
Abstract. The properties of acoustic phonon polarization vec-
tors in high-symmetry crystals are considered. Elliptic polari-
zation of phonons in the presence of a magnetic field is shown to
occur in crystals with the spin±phonon coupling.

Extensive literature is devoted to the theoretical and experi-
mental study of vibrational spectra in crystals [1, 2]. In
particular, the general properties of polarization fields and
velocity branches of elastic waves in crystals have been
discussed in papers on polarization crystal acoustics (see, for
example, Refs [3±5]). Recently, however, an interesting new
effect has been exposed [6], called the phononHall effect. The
effect shows itself in solid insulators with a temperature drop,
in which under the action of an external magnetic field an
additional temperature gradient arises, the latter being
normally directed to the initial heat flux and to the field. The
effect was found to occur due to the phonon elliptical
polarization induced by the magnetic field [7, 8]. Interest
was drawn not only to the behavior of phonon polarization
vectors (PPVs) in the magnetic field, but also to their general
properties that are important in the heat conduction question.
In the present paper, we consider a physical example of
realizing acoustic activity (gyrotropy) in the presence of an
external magnetic field. Perturbation of the Christoffel tensor
in a solid insulator placed in a magnetic field is studied. An
analogy is discussed of this effect with the mentioned much
investigated acoustic phenomenon [9] and with even more
popular optical gyrotropy [10].

In acoustic vibrations, the displacement vectors of atoms
in an elementary cell oscillate synchronously, so that in what
follows we shall consider a single-atom lattice without loss of
generality. Acoustic vibrations of crystal can be expanded
into orthonormalized lattice eigenmodes:
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Here,oks is the energy of the sth branch phonon, k is the wave
vector,m is the atomic mass,N is the number of sites, R is the

coordinate of the lattice site, and uks is the normalized PPV
��h � 1�.

In the harmonic approximation, the polarization vector is
a proper solution to the dispersion equation

o2u i
ks � Di j

k u
j
ks : �2�

Actually, Eqn (2) is the set of three homogeneous linear
equations whose eigenvectors are determined up to an
arbitrary common phase. At different k, these phases do not
correlate. In particular, since expression (1) is explicitly
Hermitian, the vectors uks and uÿks are independent.
Usually, the following condition (see Ref. [11]) is imposed:

uks � u �ÿks : �3�

However, we shall not do so. (Notice that with allowance
made for anharmonism Eqn (2) becomes nonlocal and
complicated constraints arise. At weak anharmonism these
constraints are also weak and can be neglected.)

The dynamic real symmetrical matrix Dab
k in the long-

wave approximation represents the quadratic form

Dad
k � labcd

kbk c

r
� G adk 2

r
; �4�

where labcd is the elastic modulus tensor, r is the density, and
G ad is the Christoffel tensor. The symmetry properties of
tensor labcd are specified comprehensively in Ref. [12] for all
possible types of crystal symmetry. In particular, if the crystal
lattice has a cube or square type symmetry, then for the
coordinate axes chosen along the edges we have

Dab
k � A1d

abk 2 � A2d
abk 2

a � A3kakb : �5�

In the isotropic case, when A2 � 0, the longitudinal mode
energy is okk � k

�����������������
A1 � A3

p
, and the transverse modes are

degenerate �ok? � k
������
A1

p � and may have any PPVs that are
orthogonal to the wave vector.

From formula (4) it follows that tensor Dab
k and the

eigenfrequencies oks are invariants with respect to inversion.
In this case, all the PPVs are odd functions of k, or
conversely, they are all even functions. According to
Ref. [12], in high-symmetry crystals (cubic, rhombic, some
tetragonal) the off-diagonal elements of the dynamic matrix
are given by

Dab
k � kakb ; �6�

hence, they change sign when ka or kb changes signÐ
that is, in reflecting from the corresponding plane in the
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reciprocal space. In case (6), the frequencies do not
change in reflection; however, the sign of the correspond-
ing PPV component changes. To be sure of this fact, one
may separate the off-diagonal terms out of dispersion
equations (2):

�o2
ks ÿDaa

k �eaks �
X
b 6� a

Dab
k ebks ; �7�

where eaks is the component of the normalized polarization
vector without an external magnetic field. One can see that
with the change of ka sign the component e aks should also
change its sign, all the rest of the components keeping their
signs. This property can be described by the formula

e aks � �eas �k� sign ka ; �8�

where the unit vector �e as �k� along with the frequency oks are
invariant with respect to reflection sa in the plane normal to
the a-axis.

By using formula (8) we find that the vector product for
polarizations of two modes changes sign in reflection:

�es � es 0 �z � sign kx sign ky ��es � �es 0 �z : �9�

Let us consider the two-dimensional case in more detail
[13]. A solution to Eqn (2) determines the dispersion law for
two acoustic branches and, correspondingly, for two ortho-
normal PPVs:
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It immediately follows that
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From here on, in obvious cases we omit the indication of
dependence on k for the sake of brevity. In general, all three
parameters Dab

k are nonzero and not equal to each other.
Hence, in two-dimensional (2D) crystals even on the edges
with D

xy
k � 0 we have R 2 6� 0 and the spectrum of acoustic

phonons is nondegenerate. If condition (6) holds, thenR 2 and
o2
� are invariant with respect not only to inversion, but also to

reflection from the edges: �kx; ky� ! �kx;ÿky� and
�kx; ky� ! �ÿkx; ky� (in a three-dimensional crystal this is
reflection from the faces).

Let us find the polarization vectors. From equation (11)
we obtain

exs � �o2
s ÿDyy�Cs sign k

x ; e ys � jDxyjCs sign k
y : �14�

Normalization yields

Cÿ2s � �o2
s ÿDyy�2 �Dxy 2 � sR�o2

s ÿDyy�

� ÿsR�o2
ÿs ÿDxx� > 0 :

Eigenvectors (14) and Cks are determined accurate to the
phase that arbitrarily depends on k and s. For definiteness,

assume Cks � jCksj. Then the normalized PPVs are real:

exs � s sign kx

��������������������������
s�o2

s ÿDyy�
R

r
;
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r
;

and the following relations hold true:

�e�eÿ� � 0 ; �e� � eÿ�z � C�CÿD
xy
k R � sign kx sign ky :

�16�

PPV components (15) change sign both in inversion and in
reflection, as they must in the case of a polar vector. In the
course of slow rotation of k, the PPV components do not turn
to zero and exhibit a stepwise change as vector k crosses the
corresponding axis. In the process, one of the phonon
polarization vectors is longitudinal, and the other is trans-
verse in the isotropic model only. It is shown [3, 4] that the
stepwise change can be eliminated by corresponding redefini-
tion of the polarization vectors. However, the change is
important in the thermal conductivity problem in which the
integral is taken over all directions of the wave vector, and
such a redefinition would be inconvenient [see expression (36)
below].

Notice that vector (15) does not satisfy constraint (3).
Nevertheless, constraint (3) holds true if vector (15) is
multiplied by an imaginary unit and PPV may be considered
either real or Hermitian and purely imaginary. If PPVs are
taken as real odd functions of k, then expansion (1) takes the
form
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exp �ikRn� e iks�aks ÿ a�ÿks� : �17�

Consider the origin of phonon elliptical polarization in
the case of a Hermitian dynamic matrix with complex terms.
Let the crystal insulator comprise paramagnetic particles
(atoms or molecules) magnetized by an external magnetic
field. The so-called spin-phonon interaction (SPI) of these
particles with acoustic vibrations of the lattice results in
renormalization of phonons. The Hamiltonian with SPI
included takes the following form [7, 8]
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�18�

Here, Un, Pn, and Mn are, respectively, the displacement
vector, momentum, and magnetic moment of the particle at
site n. The magnitude of interaction energy g is determined by
a crystal field [14, 15]. In describing long-wave vibrations of a
lattice, the magnetic moment at a site can be replaced by its
average value M, which is proportional to the magnetic field
strength. From formula (18) we obtain the equations of
motion:
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where eabc is the third-rank unit tensor that is antisymmetric
with respect to all three indices, and e123 � 1.

It is important that SPI affects the relationship between
the velocity and momentum of the particle [see Eqn (19)]. In
metals, a similar relationship that holds true for an electron in
the field of a magnetic atom is associated with the Berry
phase. However, there is a noticeable difference. In metals,
this relationship entails a curling of the electron trajectory,
which results in the anomalous Hall effect [16±19]. According
to this equation, the character of particle oscillations in
insulators changes, but the phonon motion remains recti-
linear, though with changed polarization.

Hereinafter, we make allowance for SPI in the linear
approximation. Then, in the last term in expression (20) we
may make the substitution Pc

n ! mVc
n and obtain the

equation of vibration:

�Ua
n �

X
n 0

Dab
nn 0 �Ub

n ÿUb
n 0 � � 2eabc gM

b _Uc
n : �21�

In the momentum representation, equation (21) takes the
form

o2
ksu

a
ks � ~Dab

k ub
ks ; �22�

where the dynamic matrix is now perturbed by the external
magnetic field:

~Dab
k � Dab

k ÿ ieabcG
c ; �23�

with G � 2ogM, �u �ksuks 0 � � dss 0 . It should be noted that the
imaginary part of ~Dab

k is the antisymmetric tensor which is
odd with respect to G. In the zero order with respect to SPI,
Eqn (22) is equivalent to Eqn (2).

We shall solve equation (22) in the linear approximation
in SPI. We seek the renormalized PPV in the form of a small
addition to the zero approximation: ua

s � e as � de as . Let us
rewrite equation (22) in the form

�o2
s � 2osdos� �e as � de as � � Dab�ebs � debs � ÿ i�eabcGc�e bs :

�24�
The real part of this equation yields dos � 0Ð that is, the
spectrum and group velocity of phonons cks � qoks=qk in the
linear (with respect to SPI) approximation are not renormal-
ized. The imaginary part of equation (24) determines
renormalization of the polarization vector:

�o2
sd

ab ÿDab�debs � ÿi�eabcGc�e bs :

The solution to this equation is as follows:

debs � i
X

s 0�s 0 6� s�
Kss 0e

b
s 0 ; �25�

and also

Kss 0 �k� � Ks 0s�k� � �o2
ks ÿ o2

ks 0 �ÿ1�eks � eks 0 �G ; s 0 6� s :

�26�

Thus, the inclusion of SPI results in the real vector eks
acquiring an orthogonal imaginary additionÐ that is, it
becomes elliptically polarized.

From expression (26) it follows that the renormalization
of PPV increases as the spectrum of two adjacent modes is

close to degeneration. Therefore, it is interesting to study the
problem in the isotropic body model [20], in which case the
transverse modes o0 are degenerate for all directions of k.
Equation (22) in this model takes the form

Wea � lk̂ a�k̂e� ÿ i�e�G� a : �27�

Here, W � o2 ÿ o2
0, l � wk 2, where w is the difference of

squares of longitudinal and transverse velocities of sound
without a magnetic field, and

k̂ � k

k
� �sin y cosj; sin y sinj; cos y� ;

G � �0; 0; G�, Gk̂ � G cos y, Q � G sin y. Let us introduce
normalized unit vectors:

�1� k̂ ;

�2� m̂ �
ÿ
Gÿ �Gk̂�k̂�

Q
� �ÿ cos y cosj; ÿ cos y sinj; sin y� ;

�3� n̂ � k̂� m̂ � Qÿ1 k̂�G � �sinj; ÿ cosj; 0� :

The components of vector e can be found from equation (27):

e � x
�

Q

Wÿ l
k̂ÿGk̂

W
m̂ÿ in̂

�
; �28�

and we arrive at the equation for eigenvalues:

Q 2W

lÿW
�W 2 ÿ �Gk̂�2 � 0 : �29�

Dispersion equation (22) determines the polarization
vectors accurate up to the phase. Assuming the phase of
parameter x is zero, the modulus of x is given by the
normalization

xÿ2 �
�

Q

lÿW

�2

�
�
Gk̂

W

�2

� 1 : �30�

In inversion k̂; m̂; n̂! ÿk̂;ÿm̂;ÿn̂, the polarization vector
(28) changes sign as it is the polar vector. The complexity of
vector (28) means that it is elliptically polarized.

Formulas (28)±(30) are valid for all G. Let us next
assume the interaction of phonons with internal degrees of
freedom of ions (molecules) is weak, G5 l. In this case,
from equation (29) we obtain the single longitudinal mode:
Wk � l, e � k̂.

In the zero approximation, the parameter W for trans-
verse modes is zero, and with G taken into account, the
quantity

WZ � 1

2

�
ÿQ 2

l
� Z

�������������������������������������
Q 2

l

�2

� 4�Gk̂�2
s �

; Z � �1 �31�

characterizes their splitting:

D � o� ÿ oÿ � 1

o0

����������������������������������
Q 2

2l

�2

� �Gk̂�2
s

: �32�

The splitting is minimal near the equator � j cos yj < G=l,
D � Q 2=�2lo0��. For all the remaining directions of k̂ we
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have

WZ � ZjGk̂j ; D � G j cos yj
o0

: �33�

In the zero approximation, the real and imaginary parts of
each eZ are orthogonal and equal in magnitude:

eZ � ÿ 1���
2
p �

Z�sign cos y� m̂� in̂
�
: �34�

This means that at infinitesimal (but nonzero) G the
transverse phonons have just circular polarization [21].

The direction of the polarization vector (34) changes
stepwise while crossing the equator. But if we alter the
numbering of transverse modes and discard the modulus in
expression (33),WZ � ZGk̂, the projection of vector (34) onto
the m̂-axis becomes constant. This is always the case when
levels are crossed.

In the linear approximationwith respect to SPIwe find the
deviation from transversality:

eZk̂ � ÿ
xZQ
l

�
1�WZ

l

�
: �35�

In the result of solving the heat conduction problem in
solid insulators at low temperatures [7, 8] (when only acoustic
branches of vibrations are excited), it was shown that in the
coordinate system in which the magnetic field and magnetic
moment are directed along the z-axis and the temperature
gradient HT is directed along the x-axis, the transverse
component of the heat conductivity tensor is expressed in
the form

K yx
12 �

2

V

X
k

K12�k�ok1ok2�c yk2 ÿ c
y
k1�ReAx

12�k� ; �36�

where the functionK12�k� is determined according to formula
(26) and the density matrix in the zero approximation in SPI
has the form

Ax
pq�k� �

Fss 0 �k� cxs �k� � Fs 0s�k� cxs 0 �k�
oks ÿ oks 0

;

�37�
Fss 0 �k� � ÿ oksOpq

2T 2Opp
Nks�1�Nks� ;

where p � ks, q � ks 0, and Opq, Opp are the phonon collision
frequencies.

One can see from formula (26) that the polarization
vectors of acoustic modes play a noticeable role in the
formation of the effect under study. The factor K12�k� in
expression (36) arises due to the presence of elliptical
polarization, and the integral taken over the directions of
the wave vector is nonzero due to the step character of vector
product (9) which is included in function K12�k�.

In experiment [4], the effect was observed in the
Tb3Ga5O12 terbium±gallium garnet crystal at a temperature
of 5.45 K in the presence of an initial temperature gradient
andmagnetic field normal to it. The transverse heat flux arises
due to a combination of two significant factors. First, it is the
elliptical polarization that arises due to the spin±phonon
interaction between phonons and paramagnetic ions whose
multiplets are split by the crystal field. Second, the effect is

connected with the fact that under the action of the
temperature gradient the correlated motion of two phonon
modes arises with the emergence of off-diagonal (with respect
to modes) elements of the density matrix Ax

pq�k�. Notice that
the collision frequencies enter into expression (36) only in the
form of a ratio, because the phenomenon develops in two
stages: first, the temperature nonuniformity causes the none-
quilibrium distribution of phonons fp � 1=Opp; and only
after that the correlator rpq � Opq arises against the back-
ground of this distribution, which forms the transverse heat
flux.

Finally, also noteworthy is the suggesting itself analogy of
the phenomenon considered with the widely studied gyro-
tropy phenomenon in acoustics [9] and with more widely
known optical gyrotropy [10].

It is appropriate that the discovery of the phonon Hall
effect was initiated by the other effect connected with the
influence of magnetic field on sound propagation in matter (it
is termed the acoustic Faraday effect by analogy with the
magneto-optical Faraday effect), which shows itself as
rotation of the polarization plane of shear waves [22]. Notice
that the photon Hall effect [23], which was discovered a short
time before the phonon Hall effect, also derives from the
magneto-optical Faraday effect: the difference in the propa-
gation velocities for two circularly polarizedwaves results in a
turn of directional pattern of Rayleigh rotation, which causes
a transverse flux of photons in their numerous scattering on
defects. Similarly, the acoustic Faraday effect is an indirect
indication of the existence of the phonon Hall effect.

The effects mentioned are in fact various manifestations
of acoustic or optical activity (gyrotropy). This explains the
similarity of the equations derived in the present work with
those from paper [10], where the degeneration of isonormal
electromagnetic waves was considered. For example, taking
into account gyrotropy transforms the permittivity tensor to
the complex Hermitian one, and the magnetic field similarly
perturbs the Christoffel tensor in solid insulators. However,
in contrast to the natural optical activity of crystals
considered in paper [10], anisotropy may be inducedÐ that
is, may arise in optically (acoustically) isotropic media under
the action of an external factor changing the local symmetry.
In our case, such action is implemented by the magnetic field;
hence, from the viewpoint of gyrotropy manifestation, the
acoustic Faraday effect is the most similar to the phononHall
effect among the phenomena mentioned.
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