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Abstract. We review the structure of quasicrystals and their
electronic spectra, lattice excitation spectra, physical proper-
ties, and applications. The aperiodic filling of space according
to certain rules with several structural units or overlapping
atomic clusters is discussed. Perfect tiling, random tiling, and
icosahedral glass models, as well as phason strain are consid-
ered. The effect that the aperiodic long-range order and local
atomic structure have on electron and thermal transport and on
the optical, magnetic, and other properties is examined.

1. Introduction

The lattice symmetry of periodically ordered crystals is due to
the periodic arrangement of their atoms— that is, parallel
transfers or translations through the length of the basis
vectors of the lattice turn the lattice into itself. Unit cell
translations through the basis vectors of the lattice ensure
dense filling of the entire space without voids and overlaps
and thereby construction of the crystal lattice. Besides
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translational symmetry, the crystal lattice may exhibit
symmetry with respect to rotations and reflections. Transla-
tional symmetry imposes constraints on possible orders of
symmetry axes in crystal lattices. Periodically ordered crystals
may have 2-, 3-, 4-, and 6-fold rotational symmetry axes.
Rotations about symmetry axes of the fifth order or any one
higher than the sixth fail to transform the lattice into itself;
therefore, such symmetry axes are forbidden for crystals. The
proof of this fundamental theorem of classical crystallogra-
phy can be found, inter alia, in the Course of Theoretical
Physics, Vol. 5 by L D Landau and E M Lifshitz [1].

As is well known, periodicity is not a necessary condition
for the existence of long-range atomic order. For example,
quasicrystals possess a strictly aperiodic long-range order of
the quasiperiodic type. They lack the translational symmetry
that constrains possible order of symmetry axes; therefore,
they may also have symmetry axes of those orders that are
forbidden for ordinary periodically ordered crystals, as
illustrated by the example of ‘Penrose tiling’, i.e., a lattice
model of the two-dimensional quasicrystal. To recall, the
notion of the unit cell does not allow simple generalization
over quasicrystals because quasicrystal lattices are necessarily
built up of two or more types of structural blocks. Penrose
tiling consists of two different structural blocks, narrow and
wide rhombi with acute vertex angles of /5 and 2m/5,
respectively. Laying of these two rhombi, starting from
5 broad ones that have a common vertex, in accordance
with certain rules, results in a quasiperiodic covering of the
plane without voids or overlaps. Penrose tiling has a single
point rotation about which by an angle of 2r/5 transforms
the lattice into itself, which suggests an exact axis of 5-fold
symmetry. Moreover, Penrose tiling exhibits rotational
symmetry of the tenth order in the sense that rotation by an
angle of /5 leads to a lattice statistically indistinguishable
from the initial one; such lattices are indiscernible, for
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example, in diffraction experiments. The quasicrystal lattice
can also be constructed by analogy with laying the Penrose
tiling in the three-dimensional case. An example is the
icosahedrally symmetric Ammann—Mackay network, i.e., a
space tightly filled (according to certain rules) with prolate
and oblate rhombohedrons with definite vertex angles.
Quasicrystal lattices are discussed at length in Section 2.

Aperiodic long-range atomic order with icosahedral
symmetry was first discovered in 1984 by Shechtman, Blech,
Gratias, and Cahn [2], who reported unusual electron
diffraction patterns in a rapidly cooled AlgsMni4 alloy. To
begin with, they observed long-range order of the noncrystal-
line type in the form of sharp Bragg peaks with the symmetry
axis of the tenth order incompatible with periodic ordering.
Second, the intensity of diffraction spots did not decrease with
the distance from the center of the diffraction pattern, asin the
case of periodically ordered crystals. Third, consideration of
a sequence of reflections from the center of the diffraction
pattern to its periphery showed that spacings between the
reflections are related by powers of number t = (v/5+ 1)/2
or the golden ratio (see Appendix 8.1). Fourth, AlggMn4
diffraction patterns required six Miller indices to be described
instead of the three necessary to label Bragg reflections in a
periodically ordered crystal. Comprehensive analysis of
diffraction patterns obtained by moving along different
crystallographic directions revealed the occurrence of
6 symmetry axes of the fifth order, 10 symmetry axes of the
third order, and 15 of the second order, allowing for the
conclusion that the structure of the AlggMn ;4 alloy has a point
symmetry group m35, i.e., an icosahedron symmetry group.
Figure 1 shows electron diffraction patterns along symmetry
axes of the second, third, and fifth orders of a typical
icosahedral Algy sPd>1Mny s alloy.

Theoretical justification for the existence of Bragg peaks
in the diffraction patterns of a structure with icosahedral
symmetry was provided by Levine and Steinhardt [3]. They
constructed a quasicrystal model based on two unit cells with
an irrational ratio of their number and showed that the
diffraction pattern of aperiodic packing with icosahedral
symmetry shows Bragg reflections on the dense set of sites in
the reciprocal space with intensities consistent with those
obtained for the AlgsMn 4 alloy. A quasicrystalline structure
can be produced by aperiodic filling of the space with a few
structural units with a corresponding motive (atomic decora-
tion) in the absence of voids and overlaps. An equivalent
method of construction of a quasicrystalline structure
consists in aperiodic filling of the space with identical atomic
clusters overlapping in accordance with certain rules (the
quasicell method). It seems likely that the physical causes
behind the formation of quasicrystalline structures should be
sought in crystal chemistry which ‘requires’ icosahedral short-
range order in the atomic packing and ‘imposes’ on the
medium preferred symmetry axes of the 5th order in the
direction of chemical bonds; these requirements are incompa-
tible with translational long-range order. Monoelement
quasicrystals are nonexistent. Quasicrystalline structures
occur in metal alloys, with real quasicrystals frequently
representing imperfect, i.e., defective, realization of a perfect
quasicrystalline structure in the ground state. The quasicrys-
talline structure is similar to other types of structures in terms
of energy. Depending on the preparation conditions, compo-
sition, and thermal treatment, a quasicrystal may be found in
the perfect quasicrystalline state even in the absence of
characteristic static distortions (phasons) or in the micro-

Figure 1. Electron diffraction patterns of the icosahedral Algo sPd21Mng s
phase: (a) along the symmetry axis of the second order, (b) along the
symmetry axis of the third order, and (c) along the symmetry axis of the
fifth order (provided by K Edagawa).

crystalline state with a coherence length on the order of 10° A
and general pseudoicosahedral symmetry.
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Quasiperiodic structures were subjects of investigations in
mathematics, physics, and materials science before the
discovery of quasicrystals, as well. In the early 20th century,
mathematicians showed interest in the aperiodic functions
whose Fourier transform contains sharp peaks (e.g., function
f(x) = cos gx + cos Qx, where the Q/q ratio is an irrational
number). The concept of aperiodic mosaics has roots
stretching back into antiquity and has been extensively
studied since then in geometry [4]. The term ‘aperiodic
crystal’ was introduced by Schrodinger [5] in connection
with the discussion of gene structure. Before the discovery of
quasicrystals, solid-state physics studied incommensurably
modulated phases (see Appendix 8.2) and composite crystals
with a modulated structure, whose diffraction patterns
exhibited Bragg maxima arranged with usual crystal symme-
try but surrounded by satellite reflections. Also, physicists
were aware of the existence of icosahedral short-range order
in complex metallic alloys, metallic glasses, boron com-
pounds containing coupled Bj, icosahedrons [6], the
(B12H12)27 anion [7], clusters of alkali and noble metals [8],
and intermetallic compounds currently known as periodic
approximants of quasicrystals. However, the necessity of
periodicity for the emergence of long-range order was not
questioned until issuing the report on the AlgsMn 4 icosahe-
dral phase with long-range atomic order [2]. A plethora of
publications on the structure and properties of quasicrystals
over subsequent years have made the physics of quasicrystals
a self-contained branch of solid-state physics.

Quasicrystals could have been discovered earlier. Indeed,
Bradley and Goldschmidt [9] studied slowly cooled ternary
Al-Cu-Fe alloys by X-ray structural analysis as early as
1939 and reported the finding of a ternary compound with
AlsCuyFe composition of unknown structure, which they
called the  phase. In 1971, Prevarskii [10] investigated phase
equilibriums in the Al— Cu—Fe system and showed that the s
phase includes a small homogeneous region and is the sole
triple phase in this ternary system at a temperature of 800 °C.
In 1987, Tsai et al. [11] demonstrated that an alloy similar to
the  phase in composition constitutes a thermodynamically
stable icosahedral quasicrystal. In 1955, Hardy and Silcock
[12] discovered the new phase (designated by them as
T2 phase) in the Al-Cu-Li system, whose diffraction
patterns defied indexing. Its composition resembled that of
AlgCuLis and corresponded to the icosahedral phase of
Al—Cu-Li [13]. In 1978, Sastry et al. [14] observed diffrac-
tion patterns with pseudopentagonal symmetry in the Al—Pd
system [14]. Later on, a decagonal quasicrystalline phase was
also discovered in this system. Finally, Padezhnova and co-
workers [15] reported finding an R phase in Y-Mg—Zn
system and the failure to interpret its X-ray powder diffrac-
tion pattern; in a later study, Luo et al. [16] showed that this
phase had the icosahedral structure. None of these reports
were given proper attention in due time, which set back the
discovery of quasicrystals by many years.

Itis noteworthy that quasicrystalline alloys contain atoms
of transition, noble, and rare-earth metals; this fact is
probably responsible for the crystal chemistry of the short-
range atomic order. Many quasicrystalline phases exist in the
equilibrium phase diagram in a relatively narrow concentra-
tion region. The equilibrium thermodynamic, transport,
magnetic, and mechanical properties of quasicrystals, as
well as their single-particle and collective excitation spectra,
differ from those of the crystalline and amorphous phases of
similar composition. Specific properties of quasicrystals are

due to both the aperiodic long-range order and the local
atomic structure. Being alloys of metallic elements, quasi-
crystals are neither ordinary metals nor insulators or
semiconductors. Unlike insulators, quasicrystals have a
nonzero density of electronic states at the Fermi level,
n(Eg), although it is lower than in typical metals. The
characteristic features of quasicrystal electronic spectra
include a pseudogap in the density of electronic state at the
Fermi level and the fine peak structure n(E ) that influence the
physical properties of quasicrystals.

A wealth of experimental and theoretical data on
quasicrystal structure, properties, and methods of forma-
tion has been accumulated over the more than 20-year
history of investigations, a number of ideas concerning
their practical applications have been proposed and imple-
mented. The voluminous body of quasicrystal literature
comprises numerous articles, conference proceedings, and
monographs (see, for instance, Refs [17-29]). The aim of this
review is to present the main current concepts concerning the
structure and physical properties of quasicrystals. It is
intended for a wide circle of readers. No special emphasis is
laid on concrete objects or the details of theoretical and
experimental methods of analysis. Peculiarities of the
structure and properties distinguishing quasicrystals from
other solids are considered, and the possibilities of their
practical applications and prospects for further studies are
briefly discussed.

2. The structure of quasicrystals

2.1 Types of quasicrystals and methods for their formation
There are quasicrystals with orientational symmetries other
than icosahedral. Axial quasicrystals having rotation symme-
try axes of the 8th, 10th, and 12th orders were called
octagonal, decagonal, and dodecagonal phases, respectively.
They exhibit a quasiperiodic arrangement of atoms in the
planes normal to the symmetry axes of the eighth, tenth, and
twelfth orders. The quasiperiodic planes themselves are
packed in a periodic manner. Figure 2 depicts electron
diffraction patterns of the so-called basic decagonal phase of
the Al-Ni—Co system with a high Co content for three
directions of electron beam propagation in the sample, viz.
along the decagonal axis and A2P- and A2D-axes, i.e., two
different symmetry axes of the 2nd order [30]. Moreover,
there occur alloys with unidirectional quasiperiodicity.
Al—Mn alloys and other quasicrystalline phases discov-
ered soon after them proved to be metastable (they went to a
periodically ordered state when heated). They could be
prepared by rapid quenching of the melt or by other exotic
methods [2, 31]. Metastable quasicrystals were characterized
by a high degree of disorder that complicated evaluation of
the possible effect of quasiperiodicity on their physical
properties. Results obtained with samples of metastable
phases indicated that the physical properties of such quasi-
crystals are similar to those of disordered metals. The
discovery of the Al—Cu-Li icosahedral phase showed that
quasicrystals can be at least locally stable and grow under
practically equilibrium conditions [13]. At the same time,
analysis of diffraction patterns of this and some other
quasicrystalline phases revealed the presence in them of
specific structural defects— phasons (see Section 2.3 for
details). It was supposed that the presence of phasons is an
indispensable characteristic of quasicrystalline structures.
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Figure 2. Electron diffraction patterns of the decagonal Al Ni—Co phase
with a high cobalt content: (a) along the symmetry axis of the tenth order,
and (b, c) along the symmetry axes A2P and A2D of the second order,
respectively (borrowed from Ref. [30]).

New possibilities for experimental investigation into the
properties of solids with a quasicrystalline structure opened
up after the discovery of phason-free thermodynamically

stable phases crystallizing into a face-centered icosahedral
(FCI) structure in ternary Al-Cu-Fe, Al-Cu—Ru, and
Al-Cu-0s systems [11, 32, 33]. The very first experiments
with these phases showed that quasicrystals should be
assigned to a separate, very unusual class of solids having
properties of both glasses and periodically ordered crystals
[34]. An interesting study subject was the thermodynamically
stable FCI phase of the ternary Al-Mn —Pd system [35-37],
whose Bragg peaks were not broadened by structural defects
even in the absence of annealing. Phase equilibriums in this
system made it possible to grow single crystals of the
icosahedral phase by standard methods and thereby enabled
in-depth studies of its structure and properties. The structural
perfection of single crystals of Al-Mn —Pd icosahedral phase
was confirmed by observation of the Borrmann effect, i.e.,
anomalous X-ray transmission [38—40].

Today, quasicrystals are known to form in more than
100 systems based on aluminium, gallium, copper, cadmium,
nickel, titanium, tantalum, and other elements. As mentioned
above, thermodynamically stable icosahedral phases are
possible to obtain under normal solidification conditions.
Moreover, quasicrystals can be synthesized by such methods
as vapor condensation, high-pressure solidification, devitrifi-
cation of amorphous matter, decomposition of oversaturated
solid solutions, interlayer diffusion, ion implantation, the
mechanoactivation process, etc. [41-46]. Many methods
used to prepare crystalline and noncrystalline phases are
also suitable for synthesizing quasicrystals.

The formation of quasicrystals from a melt is, in principle,
different from that of metallic glasses readily obtained near
the eutectic composition at which none of the crystalline
phases is stable and an equilibrium alloy must break down
into two or more crystalline phases of different compositions.
The chemical separation being under diffusion control, this
process is metastable and rapid melt cooling promotes the
formation of metallic glass. In contrast, quasicrystals do not
form near compositions located close to eutectic ones in the
phase diagram. A distinctive feature of equilibrium phase
diagrams of systems with quasicrystalline phases is the
presence of a peritectic (Fig. 3). These peculiarities of phase
diagrams are typical of systems with strong interactions
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Figure 3. Vertical section through the equilibrium phase diagram of the
ternary Al—-Cu-Li system along the Al4CuLiz—AlgCuLis line plotted
using the results of differential thermal analysis in Ref. [47]: i—
icosahedral phase, R—rational approximant with the BCC structure,
x— aluminium content, and L — liquid phase domain.
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between different atomic constituents and a tendency toward
formation of compounds. Quasicrystals are synthesized in
these systems through the formation of nucleation centers
and their subsequent growth. See Refs [13, 47-50] for more
information about the methods of producing various quasi-
crystals.

One more property being indicative of long-range order in
the arrangement of atoms in quasicrystals is the occurrence of
faceting of the observed phases. The morphology of a
quasicrystalline phase depends on the growth conditions
and displays a number of interesting features. Not infre-
quently, the sole morphological manifestation of a newly
synthesized quasicrystalline phase is its point symmetry
group [51]. For example, dendrites of the metastable icosahe-
dral phase in the Al—Mn system are shaped like pentagonal
dodecahedrons, while dendrites of the thermodynamically
stable icosahedral Al—Cu—Li phase have the faceting of the
rhombic triacontahedron. Icosahedral quasicrystals in the
Al—Pd—Mn system have icosidodecahedral facets. A study of
faceting patterns of the icosahedral phase in the Al-Cu—Fe
system showed that facets are formed along dense atomic
planes in agreement with the requirement of minimum surface
stress [52].

While pure metals as a rule undergo crystallization
resulting in the formation of simple structures, fusion may
yield intermetallic compounds with a rather complex struc-
ture. By way of example, two complex crystalline phases of
a-Mn;2(Al,Si)s7 and Mgsz(Al,Zn)ag display local isomorph-
ism with the structure of the corresponding quasicrystals
[53, 54]. Each compound constitutes a body-centered cubic
(BCC) arrangement of clusters comprising concentric atomic
shells with icosahedral symmetry and containing 54 atoms in
the former case (icosahedral Mackay cluster) and 44 atoms in
the latter (triacontahedral Bergman cluster). Such com-
pounds are called periodic approximants of quasicrystals.
There also exists the third type of clusters (Tsai clusters)
containing 66 atoms each; the BCC arrangement of such
clusters is typical of crystalline alloys like Cde¢Yb, Zn;7Sc3
that are periodic approximants of the corresponding binary
quasicrystals [55]. Investigations into their structure by high-
resolution transmission electron microscopy showed that the
cluster structure is typical of quasicrystals, too; however, their
clusters are interpenetrating and packed aperiodically. As a
result, quasicrystals represent structures with a periodic long-
range order and a local cluster structure, rather than simple
aggregates of clusters.

The close structural similarity of approximants and
quasicrystals is apparent from the similarity of their
diffraction patterns [56]. The most pronounced diffraction
peaks of crystal approximants are located near analogous
peaks of the related quasicrystals. Other evidence of local
isomorphism of quasicrystals and appropriate approximants
is the coherent orientation coupling between their grains
[57]. Quasicrystals frequently form near the approximant
composition (Fig. 3); therefore, one of the ways to search for
new quasicrystalline compounds is to examine the composi-
tion domains near respective compositions of their crystal-
line approximants [58].

2.2 Methods for structure description

Aperiodic structures giving rise to sharp Bragg reflections,
such as a Penrose tiling, were known before 1984 [59]. These
structures are essentially characterized by long-range orienta-
tion type order. Structures referred to as quasiperiodic

coverings or tilings of the plane and space were considered
for the purpose of description of quasicrystal diffraction
patterns [59, 60].

Let us define the plane tiling by parallelograms [61]. Let
n nonparallel vectors b; (i=1,...,n) be given on a plane.
Let us then consider all parallelograms formed by vector
pairs (b;,b;) (i #j). Covering or tiling is such a division of
the plane into parallelograms from this set at which they
either do not intersect or have a common vertex (or edge).
Also, the tiling of space with parallelepipeds can be defined
by introducing n vectors b; (i =1,...,n) and considering
parallelepipeds formed by vector triads (b;,b;, by)
(i#j, k+#1i). Tiling of a higher-dimensional space is
defined by analogy, while tiling of the straight line is
referred to as its division into segments from a given set. A
class of quasiperiodic tilings devoid of translation type long-
range order is distinguished among the coverings thus
obtained. It is such tilings that are used for constructing
structural models of quasicrystals.

The most popular among the available models of the
structural skeleton of quasicrystalline objects is the two-
fragment model based on the quasiperiodic tiling of a
straight line, a plane, or space with two elementary structural
units. For a one-dimensional quasicrystal, this model leads to
the Fibonacci sequence of short (S) and long (L) segments
with S =1 and L = 1. In a two-dimensional case, the two-
fragment model comprises a Penrose tiling composed of two
types of rhombi with acute vertex angles /5 and 2r/5 (Fig. 4).
In a three-dimensional case, the same model is the general-
ization of a Penrose tiling formed by rhombohedrons of two
types (an Ammann—Mackay network). The absence of
translation type long-range order on retention of the long-
range orientation type order is a common feature of these
two realizations of the two-fragment model. It accounts for
the property known in the case of a Penrose tiling as the
Conway theorem, according to which any finite configura-
tion of the tiling is met in it quasiperiodically an infinite
number of times [62].

There are three principal ways of constructing a two-
fragment model, viz. the projection method, the multigrid
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Figure 4. Two-fragment model of a two-dimensional quasicrystal—a
Penrose tiling composed of narrow and broad rhombi.
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method, and the method using the property of self-similarity
of a quasiperiodic structure. The first method is the most
convenient for theoretical purposes [3, 63—66]; it was applied
to study incommensurably modulated crystals [67, 68]. It is
advantageous in that it restores periodicity and allows routine
classical analysis of the diffraction pattern using the Paterson
function and the structure factor. The quasicrystalline density
function can be expanded into the Fourier series in a high-
dimensional periodic structure. In such an expansion, the
number of basis vectors of an abstract space exceeds the
dimensionality of the physical space in which the real
quasicrystal exists.

Let us consider application of the projection method to
the case of a one-dimensional quasicrystal. To this effect, we
shall construct a square lattice with the constant a on a plane
with coordinates X and X, (Fig. 5) and introduce the second
coordinate system X), X, the axes of which are turned
through the angle 0 = arctan t~! with respect to axes X; and
X,. We call axis X a physical or parallel space, and axis X; an
additional or perpendicular space. Let us project onto
physical space X| all sites of the square lattice, which reside
within the ‘projection tube’ (a strip of width a(cos 0 + sin 6)
parallel to X)), i.e., projections of a unit cell of the square
lattice onto additional space X | . In Fig. 5, the projection tube
is enclosed between dashed lines parallel to X). Projections of
square lattice sites falling within the projection tube onto
physical space X determine the positions of lattice sites in a
one-dimensional quasicrystal. Distances between the sites of
such a lattice are L = acos 0 or S = asin 6, and their sequence
follows the Fibonacci sequence.

Quasicrystalline structures can also be constructed by the
section method, with certain advantages for the analysis of
experimental diffractograms. Sites of the square lattice in a
one-dimensional quasicrystal are decorated by linear seg-
ments parallel to additional space X, and equaling the
projection of a unit cell of the square lattice onto X, (Fig. 6).
Intersections of these segments, called atomic surfaces, with
axis X| determine the positions of lattice sites in a one-

Figure 5. Construction of a one-dimensional quasicrystal (Fibonacci
chain) by the projection method; tilt angle of axis X|, i.e., of parallel
subspace, with respect to axis X; of the two-dimensional square lattice is
0 = arctant~'; projection tube width / equals a(cos 0 + sin 0).

Figure 6. Construction of a one-dimensional quasicrystal by the section
method; the length / of atomic surfaces equals a(cos 0 + sin 0).

dimensional quasicrystal. In the general case, a unit cell of
the two-dimensional lattice may contain several atomic
surfaces; it thereby portrays atoms of other kinds and
corresponds to lattices with a basis in the case of periodically
ordered crystals.

The Fourier transform of the resulting one-dimensional
model of a quasicrystal gives the following expression for the
structure factor:

Sta) =" 12 m

where g and ¢, are the parallel and perpendicular compo-
nents, respectively, of the reciprocal lattice vector of a two-
dimensional crystal, and / is the projection tube width [69].
The projection technique is equally applicable for obtaining
the reciprocal lattice of a quasicrystal, with the sole difference
being that the size of the projection tube is not fixed. It follows
from the expression for the structure factor S(g)) that the
intensity of diffraction spots decreases with a rise of |¢, |, i.e.,
as the reciprocal lattice site of the two-dimensional crystal
departs from the parallel subspace g . In the absence of a two-
dimensional lattice basis, the square of the structure factor
absolute value proportional to scattering intensity depends
on ¢, alone. In the more complicated case of a lattice with a
basis, the dependence on ¢ also emerges. Taking into account
the irrationality of the tangent of the tilt angle of parallel
subspace g with respect to the axes of the reciprocal lattice of
the two-dimensional crystal, the expression for the structure
factor of the one-dimensional quasicrystal model shows that
the diffraction pattern of the given structure is dense
throughout, in the sense that the most intense Bragg
reflections corresponding to small |g | values are surrounded
by reflections of lower intensity, and so forth.

Projection formalism is just as well generalized to the case
of two- and three-dimensional two-fragment models of
quasicrystals [70, 71]. The integer hyperlattice in a six-
dimensional space, as well as three-dimensional physical and
additional spaces oriented irrationally with respect to the
hyperlattice, is used for constructing the Ammann—Mackay
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network. The sites ‘close’ to the parallel subspace are
projected onto it, and this projection constitutes a two-
fragment skeleton of the three-dimensional quasicrystal
structure. The vertex or the site ry of the six-dimensional
hyperlattice is present on the projection in the parallel
subspace if n(r, ) = 1, where n(r, ) is a function of the shape
of the projection of a hyperlattice unit cell onto the
perpendicular subspace, equaling unity within the projection
and vanishing outside. The inner part of the cell satisfies the
condition

6
r:Zx,-a,-, 0<x<l1, (2)
=1

i=

where «; are the unit vectors of the six-dimensional hyperlat-
tice. Therefore, n(r, ) = 1 if

6
I‘L:ZX,'C!,'L, O<X<l; (3)
i=1

otherwise, n(r;) = 0. Vectors a;, are directed along the
symmetry axes of the 5th order in the icosahedron. Accord-
ingly, the projection tube whose orthogonal section along the
additional space is described by nonzero n(r,) values is
confined in this space to the interior of the rhombic
triacontahedron, i.c., its shape is close to spherical one.

Analysis of diffraction patterns of the Ammann—Mackay
network with atoms at lattice sites revealed a number of
interesting features [69, 70, 72, 73]. By way of example,
diffraction results in a picture of everywhere dense spots,
even if only some of them are strong enough, while the
remaining ones are essentially suppressed by the dependence
of the structure factor on ¢ in the absence of the basis and on
neglecting atomic scattering factors. Indexing of the diffrac-
tion patterns is possible by six integer indices using the basis
of vectors directed along six symmetry axes of the 5th order in
the icosahedron. Reflections in the diffraction pattern may be
grouped into two classes: one comprising reflections with the
even sum of indices and connected with the powers of 7 for the
ratio of distances from the pattern center, and the other
including reflections with the odd sum of indices and related
to the powers of 73, in excellent agreement with experiment.
These features of diffraction patterns of the Ammann—
Mackay network allow it to be used as a basis for structural
analysis of real quasicrystals.

The projection method makes it possible to elucidate the
presence of long-range order in the Ammann—Mackay net-
work. Indeed, a quasicrystal with a network-like structure can
be interpreted as a structure with probabilistic translations or
quasitranslations real only for part of the sites. Let us
consider the case of a six-dimensional hyperlattice without a
basis. Then, the fraction of sites, the displacements from
which by a quasitranslation

6
H = Z ma;| (4)
i=1

where m are integers, and ;)| are the projections of the unit
vectors of the six-dimensional hyperlattice into the parallel
subspace, lead back to the respective site, is given by

oo n(r)n(ry + 1) d*r;

Iy n(r)dr,

(5)

Here, the following notation was introduced:
6
IL:ZWZ{G,‘L, (6)
=1

where @;, are the perpendicular projections of the unit vectors
of the six-dimensional hyperlattice. Notice that expression (5)
is the ratio of the volume at the intersection between two
triacontahedrons shifted by 7, relative to each other to the
volume of the triacontahedron itself. The quasitranslation
length 7| can be made infinitely large practically without a
change in ¢, ; this suggests undamping of the long-range
order.

The multigrid method is analogous to the projection
technique but allows working directly in the three-dimen-
sional space; due to this, it is more suitable to elucidate
crystallographic aspects [74]. In the context of this method,
a Penrose tiling in the form of wide and narrow rhombi makes
up a dual pentagrid lattice. Pentagrid G is said to be a totality
of five sets of equidistant parallel lines, each set G; being
referred to as a grid:

G=|Ja;, (7)
j=1

Gi=xeR*, xe=ki+y;, keZ, (8)

3]-:(cos(j—l)v,sin(j—l)V), VZZ?TE7 9)

where R? and Z are the sets of all real and integer numbers,
respectively. Five real parameters y;, called grid parameters,
determine the position of pentagrid origin and must be chosen
to satisfy the relation

> 7, =0(mod1). (10)

In this case, no set of three straight lines may intersect at one
point. Five unit vectors ¢; directed toward the vertices of the
regular pentagon define each grid G; and are called grid
vectors. The pentagrid partitions the entire space into a set
of polygons. Penrose tiling is obtained by transforming these
polygons into vertices of rhombi, meaning that the two
lattices, Penrose tiling and pentagrid, are mutually dual. The
method of transformation is as follows. A set comprising five
integer indices Kj(x) = [xe; — 7], j=1,...,5, where x is
taken inside the polygon, and [x] is the largest integer less
than or equal to x, is chosen for each polygon. The five indices
K;(x) define the vector

(11)

giving the coordinates of the rhombus vertex (¢; are usually
taken to equal e;). Vertex connectivity is defined in the
following way: each intersection point in a multigrid space is
common for four polygons that are transformed into four
rhombus vertices. The rhombus is obtained by connecting
each pair of vertices corresponding to polygons with a
common edge. The generation of rhombi for all pentagrid
intersection points gives a Penrose tiling formed by wide and
narrow rhombi without voids and overlaps. This technique is
fully applicable to the generation of the Ammann—Mackay
network in a three-dimensional space.
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Although both the projection and multigrid methods are
suitable for constructing a two-fragment quasiperiodic model
of the perfect quasicrystal, it is sometimes (especially for the
purpose of numerical computations) more convenient to
make use of the structural self-similarity of the model
mentioned, the reflection of which is the Conway theorem.
This method permits building up a Fibonacci chain of short
(S) and long (L) segments by applying the inflation transfor-
mation L — LS, S — L. This transformation implies local
substitution of all the letters in the chain. The Fibonacci
sequence is obtained by applying this transformation, starting
from a simple segment, e.g., L. Indeed, one obtains

L, LS, LSL, LSLLS, LSLLSLSL, ... . (12)
In the three-dimensional case of the Ammann—Mackay

network, inflation transformation (¢3 scaling) is performed
by matrix M(c?) = ¢} P — 1°P, = 2M(t) + I, where

11 1 11

111 -1 -1 1

il 1 1 1 -1 -1
MO=5117 1 1 1 1 -1 (13)

-1 -1 1 1 1

11 -1 -1 1 1

[ is the unit matrix, P ;; = ¢;e;), P1ij = ei1e;1, and ¢;; and
e;1 are the projections of unit vectors of the six-dimensional
hyperlattice into parallel and perpendicular subspaces.
Penrose tiling has similar properties.

The section method permits finding the linkage between
quasicrystals and their periodic approximants. Let us change
the inclination of axis X with respect to axis X of a two-
dimensional lattice by the ratio of two successive Fibonacci
numbers, e.g., tan 0 = (3/2)"". Then, the points of intersec-
tion between axis X| and atomic surfaces form a periodic
structure consisting of identical segments of a one-dimen-
sional quasicrystal (in the present case, LSLSL). The
structure thus obtained is generally referred to as the 3/2
optimal rational approximant of the quasiperiodic structural
Fibonacci chain. The closer the ratio of two successive
Fibonacci numbers to 7, i.e., the higher the approximant
order, the greater the period of the resulting structure locally
isomorphic to a one-dimensional quasicrystal, and the more
difficult it is to distinguish such a structure from the one-
dimensional quasicrystal, based on diffraction patterns.
Obtaining two- and three-dimensional periodic approxi-
mants is also associated with rational distortion of orienta-
tion of the parallel subspace in a multidimentional space.
Thus, a quasicrystal can be regarded as the structural limit of
a series of optimal rational approximants with an increasing
period. Such representation is extensively used in the analysis
of electronic and excitation spectra of quasicrystal lattices.

Very soon after the discovery of icosahedral quasicrystals,
a structural model of their skeleton was proposed as an
alternative to the two-fragment model; it was later called the
icosahedral glass model [2, 75, 76]. As applied to the
icosahedral phase, this model can be described as follows. A
starting, ‘prime’ icosahedron is randomly complemented by
other icosahedrons provided that no new icosahedron over-
laps the existing ones. The icosahedrons are connected via
vertices and retain their orientation. With the model implying
a random package of icosahedrons, diffraction peaks of such
structures have a finite width. The structure factor of the
icosahedral glass model is in excellent agreement with

experimental data [75]. However, despite the fact that this
model does describe certain quasiperiodic phases [77], the
discovery of structurally perfect phason-free quasicrystals
with narrow diffraction peaks in X-ray patterns [11] cast
doubt on the commonality of the structural approach in this
model.

2.3 Phasons

To sum up, there are two main approaches to the simulation
of the skeleton of an icosahedral quasicrystalline structure,
viz. the two-fragment model (quasiperiodic tiling of two
elementary structural units) and the icosahedral glass model
(random tiling of polyhedrons with prescribed symmetry).
The main difference between the two approaches is that the
former postulates the existence of quasiperiodic type long-
range order, and the latter only short-range order in the
arrangement of atoms. Interestingly, these quite different
approaches are equally suitable for explaining experimental
diffraction data. They are closely related and represent
limiting cases of the theory taking into account specific
defects in quasicrystals, known as phasons. Phasons repre-
sent excitations of the quasicrystal lattice (diffusion modes)
caused by local rearrangement of atomic sites. The simplest
way to arrive at an understanding of phasons is to proceed
from the projection technique. Quasicrystal density can be
written down in the form

p(r)) = J p(r)yn(ri)d’r

(e}

(14)

where p(r) is the density of a six-dimensional hypercrystal,
and n(r,) is a function of the shape of the elementary
hypercell projection onto the perpendicular space. Periodic
density p(r||) can be expanded in the Fourier series:

p(r) = poexp (iQr), (15)
0

where Q are the vectors of the reciprocal lattice of a six-
dimensional hypercrystal. Expansion (15) admits additional
phases Fy(r) distorting p(r), which are, in turn, expanded into
components of parallel and perpendicular spaces, viz.

FQ(I‘) = QWJ(V)‘FQLW(}’). (16)
Vector fields u(r) and w(r) describe phonons and phasons,
respectively. The latter are responsible for the appearance in
physical space of local configurations forbidden in the perfect
two-fragment model (there are unambiguous local tiling rules
for a Penrose tiling and the Ammann—Mackay network [71]).
The introduction of phasons becomes possible due to the
appearance of additional degrees of freedom in projection
formalism. Linear phason fields cause the displacement of
diffraction peaks from ‘ideal’ positions, and nonlinear ones
cause their broadening and reshaping [48].

The absence of phasons opens the way to a model of a
quasicrystal whose skeleton is described by the Ammann—
Mackay network or its low-dimensional analogs. Such a
structure arises from the use of a projection tube with a
fixed inclination in the high-dimensional lattice. For small
restricted random fluctuations of the projection tube inclina-
tion around a ‘right’ value, the structure resulting from the
projection is described by the random tiling model. The
diffraction pattern of such a structure consists of Bragg
peaks found in ideal positions and diffuse scattering from
defects [48]. In the case of large and unlimited deviations of
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the tube inclination from the right value, the structure
resulting from the projection is fairly well described in the
framework of the icosahedral glass model. The disorder
observed in this case in parallel subspace is called phason
strains. Diffraction patterns of structures with phason strains
exhibit relatively sharp peaks displaced from ideal positions.
Their width increases with increasing perpendicular constitu-
ent of the hypercrystal reciprocal lattice vector [48, 78].

Phonon shift relaxation time in quasicrystals, as in
ordinary periodically ordered crystals, depends on the speed
of sound, and the relaxation time of phason strains (phason
diffusion modes) is large (it was experimentally shown to
amount to several weeks at room temperature). Phason
fluctuations with a characteristic time on the order of 102 s
are equally possible.

The substantial broadening of Bragg peaks and their
displacement from ideal positions observed in experiment
are caused by reduced symmetry in quasicrystals due to
phason ‘frozen-in” modes. In a transition with symmetry
reduction in certain directions, the quasicrystal phase
becomes commensurate. Incommensurability determined by
icosahedral geometry is described by irrational number 7. Ina
phase with reduced symmetry, the number 7 is replaced by
some kind of its rational approximation (the ratio of two
successive Fibonacci numbers). Analysis of symmetry reduc-
tion due to phasons is possible in the framework of the group
theory. Maximum subgroups of the icosahedron point group
Yh=YxC, are Thn=TxC;, Dsgq=DsxC;, and
D3q = D3 x C;. Analysis of the spontaneous reduction of
symmetry Yy = G x Cj involving phason strain fields is
usually confined to considering transitions Y — G, where
G=T, Ds, D; (tetrahedral, pentagonal, and trigonal symme-
tries, respectively). The resulting structure is called a periodic
quasicrystal. It is possible to describe in a similar way the
Frank—Kasper phases resembling quasicrystals in terms of
chemical composition and local atomic order using, instead of
7, its rational 5/3 approximant [79].

Frozen-in phasons were for a long time regarded as
irremovable defects inherent in a quasicrystal and forming
at the stage of its growth. A similar picture is observed in the
case of incommensurably modulated crystals. Their structure
is also described with reference to multidimensional space
with periodically arranged continuous atomic surfaces.
Incommensurate phases also contain phason degrees of
freedom which, however, can be described by a linear
combination of long-wave phonons. The situation in quasi-
crystals is different: namely, atomic surfaces are disrupted,
which makes phonon and phason displacements independent
and does not allow the latter to be presented as atomic
displacements in a three-dimensional physical space by
analogy with phonon displacements. This fact appears to
account for the large relaxation time of phason strains and,
hence, for the possibility of their freezing-in. Such systems as
Al-Cu-Fe, Al-Cu-Ru, and Al-Mn-Pd exemplify qua-
sicrystals in which phason strains are lacking, as evidenced by
the absence of shifts in the diffraction peaks and their almost
one order of magnitude smaller width. The main proof of the
existence of phason strains is the lack of a systematic
dependence of peak width on the parallel constituent G| of
the reciprocal lattice vector in such quasicrystals as Al-Mn
and Al—-Cu-Li; however, the width shows linear dependence
on perpendicular constituent G, which confirms the pre-
sence of phason strains in the structure. Phason strains are
described by the 3 x 3 third-rank tensor whose elements are

partial derivatives of the phason coordinate with respect to
coordinates of physical subspace. In contrast, Al-Cu-Fe,
Al-Cu-Ru, and Al-Mn-Pd quasicrystals exhibit a linear
dependence of broadening on G, as in periodically ordered
crystals, while its G, dependence is not systematic. Such
quasicrystals are called phason-free [33].

Defects of other types, dislocations and surfaces, are more
complicated entities than their analogs in periodically ordered
crystals due to the incommensurate nature of quasicrystalline
phases. Dislocations in quasicrystals have the Burgers vector
containing a phason component hampering their mobility
because dislocation motion always leaves a phason trace. The
necessity of occurrence of screw dislocations for spiral growth
of quasicrystals is not obvious. There is a report of an elevated
concentration of point defects in quasicrystal objects; for
example, it is three orders of magnitude higher in the
icosahedral Al-Cu—Fe phase than in typical periodic
crystals [80].

2.4 Decoration of structural skeleton

The problem of detecting the decoration of quasicrystal
structural skeleton by atoms or their clusters is analogous to
identification of the basis and the atomic positions in a unit
cell of a periodically ordered crystal, provided the spatial
group and periods of the lattice are known. As mentioned
above, the two-fragment model is the most popular one for
the quasicrystal structural skeleton. Therefore, certain
researchers have tried to determine the concrete positions of
atoms in this skeleton by structural analysis using the
Paterson function. The three-dimensional Paterson function
P(ry) is defined as a Fourier transform of diffraction
intensities obtained in experiment, viz.

P(r) =Y I(Si)exp (=2nSiry)

i

(17)

where summation is performed over all reflections with
scattering vectors S;. It should be noted that P(r) provides
the maximum amount of information obtained without any
additional assumptions. Moreover, the Paterson function
may be regarded as a three-dimensional pair correlation
function providing both information on permitted intera-
tomic distances in the structure and angular information.
Computation of P(r) in the parallel space yields an aperiodic
function; comparison of its maxima with the theoretical
quasicrystal skeleton gives one decoration model or another.
However, practical application of this procedure encounters
difficulties in deciphering the Paterson function caused by
structure quasiperiodicity. From this standpoint, calculation
of the six-dimensional Paterson function appears more
preferable [81] because it permits finding the basis of the six-
dimensional hyperlattice and the shape of atomic surfaces in
the six-dimensional space, i.e., three-dimensional ‘orthogo-
nal’ objects analogous to the segments depicted in Fig. 6.
Notice that if the shape of atomic surfaces in the perpendi-
cular space differs from rhombic triacontahedron, the
skeleton of the projected structure is no longer described by
the Ammann—Mackay network and implies more compli-
cated objects [82].

Atomic positions in a quasicrystal can be found by
comparing them with related crystalline phases, such as
periodic approximants, making use of their local structural
isomorphism. In the case of the crystalline Al-Cu-Li
R-phase, a unit cell can be divided into acute rhombohedrons
and rhombic dodecahedrons (composed of two ‘prolate’ and
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two ‘oblate’ rhombohedrons) with the specified decoration of
these polyhedrons. Taking into account the rational inclina-
tion of the projection tube in the six-dimensional hyperlattice
for obtaining periodic approximants, this decoration may
prove suitable for a description of the structure of a stable
icosahedral Al-Cu-Li quasicrystal, too. Topological pro-
blems make difficult verification of this hypothesis. Theore-
tical analysis of a somewhat simplified variant of this
decoration yields diffraction patterns similar to experimental
ones [81]. In order to describe the structure of the icosahedral
phase in the Al-—Cu-Li system, the authors of Ref. [83]
proposed decorating rhombohedrons of the Ammann—
Mackay network (enlarged by the factor 7> compared with
the experimentally found minimal size) by large Pauling
triacontahedrons with a complex atomic structure that are
encountered in the description of the R-phase. Calculated
diffraction patterns were consistent with experimental ones,
but the presence of weak ‘theoretical’ peaks absent in
experiment implies the necessity of more exact definition of
this model.

Combination of two above approaches to the interpreta-
tion of quasicrystal atomic structure, i.e., its analysis using the
Paterson function and comparison with the decoration of
periodic approximants, constitutes the most general struc-
tural approach. Indeed, computation of the Paterson func-
tion for the crystal approximant allows the atomic basis of a
six-dimensional hyperlattice to be determined. In such a case,
the quasicrystal structure in the parallel space is a function of
tube reorientation and a projection of the structure with the
basis onto the physical space. This approach was used in
Refs [84, 85] where the a-phase of the Al—Mn — Si system was
regarded as the rational 1/1 approximant of the icosahedral
quasicrystal. The authors obtained the atomic structure of the
icosahedral phase in the Al-Mn—Si system by deducing the
atomic decoration of the hyperlattice from the Paterson
function and changing the inclination of the projection tube
by an irrational one. Despite good agreement with experi-
ment in terms of diffraction patterns, this model contained
many nonphysically short interatomic distances. Substitution
of the polyhedral atomic surfaces for initially used spherical
ones brought about reasonable interatomic distances, ade-
quate atomic density, and local structure similar to that of
oo—Al-Mn-Si containing a large number of Mackay
icosahedral clusters. Such a procedure was applied to other
quasicrystalline phases, too [86, 87].

One more method designed to interpret atomic structure
directly from a concrete variant of the basis of a six-
dimensional hyperlattice has been extensively used in addi-
tion to the above approaches. In application to the structural
skeleton of the Ammann—Mackay network, it consists in
exhausting different bases of a six-dimensional hyperlattice
and calculating diffraction patterns until they agree well with
experimental ones. In a three-dimensional parallel space, this
procedure leads to the decoration of rhombohedrons by
atoms of different kinds. However, this approach is labor-
ious due to the specific structural features of quasicrystals and
should be used only when a given skeleton is shown (by any of
the above methods) to be readily decorated by atoms and
fairly well describes the quasicrystal structure of the system of
interest. By way of example, it was shown that the description
of the skeleton of an icosahedral quasicrystal in the Al-Mn
system by the Ammann—Mackay network is sufficient to
adequately characterize the atomic structure with simple
decoration [88].

Determination of the atomic arrangement in quasicrystal-
line phases remains a challenging problem because the
accuracy of basis interpretation for quasicrystals is still
much lower than for periodically ordered crystals [89]. It has
been shown that both approximants and quasicrystals exhibit
a cluster structure. For three-dimensional structures, the
three types of clusters described above make up an icosahe-
dral quasicrystal and decorate the spatial aperiodic lattice
according to certain overlap rules. Column clusters form two-
dimensional quasicrystal structures. The positions of the
atoms inside clusters are fixed, although chemical disorder is
possible. Gummelt [90] proposed constructing two-dimen-
sional quasicrystal structures by the quasicell method with the
laying of planes into a single decagonal ‘two-color’ structural
block. This procedure is equivalent to the construction of a
Penrose tiling in conformity with the well-defined rules of
cluster overlapping.

3. Electronic spectrum and structural stability

The probability of formation of the icosahedral phase during
rapid cooling from the homogeneous (liquid) state was
considered in the framework of the Landau theory of phase
transitions before the discovery of quasicrystals. Alexander
and McTague [91] expanded the free energy of a weakly
inhomogeneous system in powers of density, restricting
consideration to the third- and fourth-order terms, and
arrived at the conclusion that the icosahedral structure is
thermodynamically inferior to body-centered cubic (BCC) or
hexagonal structures. They found the BCC structure to be
more advantageous. Later on, Mermin and Troian [92]
included the fifth-order terms in the analysis, as well as
Kalugin, Kitaev, and Levitov [63] considered instability of
the homogeneous state relative to the formation of a density
wave with icosahedral symmetry, taking into account two
wave vector stars corresponding to the vertices and edges of
the icosahedron. Their results suggested a higher probability
of formation of the icosahedral phase.

Taking account of the entropic contribution may sub-
stantially diminish free energy. The entropy of a random
quasicrystal is greater than that of regular quasicrystals
having a different inclination of the three-dimensional space
with respect to the six-dimensional lattice. On the other hand,
assuming the regular quasicrystal to be in the ground state,
the introduction of phasons in the structure must be
accompanied by a rise in the total energy due to the
appearance of configurations absent in the ground state.
Competition between these contributions has a marked
effect on the real structure of quasicrystals.

Microscopically, the binding energy depends on two main
contributions: direct ion—ion interaction, and indirect ion—ion
interaction mediated through valence electrons. Analysis of
the electrostatic contribution to the binding energy of an
‘ideal’ icosahedral quasicrystal structure shows that the
Madelung constant for decorated Ammann—Mackay net-
works is significantly smaller than for densely packed
structures [93-96]. Accordingly, the contribution from direct
electrostatic interaction between ions to the binding energy is
small compared with that of indirect ion—ion interaction, with
structural stability being essentially dependent on the
peculiarities of electronic spectra.

The difficulties encountered in the analysis of electronic
spectra and electron transport in quasicrystals are primarily
due to the inapplicability of the Bloch theorem. For a one-
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dimensional quasicrystal or Fibonacci chain in the strong-
coupling approximation, site energies or hopping integrals
are parameters that quasiperiodically ‘intermix’ according to
the rule dictated by the Fibonacci sequence. In the strong-
coupling approximation, the problem is solved analytically.
In this case, the spectrum has a self-similar structure of energy
gaps called the ‘devil’s staircase’, and the total band width
tends toward zero in accordance with the power law B ~ N¢
as the size of the system increases. The energy spectrum
constitutes a Cantor set of Lebesgue measure zero. To
recall, a set lying on the number axis is referred to as the set
of Lebesgue measure zero if for any ¢ > 0 this set is covered
with a finite or countable system of intervals, the total length
of which is smaller than ¢. Another feature of the one-
dimensional quasicrystal electronic structure is the critical
behavior of electron wave functions that are neither deloca-
lized nor localized. In a classification according to the
normalization integral, the wave function (r) is localized if
the integral | _ |1p(r)|2 dr converges, and delocalized or
extended if f\r\<R [ (r)|* dr ~ R, where d is space dimen-
sion, and, finally, critical if the normalization integral is not
described by two above-mentioned cases. In conformity with
this definition, the power-law wave function y(r) ~ || * is
localized if o« > d/2. Therefore, electrical resistance of a one-
dimensional quasicrystal shows a power-like dependence on
length [63, 97, 98].

Properties intrinsic in one-dimensional quasicrystals are
not necessarily common to higher-dimension quasiperiodic
objects. The peculiarities of one-dimension periodic systems
are well-known in the Anderson localization problem: wave
functions always remain localized at an arbitrarily small
degree of disorder. At the same time, wave functions for the
Fibonacci sequence are always critical. Even more important
is the fact that the Fibonacci chain is considered in a problem
implying a distribution of two-valued potentials or hopping
integrals over a topologically regular lattice. Real quasicrys-
tals are topologically nonperiodic in a three-dimensional
space, and certain results obtained for the Fibonacci chain
are characteristic of one-dimensional systems alone.

Investigations of a two-dimensional Penrose tiling in the
framework of strong-coupling approximation demonstrated
that the electronic spectrum has no universally dense self-
similar gap structure characteristic of the Cantor set but
possesses a singular part, i.e., it is nonsmooth. Smooth
spectra are those in which interlevel intervals AE in the
thermodynamic limit depend on the system size as
AE ~ 1/N; in nonsmooth ones this dependence assumes
the form AE ~ 1/NP, where f#1 [99-101]. Most wave
functions for the two-dimensional quasicrystal model are
critical. The length dependence of conductance was studied
for so-called semiperiodic Penrose tilings obtainable as
periodic arrays of infinitely long quasiperiodic strips.
Conductance underwent a power-like decrease with increas-
ing strip length. The energy dependence of conductance is
subject to strong oscillations, probably due to the spectral
nonsmoothness of two-dimensional quasicrystals [99—101].
The random introduction of topological configurations
(phasons) forbidden for Penrose tilings obliterates the
peculiarities of the density of electronic states in two-
dimensional perfect quasicrystals and thereby increases
conductance at certain energy values when the density of
states of the perfect system is close to zero. It may be a cause
of conductance growth in real quasicrystals with increasing
the density of random phasons [102].

Electronic spectra of three-dimensional (icosahedral)
quasicrystals were explored in Refs [103, 104]. The quasicrys-
tal was regarded as the limit of a sequence of rational periodic
approximants with the growing period. It was shown for the
Ammann—Mackay network with central and vertex decora-
tions of rhombohedrons in the strong-coupling approxima-
tion that the wave functions are critical near the Fermi energy.
The spectrum does not contain a self-similar gap structure
and its Lebesgue measure is nonzero; however, it involves a
small singular part. The root energy dependence of the
spectrum characteristic of periodic structures undergoes
distortion and reaches a peak with increasing the order of
the approximant as it tends to the quasicrystal. Wave
functions near the Fermi level are critical and their envelope
decreases with distance following the power law.

A characteristic feature of the electronic spectrum of
icosahedral quasicrystals is the presence of a pseudogap in
the density of states at the Fermi level, the feature demon-
strated by calculations of electronic spectra, observations of
specific heat and photoemission, and nuclear magnetic
resonance (NMR) and tunneling experiments. The main
cause behind pseudogap formation in the electronic spec-
trum is the points of contact of the Fermi sphere with the
Brillouin zone edges. The pseudogap results from interference
between electronic waves and wave vectors K and K + G.
Here, G is the reciprocal lattice vector corresponding to Bragg
reflection and satisfying the condition |G| = 2k, where kr is
the radius of the Fermi sphere. Strictly speaking, Brillouin
zones cannot be constructed for aperiodic crystals, but
Brillouin pseudozones corresponding to the first strong
Bragg reflections can be introduced for quasicrystals. Due to
the high multiplicity factor of such reflections, the Brillouin
pseudozones are almost spherical in shape; accordingly, the
pseudogap is wider and deeper than in crystal approximants
[105—-107]. Pseudogaps occur in amorphous and crystalline
alloys, too, where they are not as apparent as in quasicrystals.
The landing of the Fermi level in the pseudogap at a certain
number of valence electrons per atom stabilizes the structure.
It is the so-called Hume-Rothery rule, well known from the
electron theory of alloys, whose applicability to quasicrystals
was considered in Refs [108—112, 55].

As known empirically, stable icosahedral quasicrystals
form when a mean number of valence electrons per atom (e/a)
is close to 1.7 or 2.1. Quasicrystals containing no transition
elements, such as Al-Li—Cu, Zn—-Mg—-R (R=Y, Gd, Tb,
Dy, Er, Ho) systems, belong to the quasicrystal family with
e/a = 2.1, for which the Fermi sphere with diameter 2k,
computed from the electron density, is close to reciprocal
lattice vectors (222100) and (311111). However, stable binary
quasicrystals Cds;Yb and Cd;7Cas are realized at e/a = 2.
Photoemission experiments and theoretical calculations
indicate that the Fermi level in these objects does not
coincide with the minimum of the observed pseudogap and
that the main cause responsible for pseudogap formation is
spd-hybridization of electronic states, rather than interaction
between the Fermi sphere and Brillouin pseudozone [55].
Each of the three above e/a values corresponds to a
fundamental cluster of atoms making up respective quasi-
crystals and approximants (see Section 2.1). The pseudogap is
not a universal property of all quasicrystals. For example, it
was not revealed in decagonal quasicrystals, probably due to
periodic packing of quasicrystal planes; naturally, its presence
does not compromise the significance of the Hume-Rothery
criterion.
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In addition to the pseudogap, the electronic spectrum of
quasicrystals is characterized by a fine peak structure with a
gap width on the order of 10-50 meV as shown in Ref. [101]
and confirmed by tunneling [113-115] and NMR [116]
experiments. Such a structure of the spectrum suggests the
existence of almost dispersionless flat energy bands and,
accordingly, a low mobility of current carriers in quasicrys-
tals.

4. Lattice excitations

The problems of vibrational eigenmodes and one-electron
states lead to identical equations, which permits using the
results of studies concerned with the behavior of noninteract-
ing electrons in quasicrystals. No exact solutions have been
reported in the literature, barring a one-dimensional case [97,
117]. All that has proved possible to show in two- and three-
dimensional cases is the irrelevance of the hypothesis of quasi-
Bloch states in quasicrystals [118]. Bloch states in periodically
ordered crystals are localized in the momentum space and
therefore resemble states occupied by free particles. Eigen-
states in quasicrystals are never localized in k-space. They are
always subject to internal decay, although the rate of this
process in the weak-scattering limit is negligibly low. Despite
the similarity of the equation for vibrational eigenmodes and
the one-electron Schrodinger equation, they are different in
one important aspect. While the scale of momenta intrinsic to
occupied electronic states is given by Fermi momentum pg
and cannot be chosen arbitrarily, in the case of lattice
excitations there is always a long-wave limit where the
quasiperiodicity of the potential does not play any significant
role.

As mentioned earlier, the exact solution to the problem of
vibrational eigenmodes [119] and one-electron Schrodinger
equation [118] was found for the one-dimensional model of
the quasicrystal. This solution was obtained using the
formalism of transfer-matrices relating displacements of two
neighboring atoms in the case of vibrational modes or two
independent solutions of the Schrodinger equation, e.g. ¥
and ¥'. The main result of the relevant theory is that the
universality class of the problem is determined by the value of
the single parameter J [117, 98]. The standard choice of this
parameter is a half-trace of the multiplicative commutator of
transfer-matrices corresponding to specified sites in the
Fibonacci chain. Parameter J never takes values smaller
than one, and the case when it equals unity corresponds to
the universality class of the periodic chain. Given below is the
expression for the parameter Jin the case when the Fibonacci
chain consists of atoms with two different masses, #1; and n1,,
and elastic forces between the neighboring atoms are
identical. The transfer-matrix relating displacement vector
u, = (u,_1,u,), where u; is the vibration amplitude of the ith
atom, with displacement vector w,;; = (uy,un+1) can be
written for the mode of a given frequency w in the form

_ 0 1
Ty = (—1 2—m,1k‘la)2>'

Here, m, is the atomic mass at site n, and k is the elastic
constant. Taking into account w*-order terms, the half-trace
of the multiplicative commutator of transfer-matrices at two
adjacent sites 1 and 2 is written down as
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Figure 7. Frequencies of vibrational eigenmodes of a Fibonacci chain
consisting of 233 atoms with two different masses; mass ratio is 3/2 (taken
from Ref. [120]).

Parameter J tends toward unity as frequency decreases. It
reflects the fact that local details of the quasicrystal structure
become less significant in the long-wave limit.

Although the lattice excitation spectrum of a one-
dimensional quasicrystal has measure zero, as in the case of
the one-electron Schrodinger equation for the Fibonacci
chain, in the long-wave limit it looks continuous because
gap widths become smaller than the separation between
eigenmodes of a finite-length chain. Figure 7 depicts
eigenmode frequencies of the Fibonacci chain consisting of
233 atoms with the mass ratio 3/2 as a function of pseudowave
vector ¢ defined as eigenmode nodal density [120]. Such a
definition is a natural generalization of the wave vector in the
case of a quasiperiodic chain because node density is
proportional to the wave vector in the case of a periodic
chain. The w(g) plot in Fig. 7 exhibits only the most
important gaps. It is known from the exact solution for the
Fibonacci chain that the widths of such gaps in the spectrum
are proportional to v/J — 1, i.e., the square of frequency
[117,98].

Calculations of the dynamic response of different three-
dimensional models of quasicrystal lattices were made for
both rational approximants with large unit cells and large
quasicrystal clusters. Theoretical analysis of the models of
rational approximants with large unit cells containing up to
10° atoms revealed not only acoustic modes near the most
intense Bragg peaks but also the hierarchical structure of
excitation branches of a lattice with pseudogaps that reaches
the lowest frequencies and results in deviation from the usual,
i.e., quadratic in frequency, density of vibrational modes even
at relatively low frequencies [121]. The introduction of
structural defects into such a model therewith smears out
the peculiarities of the vibrational mode density. Interest-
ingly, dispersion of acoustic branches becomes increasingly
more isotropic and transverse velocities of sound tend toward
one and the same value with increasing approximant order. In
quasicrystals with icosahedral symmetry, the law of disper-
sion of acoustic oscillation branches is isotropic, and
transverse acoustic branches are degenerate.

Experimental studies of quasicrystal lattice dynamics
by inelastic neutron and X-ray scattering methods in-
cluded different systems, such as icosahedral Al-Li—Cu,
Al-Cu-Fe, Al-Mn-Pd, Y -Mg—Zn, Zn—Mg—Sc phases
[122-130], and the decagonal Al-Ni—Co phase [131].
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Comparative analysis of lattice excitation spectra of the
icosahedral Zn—Mg— Sc phase and its rational 1/1 approx-
imant Zn—Sc was undertaken in Ref. [130]. Of all icosahe-
dral phases, that of AlI-Mn-Pd was most thoroughly
investigated in terms of lattice dynamics due to the
possibility of growing large single crystals of high structural
quality. The main results of these investigations [126, 127]
are reviewed below.

In the long-wave limit, experimentally examined excita-
tions of an icosahedral lattice are well-defined acoustic modes
with a width matching the resolution power of the spectro-
meter. The acoustic modes are isotropic and their velocities
are in excellent agreement with the results of ultrasonic
measurements performed on the same Al-Mn-Pd speci-
mens. It should be noted that unambiguous correspondence
between the measured energy spectrum of scattered neutrons
and a selected branch of the excitation spectrum (dispersion
relation) can be established only in the low-frequency region.
In the region of intermediate frequencies, each measured
signal is possible to associate with a certain strong Bragg
peak. Therefore, the choice of strong Bragg peaks as ‘band’
centers permits describing experimental results in the lan-
guage of dispersion relations.

In the frequency region above 2 THz, the width of a
transversely polarized acoustic mode begins to rapidly grow,
while the slope of the corresponding dispersion relation
decreases. In the region above 3 THz, a longitudinal acoustic
mode becomes virtually dispersionless. The width of trans-
versely polarized acoustic modes starts to increase for wave
vectors ¢ >0.35A”' and reaches roughly 1 THz at
q = 0.65 Afl, when the corresponding dispersion relations
substantially deviate from the linear law (Fig. 8). Such a
behavior of lattice excitation spectra characteristic of all
icosahedral quasicrystals precludes measurement of disper-
sion laws at frequencies above 6—8 THz. Notice, however,
that measurements of the generalized vibrational mode
density g(w) by the time-of-flight neutron inelastic scattering
method are feasible only at frequencies of up to 12—14 THz
[132]. Four 1-THz wide dispersionless modes were detected in
the frequency range from 2 to 6 THz, in addition to acoustic
modes.
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Figure 8. Frequency v and width Av of the transversely polarized acoustic
mode in the icosahedral Al1-Mn—Pd phase as a function of wave vector ¢
(taken from Ref. [127]).

The spectra w(q) of lattice excitations of the decagonal
Al—Ni-Co phase for certain symmetric directions measured
by the inelastic neutron scattering method using a three-axis
spectrometer at 300 K were reported in Refs [131, 133]. Two
transverse and two longitudinal modes propagating parallel
to the crystallographic directions [11110] and [00002] were
observed near Bragg peaks (00002) and (11110), respectively,
with their polarization vectors laying in the plane formed by
directions [00002] and [11110] [131]. The speeds of sound in
the decagonal Al-Ni—Co phase, derived from w(q) in the
long-wave limit, are in excellent agreement with components
¢;j of the elastic modulus tensor found by ultrasonic
resonance spectroscopy [134, 135]. As shown in Ref. [131],
dispersion of acoustic excitations is isotropic within the
experimental error for wave vectors |q| < 0.55 A~ . This
finding is in qualitative agreement with the results of ¢;;
measurement, showing that changes in the speeds of sound
v;(0) with a polar angle 0 between the acoustic wave vector
and the decagonal axis do not exceed 13% [134, 135]. At the
same time, the experimental data reported in Ref. [131] are in
conflict with theoretical studies of lattice excitations in
decagonal quasicrystals, exemplified by the Al-Mn phase
[136]. The theory predicts strongly anisotropic dispersion for
lattice excitations spreading in the quasiperiodic plane and
along the periodic direction.

The local cluster structure affects the lattice dynamics of
quasicrystals in a certain way and is different in quasicrystals
with Mackay and Bergman clusters. In the former, the
generalized density g(w) of vibrational modes is smoother
and structureless, containing one or two bands of the phonon
spectrum. In the latter, the structured short-wave part of the
spectrum includes a few energy subbands due to differences in
short-range interatomic interaction. Differences between
lattice excitation spectra of quasicrystals and their rational
approximants are insignificant [130]. In g(w) spectra, peak
positions and intensities are somewhat different: namely,
structures with Bergman clusters for approximants (unlike
structures with Mackay clusters) show narrower peaks
compared with quasicrystals.

5. Physical properties of quasicrystals

Most quasicrystals are intermetallic alloys with properties
essentially different from those of crystalline and amorphous
phases with a similar composition. There is a wealth of
experimental data on quasicrystal properties summarized in
good reviews and monographs (see, e.g., Refs [24-26, 28,
107, 137]). These specific properties are determined by
aperiodic long-range order and local atomic structure. The
influence of these factors becomes apparent upon comparing
the properties of quasicrystals and approximants. Section 5
deals with their electron and thermal transport, superconduc-
tivity, magnetic and mechanical properties. We shall first
consider electron transport.

5.1 Electron transport

The electrical resistivity of quasicrystals is smaller than that of
insulators and doped semiconductors, but greater than in
metals and the corresponding periodic approximants. The
carrier concentration determined by measurements of the
Hall effect (the Hall coefficient for quasicrystals may be sign-
changing and temperature-dependent) is on the order of
102°—10%! cm~3. This raises the question of the state of
electrons in quasicrystals. The resistivity p, , i of icosahedral
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quasicrystals at the liquid-helium temperature varies from
70 uQ cm in Al-Mg—Cu to 2 Qcm in polycrystalline
Al-Pd—Re samples. It does not exceed 20004000 pQ cm
at 300 K, and 3000—6000 pQ cm at 2 K in single crystals of
the icosahedral Al-Pd—Re phase.

As a rule, the temperature coefficient of resistivity dp/dT
of icosahedral quasicrystals has a negative value. The
icosahedral Al-Mg—Cu phase is an exception in that its
resistance is practically independent of temperature. The
temperature coefficient of resistivity of decagonal quasicrys-
tals is negative only in quasicrystal planes, and positive
(dp/dT > 0) in the periodic direction; also, resistivity p,, in
the periodic direction is much lower than along the quasiper-
iodic plane, p,. Contributions from residual resistivity p(0) at
zero temperature and the temperature-dependent part Ap(7')
are not additive (the additivity of these contributions for
periodically ordered metals is the essence of the well-known
Matthiessen’s rule). In the case of icosahedral quasicrystals,
conductivities instead of resistivities are summed up: o(7T) =
a(0) +Aa(T).

Variations of resistivity in icosahedral quasicrystals with
temperature are usually characterized by the ratio
R = p4x/p300k - The value of R for practically all icosahedral
quasicrystals ranges from 1.1 to 4. For example, for stable
Al-Cu-Li and Al-Cu—Ru phases, one has R~ 2. An
exception is the icosahedral Al-Pd—Re phase for which R
varies from 2 to 250 depending on composition and condi-
tions of synthesis (Fig. 9) [138]. In single crystals of this phase,
one finds R ~ 2. Disorder in quasicrystals causes resistivity
(especially low-temperature resistivity) to decrease. A perfect
quasicrystalline object should have zero conductivity ¢(0) but
it is actually finite due to local chemical disorder. Most
icosahedral quasicrystals have ¢(7)~T# with 1< f<1.5 in
the temperature range above 20 K. At low temperatures, the
temperature-dependent contribution Ac(7) to conductivity
behaves like T''/2, probably by virtue of correction arising
from electron—electron interaction. This issue is also exten-
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Figure 9. Temperature dependence of resistivity in polycrystalline samples
of icosahedral Al-Pd—Re alloys with different p,¢ /psgsk- (Reprinted
with permission of Rodmar M, Zavaliche F, Poon S J, Rapp O Phys. Rev.
B 60 10807 (1999). Copyright 1999 by the American Physical Society).

sively discussed in the literature with reference to magnetore-
sistance experiments [139].

Polycrystal samples of the icosahedral Al-Pd—Re alloy
with large R at low temperatures behave as disordered
conductors near metal-insulator transition. In Al-Pd—Re
alloys with small R, one finds Ac(T) ~ T'/2. Specimens with
R > 10 for T'< 10 K are characterized by the dependence
Ac(T) ~ T'/3 inherent in the Ag(T) > ¢(0) regime in the
critical region of metal-insulator transition. Variable-range-
hopping conductivity o(T) = ggexp [—(To/T)”] with
p=1/4 (Mott law) or p=1/2 (Efros—Shklovskii law)
typical of insulators, is observed at larger R [140]. At
constant density of states at the Fermi level for transitions
with phonons, one has p = 1/(d + 1) (Mott law), where d is
the system’s dimension (p =1/2 when electron—electron
interactions are taken into account). Characteristically,
neither the icosahedral phase of Al-Pd—Re single crystals
nor any other quasicrystalline phase undergoes transition to
the state with variable-range-hopping conductivity.

Resistivity is known to correlate with peculiarities of
quasicrystal  electronic  spectra. For alloys with
p < 500 pQ cm, resistivity correlates with the depth of the
pseudogap at the Fermi level. For p > 500 uQ cm, the
presence of a pseudogap is insufficient, and high resistivity is
due to the low mobility of current carriers, i.e., to the
localization effects. The higher resistivity of quasicrystals
compared with ordinary metals and doped semiconductors
is attributable to the peculiarities of chemical bonds and
structure, which manifest themselves as specific local cluster
structure and aperiodic long-range order. The latter property
is responsible for the specific dependence on defectiveness and
the negative sign of the resistivity temperature coefficient in
quasicrystals. Indeed, approximants with such short-range
order as a rule have dp/dT > 0, and dp/d T changes sign only
for p > 500—1000 pQ cm and considerable chemical disor-
der, i.e., substitution disorder in the cluster [105]. As is
known, dp/dT in typical disordered metallic alloys becomes
negative for p > 150 pQ cm; at such resistivity values a
disorder-related localization becomes apparent [141]. The
absence of the Drude peak in the optical conductivity of
quasicrystals also suggests localization of electronic states
due to disorder (see Section 5.2). Moreover, this peak is
lacking in approximants with large p values and marked
chemical disorder, and can be expected to emerge at
temperatures above the Debye temperature 6p [142], but
this conjecture needs verification in future experiments.

There is no consistent theory of electron transport in
quasicrystals, the main cause being inapplicability of the
Bloch theorem to these objects. Most speculation to this
problem remains a matter of qualitative reasoning. The
following two scenarios are feasible in the analysis of
electron transport in quasicrystals: the cluster-based
approach, and scattering in the aperiodic potential field. The
available cluster models qualitatively explain the nature of
high resistance in quasicrystals. One type of such models is
exemplified by the chemical localization model suggesting a
blockade of part of the ‘potentially metallic’ electrons by
chemical bonds, as in two-component melts with one
component being an alkali metal [143, 144]. The other type
is self-similarity cluster models [145].

The electronic properties of a real system with aperiodic
potential are equally possible to describe in terms of the model
of the multicomponent Fermi surface containing a large
number of electron and hole pockets. This model is based on
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the so-called band structure hypothesis that was applied to
the analysis of optical conductivity spectra of icosahedral
Al—-Cu-Fe quasicrystals [146]. This model was developed
for the description of temperature dependence of electrical
conduction and thermo-electromotive force in the work of
Burkov, Varlamov, and Livanov [147, 148]; thereafter, it was
employed to describe high-temperature conductivity and
electron localization in quasicrystals [149]. The model
permits successfully applying the quasiclassical Bloch—Boltz-
mann theory of electron transport for the description of the
temperature dependence of conductivity and its dependence
on defectiveness, for describing localization effects in the
krl > 1 regime, where [ is the mean free path of carriers, and
for qualitatively taking account of strong localization at
kgl ~ 1. The logic behind this model is as follows. When a
quasicrystal is considered as the structural limit of a sequence
of periodic approximants with increasing period, the Fermi
surface becomes increasingly multicomponent and contains
more and more electron—hole pockets. At low temperatures,
only intravalley scattering with small momentum transfer is
possible. The probability of intervalley transitions increases
with temperature, which accounts for the temperature-
dependent enhancement of conduction. At kél ~ 1, where
ki is the Fermi momentum in the ith valley, the [offe-Regel
criterion is met and localization of electrons with the
characteristic temperature-related behavior of conductivity
becomes possible. The model predicts a rise in conductivity
with increasing the degree of defectiveness and also proves
useful for explaining the optical conductivity spectra [146],
thermal conductivity [150], and diamagnetism [151] of
quasicrystals.

The Hall (Ry) and Seebeck (S) coefficients of icosahe-
dral phases have large absolute values and strongly depend
on temperature, the types of temperature dependence being
highly diverse [139]. For example, the value of |Ryg| in
Al—-Cu-Fe and Al-Cu—-Ru specimens with Ry < 0 is two
orders of magnitude higher than typical values for metallic
glasses and corresponds to an effective concentration neg of
carriers on the order of (2—5) x 10% cm~ [152, 153]. The
absolute value and sign of the Hall coefficient of icosahe-
dral Al-Cu-—Fe phases are essentially dependent on the
chemical composition [154]. At low temperatures, the
values of the Hall coefficient and electrical conductivity
show correlation with the iron content. At an iron content
of 12.5 at.%, Ry changes sign and ¢ falls to a minimum.
The Hall coefficient for icosahedral Al-Re—Pd phases is
positive at low temperatures, its absolute value is three
orders of magnitude higher than characteristic |Ry| values
for amorphous metals [155], and its sign may change with a
rise in temperature, depending on chemical composition. In
icosahedral Y—-Mg—Zn phases, Ry < 0 and the effective
carrier concentration zeg & 2.3 x 102! em™3, which roughly
corresponds to one carrier per 25 atoms [156]. The Seebeck
coefficient of quasicrystal phases with low electrical
conductivity, such as Al-Cu—Ru, shows a strong tempera-
ture dependence and sometimes changes sign [153]. In the
Al-Re—Pd phase, it grows rapidly with the growing
content of transition metals (palladium or rhenium) [157,
158]. In icosahedral phases with relatively high electrical
conduction, e.g., R—Mg—Zn (R =Y, Dy, Tb, Ho, Er), the
coefficient S linearly depends on temperature above
approximately 50 K with the S(T)-curve slope between
0.015 and 0.030 pV K~=2 [159]. Taken together, such
intricate behavior of Hall and Seebeck coefficients of
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Figure 10. Reflection coefficient R and the real part o;(w) of complex
optical conductivity o(w) of the icosahedral Al;o)MnyPd,; phase and
decagonal Al71Ni;6Co;3 phase for periodic direction (P) and quasiperio-
dic plane (Q) (taken from Ref. [166]).

icosahedral phases points to an important role for the
band structure.

5.2 Optical properties

The optical properties of quasicrystals differ from those of
metals and semiconductors [160—163, 156]. In the low-
frequency limit, reflection coefficient R of icosahedral phases
is close to unity, and a characteristic feature of the real part
o1 () of complex optical conductivity o(w) is the presence of
a strong absorption band in the visible region of the spectrum
(Fig. 10). It is believed that this band is related to excitations
via a pseudogap in the excitation spectrum that opens after
stabilization of the icosahedral phase by the Hume—Rothery
mechanism. Another broad absorption band in the g(w)
spectrum, attributable to bound state distribution, occurs in
the middle and far IR regions. The Drude peak observed in
o1(w) spectra of both periodically ordered metals and
disordered alloys is poorly discernable and practically
unresolvable in the far IR region of optical conductivity
spectra of icosahedral quasicrystals. A consistent description
of optical conductivity spectra of icosahedral quasicrystals is
possible in the framework of the Fermi multicomponent
surface model. For example, optical conductivity spectra of
the icosahedral Al—Pd — Re phase exhibit enhancement of o)
with temperature in the low-frequency region [164], which
qualitatively agrees with the tenets of the model.

The optical conductivity spectra o;(w) of decagonal
phases are essentially anisotropic [165, 166]. For example,
the main contribution to g;(w) at low frequencies for the
periodic direction of the decagonal Al-Ni—Co phase is
provided by the narrow Drude peak with plasma frequency
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wp ~ 1.2 eV, free carrier scattering rate I ~ 1.4 x 102 eV,
and two additional absorption bands at 0.1 and 2 eV in the
higher-frequency region (Fig. 10). The optical conductivity
o1(w) of this material along the quasiperiodic plane is
characterized by a much broader Drude peak with
wp, ~2eV,I' ~0.2 eV, and a single high-frequency absorp-
tion band at 1 eV. It is supposed that absorption bands at 2
and 1 eV for the periodic direction and the direction in the
quasiperiodic plane, respectively, are related to excitations via
the pseudogap in the excitation spectrum. These bands are
less apparent in the optical conductivity spectra of decagonal
quasicrystals than in o) () spectra of icosahedral quasicrys-
tals due to the greater low-frequency conductivity of
decagonal phases.

5.3 Superconductivity

Most quasicrystals are not superconductors, and the phases
found to exhibit superconductivity in experiment are not
ranked among those with perfect structure. Certain rational
approximants of quasicrystals and their amorphous composi-
tion analogs can pass into the superconducting state. The
cause behind the lack of superconductivity in perfect
quasicrystals is the smallness of the electron—phonon cou-
pling constant. Indeed, there is a dense set of reciprocal lattice
vectors for a quasicrystal, and each scattering vector
represents the reciprocal lattice vector. At the same time, the
matrix element of electron—phonon interaction for the
Umbklapp processes is zero-valued.

In what follows, the most important results of research on
superconductivity in quasicrystals will be discussed. Wong et
al. [168] compared the electrical transport properties of
Alsz 4Cuiz6Mgss samples with Frank—Kasper type icosahe-
dral and cubic structures and observed their transition to the
superconducting state at 0.81 and 0.73 K, respectively.
Temperature derivatives of the upper critical field H¢, at
T = T., obtained from the measurement of the temperature
dependence H(T), proved very similar (—3.3 and
—2.7kOe K~! for icosahedral and cubic phases, respec-
tively). Renormalized density of electronic states at the
Fermi level calculated from (dHc/dT); and electrical
resistivity in the normal state for the icosahedral
Als» 4Cui2.6Mgss phase is close to the density of states in the
free-electron model.

Graebner and Chen [169] studied low-temperature speci-
fic heat and found that the cubic, icosahedral, and amorphous
MgsZnsAl; phases obtained by the rapid quenching techni-
que of the melt followed by thermal annealing change to the
superconducting state at 0.31, 0.41, and 0.75 K, respectively.
It was shown that the icosahedral Mgs;Zn;Al, phase is a
superconductor well described by the BCS theory in the weak-
coupling limit with the density of electronic states at the
Fermi level close to that in the free-electron model, and Debye
temperature fp similar to that of the cubic phase. The
icosahedral Mgs;Zn3Al, phase proved to be in all respects
much more akin to the crystalline cubic phase than to the
amorphous one. Interestingly, the data on the temperature
dependence of specific heat Cs(7) in the superconducting
state obtained in Ref. [169] do not give direct evidence of a
linear-in-temperature contribution to low-temperature speci-
fic heat for T < T, which is associated with excitations of
two-well tunneling systems responsible for the thermal and
elastic properties of amorphous solids at low temperatures.
Nevertheless, the data on specific heat Cs(7") of the icosahe-
dral MgsZn3Al> phase down to temperatures around 0.05 K,

i.e., much below the critical temperature, permitted determin-
ing the upper limit of 0.55 puJ g~! K2 for the coefficient of the
linear-in-temperature contribution to specific heat for
T < T; this limiting value constitutes approximately half
the respective coefficient for superconducting metallic
Zr79Pd30 glass [170].

Stadnik et al. [171] investigated the electrical transport
properties of the ZresAl7 sNijgCursFeg Al alloy. Amor-
phous samples of this alloy obtained by rapid quenching
were shown to change to the superconducting state at 1.7 K.
Annealing of amorphous specimens gave rise to forming
approximately 3 x 10?> A in size isometric inclusions of the
icosahedral phase in the amorphous matrix which occupied
more than 50% of the sample volume. Two-phase speci-
mens failed to pass into the superconducting state, at least
for T > 1.5 K; this means that inclusions of the icosahedral
phase in the normal state suppress the critical temperature.
Bearing in mind that the critical temperature of the
icosahedral MgsZnsAl, phase is almost twice as low as
that of alloys of identical composition in the amorphous
state, it would be of interest to extend the temperature range
of research on the electrical transport properties of two-
phase ZresAl; sNijoCuy3Feg2All g samples toward lower
values.

The superconductivity of Ti—Zr—Ni alloys containing
icosahedral phases was discussed in Refs [172, 173]. Resistiv-
ity measurements on samples of starting composition
Ti41 57141 sNij7 obtained by the rapid quenching technique
in Ref. [173] were performed in a zero external magnetic field
within a temperature range from 0.3 to 300 K, as well as at
fixed field strengths of 0— 16 kOe and temperatures 0.3 -2 K.
The authors concluded from their experimental findings that
superconductivity may arise in this material at 7. ~ 1.6 K.
Resistivity p(7T') of the Ti—Zr—Ni samples dropped stepwise
below the values corresponding to the normal state as
temperature decreased to less than 1.6 K. Zero resistance
was recorded in a single specimen at 7 =~ 0.35 K. Because
the samples of interest contained two different icosahedral
phases and a third one with composition lying in the
homogeneity region of the rational periodic 1/1 approxi-
mant, consistent analysis of the p(7, H ) data obtained in the
above experiment encounters difficulty. Nevertheless, it is
worth noting that temperature dependence of the upper
critical field H,(T) in the Ti—Zr—Ni phase with the
maximum temperature of transition to the superconducting
state determined from the initial deflection of the p(7") curve
from the level corresponding to the normal state gives
a —(dHp/dT);, value on the order of 10 kOe K-
For comparison, f(dch/dT)Tc values for amorphous
(TicZri—x)y75Nig22 superconductors, 0.1 < x < 0.3, with
transition temperatures in the range of 2.8 —3.3 K fall within
the range between 31 and 36 kOe K~! [174].

5.4 Magnetism

Different types of magnetic behavior have been documented
in quasicrystals, from diamagnetism [175—177] to spin-glass
type freezing of magnetic moments [178 — 180], and even to
ferromagnetic ordering [181—184]. The temperature depen-
dence of magnetic susceptibility can be represented as the sum
of diamagnetic contribution and paramagnetic contribution
varying with temperature in accordance with the Curie-Weiss
law [185] or the contribution from the spin-glass state [180].
Various contributions to magnetic susceptibility of icosahe-
dral quasicrystals, including paramagnetic, Pauli spin, and
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diamagnetic, were analyzed in Ref. [151], where it was shown
that relatively weak diamagnetism is due to the atom-like
diamagnetic contribution of conduction electrons in electron
pockets of the multicomponent Fermi surface, while the
Landau—Peierls type diamagnetic contribution is insignif-
icant because electron effective mass is not small. At
temperatures above Debye temperature 0p, the Pauli para-
magnetic contribution prevails; its temperature dependence is
related to the pseudogap in the density of electronic states at
the Fermi level.

Spin-glass type behavior is intrinsic— that is, impurity-
unrelated in thermodynamically stable icosahedral quasicrys-
tals, such as Al-Mn—-Pd, R—Mg—Zn (R = Gd, Dy, Tb, Ho,
Er),and R—Mg-Cd (R = Gd, Dy, Tb) phases. A distinctive
feature of the spin-glass state in the icosahedral Al—Mn—Pd
phase, suggested by magnetic and nuclear hyperfine contribu-
tions to low-temperature specific heat, is the unusually low
concentration of magnetic moments involved in the freezing
process. Such a concentration roughly corresponds to 1% of
all Mn ions, suggesting the presence of their two types—
magnetic and nonmagnetic ions [178]. Their origin is the
subject of extensive experimental and theoretical research
[186—188]. To recall, all Mn ions in canonical spin glasses
Cu;_yMn,, Ag,_, Mn,, and Au;_,Mn, are magnetic. Also, it
should be noted that both the fraction of such ions and the
freezing temperature Ty of spin glass in icosahedral phases of
the ternary Al— Mn —Pd system rapidly increase with increas-
ing Mn concentration in the samples [189]. For example, the
freezing temperature 7y increases sevenfold, from 0.5 to
3.5 K, upon a rise in Mn content from 9 to 1lat.%
[178, 190]. For the icosahedral Al-Mn—Pd phase, the ratio
of freezing temperature 7t to concentration x of magnetic
ions, characterizing the interaction between magnetic
moments, amounts to 450 K, i.e., comes up to the 7}/x ratio
in canonical spin glasses Cu;_yMn,, Ag,_.Mn,, and
Au;_Mn, characterized by strong Ruderman—Kittel-
Kasuya—Yosida exchange interaction between manganese
magnetic moments [191, 192].

The spin-glass state was also revealed in the decagonal
phase of a ternary Al-Mn-Pd system having a narrow
homogeneity region near the Algo sMn ;s Pd;2.1 composition
and containing twice as much Mn as the corresponding
icosahedral phase [193, 194]. Third-order magnetic suscept-
ibility of this phase has a minimum at freezing temperature
Tr = 12 K, characteristic of spin glasses, while ‘thermorema-
nent’ magnetization Mrgr at temperatures below 7y changes
slowly with time following the power law, as is also typical of
spin glasses. The temperature dependence of magnetic
entropy of the decagonal AlgysMn;gPdi2; phase, related
to magnetic moment freezing, suggests that a large part of Mn
ions, similar to the icosahedral Al-Mn—Pd phase, have no
magnetic moments at low temperatures. M Satoh and co-
workers estimated the fraction of magnetic Mn ions in the
decagonal Al—Mn—Pd phase at 14%, based on the results of
magnetic measurements [193]. At the same time, NMR
studies point to the fact that 50% of the Mn ions are
magnetic [195]. Thus, the ratio of freezing temperature to
concentration of magnetic ions, 7¢/x, varies from 130 to
430 K, giving evidence of strong exchange interaction in the
systems of interest.

The magnetic properties of R—Mg—Zn (R = Gd, Dy, Tb,
Ho, Er) quasicrystals with the face-centered icosahedral
structure are essentially different from those of icosahedral
and decagonal phases of the ternary Al—Mn—Pd system first
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Figure 11. Dependence of freezing temperature 7y on absolute Curie
paramagnetic temperature |0p| for icosahedral Gd-Mg-Zn [179],
R—Mg—Z7n (R = Dy, Tb, Ho, Er) [180], and R—Mg—-Cd (R = Gd, Dy,
Tb) [196] phases.

and foremost in that all ions of heavy rare-earth elements are
magnetic, while interaction between them is weaker and
characterized by Ty/x values lying within 15-70 K [180].
The process of magnetic moment freezing in icosahedral
R—Mg—Zn quasicrystals is rather unusual. Crystal electric
field effects account for marked local magnetic anisotropy in
rare-earth Dy, Tb, Ho, and Er ions with nonzero angular
momentum L [180, 156]. Local anisotropy can manifest itself
as higher freezing temperature 77 of the icosahedral
Tb—Mg—Zn phase compared with that of Gd—Mg—-Zn
despite the fact that the de Jennes parameter &=
(g — 1)*J(J + 1) for Tb is smaller than for Gd (Fig. 11). A
similar relationship between freezing temperatures was
documented for quasicrystalline phases with a primitive
icosahedral structure (Tb—Mg—-Cd and Gd-Mg-Cd)
[196]. Thus, the process of magnetic moment freezing in
icosahedral R—Mg-7Zn and R—-Mg-Cd quasicrystals
resembles the behavior of axial spin glasses Y, R, and
Sci_ R, with the hexagonal structure [197].

An interesting feature of the low-temperature state of
icosahedral R—Mg—Zn phases is short-range antiferromag-
netic spin correlations between Ho’' ion moments in
Ho—-Mg—Zn quasicrystals [198]. Equally unusual is the
behavior of thermoremanent magnetization Mtg of icosahe-
dral Tb— Mg—Zn quasicrystals, which grows linearly with the
magnetic field Hgc, in which the sample of interest is cooled
to the temperature at which the measurement is performed;
such a behavior of Mg (Hrc) is characteristic of superpara-
magnets but not spin glasses [199].

Icosahedral R—Mg—Zn phases are given very much
attention in the light of discussion concerning the quasiper-
iodic magnetic long-range order of the antiferromagnetic type
[200]. In earlier experiments with polycrystalline specimens,
Hattori et al. [179], and Charrier and Schmitt [201] demon-
strated that RgMg4>Znso (R = Gd, Dy, Tb, Ho, Er) phases
pass into the spin-glass state with freezing temperatures below
10 K, and their magnetic susceptibility in a wide temperature
range above Ty can be described by the Curie-Weiss law with
negative paramagnetic Curie temperature 0, suggesting
antiferromagnetic exchange interaction between moments of
rare-earth ions. Charrier et al. [202] published powder
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neutron-diffraction data obtained on polycrystalline samples,
pointing to the possibility of transition of quasicrystals with
R =Tb, Dy, Ho, Er into the ground state with the anti-
ferromagnetic long-range order of the quasiperiodic type for
temperatures T > Tt. Worthy of note is the low intensity of
lines corresponding to Bragg reflections, interpreted in
Ref. [202] as manifestations of antiferromagnetic ordering;
the neutronograms showed well-apparent diffuse magnetic
scattering. In a later study, Islam et al. [203] measured
neutron scattering in icosahedral R—Mg—Zn phases, but
failed to demonstrate signs of antiferromagnetic ordering in
single-crystal powder samples. At the same time, some of the
additional magnetic lines observed in paper [202] were
reproduced in polycrystal specimens obtained by rapid
cooling technique. Bearing in mind the currently available
data from equilibrium phase diagrams of ternary R—Mg—Zn
systems in the concentration region corresponding to icosa-
hedral phases, it is generally believed that the additional
magnetic lines on neutronograms of polycrystalline samples
could be related to the magnetic ordering of small inclusions
of the periodically ordered phase. Therefore, the existence of
antiferromagnetic ordering in quasicrystals is yet to be
shown.

Ferromagnetic properties were revealed in various icosa-
hedral phases including Alyy_,Pd;sMn;sB, (3 < x < 6) and
Alyo_ B Pd3y_Fe, (5 <x<10,10 <y <20). The Curie
temperature of Aly_Pd;sMn;sB, quasicrystals falls
between 480 and 550 K [181, 182]. The icosahedral
Alyo-BPd3o_,Fe, phase is characterized by a Curie tem-
perature from 280 to 340 K, maximum saturation magnetiza-
tion M, ~ 7.5 G cm® g~!, and mean hyperfine magnetic field
(Hyr) =102 kOe [183, 184]. Ferromagnetism in this phase is
spatially nonuniform. Measurements of the Mdssbauer effect
showed that only 12—15% of the iron atoms in this phase
have a magnetic moment. The magnetic properties of the
icosahedral Aly,_,B,Pd3,_,Fe, phase suggest the existence of
large magnetic clusters (2—3) x 10? A in size. Such clusters
contain around 4 x 10* rhombohedrons making up the
Ammann—Mackay network.

Group-theoretical analysis shows that ferromagnetism is
incompatible with icosahedral symmetry [204]. When a
magnetic field is directed along the 5-, 3-, and 2-fold axes,
icosahedral symmetry reduces to pentagonal, trigonal, and
rhombic, respectively. The resulting magnetostriction must
lead via phason distortions to a magnetically inhomogeneous
state as confirmed by the published experimental data on
ferromagnetism in quasicrystals with icosahedral ordering.

5.5 Thermal conduction

Thermal conduction in solids including quasicrystals is
determined in a broad range by lattice and electron contribu-
tions. Due to the relatively low density of carriers, the
dominant thermal conduction mechanism in typical icosahe-
dral quasicrystals for 7< 100 K is heat transfer by excitations
of the quasicrystal lattice. The behavior of the temperature
dependence of lattice thermal conductivity 4i(7") of icosahe-
dral crystals differs from that of both periodically ordered
crystals and amorphous solids.

Curve 4(T) for periodic crystals shows a well-apparent
maximum, as a rule in the temperature range from 10 to 30 K.
In periodic crystals and a temperature range somewhat above
the maximum in 4;(7), the heat resistance of the lattice is
determined by the Umklapp processes and therefore grows
exponentially with temperature due to the exponentially
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Figure 12. Lattice thermal conductivity 4; of icosahedral Al-Mn—Pd and
Y —-Mg—Zn phases as a function of temperature [213, 214, 159]; heat
conductivities of a periodically ordered LiF crystal and amorphous
silicon dioxide are shown for comparison (taken from Refs [206, 208]);
the inset depicts the 4;(7") dependence for the icosahedral Y-Mg—Zn
phase near the maximum.

increasing number of occupied high-frequency phonon
states for which such processes are permitted [205]. It should
be recalled that the experimental verification of the regime in
which Umklapp processes are responsible for heat resistivity
47N(T) by examining the dependence 4(T) o T<x
exp (0p/bT), where & and b are on the order of unity, is
nontrivial in character. Such dependence 4 (7) can be
observed in a restricted temperature range of 1/30<
T/0p <1/10 using isotopically pure single crystals of high
structural quality [206]. Transition (upon a fall in tempera-
ture) to the heat conduction regime limited by phonon
scattering on sample boundaries (Casimir regime) or conduc-
tion electrons in dielectric and metallic crystals, respectively,
accounts for a maximum of phonon thermal conductivity
dependence on the temperature, as shown in Fig. 12 for
7LiF [207].

Lattice thermal conductivity A4; of amorphous solids
grows monotonically with temperature and reaches the so-
called /-plateau in a range between 2 and 10 K. Figure 12
illustrates such behavior of the 4;(7") curve for amorphous
silicon dioxide [208]. For T<1 K, lattice thermal conductiv-
ity of amorphous solids varies with temperature according to
the power law 4;(T') = AT", with exponent n close to 2 due to
low-frequency excitations, the spectral density of which in a
wide frequency range shows but weak frequency dependence.
These excitations fail to propagate or transfer heat. The
scattering of mobile acoustic modes involving stationary
low-frequency excitations restricts the mean free path / of
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the acoustic modes and therefore lattice thermal conductivity
Al. The low-temperature thermal and elastic properties of
amorphous solids, related to low-frequency excitations, are
described by the tunneling states model [209, 210]. It is
supposed that the A-plateau is due to a sharp decrease in the
mean free path / of lattice excitations with increasing
frequency w [208]. The available experimental data indicate
that/ o« ", where the exponent n ranges from —4 to —3[211].
Above the A-plateau, the lattice thermal conductivity of
amorphous solids begins to grow with temperature, and
becomes close to the so-called minimal conductivity Ami,
corresponding to the regime in which the mean free path of
lattice excitations equals one-half of the excitation wave-
length [212].

Figure 12 illustrates the temperature dependence of lattice
thermal conductivity 4(7") of the icosahedral Al-Mn-Pd
phase. Thermal conductivity at temperatures below 1 K is
limited by phonon resonance scattering on low-frequency
excitations described by the tunneling states model and varies
roughly as 72 [213—215]. The existence of two-well tunneling
systems in Al-Mn—Pd quasicrystals was demonstrated in
low-temperature ultrasonic experiments by Vernier et al.
[216], who observed two characteristic signs of their pre-
sence, viz. a contribution to the temperature dependence of
the transverse speed of sound v (7") that is logarithmic in
temperature and nonlinear absorption of transverse acoustic
waves [217]. Scattering of lattice excitations on tunneling
states as a rule reduces 4 to values one order of magnitude
lower than in the Casimir limit.

At temperatures above several dozen kelvins, lattice
thermal conductivity slowly increases with temperature; in
this temperature region, vibrational modes of the quasicrystal
lattice responsible for heat transfer cannot be represented as
propagating collective excitations. Below the high-tempera-
ture regime, the quasicrystal thermal conductivity curve
exhibits two regions: one of them corresponds to phonon
scattering on tunneling states in which d/;/d7 > 0, and the
other to Umklapp processes with d/;/dT < 0. The maximum
separating these regions is much lower and wider than the
peak between boundary scattering and Umklapp regions in
the thermal conductivity curve of a periodically ordered
crystal. In the case of strong phonon scattering from
tunneling states, this maximum and the region of Umklapp
processes can degenerate into a plateau (d4;/dT = 0).

Reduction of 4 with growing temperature in the inter-
mediate temperature range is due to Umklapp processes that
have the following features in quasicrystals. Unlike periodi-
cally ordered crystals in which the natural scale of Umklapp
processes is determined by the reciprocal lattice vector,
vibrational excitation momentum in quasicrystals can be
imparted to the lattice in small portions, the values of which
are not bound from below. For this reason, the rate of
Umklapp processes in quasicrystals shows a weaker, i.e.,
power-like, temperature dependence [120]. As a result, curve
21(T') has a more slanting portion of negative slope d4;/dT
than in periodic crystals and even the A-plateau that, however,
lies at significantly higher temperatures than the A-plateau of
a typical amorphous material; this feature is shared by all
quasicrystals. Accordingly, the maximum of the dependence
21(T ) reflects transition from the regime of dominant phonon
scattering by tunneling states to the regime where Umklapp
processes become the predominated mechanism of lattice
thermal resistance. The above features of the 4(7") curve for
a quasicrystal, viz. the maximum or the A-plateau, were

described for temperature dependences of lattice thermal
conduction of both icosahedral [213—-218] and decagonal
phases along the quasiperiodic plane [166, 219].

Electron contribution ¢ to thermal conductivity in
icosahedral quasicrystals becomes significant at tempera-
tures above 100 K, and in phases with a high carrier
concentration, e.g., Y —Mg—Zn, even at lower temperatures.
Estimations of the electronic contribution under the assump-
tion of validity of the Wiedemann—Franz law applicable to the
multicomponent Fermi surface model at high temperatures
yield the dependence A (7') that is quadratic in temperature
[150]. These estimates are confirmed by calculations of heat
conductivity of the icosahedral Al—Cu-—Fe phase based on
the measurements of thermal diffusivity and specific heat at
high temperatures: in the range from 300 to 800 K, where
electronic heat conductivity is substantially higher than the
lattice one, A changes with temperature as 7% (where
o =19+0.1), and the assumption of o =2 leads to the
Lorentz number L ~ 2.8 x 108 W Q K2, i.e., somewhat
higher than the value of L in the Sommerfeld model [220].

5.6 Mechanical and surface properties

There is a wealth of data available on the mechanical
properties of quasicrystals. To begin with, they are non-
plastic at temperatures below 600 °C. Polycrystal samples
undergo destruction along the grain boundaries. They
become plastic at temperatures above 650 °C, when destruc-
tion occurs inside the grains. As is known, plasticity is a
function of dislocation mobility. In quasicrystals, the Burgers
dislocation vector contains a phason component; in other
words, dislocation movements are limited by diffusion that is
weak for 7 < 600°C; it accounts for the poor dislocation
mobility in quasicrystals. It is not the sole manifestation of
aperiodic long-range order. The elastic moduli of quasicrys-
tals and ordinary crystals being roughly equal, their yield
points are very close, too. However, the growing strain in
periodic crystals results in their cold hardening, whereas
quasicrystals undergo strain weakening under the same
conditions [221]. This effect is related to aperiodic long-
range order and can be explained by the fact that the strain
results in violation of the structural correspondence rule
above and beneath dislocation glide planes due to phason
distortions; this leads eventually to weakening. Creep also has
peculiarities; namely, the low-stress creep rate decreases, and
the high-stress one increases. Other characteristics (micro-
hardness, etc.) also reflect the influence of the aperiodic long-
range order.

Quasiperiodicity is maintained on clean surfaces, too.
Similar to ordinary periodically ordered crystals, such
surfaces are formed by flat grains separated by steep steps
[221]. The surface of Al-based quasicrystals is enriched in
aluminium. Quasicrystals are characterized by low surface
tension, intermediate between that of teflon and stainless
steel. The surface energy of perfect quasicrystals is 25%
higher than in teflon. The low surface energy is due to the
presence of a pseudogap in the electronic spectrum; in
Al-based quasicrystals, it is attributable to the small con-
tribution from Al electronic 3p-states to the density of states;
hence, the low friction coefficient equaling roughly 0.12-0.14
for the icosahedral Al—Cu—Fe phase. The nature of small
friction coefficient is attributable to the specific properties of
chemical bonds (largely covalent) near the surface. A small
addition (about 5%) of the cubic B-AlFe(Cu) phase to the
quasicrystalline Alg;Cuss sFejzs alloy doubles its friction
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coefficient. In the atmosphere of oxygen, Al-containing
quasicrystals undergo passivation and form a thin protective
layer of aluminium oxide. Strong oxidation may result in
restructuring of the surface and its change to the crystalline
state. Inasmuch as the diffusion coefficients of quasicrystal
constituent elements are lower than in pure elements, it is
the surface layer that governs which element undergoes
oxidation. At high temperatures, the oxidation rate of the
Al-Cu-Fe surface increases, the copper content changes,
and copper initiates a transition of 6-Al,03 to a-Al,Os. In
other words, corrosion resistance of the quasicrystalline alloy
is largely due to oxidation of the constituent elements rather
than to its quasicrystalline nature, per se.

6. Practical applications

Interest in the practical applications of quasicrystals first and
foremost arises from the unusual combination of their high
hardness, corrosion and wear resistances with low heat
conductivity, ‘wettability’, and small friction coefficient. The
use of quasicrystalline phases of single- and polycrystals as
construction materials is limited by their high fragility and
poor deformability at room temperature. This limitation is
possible to obviate by using quasicrystalline phases in the
form of coatings, inclusions in two-phase materials, or fillers
in composite materials.

Coverings based on the icosahedral Al1- Cu—Fe phase are
readily compatible with aluminium alloys, stainless steel, and
cast iron; they show high wear and corrosion resistances, and
high-temperature stability. Their combination with cheap
starting materials and simple coating techniques opens up
good prospects for future applications in the chemical
industry. At present, the Sitram company (France) produces
a variety of cooking utensils with Cybernox nonstick coatings
containing the Cr-doped icosahedral Al—Cu—- Fe phase.

The inclusions of quasicrystal phases in such matrices as
steel, aluminium, and Zr- and Mg-based alloys improve their
strength and plasticity, especially at high temperatures. It is
possible to produce such two-phase materials, for instance, by
the crystallization of respective many-component melts in a
specified region of the equilibrium phase diagram. Sandvik
Bioline IRK91 maraging steel proved to be the first material
comprising quasicrystalline inclusions that found industrial
application. It contains, besides Fe, 12 wt.% Cr, 9 wt.% Ni,
4 wt.% Mo, 2 wt.% Cu, 0.9 wt.% Ti, 0.3 wt.% Al 0.15 wt.%
Si, and less than 0.05 wt.% C and N [222, 223]. After
hardening, this steel acquires the martensite structure with
high dislocation density and contains practically no inclu-
sions of other phases. Aging leads to formation in the
martensite matrix of particles of the thermodynamically
stable icosahedral phase having the following composition:
50 wt.% Mo, 30 wt.% Fe, 15 wt.% Cr, and trace amounts of
Ni and Si [222, 232]. The maximum hardness of Sandvik
Bioline IRK91 steel after thermal treatment is estimated (by
the Vickers method) at 730 HV, and its breaking strength
amounts to 3000 MPa. This steel is the best material for
superfine suture needles with an inner canal used in eye
microsurgery.

Worthy of note among multiphase materials containing
inclusions of icosahedral quasicrystals are aluminium-based
Al-Mn—-Ce—-Co and Al-Cr—Ce—Co alloys obtained by
extrusion. They have a breaking strength of 500-850 MPa,
Young’s module on the order of 100 GPa, a relative extension
6-25%, an impact strength of 60—180 kJ m~2, and good

ductility [224]. At 200 °C, their strength amounts to 200 MPa,
which is much higher than in aluminium alloys strengthened
by aging. Taken together, these properties characterize such
materials as a new class of high-strength aluminium-based
alloys.

A promising field for application of quasicrystals is the
transformation of solar energy. The possibility of using them
in selective absorbers of solar radiation utilized to heat water
in thermal electric generators and domestic water heaters is
based on the specific features of their light reflection spectra
in visible and IR regions. The spectra of quasicrystals with an
icosahedral structure have strong absorption bands in the
visible region and their reflection coefficients in the IR region
are high, which allows thermal radiation loss to be reduced to
a minimum.

Much attention has recently been given to photon
quasicrystals, i.e., artificial heterostructures being aperiodic
analogs of crystalline photon crystals (transparent objects
with a periodically modulated refraction index). Diffraction
gives rise to the so-called photon band gap, i.e., a frequency
interval with markedly reduced transparency, in the energy
spectrum of electromagnetic radiation spreading in such
structures. A significant reduction in radiation intensity
occurs in the case of a sufficiently high depth of refraction
index modulation, e.g., when the modulation period is
roughly equal to the radiation wavelength. In periodically
modulated structures, the band gap is anisotropic and
depends on the directions of propagation and polarization
of electromagnetic waves. In quasicrystal structures, such as
those having octagonal or pentagonal symmetry, the band
gap is more isotropic and the reduction in transparency is
independent of the propagation direction due to well-
apparent point symmetry and aperiodic long-range order.
Photon quasicrystals already find application in electronics
[225]. Phonon quasicrystals (artificial structures with quasi-
periodic modulation of acoustic impedance) are also being
extensively investigated as candidate materials for acoustic
filters, mirrors, and acoustic baffles [225].

Other promising fields for practical applications of
quasicrystals and materials containing them is the manufac-
ture of catalysts, thermoelectric refrigerators and generators,
metal hydride hydrogen storage systems, and quasicrystal
superlattices for the generation of higher harmonics in laser
devices.

7. Conclusions

The present review is devoted to the peculiarities in the
structure and properties of quasicrystals. Naturally, it does
not cover all issues pertinent to this topic. We did not discuss
experiments on studying local atomic structure by X-ray
absorption spectroscopy techniques with the use of synchro-
tron sources, atomic-resolution electron microscopy, tunnel-
ing experiments, NMR studies, or the Mossbauer effect.
Despite the current emphasis on traditional materials
science, quasicrystals remain objects of practical and aca-
demic interest. While their structure is being studied fairly
well and can be simulated by a variety of well-developed and
experimentally verified models, the properties are still a
matter of controversy, giving rise to much speculation.
Moreover, most experiments have been performed at low or
relatively low (below room) temperatures, whereas the high-
temperature range up to melting and peritectic decomposition
temperatures remains virtually unexplored, although it is here
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that the most interesting effects can be expected to occur. The
contribution of electrons to electrical conduction and heat
conduction increases at elevated temperatures above the
Debye temperature 0p and fulfillment of the Wiedemann—
Franz law can be confirmed experimentally. Optical studies
may reveal Drude peaks in optical conductivity and high light
reflection coefficients in the visible part of the spectrum. New
specific heat effects are likely to be discovered at elevated
temperatures. An additional electronic contribution to
specific heat can be anticipated at temperatures higher than
the Debye temperature due to enhanced electron—phonon
scattering; the same refers to contributions related to phason
dynamics. All these effects require experimental verification.
Equally interesting is the problem of the temperature-
dependent behavior of static electrical conductivity. For
example, transition to the variable-range-hopping conduc-
tivity regime at low temperatures is observed only in
polycrystal specimens of the icosahedral Al—Pd—Re phase
with R > 10, whereas Al-Pd—Re single crystals and other
icosahedral phases fail to exhibit such a regime. Polycrystal-
line samples of the icosahedral Al—Pd— Re phase behave like
granular electronic systems in which tunneling and the
Coulomb blockade are the main factors responsible for
electrical conduction.

Creation of artificial quasicrystal structures, viz. hetero-
junctions, photon quasicrystals, and quasicrystalline
sequences of quantum wells, is a rapidly developing research
field. Photon quasicrystals are more convenient for practical
applications than their periodic analogs by virtue of the
presence of isotropic photon band gap. The spectra of one-
and two-particle excitations in quasicrystalline sequences of
quantum wells are beginning to attract the attention of
theorists [226]. These studies may reveal resonance passage
in selected energy regions and localization of excitations at
finite perturbations in one-dimensional structures. Liquid
quasicrystals are equally interesting objects [227]. Finally, it
is worth mentioning the recent discovery of the icosahedral
Al-Cu—Fe phase inclusions in mineral agglomerations
containing cupalit and khatyrkit from volcanic rocks of the
Koryak Upland [228]. In a word, quasicrystals continue to
interest theorists and experimentalists, despite the long
history of previous research.
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8. Appendices

8.1 The number 7

The number 7 (golden ratio) represents a special class of
irrational numbers called algebraic integers defined as roots
of the algebraic equation

x"+an,1x”"+...+a0:0,

where all a,, are integers. The number 7 is defined as a solution
to the simplest quadratic equation t> = 7 + 1 (self-similarity

equation). Written in the form 1 = 1/7 + 1/72, it defines the
division of a unit length segment into two pieces, 1/rand 1/72
in size. Their proportional ratio is t. The number 7 can be
represented as a continued fraction

1
t={,1,1,...} =1+

1+

1
1+

1+...

and is the fixed point of a hyperbolic map. Related to the
number 7 is a sequence of Fibonacci numbers generated by
the recurrent relation F,» = F,, | + F, withinitial conditions
Fy=1, Fi=1. For large n, F(n)= r”/\/g, and
lim, o Fyi1/F, = 7. Quasicrystals with 5- and 10-fold
symmetries are self-similar with respect to stretching by a
factor of 7. Quasicrystals with 8th and 12th orders of
symmetry have self-similarity stretching factors (1 ++/2)/2
and (2 4 v/3)/2, respectively. It should be emphasized that
self-similarity is a peculiar symmetry of a system with respect
to uniform stretching of its dimensions (scale invariance or
scaling). Self-similarity of both quasicrystals and crystals
implies the existence of such points in a space that stretching
by a factor of ¢ toward them converts a lattice into itself.

8.2 Incommensurate and long-period structures
The periodicity of a crystal manifests itself in the periodicity
of its diffraction patterns. The diffraction pattern of incom-
mensurate and long-period structures is characterized by
satellite reflections. Imagine a periodic structure with sites
X, = an, where a is the interatomic distance, and 7 is an
integer. Displacement of atoms to new positions
. 2n

Xy = xu —&—fs1n(qxn)7 q:%<7) (Al)
modulates the structure. If ¢; is a nonzero rational number,
the structure (A.1) is also periodic but has large unit cells
(a commensurate long-period structure). When ¢; is an
irrational number, the structure is an incommensurate one
lacking periodicity but remaining quasiperiodic (the quasi-
periodic function being a superposition of periodic functions
with mutually incommensurate periods). The term ‘quasiper-
iodicity’ is borrowed from the theory of dynamical systems: a
system is quasiperiodic in time if it is described by the
superposition of several incommensurate frequencies. The
incommensurability may be caused not only by atomic
displacements; it may just as well arise from magnetic
modulation (in compounds containing rare-earth elements,
compositional inhomogeneities in nonstoichiometric struc-
tures, rare-carth metals with ordered magnetic moments),
and compositional inhomogeneities in nonstoichiometric
structures. The structure of incommensurate phases is
convenient to describe applying the apparatus of multi-
dimensional crystallography, which was later employed in
studying quasicrystals. For example, all diffraction peaks for
an ordinary periodically modulated crystal are defined by
three indices: K = ha* + kb* + Ic*, where a*, b*, ¢* are basis
vectors of the reciprocal lattice, and 4, k, [ are integers (Miller
indices). In the case of modulation, the diffraction vector is
given by

K=ha*+kb*+Ic* +m(aa” +yc*).

Peaks with m = 0 are the main reflections, and those with
m # 0 are satellite ones. In this case, there is no three-
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dimensional basis for which a*, b*, ¢* and ¢ = aa™ + yc* are
all integers. However, Bragg peaks can be regarded as a
projection of Bragg peaks of a 4D reciprocal lattice onto
three-dimensional space. Thus, K is the projection K3 of the
four-dimensional reciprocal lattice with integer coordinates /,
k, I, m. These Bragg peaks correspond to a 4D periodic
structure; the real physical structure is determined by the
section of this four-dimensional periodic structure by a three-
dimensional hyperplane. Accordingly, the hyperspace for 3D
quasicrystals is six-dimensional, and diffraction vectors have
the form

K= (hl + hat, hy + hst, hs + he’L’) .
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