenkel model or
multiphonon ionization) with a number of fitting parameters,
in particular, the tunneling effective mass. Hence, the electron
and hole effective masses obtained from quantummechanical
simulation allow a more accurate interpretation of experi-
mental results on charge transfer in high-k dielectrics.

The purpose of this paper is to introduce the reader to the
basic applications of high-k dielectrics in silicon devices and
to review the first-principle results on Al2O3, HfO2, and TiO2,
three of the most important silicon device materials. Alumi-
num oxide (Al2O3) is a potential material for flash memory
applications, HfO2 is a candidate for a subgate dielectric in
silicon devices with the designed standard thickness 45 nm,
and TiO2 is of great potential interest as a subgate dielectric
for next-generation devices with the 32 nm, 20 nm design
standard.

The content of this review is briefly summarized as
follows. Section 2 discusses the key applications of high-k
dielectrics in silicon devices. In Section 3, the basic methodo-
logical DFT concepts are introduced, and two widely used
program packages for the DFT calculation of the electronic
properties of solids are briefly discussed. The subsequent
sections present simulation results for the electronic struc-
ture of a- and g-Al2O3 (Section 4); cubic, tetragonal, and
monoclinic HfO2 (Section 5); and rutile TiO2 (Section 6). The
calculated properties include band and phonon spectra,
electron and hole effective mass tensors, total and partial
densities of states, and charge density distributions. Special
attention is given to comparing the calculated results with
experimental data and previous calculations. An analysis of
the electronic structure calculations and a discussion of
further research on high-k dielectrics conclude the paper.

2. The use of high-permittivity dielectrics
in silicon devices

The charge in a metal±insulator±semiconductor (MIS) inver-
sion-channel transistor is proportional to the capacity of the
condenser formed by the gate, the subgate dielectric, and the
silicon substrate. The larger the capacity is, the larger (at a
given gate potential) the charge in the inversion channel, the
higher the channel conductivity, the steeper the I±V curve,
and the higher the speed of the transistor. The capacityC of a
plane condenser is given by

C � ee0S
d

; �1:1�

where e0 is the dielectric constant of the vacuum, S is the
condenser area, and d is the thickness of the dielectric. The
charge Q induced by a voltage V on the plates of a condenser
of a capacity C is given by

Q � CV : �1:2�

The information capacity of microcircuits increases in
accordance with scaling rules, such that decreasing the length
of the channel increases the capacity of the subgate dielectric.
The first dielectric to be universally used in silicon micro-

circuits was silicon oxide (SiO2, e � 3:9). Thermal SiO2 has
been used for almost half a century as the subgate dielectric in
MIS-field transistors. The thickness of SiO2 in the first silicon
MIS transistors was � 100 nm. As the channel of the MIS
transistor decreases in length, the capacity increases due to
the decreasing thickness of the subgate dielectric. But there is
a physical limitation on how thin the subgate dielectric can be.
Currently (2010), leading companies routinely use the 65 nm
design standard, for which the subgate SiO2 has the thickness
1.0 ± 1.2 nm. Changing to the 45 nm design standard requires
a further increase in the capacity of the subgate dielectric.
However, further thinning the subgate oxide leads to
unacceptably large tunneling leakage currents. The admissi-
ble leakage current is at the level of 1 A cmÿ2. High leakage
currents prohibitively add to power dissipation and decrease
the slope of the transistor I±V curve as a result of minority
carriers being extracted from the inversion channel to the
gate.

Since 2000, thermal SiO2 has given way to silicon
oxynitride SiOxNy (e � 5) as a subgate dielectric. The
prognosis is that low-power-consumption logic circuits
(portable devices such as notebooks, digital cameras, and
mobile phones) will be using SiOxNy until 2016 [4]. In such
devices, the leakage current at the voltage of 1 V should not
exceed 1:5� 10ÿ2 A cmÿ2. In high-speed high-dissipation
devices, in particular, microprocessors, using SiOxNy does
not solve the scaling problem.

A radical way to suppress the tunneling leakage currents
is to replace the oxide or oxynitride of silicon by a dielectric
with a high dielectric constant (a high-k dielectric) [5]. In
this terminology, the dielectric constant is denoted by the
symbol k. This terminology was suggested by American
engineers and is common in microelectronics. In physics, the
dielectric constant is denoted by e. Materials currently being
considered for use as high-k subgate dielectrics in MIS
devices include hafnium oxide HfO2 (e � 25), zirconium
oxide ZrO2 (e � 25), hafnium silicate HfSiO4 (e � 15),
zirconium silicate ZrSiO4 (e � 15), hafnium oxynitride
HfOxNy (e � 15), and aluminum oxide Al2O3 (e � 10) [6].

Figure 1 schematically shows the structure of Si/SiO2/
polysilicon (poly-Si) with the oxide thickness 1.0 nm,
Si/high-k dielectric/poly-Si with the high-k dielectric thick-
ness 4.0 nm, and Si/SiO2/high-k dielectric/poly-Si with the
SiO2 thickness 0.5 nm and the high-k dielectric thickness
3.0 nm. The capacity of the dielectric layer is the same for all
three structures. The energy diagrams in the figure illustrate
the passage of the tunneling current in the corresponding
structures. The large physical thickness of high-k dielectrics
results in the suppression of the tunneling current.

We list the requirements for high-k dielectrics when used
as subgate dielectrics [6]:
� a large value of the static dielectric constant (e5 10);
� a wide band gap (Eg > 3 eV);
� high electron and hole barriers at the silicon±dielectric

interface (to ensure low leakage currents);
� a low concentration of traps (to secure a stable threshold

voltage and low leakage currents);
� chemical stability in terms of interaction with silicon,

silicon oxide, and the gate material;
� compatibility with current technology.
The simultaneous requirements of a high dielectric

constant and a wide band gap contradict each other. As can
be seen from Fig. 2, the higher the dielectric constant is, the
narrower the band gap of a dielectric. With this condition, the
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spectrum of acceptable alternative dielectrics is limited to
those with not too large dielectric constants. Materials with
extremely high dielectric constants, for example, barium
titanate (BaTiO3, e � 1000), have too small band gaps.

Potential energy barriers for electrons and holes at the
dielectric±contact interface respectively determine the elec-
tron and hole injection currents. For a dielectric to be able to
block these currents, the potential barriers should exceed 1 eV.
Figure 3 presents a schematic for the electron and hole
potential barriers at the interface between silicon and known
high-k dielectrics.

Thermal oxide SiO2 is also used as an insulator in memory
capacitors in static and dynamic random-access memory
(RAM) elements [6]. The capacity of RAM is increased by
decreasing the area of storage condenser cells. For this, it is
necessary to decrease the thickness of the dielectric layer in
order that the electric capacity of the storage condensers not
decrease. But a small oxide thickness increases the leakage
current of the storage condenser, leading to the spread of the
charge accumulated on the condenser plates. The leakage
current of a RAM storage capacitor should not exceed
10ÿ7 A cmÿ2. An alternative solution to RAM scaling is to
use a high-permittivity dielectric. Hence, increasing the
information capacity of RAM requires using high-k dielec-
trics. At present, RAM capacitors use silicon nitride Si3N4

(e � 7:0) instead of SiO2. The nitride and oxynitride of silicon
are often called middle-k dielectrics. At present, Al2O3

(e � 10), Ta2O5 (e � 22), HfO2 (e � 25), and TiO2 (e � 80)
are considered promising candidates for RAM isolators.

A third major application of high-permittivity dielectrics
is as the upper blocking layer in silicon flash memory. Today,
intense research is geared to achieving the industrial produc-
tion of flash memory using polysilicon±oxide±nitride±oxide±
semiconductor (PONOS) structures. Such a flash memory
element is anMIS transistor with a multilayer dielectric and a
variable threshold voltage (Fig. 4a). As the storage medium, a
flash memory element uses amorphous Si3N4 with a high
(1019 cmÿ3) density of deep (� 1:5 eV) electron and hole
traps. The silicon nitride is separated from the silicon
substrate by a tunneling oxide (SiO2) with the thickness
1.8 ± 5.0 nm. To block the parasite injection of electrons and
holes from the gate into the silicon nitride, an oxide layer is
placed between the two. Common PONOS structures use
silicon oxide as the blocking layer.

Applying a negative potential (10ÿ3 s voltage pulse) to the
gate causes the injection of holes from the silicon substrate
through the tunneling oxide to the silicon nitride, followed by
their capture by deep hole traps (Fig. 4b). After turning off the
gate voltage, the holes that have accumulated in the silicon
nitride induce a conducting inversion channel in the transis-
tor. The transistor makes the transition to the open state,
which is considered to be the logical `0'. Owing to the
extremely long lifetime of (localized) trapped holes, the
logical `0' can be stored for 10 years at 85 �C without any
energy consumption (unlike the usual trigger). This is how
information is programmed in a flash memory cell. A flash
matrix is made up of a large number of flash cells. The
information is erased by applying a positive pulse to the gate
(Fig. 4a), which causes electrons in the silicon to be injected
through the tunneling oxide and be caught by deep traps in
the silicon nitride. Turning the voltage off leaves the nitride
with a negative charge, which acts to induce an enrichment
layer in the silicon (holes). The conducting channel disap-
pears, meaning that the storage transistor is closed. The
situation that emerges is that of the logical `1'. Such is the
operation of a usual nitride-based PONOS flash-memory cell.

The authors of Refs [7, 8] proposed using high-k
dielectrics, for example, Al2O3 or ZrO2, instead of SiO2 as
blocking layers in PONOS structures. There is also a
suggestion [9, 10] to use a blocking high-k dielectric in a
flash memory cell with silicon nanoclusters as a storing
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medium. Figures 4b, c present energy diagrams for a PONOS
memory element with a ZrO2 layer as a blocking layer in the
write±erase regime. Because the dielectric constant of ZrO2

(e � 25) is much larger than that of SiO2 (e � 3:9), the electric
field in the blocking high-k dielectric (for equal amplitudes of
the program/erase pulse) is smaller than in the blocking SiO2.
Hence, the voltage decrease across the blocking high-k
dielectric is less than for the blocking SiO2. The result of this
decrease is a larger voltage drop across the tunneling oxide,
and hence a larger field in the oxide. The increased field
increases the electron and hole tunneling injection rate from
the silicon substrate, thus increasing the operation speed in
the program/erase mode at a fixed thickness of the tunneling
oxide. PONOS structures with blocking SiO2 use tunneling
thermal SiO2 with the thickness 1.8 nm [11]. Replacing the
blocking SiO2 with a high-k dielectric allows the tunneling
SiO2 layer to be increased in thickness from 1.8 to 5.0 nm,
while leaving the operation speed unchanged [12 ± 16].
Increasing the thickness of the tunneling oxide increases the
flash memory reliability in the information storing regime.
Yet another advantage of using a blocking high-k dielectric is
suppressing the parasite injection of electrons and holes from
the gate due to a decrease in the electric field in the blocking
high-k dielectric. Thus, using high-k dielectrics increases the
operation speed, reliability, and useful yield, and hence
decreases the cost of flash memory. A promising candidate

for the blocking dielectric in PONOS structuresÐand
accordingly a subject of intense recent studyÐis aluminum
oxide, Al2O3 [17 ± 19].

3. Electronic structure calculation methods
for solids

3.1 Density functional method
The technological incorporation of high-k dielectrics requires
a knowledge of their electronic structure and physical proper-
ties. A powerful means of studying high-k dielectrics is by
using ab initio quantum mechanical methods to investigate
electronic and atomic structures. In principle, by applying
these methods to a polyatomic system, it is possible to
calculate all of its properties that can be determined
experimentally, and in fact those that cannot. In reality,
however, the power of nonempirical method depends on the
available computer resources.

Currently, one promising direction in quantum mechan-
ical research is to use methods based on the DFT. The
advantage of DFT methods compared to other methods
that also take the exchange-correlation interaction into
account is that the DFT requires relatively limited computer
resources to achieve sufficient accuracy. What principally
distinguishes the DFT method is that it does not work by
approximately solving the stationary Schr�odinger equation to
obtain the multielectron wave function of a molecular system
as a function of 3N spatial coordinates but uses the electron
density of an electron system to calculate its properties.

The foundations of the method were laid by Hohenberg,
Kohn, and Sham [1, 2], who proved two important theorems.
The first theorem states that for a system of electrons in an
external field with the potential V�r� of a general form, the
knowledge of the ground state electron density r�r� deter-
mines the potential V�r� uniquely (up to a physically mean-
ingless constant). This statement is true for both nondegene-
rate and degenerate ground states. In the latter case, the
density of any degenerate state is determined by the external
potential V�r�. Because V�r�, as well as the number of
electrons, is determined by r�r�, all the properties that follow
from the form of the Hamiltonian are determined by the
density r�r�. Hence, r�r� determines the energies of the
ground and excited states, etc. The total energy of the
electron system can be expressed as a density functional,

E
�
r�r�� � � V�r� r�r� dr� T

�
r�r��� Vee

�
r�r�� ; �3:1�

where the first, second, and third terms in the right-hand side
are the interaction energy with the external field, the kinetic
energy functional, and the electron±electron interaction
energy functional.

The second theorem asserts that for a given V�r�, the
ground state density r0�r� minimizes the total energy
functional. Hence, given a sufficiently accurate knowledge
of the sum of the second and third terms in E � r �, the ground
state energy and density of any electron system can be found
by minimizing E � r �, regardless of the number of electrons.

Along with a real system of interacting electrons with a
density r�r�, Kohn and Sham introduced the notion of a
hypothetical system of noninteracting electrons with the same
number of particles and the same density r�r�. The Hamilto-
nian Ĥs and kinetic energy Ts� r� of this hypothetical system
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are given by

Ĥs �
XN
i

�
ÿ �h 2

2m
Di

�
�
XN
i

Vs�ri� ; �3:2�

Ts� r� �
�
Cs

����XN
i�1

�
ÿ �h 2

2m
Di

�����Cs

�
: �3:3�

The exact solution for this system is the single-determi-
nant wave function

Cs � 1�����
N!
p det�j1j2 . . .j3� ; �3:4�

where the ji are the N lower eigenstates of the one-electron
Hamiltonian ĥs,

ĥsji�r; s� �
�
ÿ �h 2

2m
D� Vs�r�

�
ji�r; s� � eiji�r; s� : �3:5�

The functionals Ts� r� and J � r� are calculated using the
exact wave function ji�r; s� of the noninteracting system.
Kohn and Sham then make the substitution

T
�
r�r��� Vee

�
r�r�� � Ts� r� � J � r� � Exc� r� ; �3:6�

J � r� �
�
r�r1� r�r2�
jr1 ÿ r2 j dr1 dr2 ; �3:7�

where the exchange correlation functional Exc� r� contains the
difference between the exact kinetic energy functional and the
functional Ts� r�, as well as the nonclassical part of the
electron±electron repulsion. The total energy functional thus
reduces to the form

E
�
r�r�� � � V�r� r�r� dr� � r�r1� r�r2�

jr1 ÿ r2j dr1 dr2

� Ts

�
r�r��� Exc

�
r�r�� : �3:8�

The problem of finding the minimum of energy functional
(3.8) under the condition of a fixed number of particles is
solved by the method of Lagrange multipliers. The matching
condition between the Euler equations for a real interacting
and a noninteracting electron system leads to the condition

Vs�r� � V�r� � dJ � r�
dr
� dExc� r�

dr
: �3:9�

The one-electron wave functions are therefore obtained from
the solution of Kohn±Sham equation (3. 5) with the potential
Vs�r� given by Eqn (3.9). The energy of a real interacting
electron system is then written as

E � 2
XN=2
i�1

ei ÿ J
�
r�r��ÿ � dExc� r�

dr
r�r� dr� Exc

�
r�r�� :
�3:10�

The exact form of the exchange correlation functional
Exc� r�, a necessary requirement for specific calculations, is
never known, but there are several approximate expressions,
using which in calculations yields results in excellent agree-

ment with experimental data. One of the most widely used
approaches for describing Exc� r� in the case of slowly varying
density is the local density approximation (LDA) developed
by Kohn and Sham in 1965. An improved and more accurate
level of approximation for the exchange-correlation energy is
provided by the generalized gradient approximation (GGA).
To date, various researchers have developed a large number
of exchange correlation functionals for the LDA and GGA
methods. The reader is referred to Ref. [20] for more details.

3.2 Pseudopotential approximation
Inner atomic shell electrons are not active in the formation of
chemical bonding in solids because their binding energy with
nuclei, of the order of tens or even hundreds of electron-volts
per electron, is much larger than the average interatomic
interaction energy. The wave functions of these electrons
contribute little to the crystal potential and to the final wave
function, and at the same time strongly oscillate in strong
potentials near the atomic nuclei. Therefore although electron
wave functions can be expanded in terms of a plane-wave
basis in accordance with the Bloch theorem, it takes a very
larger number of plane waves to expand strongly bound inner
orbitals and valence electron wave functions rapidly oscillat-
ing near the nuclei. A calculation including all electrons
would require a tremendously large plane-wave basis,
imposing heavy requirement on computer resources and
time. Using the pseudopotential approximation greatly
reduces the size of the plane-wave expansion basis for
electron wave functions. In this approximation, the electrons
in inner atomic shells and the strong ionic potential are
replaced with a weaker `pseudopotential,' and real wave
functions, with `pseudowave functions.' The pseudopoten-
tial is constructed such that its scattering properties and
changes in the phase of the pseudowave function are
identical to those of the valence wave function, whereas the
radial component of the pseudowave function has no nodes in
the near-nucleus region. Outside the nucleus region, the
potential and pseudopotential are identical and their scatter-
ing effects are indistinguishable [21].

3.3 Density functional theory in electronic structure
calculation methods
Currently, a variety of special-purpose software packages
incorporating the DFT can be used to calculate the electronic
structure of molecules and periodic systems (crystals). One
example is QUANTUM ESPRESSO [22, 23], where the
Bloch functions of electrons in a crystal are sought by
expanding in plane waves as basis functions. The crystal
structure is specified by specifying the unit cell, and the
translation symmetry is included through boundary condi-
tions. For each type of calculation, the coordinates of atoms
in the unit cell and the unit cell parameters are specified, as are
the pseudopotentials for each atomic species.

Another powerful quantum mechanical simulation pack-
age is ADFBAND (ADF forAmsterdam density functional).
The ADF program is intended for calculating the electronic
structure of atoms and molecules. BAND, a separate part of
the ADF package, calculates periodic systems such as atomic
chains, atomic layers, and bulk crystals [24]. The basis
functions used are numerical orbits (NOs) and Slater-type
orbitals (STOs). NOs are free atomwave functions calculated
with the Hermann±Skillman program. STOs have the form

Xn; l;m � A rnÿ1 exp �ÿxr�Ylm ; �3:11�
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where n is the effective principal quantum number. The
simultaneous presence of NOs and STOs makes the basis
set variationally flexible, enabling highly accurate calcula-
tions even with a small number of basis functions. The
calculation of molecular orbits involves only the atomic
orbitals of valence electrons, and inner atomic shells are
frozen. However, their contribution to the crystal potential
is included explicitly rather than through the pseudopoten-
tial.

4. Electronic structure of a- and c-Al2O3

Corundum (a-Al2O3) is the most widely used and the most
practically important crystalline modification of aluminum
oxide. Among the many metastable crystalline modifications
(the so-called transition aluminum oxides) [25], g-Al2O3 is
especially interesting as one of the most important and widely
used catalytic materials. For use in silicon devices, amor-
phous Al2O3 is synthesized by atomic layer deposition (ALD)
[26]. Densification of Al2O3 films is achieved by annealing. It
was reported in [8] that amorphous Al2O3, when annealed,
undergoes a transition to a crystalline g phase. Therefore, the
electronic structure of g-Al2O3 and, in particular, its electron
and hole effective masses are currently a topical subject of
study for applications in silicon devices.

The technological importance of aluminum oxide has
stimulated numerous attempts toward understanding its
electronic properties. The experimental methods that were
used to study the electronic structure of a-Al2O3 are described
in Refs [27 ± 33]; there is also a large amount of literature on
the use of various computational methods [33 ± 45] for this
purpose. Admittedly, however, contradictory results, both
experimental and theoretical, are found among different
studies. g-Al2O3 has received much less attention [44 ± 50],
partly due to its more complex crystal structure and partly
because of its narrower application range. In this review, we
present simulation data on the electronic structure of a-Al2O3

and g-Al2O3 and compare calculated and experimental
results.

The unit cell of a-Al2O3 is rhombohedral (R3cR), contains
10 basis atoms, and has the lattice constants ai � 5:160 A

�
and

yi � 55:286� (Fig. 5a). The oxygen atoms are four-fold
coordinated by aluminum ones. The aluminum atoms are
coordinated by six oxygen atoms, with their three first- and
three next-nearest at the respective distances 1.866 A

�
and

1.983 A
�
.

For g-Al2O3, it is known that it has a defect spinel structure
with vacancies at cation sites. Because of a large number of
disagreements in both experimental and theoretical results
(see Refs [49 ± 52] for brief reviews), it has long been a subject
of debate whether Al vacancies are located in octahedral or
tetrahedral positions. A comprehensive experimental and
theoretical study of the g-Al2O3 crystal structure in [51] has
recently showed the nonspinel sites to be populated in this
material.But the structureproposedby theauthorsofRef. [51]
has a very large atomic basis and hence requires considerable
computer resources. In this work, we therefore follow the
suggestion in Ref. [53] and assume that g-Al2O3 has a 40-
atom unit cell obtained from a spinel structure with two
cation vacancies occupying octahedral sites and spaced
maximally apart (Fig. 5c). A similar g-Al2O3 model was
used in Refs [43, 48]. The equilibrium lattice constants were
calculated as a1 � 5:647 A

�
, a2 � 5:612 A

�
, a3 � 16:778 A

�
and

y1 � 59:79�, y2 � 55:24�, y3 � 59:67�. The Al atoms are six-

and fourfold coordinated by O atoms. Because of the
presence of cation vacancies in the g-Al2O3 structure, its O
atoms are coordinated by three or four Al atoms.

Electronic structure calculations for a-Al2O3 and g-Al2O3

are performed with the software package ESPRESSO using
the electronic configurations [Ne] 3s23p1 for Al and [He]
2s22p4 for O, where [Ne] and [He] are core states. The core
electrons are included by using ultrasoft pseudopotentials
borrowed from Ref. [23]. The criterion for selecting a
pseudopotential is appropriate values of the structural
parameters of the a-Al2O3 unit cell, which means agreement
with the known experimental data. The selection procedure
consists of a series of calculations on the structural relaxation
of the a-Al2O3 unit cell for various pseudopotentials. In
agreement with Ref. [39], it is found that pseudopotentials
with a GGA exchange correlation functional overestimate
lattice constants by 4 1%, whereas their LDA counterparts
underestimate them by � 2%. The way to parameterize the
pseudopotential is chosen based on the idea that the
calculated total energy of a relaxed unit cell should be
minimum. The electronic structures of a-Al2O3 and g-Al2O3

are calculated using a pseudopotential with the GGA
exchange correlation functional in the parameterization of
Perdew and Burke (PB).

Figure 6 presents band structure results for a- and g-Al2O3

along the high-symmetry directions of their respective
Brillouin zones (see Figs 5b, d). The zero energy level is
taken at the top of the valence band. Both crystals are direct
band gap insulators with the valence band top (and conduc-
tion band bottom) at the Brillouin zone point G. The result in
Refs [38, 39] that a-Al2O3 is indirect is most likely due to the
use of a nonrelaxed structure. Calculations for a-Al2O3

predict the existence of two bands close in energy
(DE � 0:03 eV), but very different in dispersion, at the top
of the valence band, the upper and lower parts of which
respectively correspond to light and heavy holes. The top of
the valence band is calculated to be virtually flat.

The calculated band gapsEg between the valence band top
and the conduction band bottom are respectively given by
6.0 eV and 4.0 eV for a-Al2O3 and g-Al2O3. These values
disagree somewhat with other DFT calculations because of
differences in computational methods and due to the
sensitivity of Eg to the structural parameters. The experi-
mental range of Eg is 7.5 ± 9.5 eV for a-Al2O3 [31 ± 33] and
7.2 ± 8.7 eV for g-Al2O3 [33, 51]. The discrepancy between the
calculation and the experiment is caused by a systematic
underestimation of Eg in DFT calculations. Band gap

a b c

O
Al

D
A

X

K
G

E

d

K H

A
S

LG

Figure 5.Trigonal 10-atom unit cell of a-Al2O3 (a) and 40-atom unit cell of

g-Al2O3 (b), with their respective Brillouin zones (c, d). Symmetry points

and constant energy surfaces near the top of the valence band are marked.
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estimates from the relation

Eg � �Eq�0
tot ÿ E

q��1
tot � ÿ �Eq�ÿ1

tot ÿ E
q�0
tot � �4:1�

(where E
q�0
tot , E

q�ÿ1
tot , and E

q��1
tot denote the total energies of

the neutral, negatively charged, and positively charged
structures) are respectively equal to Eg � 8:2 eV and
Eg � 6:0 eV for a-Al2O3 and g-Al2O3.

The valence bands of both crystals consist of two
subbands separated by a wide ion gap (similar to SiO2).
Calculations of the partial density of states (PDOS) for a-
and g-Al2O3 show that the upper subband is formed by 2p
electron states of oxygen, whereas the lower subband is
primarily formed (at the energy � 20 eV) by oxygen 2s
states with a small admixture of Al states. The conduction
band is mainly formed by Al states (Fig. 7). The electron
density of states near the bottom of the conduction band is
very low. The band diagrams and PDOS spectra presented

are in good agreement with previous DFT calculations [40 ±
43, 47].

Figure 8 shows the calculated spatial distribution of the
charge density

��C�r; p���2 for various energies in the valence
band of a-Al2O3 in the plane of the O ±Al ±O bond. It is seen
that the charge is distributed between two orbitals, O 2s,
which is localized and binds O ±Al, and O2p, which is
nonbinding. It follows from Fig. 8a that the lower valence
subband is formed from oxygen 2s orbitals. In Fig. 8b, the
shape of the charge density distribution and the fact that its
orientation is along theAl ±O bond are evidence for a binding
oxygen s orbital. This result is confirmed by PDOS
calculations for a-Al2O3, which show a marked overlap of
oxygen 2p orbitals with aluminum 3s and 3p states in the
middle and near the bottom of the upper valence subband.
Figure 8c shows the charge density distribution for energies
near the top of the valence band in the direction perpendicular
to the AlÿO bond, presenting evidence for a nonbinding
oxygen p orbital. The PDOS spectrum also shows that the top
of the valence band is mostly formed by 2p electron states.
Similar charge density distribution patterns were observed in
the valence band of SiO2 [53, 54]. The nonbinding nature of
the oxygen p orbital is also seen from the electron density
distribution calculated for the upper valence band states of
g-Al2O3 [48]. Also according to Ref. [48], the charge
concentration in g-Al2O3 has a maximum at oxygen atoms
near cation vacancies.

Table 1 presents themaximum andminimumvalues of the
electron and hole effective masses in a-Al2O3 and g-Al2O3

crystals. The effective masses were obtained in the quadratic
approximation of the calculated dispersion E�k� near the top
of the valence band using the relation

mÿ1ab �
1

�h 2

q2E�k�
qka qkb

�4:2�

for the effective mass tensor.
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The electron effective masses in a-Al2O3 and g-Al2O3 are
virtually isotropic and equal, m �e � 0:4m0. This value agrees
with the experimental values of the tunneling electron
effective mass in amorphous Al2O3: m �e � 0:35m0, m �e �
�0:22ÿ0:42�m0 [55], m �e � 0:5m0 [56], and m �e � 0:2m0 [57].
The hole effective mass exhibits strong anisotropy in both a-
Al2O3 and g-Al2O3. The experimental values of hole effective
masses in a- and g-Al2O3 are not available in the literature.

To describe the directional distribution of hole effective
masses in a- and g-Al2O3, constant-energy surfaces are
constructed in k space near the top of the valence band and
the bottom of the conduction band. In a-Al2O3, it is seen from
the curvature of this surface near the valence band top that
the hole masses have minimum values along the direction
G ! A and have maximum values (and are isotropic) in the
plane perpendicular to this direction (Fig. 5b). For g-Al2O3, it
is only in the G ! S direction that the isoenergetic surface
has a noticeable curvature, and hence the material has a
minimum effective mass (Fig. 5d). Perpendicular to G ! S,
the energy surface is virtually flat, which implies huge
effective masses for the holes. Both in a-Al2O3 and g-Al2O3,
energy surfaces near the conduction band bottom have a
spherical shape (not shown in Fig. 5), implying that the
electron effective mass is isotropic.

An informative experimental tool for studying the
electronic structure of solids is X-ray emission spectroscopy.
Essentially, the method is to irradiate a solid (for example,
Al2O3) to create vacancies at atomic levels such as Al 1s,
Al 2p, and O1s. A transition of valence band electrons to
these states produces X-ray radiation whose intensity is
proportional to the transition probability and to the electron
density of states in the valence band. It is generally assumed
that the transition matrix element depends weakly on energy,
and hence X-ray emission spectra reflect the distribution of
the partial density of states in the valence band. The dipole
approximation allows X-ray transitions under which the total

orbital moment changes by unity, Dl � �1. Transitions from
3s, 4s, and 3d states of Al in the valence band to aluminum
2p1/2, 3/2 levels have the spectroscopic notation AlLII; III.
Thus, the X-ray emission spectra of AlLII; III reflect the
distribution of the 3s, 4s, and 3d states of Al. The K spectra
of Al reveal transitions from Al 3p states to the Al 2s level,
meaning that the X-ray K emission spectra of Al reflect the
distribution of Al 3p states. In oxygen,K emission spectra are
observed for electron transitions from 2p to 1s levels and give
information on the distribution of the partial density of states
of oxygen 2p levels in the valence band [58].

Experiments studying the density of states in the
conduction band rely on X-ray absorption spectra or the
spectral dependence of quantum yield. The absorption
spectra reflect transitions from deep atomic levels to
unoccupied states of the valence band. These transitions
also obey the dipole selection rules. The spectral depen-
dences of quantum yield reflect the partial density of states
in the conduction band up to a dependence of the transition
matrix element on energy [58].

Figure 9 uses a common energy scale (with the energy
origin set at the top of the valence band) to present
measurement results in Ref. [27] for X-ray emission spectra
and quantum yield in a-Al2O3 and g-Al2O3. A good
agreement between the calculated partial density of states
and theX-ray emission and absorption spectra is observed for
the oxygen 2p orbitals and the oxygen K spectra. The
mismatch in position between the calculated main peaks of
the valence band and the corresponding experimental peaks is
most likely due to the underestimated widths for all subbands
of the valence band, a notorious weak point of DFT
calculations. A good agreement between calculations and
the X-ray K emission spectra of Al is observed only for the
upper valence subband. For a- and g-Al2O3, the calculated
PDOS peaks of Al 3p in the lower valence subband are more
intensive than those in the upper, and much more intensive
than those of their experimental counterparts. Interestingly, a
similar disagreement with experiments was found for SiO2

and Si3N4 in [59, 60]. The calculated partial density of states
for Al 3s does not provide an adequate description of all the
structural details of the experimentalLII; III spectrum of Al. In
particular, the calculated spectrum of Al 3s lacks an upper
peak at � 3 eV. In SiO2 and Si3N4, which show a similar
disagreement, the upper peak in the valence band is thought
to be associated with the 3d orbitals of Si and with nonlocal
(bicentral) transitions [59]. It is beyond the scope of this paper
to calculate the electronic structure of Al2O3 with the correct
account of the contribution of Al 3d orbitals in order to
describe X-ray emission spectra. It is noteworthy that
according to the calculations in Ref. [59], the inclusion of 3d
orbitals for Si has little effect on the electron and hole effective
masses in SiO2 and Si3N4.

In Fig. 10, the measured ultraviolet photoelectron spectra
(UPSs) and X-ray photoelectron spectra (XPSs) of amor-
phous aluminum oxide (a-Al2O3) are compared with the
calculations for a- and g-Al2O3. The excitation of XPSs was
performed by monochromatic AlKa radiation with energy
�ho � 1486:6 eV, whereas UPSs were excited by the HeII line
with �ho � 40:8 eV from helium plasma. The calculated
spectra are obtained by summing the partial densities of
states of valence orbitals with weights equal to the corre-
sponding photoionization cross sections taken fromRef. [61].
It follows from Fig. 10 that the calculated UPSs of a- and
g-Al2O3 and the experimental UPSs of a-Al2O3 agree well in

c

ÿ1<E<0 eV

b

ÿ5<E<ÿ3 eV
a

ÿ19<E<ÿ16 eV

Al Al Al

O O

OOO

O

Figure 8. The calculated spatial charge density distribution in the valence

band of a-Al2O3 in the plane of the O ±Al ±O bond.

Table 1. Maximum and minimum values of the electron (m �e ) and hole
(m �h ) effective masses in crystals of a-Al2O3 and g-Al2O3.

a-Al2O3 g-Al2O3

m �e =m0 0.40 (G! A)
0.38 (? G! A)

0.40

m �h=m0 7.5 (? G! A)
0.35 (G! A)

1.3 (G! K)
4 1 (? G! K)
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terms of the relative peak intensity. A similar agreement is
observed for the measured and predicted X-ray spectra. The
position mismatch between the main peaks is obviously due
to the overestimated widths of both valence band subbands.
The width difference between the experimental and predicted
peaksmay be due to the finite lifetime of a hole at core levels, a
factor that leads to the broadening of experimental peaks.
The inclusion of peak broadening processes (for example, the
Auger process) requires a much more involved theoretical
model.

To summarize, satisfactory qualitative agreement is
observed between the calculated and measured results for
the X-ray and ultraviolet spectra of Al2O3, allowing the
conclusion that DFT band calculations are qualitatively
correct in predicting the electronic structure of a-Al2O3 and

g-Al2O3. Also, a-Al2O3 and g-Al2O3 have qualitatively
similar electronic structures. Hence, the key aspects of the
electronic structure of Al2O3 are determined by the short-
range order in atomic arrangement (similarly to situations in
SiO2 and Si3N4).

The calculated high-frequency dielectric constant tensors
e ei j of a- and g-Al2O3 can be written in Cartesian coordinates
as

e1i j �a-Al2O3� �
3:22 0:0 0:0
0:0 3:22 0:0
0:0 0:0 3:19

 !
;

e1i j �g-Al2O3� �
3:14 ÿ0:02 0:0
ÿ0:02 3:14 0:0
0:0 0:0 3:14

 !
:

We see that both crystals are slightly anisotropic in their
optical properties. Slightly smaller values are given in [43]:
e1 � 3:17 for a-Al2O3 and e1 � 3:13 for g-Al2O3, although
the value in Ref. [41] is e ei j � 3:86 for a-Al2O3. The value
e1ii � 3:2 agrees with the measured refractive index n � 1:8
for a-Al2O3: e1 � n 2 � �1:8�2 � 3:24.

In Fig. 11, the spectra of the total phonon density of states
calculated for a-Al2O3 and g-Al2O3 are imposed on the
experimental phonon spectrum of a-Al2O3 taken from
Ref. [62]. The phonon spectrum of a-Al2O3 is calculated for
a 30-atom hexagonal unit cell. The predicted and measured
data for a-Al2O3 are in good qualitative agreement in terms of
the number of peaks. The satisfactory agreement between the
theoretical and experimental curves for the total phonon
density of states allows concluding that the calculation
model describes interatomic interactions correctly. For the
phonon density of states in g-Al2O3, a marked broadening of
the entire spectrum and a small shift to lower frequencies are
observed.
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It is known that the large dielectric constant of high-k
dielectrics is mainly determined by the lattice type. Low-
stiffness bonds present in these crystals make the crystals
susceptible to an electric field, whence a high polarizability
and, accordingly, a higher dielectric constant. In other words,
the high value of the static dielectric constant of high-k
dielectrics is due to the presence of low-frequency natural
vibrations, so-called soft modes, in the lattice. The expression
for the low-frequency dielectric constant e is

e � n 2 �Ne 2Z 2
T

mo 2
TO

; �4:3�

where n is the refractive index, N is the ion concentration, ZT

is the `transverse' effective charge, and oTO is the frequency
of transverse optical phonons. It follows from Fig. 11 that
the Al2O3 lattice exhibits low-frequency natural vibrations
(soft modes) in the frequency range below 50 MeV
(400 cmÿ1), which are absent from the natural spectrum of
SiO2 [62]. Clearly, just the presence of these modes results in
the static dielectric constant of Al2O3 (e � 10) being higher
than that of SiO2.

Figure 12 is an energy diagram for electron transitions in
a-Al2O3, obtained with the approach developed for SiO2 [63].
All energies aremeasured from the energy of an electron in the
vacuum,which is above the bottomof the conduction band by
fe � 2:0 eV [56, 64]. The energies of the inner Al 1s and Al 2p
levels were determined in Ref. [27] using X-ray photoelectron
spectroscopy. The energies of the oxygen 2s and 2p levels are
taken from Ref. [65]. The horizontal lines in the valence and
conduction bands indicate the positions of the peaks in the
density of states observed in X-ray transitions [27].

5. Electronic structure of HfO2

At normal pressure, HfO2 crystallizes in three structures: a
low-temperature monoclinic phase (m-HfO2), a tetragonal
phase (t-HfO2) at temperatures above 2000 K, and a cubic
phase (c-HfO2) above 2870 K [66]. Under normal conditions,
crystalline HfO2 exists in amonoclinic structure, which is why
this phase has been most intensively studied [67, 68]. Some
studies [69 ± 72] report the formation of the cubic phase in thin
films (10 ± 50 nm) ofHfO2 (and ZrO2) at temperatures around
200 �C. At temperatures from 300 to 600 �C, films in the

thickness range 10 ± 50 nm exhibit a tetragonal phase with
markedly different parameters from those in the high-
temperature bulk structure. A stable monoclinic phase is
observed forming at film thicknesses > 500 nm.

In Fig. 13, the cubic, tetragonal, and monoclinic crystal
structures of HfO2 are shown together with their correspond-
ing Brillouin zones (with symmetry points marked). The
Bravais lattice of HfO2 for the cubic system is a face-centered
cubic cell (space group Fm3m). The atomic basis consists of
one Hf and two O atoms, and the lattice constant is
ai � 5:08 A

�
[73]. For the tetragonal HfO2, the unit cell is a

regular square-based prism (space group P42=nmc). The
atomic basis consists of two Hf and four O atoms, and the
lattice constants are a � 3:56 A

�
and c � 5:11 A

�
[73]. In the

cubic and tetragonal phases of HfO2, O atoms are four-fold
coordinated by Hf atoms, and Hf atoms are eight-fold
coordinated by O atoms. For the monoclinic phase, the
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atomic basis of the unit cell consists of three Hf and six O
atoms (space group P21=c). The lattice constants are
a � 5:08 A

�
, b � 5:19 A

�
, c � 5:22 A

�
, and y � 99:77�. The

monoclinic phase involves two types of O atoms in terms of
coordination, with the respective coordinate numbers 7 and 8.

The electronic structure of HfO2 is calculated using
the ADF BAND program. The respective number of basis
functions per unit cell of the cubic, tetragonal, and mono-
clinic phases of Hf was 70, 150, and 300. Similar DFT
calculations for the cubic, tetragonal, and monoclinic
phases of HfO2 were performed in [74] using a plane-wave
basis set.

Figure 14 presents calculated band diagrams for the cubic,
tetragonal, and monoclinic crystalline phases of HfO2 for
special points of its Brillouin zone. The zero energy is chosen
to be at the top of the valence band. As the size of the atomic
basis is increased, the band structure becomes noticeably
more complicated, while remaining qualitatively the same
for all three phases. The valence bands calculated for HfO2

phases consist of three subbands separated by wide ionic
gaps. For cubic HfO2, the top of the valence band Ev and the
bottom of the conduction band Ec are respectively at the X
and G points of the Brillouin zone. For the tetragonal phase,
Ev (Ec) is at theG (M) point, and for the monoclinic phase, Ev

(Ec) is at the G (B) point. Therefore, all the three phases of
HfO2 are indirect dielectrics. The band gaps of the cubic,
tetragonal, and monoclinic HfO2 estimated from the differ-
ence betweenEc andEv, are respectively given by 3.2, 3.8, and
3.5 eV. Experimental values of Eg for amorphous HfO2 are
much higher and range from 5.3 to 5.9 eV depending on the
source [75 ± 78].

At the bottom of the conduction band of cubic HfO2 at
the G point, a doubly degenerate state is split along the
direction G! X and not along G! L. For tetragonal
HfO2, the top of the valence band is degenerate in the
directions A!M and Z! A. For monoclinic HfO2, the
electron states both at the top of the valence band and at the
bottom of the conduction band are nondegenerate.

The electron and hole effective masses for the three
crystalline phases of HfO2 are listed in Table 2. It is seen
that HfO2 contains both heavy and light holes and that the
hole effective masses have a wide spread in values ranging
from 0:3m0 for cubic HfO2 to 8:3m0 for tetragonal HfO2. The

conduction electron in all phases has close values, with both
the minimum (0:68m0) and maximum (1:97m0) occuring in
cubic HfO2. The calculated effective masses can be compared
with the experimental values of the electron tunneling
effective mass in amorphous HfO2: m �e � 0:22m0 [1], m �e �
0:1m0 [79], m

�
e � �0:15ÿ0:23�m0 [80], and m �e � 0:17m0 [81].

In Fig. 15, we show the PDOS calculated for 4f, 5p, and 5d
oxygen orbitals for cubic, tetragonal, and monoclinic HfO2.
The Hf 6s density of states is not shown because it contributes
negligibly to the formation of the electron density. It can be
seen that for all three crystalline phases of HfO2, theHf andO
electron orbitals enter in equal proportions into the spectrum
of electronic states. In the conduction band, the density of
states is primarily formed from transition metal d states, i.e.,
from the 5d states of Hf. The upper subband of the valence
band is mainly formed from oxygen 2p states with a certain
contribution from Hf 5d states; the middle, from Hf 4f states
with an admixture of oxygen 2s states; and the lower, virtually
completely from Hf 5p states. The similar nature of the
electronic structure of the cubic, tetragonal and monoclinic
phases of HfO2 points to the fact that the properties of HfO2

are determined by the short-range order in the atomic
arrangement.

In Fig. 16, we compare the experimental spectra of
amorphous HfO2 (X-ray, excitation by 1486.6 eV; UV,
excitation by 40.8 eV quanta; and photoelectrons) with
corresponding calculated spectra for monoclinic HfO2. The
calculated curves are obtained by summing the partial
densities of states of the 5p, 4f, 5d, and 6s orbitals of Hf and
2s orbitals of O; the required photoionization cross sections
are taken from Ref. [60]. Comparison of the experimental
XPSs with the calculated spectra shows good qualitative
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Figure 14. Band diagrams of cubic, tetragonal, and monoclinic HfO2 along the special symmetry points of the corresponding Brillouin zones.

Table 2.Electron (m �e ) and hole (m
�
h ) effectivemasses for cubic, tetragonal,

and monoclinic HfO2.

Cubic
phase HfO2

Tatragonal
phase HfO2

Monoclinic
phase HfO2

m �e =m0 0.86; 0.86 (G! L)
1.97; 0.68 (G! X)

0.72 (G!M)
0.94 (G! Z)

1.03 (B! A)
1.21 (B! D)

m �h=m0 0.32 (X! G)
3.04 (X!W)

0.78 (2) (A! Z)
8.26 (2) (A!M)

0.85 (G! Z)
1.28 (G! D)
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agreement. There are three valence subbands separated by
ionic gaps. The peaks of the experimental XPSs (at energies
� 3, � 13, and � 28:5 eV) and those of the calculated XPS
curves (at the same energies) are seen to agree in their relative
intensities. The dominant contribution to the experimental
UPSs comes from 2p states. The calculatedUPSs clearly show
two main peaks (at � 1:5 and � 4:5 eV), in agreement with
the experimental curve (energies� 1:5 and� 5:5 eV). But the
relative intensities of the main peaks for the calculated and
experimental curves agree poorly. Similarly to Al2O3, the
difference in width between calculated and experimental
peaks is due to the broadening of the experimental peaks,
and the mismatch in peak positions is due to the under-
estimated calculated widths of all the subbands of the valence
band. Still, the calculated and experimental photoelectron
spectra of crystalline and amorphous HfO2 can be considered
to be in satisfactory agreement. This leads to the conclusion
that DFT band calculations for the cubic, tetragonal, and

monoclinic phases of HfO2 give a qualitatively correct picture
of the valence band.

According to Ref. [82], the three allotropic modifications
of HfO2 have electronic structures similar to those of the
corresponding modifications of ZrO2. The reason is that Zr
and Hf are isoelectronic elements (that is, they have the
identical structure of the valence shell).

6. Electronic structure of TiO2

Titanium dioxide (TiO2, e � 80) is a promising candidate for
a subgate dielectric in MIS structures with a small channel
length (32 nm, 20 nm). Three natural polymorphs of TiO2 are
rutile, anatase, and brookite. Rutile is the most common
stable crystalline form of TiO2. Moreover, rutile has the
simplest and most studied crystal structure. The electronic
structure of rutile has been the subject of intensive study, both
theoretical [83 ± 91] and experimental [92 ± 94].

The crystal structure of rutile can be described by a
tetragonal unit cell (P4=mnm) with crystal parameters
a � b � 4:59 A

�
and c � 2:959 A

�
[84]. The unit cell of rutile

contains two Ti atoms six-fold coordinated by O atoms and
four O atoms three-fold coordinated by Ti atoms (Fig. 17a).
A Ti atom has four nearest O atoms at the distance 1. 945 A

�

and two next-nearest O atoms at 1.985 A
�
.

The electronic structure of rutile is calculated with the
program package ESPRESSO. The electronic configurations
of Ti and O are respectively [Ne] 3s23p64s23d2 and [He]
2s22p4. The core electrons are taken into account by
introducing ultrasoft pseudopotentials with a GGA
exchange-correlation functional with the Perdew±Wang
(PW91) parameterization.

The calculated band spectrum of rutile is shown in Fig. 18.
The zero of energy is chosen at the top of the valence band.
The valence band of rutile consists of two subbands separated
by an ionic gap of 9.6 eV. The respective widths of the upper
and lower subbands are 5.6 eV and 1.8 eV. According to the
calculations, rutile is a direct gap insulator, with the top of the
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valence band and the bottom of the conduction band at the G
point of the Brillouin zone. However, another minimum
occurs at the M point, 28 eV above that at the G point. The
value 28 MeV is, in practical terms, equal to the result of
30MeV [88] obtained using the linear combination of muffin-
tin orbitals (LMTO) method. The obtained results are in
agreement with the experimental facts [94] that rutile is a
direct-gap material and that its conduction band is virtually
degenerate, with minima Ec 15 MeV apart.

The band gap width calculated from the energy difference
between the last filled and first free states is 1.9 eV. This result
agrees well with previous calculations [87 ± 90]. The experi-
mental values of Eg for rutile lie in the range 3.0 ± 3.1 eV [92 ±
95]. Interestingly, the gap width estimate from Eqn (4.1) is
identical to the experimental value Eg � 3:1 eV.

Table 3 provides the maximum and minimum calculated
values of the electron and hole effective masses along some
Brillouin zone directions in crystalline rutile. Both electrons
and holes exhibit large anisotropy in their effective masses. It
is seen that there are both heavy electrons (1:2m0 in the
G!M direction) and light electrons (0:5m0 in the G ! Z
direction) in the crystal. In Ref. [96], the electron effective
mass in a rutile crystal was measured to be m �e � 3m0. The
value of the tunneling effective mass m �e � 0:5m0 is given in
Ref. [97]. Experimental values of the hole effective masses in

TiO2 are not available in the literature. According to
calculations, holes in a rutile crystal are heavy: m �h 5 2:8m0.

The constant-energy surface in k space near the top of the
valence band is an ellipsoid stretched along the z axis.
(Fig. 17b). As a consequence, the hole effective masses are
minimum along this axis and isotropic in the xy plane. The
energy surface near the bottom of the conduction band is
flattened out along the z axis (Fig. 17c), and the electron
effective masses are maximum in this direction. In the xy
plane, in the G!M direction (110), the constant energy
surface is seen to be the steepest and, accordingly, the electron
effective mass is at its minimum (which is 0:5m0). In the
G! X direction (100), the electron effective mass is slightly
less than the maximum value, m �e � 1:2m0.

Figure 19 shows the partial densities of states calculated
for the conduction band and for two valence subbands in a
rutile crystal. The partial densities of the Ti 2s and Ti 2p states
contribute little to the electronic structure of the valence band
and are therefore not shown. It follows that similarly to most
transition metal oxides, the conduction band states of rutile
are primarily formed from the d states of a transition metal,
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Table 3. Maximum and minimum values of the electron (m �e ) and hole
(m �h ) effective masses in rutile TiO2.

Rutile TiO2

m �e =m0 1.2 (G!M)
0.5 (G! Z)

m �h=m0 2.8 (G! X)
4.8 (G! Z)
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i.e., by the 3d orbitals of Ti. The calculated results for the
spatial distribution of the charge density show that the
bottom of the conduction band of rutile is formed by non-
binding Ti d orbitals. The upper valence subband mainly
consists of O 2p states (with a noticeable contribution from
Ti 5d states), although the top of the valence band is formed
exclusively by 2p electron states ofO. The distribution pattern
of the charge density in a rutile crystal shows that the top of its
valence band is formed by nonbinding oxygen 2pp orbitals.
These results agree well with other studies of the electronic
structure of rutile [83, 85, 89], and, in addition, similar
features are observed in the anatase crystal [98]. In the middle
of the valence band, oxygen 2p states strongly overlap with
Ti 3d states with a small contribution from Ti 3p and Ti 4s.
The charge distribution along the Ti ±O bond in the midgap
energy range points to the presence of a bindings orbital. The
lower narrow subband is formed from oxygen 2s states with a
small admixture of Ti 3d and Ti 3p states.

The calculated spectrum of the total phonon density of
states at the G point in k space shows that TiO2, like Al2O3,
has low-frequency phonon modes that are responsible for the
high value of the static dielectric constant. The electronic
component of the dielectric tensor e ei j of TiO2 takes the
following form in Cartesian coordinates:

e1i j �TiO2� �
7:4 0:0 0:0
0:0 7:4 0:0
0:0 0:0 9:0

 !
:

This result confirms the well-known anisotropy of the optical
properties of rutile. The values e1xx � e1yy � 7:4 and e1zz � 9:0
agree satisfactorily with the experimental values for the
`usual' (nusual � 2:63) and `unusual' (nunusual � 2:89) refrac-
tive index of rutile [80].

Figure 20 presents the experimental electron energy loss
spectra (EELSs) of amorphous TiO2 under a monochromatic
200 eV electron beam. The zero energy is the energy of
elastically reflected electrons. The band gap width is esti-
mated to be Eg 4 3:7 eV. Losses at the energies 6.9, 15.0, and
46.9 eV correspond to the excitation of the valence electrons
of rutile. The maximum of the energy loss spectrum gives
�hop � 22:8 eV for the bulk plasmon energy. It is interesting
to compare this value with the simple free electron gas
estimate

�hop � �h

�
4pNe 2

m �e

�1=2

; �6:1�

where N is the concentration of valence electrons participat-
ing in plasma oscillations. The electron effective massm �e can
be taken equal to the free electron mass because there are no
intensive interband transitions near a plasma resonance [99].
The inclusion of oxygen 1p and Ti 3d and 4s valence electrons
yields the estimate �hop � 24:04 eV, which is close to the
measured value 22.8 eV. But if oxygen 2s electrons are also
assumed to participate in plasma oscillations, then the
plasmon energy is estimated to be �hop � 26:61 eV.

7. Conclusion

We have reviewed the atomic and electronic structure of
Al2O3, HfO2, and TiO2, three of the most important and
promising high-k dielectrics. The experimental X-ray emis-
sion spectra, calculated PDOS spectra, and spatial charge
density distribution in the valence band of Al2O3 indicate that
the top of the valence band is primarily formed by non-
binding oxygen 2pp states. The calculated spatial charge
density distribution in the rutile crystal also shows that the
top of the valence band is formed by nonbinding oxygen 2pp
states. This is the most likely reason for large values of the
hole effective masses in both Al2O3 and TiO2. For a- and
g-Al2O3, it is established that close to the top and in the
middle of the valence band, in addition to nonbinding oxygen
2pp states, there are also oxygen 2p and Al 3s and 3p states,
corresponding to light holes with the effective mass
m �h � 0:35ÿ1:3m0. For TiO2, binding orbitals exist only
below the top of the valence band, and hence light holes are
not observed in the rutile crystal. We note that a similar
picture is observed in well-studied SiO2 and Si3N4.

In all three materials studied, the calculated electron
effective masses lie in the range from 0:4m0 to 1m0, whereas
the hole effective masses are on average much larger. This
implies that the conductivity of these materials is dominated
by the electron component.

It is established that a-Al2O3 and g-Al2O3 have qualita-
tively similar electronic structures. Similarly, the electronic
structures of cubic, tetragonal, and monoclinic HfO2 are
also qualitatively similar. It can be concluded that the
electronic properties of both Al2O3 and HfO2 are deter-
mined by a short-range order in the atomic arrangement,
i.e., (primarily) by the species of the atoms and by their
coordination. This conclusion is a reliably established fact
for silicon oxides and nitrides [100]. Most likely, this
property is a characteristic feature of all semiconductors
and all metal oxides.

Although the studied materials are promising for modern
siliconmicroelectronics, their use in practical devices is highly
problematic. The reason is that real samples of thesematerials
contain a high concentration of defect states that act as traps
for charge carriers. The nature (that is, the atomic and
electronic structure) of traps responsible for the localization
of electrons and holes in high-k dielectrics is still an open
question.
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