
Abstract. The current knowledge of the physics of electromag-
netic cloaking of material objects by the wave flow method is
reviewed. Experiments demonstrating the feasibility of this
cloaking method are described. Some aspects of calculating
cloak profiles are examined, and achievements and unsolved
problems in the theory of the interaction of electromagnetic
waves with shells are considered. Prospects for developing the
cloaking method for waves of other physical nature (acoustic
and probability density waves) are discussed.

1. Introduction

How to become invisible or make things less visible has
always been a subject of extreme interest to people. The
dream of becoming fully invisible is found in the fairytales
of many countries and is featured in fantasy novels and
movies. Every possible invisibility cloaks and caps of
darkness, as well as similar fairytale `devices' made fictional
heroes invisible and gave them many advantages.

The dream of invisibility and attempts at bringing it to life
have continued into our times. Indeed, 20th century advances
in radar and sonar technology intensified these attempts. The
practical significance of this activity is well exemplified by
stealth technology, in which the object to be concealed is
given either a special shape or a special solid shell.

In the last two or three years, major breakthroughs that
have been made in this area, both conceptual and methodo-
logical, have raised the promise that invisibility technology is
a matter of the very near future. It is accepted that the
masking method to be discussed was invented by Sir Pendry,
an Imperial College London expert in electrodynamics of left-
handedmedia andmetamaterials [1, 2], and that his invention
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is based on the mathematical work of Ulf Leonhardt, also of
the UK [3, 4]. Terminologically, the approach can be called
the `wave flow method ', as aptly suggested by the Russian
physicist N N Rozanov [5]; the term cloaking was assigned to
Pendry's method in English language literature.

The breakthrough in cloaking triggeredwhat can safely be
called a boom among specialists. Theoretical papers applying
the wave flow method to ever new cloaking schemes have
been and are being published at an explosive rate (several per
week currently), and as of now ten plus laboratories are
engaged in a bitter race for leadership in the field.

By now, cloaking research using the wave flow method
has advanced enough to allow summaries to be made, key
achievements to be analyzed, and challenges to be identified.
However, there are as yet no reviews or books exclusively
devoted to wave flow method, and in some reviews [6, 7] only
a brief mention is made of it. A popular paper [5] and a brief
undergraduate-level text [8] on the subject should perhaps
also be mentioned here.

This paper aims to present all information available as of
late 2009 on achievements and problems in the field of wave
masking.

Some important remarks are in order before proceeding
to the main body of the paper. The way things are, many of
those who gave heard or read about the new cloaking method
strongly associate it with the concepts of a left-handed
medium and negative refraction (as many newspaper reports
and popular science papers do). The point is, in our view, that
Pendry and his coworkers proposed using elements of
metamaterials (magnetic composite media) as their cloaking
coatings. Metamaterials were first created in the late 1990s
and have since been intensively investigated precisely as
media which exhibit negative refraction at certain frequen-
cies (left-handed media). However, as far as their operating
frequency range is concerned, cloaking metamaterials mostly
behave as normal, right-handed materials.

The wave flow method itself, as we shall see below, does
not necessarily rely on negative refractionmaterialsÐat least
not for simple cloak geometries like the sphere, cylinder, etc.
For this reason, the physics of left-handed media and
metamaterials will not be considered here, and the interested
reader is referred to review papers [9±14], monographs [15±
17], and popular science books [18, 19].

As a final remark: it is known that new is often well-
forgotten old. In concluding the paper we shall argue (see
Appendix III) that the wave flow concept had been around
long before metamaterials came along, so that attempts to
implement it with conventional right-handed media may
have been undertaken as far back as the middle of the last
century.

2. Masking methods

There are a variety of methods that have been developed for
masking material objects, for concealing and making them
less visible. In presenting these methods in this section we
shall in part follow the review by Rozanov [5], presenting
additional illustrative examples if need be.

In the optical range, the principal method to avoid
observation is, of course, camouflage (or the color matching
of the background), which hampers detecting or recognizing
objects optically, by the eye or some device.While camouflage
coloration does not make an object invisible and only reduces
its contrast with the background, it forces the observer to

spend some time to detect the object, even when knowing its
approximate location beforehand. Camouflage clothing used
by hunters and the military is a common example of this color
matching. In the animal world, there are many ways of
blending into the background, including the following:
cryptic coloration to match the environment (e.g., green
lizards, grasshoppers, and caterpillars in grass, brownish-
yellow locusts or saigas on sand, polar bears and snow
leopards against snow, age and seasonal moulting in hares
and fur-seals); disruptive coloration, when contrasting colora-
tion helps concealment in a complex-relief environment
(zebras, chipmunks); concealing coloration based on the
light-shadow effect in which the more illuminated parts (say,
top) of an animal's body are relatively darker in color, as is the
case with many animals.

One further way nature suggests as a means to achieve
invisibility is by matching environment in terms of properties
other than color. For example, in jellyfish and `normal' fish
the body index of refraction is nearly equal to that of sea
water. Objects with this property are practically invisible,
even under very close observation. This idea was used by Mr
Griffin, the hero of H Wells's The Invisible Man, who self-
injected some chemicals to make the index of refraction of his
body equal to that of the ambient air. Unfortunately, this
property cannot be imparted to any desired object, and this
approach has very limited applicability.

The advent of radar greatly extended the concept of
invisibility. Before that, `invisible' meant hidden from visual
sight; today, it can also stand for hidden from radar.

What primarily distinguishes radar from optical cloaking
is that in order to see an object a radar locator emits its own
radiation and if the object completely absorbs this radia-
tionÐand hence no reflected wave comes backÐ the
radiation seems to have disappeared into nothing. In other
words, the object is invisible. The eye, unlike radar, uses light
from an external source to see an object, so that an object
coated with an absorbent is black in color and is therefore
very visible against almost any background.

Another cloaking technique is to utilize scattering coat-
ings. For example, stealth technology gives aircraft a specific
angular shape to cause the incident radio radiation to be
scattered in a direction totally different from backward
direction to the source (this shape, incidentally, markedly
deteriorates the aerodynamic performance of the aircraft). In
the optical range, in contrast, a scattering coating does not
make an object invisible but only blurs its outline.

However, cloaking technologies like stealth are less
efficient if there is more than one radar, so that the radiation
emitted by one of them enters the field of sight of another
when reflected from the object. A system of locators allows
even absorbing objects to be detected: each of the radars sees
things illuminated not only by its own light but also by light
from an external source, so that an object that absorbs
radiation will be visibleÐ in the same way that black object
is visible to the eye against a white background.

Detection technology, for its part, has been keeping pace
with cloaking technologies in recent decades: whatever new
cloaking method is developed, a new method of detecting
objects by indirect evidence (such as shadow, scattering
radiation, or aircraft wake) quickly emerged. There is,
therefore, an acute need for cloaking procedure which
would minimize this evidence.

In recent years, a number of new cloaking schemes have
been proposed. Of these, owing to its universal nature,
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particular development has gone into the wave flow method,
which is the subject of the next section.

3. The idea of the wave flow method

In 2006, J Pendry and colleagues came up with a fundamen-
tally new invisibility concept [1, 2]. Their basic idea was that a
cloaking shell should curve the wave front of the incident
electromagnetic radiation so as to cause it to bend around the
object and to assume its original direction on the opposite side
of the object (Fig. 1). Externally, then, it looks as if there is
nothing on the path of the wave, i.e., what the observer sees is
not a cloaked object but rather empty space behind it.

For the observer to notice no indications of nonunifor-
mity, it is also necessary that the optical path of each ray in the
shell be the same as if the ray had propagated along a straight
line in free space. Otherwise, the rays that have passed
through the cloak simply will not fall into the general
picture: they will interfere with those that have not interacted
with the cloak and thus will distort the field pattern.

The proposed way to implement the idea is by making use
of cloaking material nonuniformities. Indeed, it is a well-
known phenomenon that a ray of light undergoes refraction
at the interface between two media. But if the refractive index
varies continuously in the medium, the refraction of the ray is
continuous and the ray trajectory is a smooth curve. This,
incidentally, is the explanation of the well-known phenom-
enon of mirage, in which objects beyond the horizon are seen.
This kind of a mirage is observed in calm, dry, and very hot
weather, when in the layer of stagnant air near the ground
there is a clearly defined radial distribution (or gradient) of
refractive index. As a result, the rays of light curve around the
surface of the Earth, allowing one to see things beyond the
horizon and leaving invisible the Earth's surface between the
observer and the mirage.

The question now arises: How can those values of the
cloak material parameters (specifically, the permittivity and
permeability tensors) which will yield the desired ray
trajectories be calculated? Reference [1] suggests a procedure
which is no less fascinating than light bending itself: to
mentally create a curved-metric space within a shell, for
which purpose it is necessary to find the transformation of
coordinates. Underlying the procedure is the fact that
Maxwell's equations remain invariant under spatial transfor-
mations (see Appendix I).

This procedure is most easily explained by the following
simple example. Suppose we need an invisibility cloak shaped
like a spherical layer R1 < r < R2, the surrounding medium
being vacuum (or air). Let us make the transformation which
maps a sphere of radius R2 with its center at the origin of

coordinates onto this layer:

r 0 � R1 � r
R2 ÿ R1

R2
; y 0 � y ; j 0 � j : �1�

Under this transformation, Maxwell's equations

HH� E � ÿ 1

c

qH
qt

; HH�H � 1

c

qE
qt

�2�

formally retain their appearance:

HH� ~E � ÿ m̂
c

q ~H

qt
; HH� ~H � ê

c

q~E

qt
; �3�

where ~E and ~H are the fields in the new coordinates, and m̂ and
ê are tensors with diagonal components

err � mrr �
R2

R2 ÿ R1

�rÿ R1�2
r 2

; eyy � myy �
R2

R2 ÿ R1
;

eff � mff �
R2

R2 ÿ R1

�4�

(the general expressions for an arbitrary transformation are
derived in Appendix I).

Because the equations have identical forms, so too will
their solutions with respect to their coordinate systems. This
means that a medium that was given a parameter distribution
(4) will bend a straight ray just as the transformation (1) bends
a straight line intersecting a sphere of radius r < R2 (Fig. 2).

Because, further, the transformation did not affect the
time region, it follows that at any instant of time the phases of
every ray will be the same in the original and transformed
systems. Thus, using this coordinate transformation, we
obtained the parameters of a cloak which satisfies all the
invisibility requirements we have listed above.

It should be noted that an equivalent effect could be
produced by so-called antigravitation were it existent in
nature. Antigravitation in the presence of a repelling body
deforms the metric of space in such a way that geodesics, in a
sense, move apart (as opposed to moving closer together in
conventional gravitation).

From Eqns (4), which are a purely mathematical result, it
is seen that the components of the permittivity and perme-
ability, err � mrr, assume values less than unity (which could in
fact be said without deriving Eqns (4) because the geometric
path a ray travels in the cloaking shell is longer than in a
vacuum, whereas the optical paths and phase incursions
should be equal).

Figure 1. Ray trajectories in the cloak [1].

a b

r

x x

Figure 2. Straight line and vector x in the original (Cartesian) coordinate

system. (b) Cartesian grid, the same line and vector in new coordinates

(taken from Ref. [20]).
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Calculations for shapes other than spherical (for example,
for a cube) predict negative values for some permittivity and
permeability components. This is illustrated graphically in
Fig. 3, where the rays traveling above the dash-and-dot line
(which divides the rectangle in half) refract when entering the
cloak: as usual, the incident and refracted rays are on opposite
sides of the normal to the interface. The rays traveling below
the dash-and-dot line refract negatively: the incident ray and
the refracted ray appear on the same side of the normal, i.e.,
here we already need a left-handedmedium. At the same time,
it is readily understood that, when incident on a cloaking shell
with a circular cross section, any ray will refract positively.

Negative refraction is also necessarily present in cloaks of
many other shapes. This is especially true of nonconvex (for
example, heart-shaped) shells, which we shall consider below.
On the other hand, it is clear that, if need be, any body (even a
nonconvex one) can be cloaked by a spherical shell of
sufficiently large radius, meaning that there is no need for
left-handed media!

However, and this can be seen from Eqn (4), what is really
needed for cloaking by the wave flow method is anisotropic
gradient materials with permittivity and permeability compo-
nents less than unity or (in some cases) negative. In what
follows we shall examine how the ideas in this section can be
put into practice.

Note. Thus, a cloaking shell is an anisotropic medium. The
question that arises here is why each of the rays refracts in its own
unique way. And, noting that anisotropicmedia generally lift the
polarization degeneration of a wave, which rays are usual and
which are unusual?

According to the authors of the method, this preservation of
polarization degeneracy is due to the fact that the permittivity
and permeability tensors of the cloakmaterial are equal [20]. If, it
is argued, the cloakingmedium is a transformed vacuumwith the
same properties �e � m � 1� and if, further, there is only one way
in which a vacuum refracts a ray, how can the cloak possibly split
the ray in two?

Added to the above general arguments, the authors of
Ref. [20] prove quite rigorously that a cloaking shell cannot be
birefrigent. Deéning the operator K̂ by the expression

k� ÿm̂ÿ1�k� E��� êE � K̂E �5�

and denoting ê � m̂ � n̂, they obtain a dispersion relation for the
cloak in the form

det �K̂n̂ÿ1K̂� n̂� � 1

det n̂
�kn̂kÿ det n̂�2 : �6�

Although equation (6) is of the fourth order in k, it has only two
(opposite-sign) solutions. In birefrigent media, in contrast, all
four solutions of the dispersion equation are different.

4. First experimental demonstration
of wave flow cloaking

The first implementation of wave flow cloaking using a
metamaterial coating deserves a separate story. It is in large
part the success of these experiments which generated a wave
of interest in this method in the scientific community, and it is
these experiments which identified the key cloaking problems
which have been the focus of attention of experts for the last
two or three years.

Preceding these experiments was the numerical simulation
in Ref. [21] of flow around an infinitely long cylindrical shell
with a circular cross section. The interaction of the shell with a
linearly polarized electromagnetic wave was simulated with
the finite-differences time-domain (FDTD) method, which
does not use the geometrical-optics approximation and yields
the wave-field pattern in its entirety (full-wave simulation).

The parameters of the cylindrical cloak were calculated by
the method of coordinate transformation

err � mrr �
rÿ a

r
; eff � mff �

r

rÿ a
;

�7�

ezz � mzz �
�

b

bÿ a

�2
rÿ a

r
;

using the linear transformation

r 0 � bÿ a

b
r� a ; j 0 � j ; z 0 � z ; �8�

where a and b are the inner and outer radii of the cylindrical
shell, respectively.

The interaction of a linearly polarized wave with this
cloak is illustrated in Fig. 4a for the wave vector E parallel to
the cylinder axis. The cloaking effect does show up here: the
radiation does not penetrate the cavity and is virtually

Figure 3. Schematic illustrating the incidence of rays on a rectangular cross

section cloaking shell (shown in white); incidence is from left to right.
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Figure 4. Normalized amplitude distribution for an electric field near a

cylindrical cloak. Thin vertical lines indicate ray trajectories; power flow in

all cases is from left to right. (a) Coating with ideal parameters (7), (b) the

samewith a loss tangent of 0.1, (c) eight-layer approximation of the perfect

coating, and (d) coating with simplified parameters (12). (Taken from

Ref. 21].) (For a colored version see http://www.ufn.ru.)
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unscattered by the cloaking surface, and the wave front
becomes plane again after the wave has passed the shell.

Because the calculations in Ref. [21] were a lead-up to
experiments, the perfect cloaking shell remained out of
consideration. Recognizing that a cloaking shell with con-
tinuously variable parameters and no dissipative losses is
beyond practical possibility, the authors also modelled the
interaction of a plane wave with a layered coating (eight
layers, each with its own refractive index) and with a lossy
coating.

From Fig. 4b it is seen that a discrete shell somewhat
deteriorates the picture (rays of light are no longer straight
lines outside the shell due to scattering) and that nonzero
absorption gives rise to a shadow.

Unfortunately, a cloak with the parameters shown in
Eqn (7) is thus far very difficult to obtain because all the
permittivity and permeability components are spatially
nonuniform. However, if, for example, the incident vector E
is parallel to the cylinder axis z, the problem becomes two-
dimensional and the z-components of the permittivity and
permeability tensors can be assumed constant �Dz � ezzEz,
ezz � const�. Then, Maxwell's equations inside the shell
become

ioDz � 1

r

�
q�rHj�

qr
ÿ qHr

qj

�
; �9�

iomrrHr � 1

r

q�Dz=ezz�
qf

; �10�

iomffHf � ÿ q�Dz=ezz�
qr

: �11�

The permittivity and permeability components enter
Eqns (9)±(11) through the products mrrezz and mffezz, so
that, instead of the parameters given by Eqn (7), one can
apply simpler expressions which give the same result.

Reference [21] suggests the following set of parameters:

ezz �
�

b

bÿ a

�2

; mrr �
�
rÿ a

r

�2

; mff � 1 : �12�

This, of course, makes things much simpler because here
only one component is spatially nonuniform! Referring to
Fig. 4d, which shows a cloak with parameters (12), the curved
ray trajectories outside the shell indicate that scattering in all
directions is rather strong. Nevertheless, the cloaking effect
shows itself here, because radiation still does not penetrate the
region of r < a.

The cloak prepared for the experiments of Ref. [2]
(published shortly after Ref. [21] by the same team of
researchers) possessed all the nonidealities listed above, i.e.,
simplified material parameters (12), discreteness, and absorp-
tion. In addition, the cylinder had a finite (and very small)
height.

The coating comprised ten layers, each consisting of a
very large number of ring resonators, which is the most
widespread metamaterial structural element. The geome-
trical size of the resonators was specific for each layer and
chosen so as to make the mrr�r� the closest possible to the
parameters (12). The radii of the layers were chosen such
that the circumference of a layer contains an integer
number of resonators. The shell and the parameters of its
elements are shown in Figs 5 and 6. A hollow conducting

cylinder of radius r � 0:26 m was taken as an object to be
cloaked.

The experimental results presented in Fig. 7 demonstrate
that, despite all its shortcomings, a cylindrical shell still has
some cloaking effect, i.e., reduces the visibility of the cloaked
object: a conducting cylinder covered with this shell scatters
radiation much less than when not covered (cf. Figs 7a and
7b). It was this first success that became the starting point for
a new approach to cloaking technology.

5. Other possibilities
for choosing parameters
for a circular cross section cylindrical cloak

Reference [21] employed linear transformation (8) to obtain
permittivity and permeability components (7). There are,
however, an infinitely large number of ways to transform a
solid cylinder to a hollow one; the linear transformation was
chosen entirely because of its simplicity.

The transformation for a cylindrical shell has the follow-
ing general form:

r 0 � f �r� ; j 0 � j ; z 0 � z ; f �a� � 0 ; f �b� � b : �13�

10 20 30 40 50 60
mm

4

3

2

1

0

71

ẑ
ŷ

r̂

Figure 5.Cylindrical cloaking shell (background image) with plots of mrr�r�
(slanted line), mff�r� (lower horizontal straight line), and ezz�r� (upper
horizontal line). (Taken from Ref. [2].)
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0.279

1.654
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2.110
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W

Figure 6.Geometric parameters of ring resonators (N is the layer number).

(Taken from Ref. [2].)
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The permittivity and permeability components then are
calculated as

err � mrr �
f �r�
rf 0�r� ; eff � mff �

rf 0�r�
f �r� ;

�14�
ezz � mzz �

f �r� f 0�r�
r

;

where f 0�r� � df �r�=dr (relations (14) follow from the general
expressions for the ê and m̂ tensors derived in Appendix I).

A perfect cloaking effect can be achieved with a linear
transformation, provided only that the cloak is fabricated
with parameters (7). In practice, however, this has turned out
to be extremely challenging, so a great deal of attention has
been given to how to decrease the number of nonuniform
components in the ê and m̂ tensors.

The first attemptÐ the one that led to parameters (12)Ð
proved unsatisfactory because the shell caused too large a
scattering (Fig. 4d). A better result was obtained in Refs [22,
23], where, strange as it may seem, more complex transforma-
tions were applied to create simpler cloaks.

Reference [22], dealing with the quadratic transformation

r 0 � f �r� � ÿar
2 � �b 2 � a 2�rÿ ab 2

�bÿ a�2 ; �15�

offers the following set of cloaking shell parameters:

err � �b
2 ÿ ra�2�rÿ a�2
�bÿ a�4r 2 ; �16�

eff � �a
2 � b 2 ÿ 2ra�2
�bÿ a�4 ; mzz � 1 :

These expressions were obtained by analogy with Eqn (12)
but for a different polarization of incident radiation (vector B
is parallel to the z-axis).

There are two important advantages to this set of
parameters over Eqn (12). First, the outer surface impedance
of the shell matches that of the surrounding medium, viz.

Z
��
r� b
�

��������
mzz
eff

r ����
r� b

� 1 ; �17�

resulting in a cloak with the parameters given in Eqn (16)
scattering incident radiationmuch less than a simplified cloak
with parameters (12). Second, because mz � 1, the cloak can
be considered nonmagnetic for a wave with this polarization
(see above; the absence of magnetic properties in the medium
usually greatly simplifies the practical solution to the
problem). Therefore, despite the complex expressions for the
ê components, parameters (16) seem, by and large, to be
simpler to implement than parameters (7).

The authors of Ref. [23] attacked the problem from a
somewhat different angle, by putting the transformation, on
the contrary, as the function r � g�r 0�,

r � g�r 0� �
�
a

b

�
r 0

b
ÿ 2

�
� 1

�
r 0 � a ; �18�

and arriving ultimately at the following set of simplified
parameters for the case of the incident radiation with the
vector B parallel to the z-axis:

err �
�
r 0

r

�2

; eff �
�
qg�r 0�
qr 0

�ÿ2
; mzz � 1 : �19�

A shell with parameters (19), while advantageously
nonmagnetic and impedance-matched with its surroundings,
is disadvantageous in having a limitation on the thickness:
a=b < 0:5 (otherwise transformation (13) would be nonmo-
notonic).

Reference [23] also carried out efficiency comparisons
between the linear nonmagnetic cloak with transformation
g�r 0� � �1ÿ a=b�r 0 � a�, the quadratic nonmagnetic cloak
with g�r 0� given by Eqn (18), and the perfect linear cloak with
parameters (7) (see Fig. 8). It can be concluded that higher-
order transformations give a very good result: the quadratic
nonmagnetic cloak scatters much less radiation than the
linear nonmagnetic cloak.

6. Cloak shape diversity

Experiments with a cylindrical shell launched an avalanche of
calculations for other cloak geometries. It should be noted
that all the published results have been numerical simulations:
real cloaks of sufficient quality have been beyond the
technology of the time. With the exception of the first,
proof-of-principle experiment, imperfect technologies have
made the experiments meaningless because the resulting
picture would be too blurred to draw conclusions concerning
geometry-related properties of the cloaks.

Let us have a look at what has been done in this area.
Note, to start with, that any object placed within a

cylindrical shell will be hidden by it just as effectively as by a
spherical one. True, for most practical applications a cylinder
is inconvenient and, for example, a spherical cloak is more
universal, but because noncylindrical cloaks are complicated
to simulate they, for a long time, have been given much less
attention.

For a wave incident normally on the cylindrical shell (the
wave front is parallel to the cylinder generatrix) there is no
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field energy flow along the generatrix, so that the field pattern
is the same for any cross section, i.e., is planar (the reason they
are called 2D-cylindrical). It should be noted, however, that
this problem cannot strictly be considered two-dimensional
because the cylindrical shell has clearly defined permittivity
and permeability components ezz and mzz, where the z-axis is
parallel to the cylinder's generatrix [see expressions (7)]. Still,
such plane (in a sense) problems are much less cumbersome
than fully three-dimensional ones. In fact, it is due to this
relative simplicity that cylindrical cloaks have been given such
attention.

In what follows, the key shell geometries that have been
investigated are reviewed.

6.1 Elliptic cylinder
One of the simplest elliptic-cylindrical cloaks was considered
in Ref. [24] (Fig. 9). The parameters of this cloak are
calculated using a linear transformation of the elliptic-
cylindrical coordinates x � cxZ, y � c��x 2 ÿ 1��1ÿ Z 2��1=2,
z � z, which squeezes a solid elliptical cylinder into a cylinder
with a cavity:

x 0 � x1 � �xÿ 1� x2 ÿ x1
x2 ÿ 1

; Z 0 � Z ; z 0 � z : �20�

As noted in Ref. [24], because the elliptic cylinder exhibits
smaller degree of symmetry than the circular one, it is not
indifferent to the incident radiation direction. From Fig. 9,
which shows situations for different angles of incidence
relative to the major axis of the ellipse, it is apparent that the
maximum cloaking effect is achieved at a zero angle of
incidence.

A more general, asymmetric elliptical shell was treated in
Ref. [25] (Fig. 10). Curiously, despite the complete absence of
symmetry, such a shell produces the cloaking effect for any
direction of radiation incidence.

The cloaking effect can be achieved by properly choosing
the coordinate system and the transformation. For this
purpose, the authors of Ref. [25] introduced their own non-
orthogonal (!) system of coordinates �q1; q2; q3� related to
�x; y; z� by the relationships

q1 �
�����������������������������������������������������������
xÿ q1xc

a

�2

�
�
yÿ q1yc

b

�2
s

; �21�
q2 � arctan

�yÿ q1yc�=b
�xÿ q1xc�=a ; q3 � z :

Here, the coordinate lines q1 � const (in the xy plane) are
ellipses with equal semiminor-to-semimajor axis ratio b=a,
both centered at �x; y� � �q1xc; q1yc�, and the coordinate lines
q2 � const are radial lines passing through point �0; 0�
(Fig. 11a). The linear transformation

�q 01; q 02; q 03� �
�
1� sÿ 1

s
q1; q2; q3

�
; 04 q1 4 s ; �22�

maps an elliptic cylinder to one with an eccentric cavity (see
Fig. 11b). Because the coordinate system �q1; q2; q3� is not
orthogonal, it follows that the ê and m̂ tensors of this cloak
calculated by coordinate transformation method have off-
diagonal components e12 � e21 � m12 � m21 (the expressions
in Ref. [25] are too unwieldy to be reproduced here).

Reference [25] demonstrated convincingly that nonsym-
metric shells can by all means produce a symmetric cloaking
effect, provided only a necessary (admittedly very complex)
parameter distribution was created in them.

In Ref. [26], the same authors presented another curious
generalization of the elliptical cloaking concept, a uniform-
thickness elliptic-cylindrical layer (Fig. 12). An interesting
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point about this geometry is that the inner and outer surfaces
of the cloaking layer are not similar figures, which adds
complications of its own and also necessitates the transforma-
tion of nonorthogonal coordinates.

The convenience of the elliptic geometry is its universality:
depending on the semiaxis ratio, the ellipse changes from very
elongated to nearly perfectly circular and can therefore be
used in a wide variety of practical applications. This point is
brought to attention inRef. [27], which derives ê and m̂ tensors
for a concentric elliptic shell.

The following expressions are reproduced from Ref. [27]
for reference purposes:

exx � r1
r1 ÿ ka

� k 2a 2R 2 ÿ 2kar 31
�r1 ÿ ka�r 51

x 2 ; �23a�

exy � k 2a 2R 2 ÿ 2ka�1� k 2�r 31
�r1 ÿ ka�r 51

xy � eyx ; �23b�

eyy � r1
r1 ÿ ka

� k 2a 2R 2 ÿ 2k 3ar 31
�r1 ÿ ka�r 51

y 2 ; �23c�

ezz �
�

b

bÿ a

�2
r1 ÿ ka

r1
: �23d�

Here, k is the major-to-minor semiaxis ratio, the same for the
inner and outer ellipses; a and b are their minor semiaxes;
r1 � �x 2 � k 2y 2�1=2; and R � �x 2 � k 4y 2�1=2.

Although the shape of the shell is the same as in Ref. [24],
Ref. [27] uses a more complex, nonlinear transformation:

�x 0; y 0� �
�
bÿ a

b
� ka���������������������

x 2 � k 2y 2
p �

x; y ; z 0 � z :

As a result, such a shell produces a symmetric cloaking effect
(Fig. 13).

6.2 Arbitrary cylinder
The method of coordinate transformations can also be
applied to calculate the parameters for any shape of a shell.
However, in this general case there is no transformation that
will map a simply connected region onto its similar doubly
connected one (for example, if the boundary of the region is a
broken line). Then, tensors ê and m̂ are defined piecewise by
making a number of transformations simultaneously.

For a simple example, we can consider a cylindrical shell
of square cross section, whose parameters were calculated in
Ref. [28]. Here, transformations are made and material
parameters assigned for each `sector' of the square specifi-
cally (Fig. 14).

A more complex broken-line boundary can also be cut
into pieces, and for each of these its own transformation can
be made, similar to what was done in Ref. [29] (Fig. 15).
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Fortunately, with current computational technologies a large
number of such operations can be carried out in a short period
of time. This method can also be applied to calculating two-
dimensional shells with smoothly curved boundaries (in
which case a curvilinear boundary should be approximated
by a broken line).

The nonuniform rational B-spline (NURBS)method used
in Ref. [30] is more accurate in this sense. In this method, the
smooth boundary of the cloaking shell is approximated by a
combination of several second-order Bezier curves (which,
depending on the parameters, may represent any conical cross
sections, including ellipses, parabolas, or hyperbolas).

A second-order Bezier curve is defined by specifying three
points, P0�a0; b0�, P1�a1; b1�, and P2�a2; b2� (Fig. 16) and three
parameters, w0, w1, and w2, which are called weights. The
parametric equations of the curve have the form

x�u� � w0a0�1ÿ u�2 � 2w1a1�1ÿ u�u� w2a2u
2

w0�1ÿ u�2 � 2w1�1ÿ u�u� w2u 2
; �24a�

y�u� � w0b0�1ÿ u�2 � 2w1b1�1ÿ u�u� w2b2u
2

w0�1ÿ u�2 � 2w1�1ÿ u�u� w2u 2
: �24b�

This method, although seemingly more complex than
the broken-line method, has the weighty advantage that, for
a smooth curve to be approximated to sufficient accuracy,
one needs a broken curve consisting of hundreds of
segments, whereas for Bezier curves this number is much
fewer. For example, the heart shape needs only two Bezier
curves for its description: one for the left half, and one for
the right half (Fig. 17). Curiously, these curves were
developed quite recently, in the 1960s, by Pierre Bezier, a

French engineer at Renault working on approximating
aerodynamic car shapes.

Reference [31] suggests yet another interesting method for
calculating cylindrical shells with an arbitrary cross section.
The equations of the outer and inner shell boundaries (in the
plane of the transverse cross section) are specified in polar
coordinates

fin�j� � ar�j� ; �25�
fout�j� � bZ�j� ; �26�

where r�j� and Z�j� are dimensionless functions, and a and b
are the `radii' or scale coefficients (figures specified by
equations with the same function r�j� but different `radii'
are similar). Then, a transformation linear in r of a singly
connected region with boundary fout into a doubly connected
region with boundaries fout and fin takes the form

r 0 � a� bZ�j� ÿ ar�j�
bZ�j� r : �27�

The approach suggested in Ref. [31] is interesting in
allowing the inner and outer shell surfaces to be nonsimilar.
Figure 18 demonstrates, as an example, the cloaking effect of
one of the shells with parameters obtained by this method.
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The essential features of this cloak are that, first, the object
being cloaked is not convex, and, second, details of its
geometry are less than a wavelength in size.

6.3 Three-dimensional shells
Only a limited number of three-dimensional shell studies have
been conducted, none of them for an arbitrary shape. The
reason, as mentioned above, is that such problems are
difficult to model. Besides the very first spherical shape
suggested, ellipsoids of rotation (Fig. 19a), open hyperbo-
loids (Fig. 19b), and open cones (Fig. 19c) were investigated
[32, 33].

7. Key challenges of wave flow cloaking

Some obstacles on the way to creating `invisibility cloaks' by
using coordinate transformations were pointed out as early as
Ref. [1], and the experimental studies of Refs [2] and [21]
confirmed that they are indeed serious. Let us list them here.

7.1 Dispersion
We have already mentioned that, the optical paths being
equal, the geometric path of a ray in a cloaking shell is longer
than in a vacuum. This means, in fact, that the phase velocity
of a wave in the cloak is larger than the speed of light in a
vacuum, c. Because the group velocity cannot exceed c, this
means that it does not equal the phase velocity, which in itself

implies the presence of frequency dispersion �ei j � ei j�o�,
mi j � mi j�o��. Thus, the cloaking shell can only be fully
efficient at a single frequencyÐone for which the permittiv-
ity and permeability components take the appropriate forms
[for example, Eqn (4) for a spherical shell]. Moreover, the
cloaking material itself can be dispersive to a greater or lesser
degree, depending on its structure.

All this could be avoided by performing cloaking not in a
vacuum but in a medium of higher optical density (with a
refractive index of n � 5, for example). Cloaking requires
materials with a refractive index less than that of the
surrounding medium, i.e., in this case usual materials with
1 < n < 5 will do. Unfortunately, this is hardly applicable in
practice, where one is normally concerned with cloaking in
the air, but even now some demonstration experiments are
possible.

7.2 Dissipative losses
As can be seen from Fig. 4b, an absorbing cloak (as indeed
any other radiation-absorbing object) casts a shadow and so
gives the cloaked object up. Losses in the cloaking shell are
unavoidable primarily due to the rather strong dispersion in
it. The well-known Kramers±Kronig relations imply that the
imaginary part of the permittivity (permeability) is higher as
the rate at which its real part varies with frequency increases.
That is, media with high dispersion in a certain frequency
range have high absorption in this range.

7.3 Situations with permittivity
and permeability components becoming zero or infinite
Let us take another look at expressions (4). We note that
err � mrr � 0 at the inner surface of the spherical cloak. The
same is true for the cylindrical shell. Thus, the whole of the
inner surface consists of singular points, which greatly
compounds any electromagnetic problem.

One way to deal with singular points is by choosing an
appropriate coordinate transformation. For example,
Ref. [34], which offers yet another version of an elliptical
cylinder cloak, uses a linear transformation of the classical
coordinates of an elliptic cylinder, for which confocal ellipses
serve as coordinates lines in the plane of the transverse cross
section (Fig. 20). Recall that other cylindrical shell studies
make other choices for coordinate ellipses (for example, in
Ref. [27] the semiaxis ratio is taken to be a constant).
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In Ref. [34], it is argued that whether singular points exist
or not depends on what the measure is of that set of points
which the coordinate transformation `inflates' into a cavity.
There are no singular points if the original set of points and its
image have the same measure. Because the image is always a
surface (the inner surface of the shell), it follows that the
original set should also have measure 2.

This requirement is not satisfied for the spherical cloaking
shell obtained by transformation (1) because its cavity `grows'
from the center of the sphere (set of measure zero). For a
circular cylindrical shell [transformation (8)], the inner sur-
face is obtained from the cylinder's axis (the straight line is a
set of measure 1). The same is the case for the elliptic
cylindrical shells discussed in Section 6. As a result, all these
cloaking shells have singular points at their inner surfaces.

In contrast to them, the inner surface of the elliptic shell
proposed in Ref. [34] is obtained from a region in a plane (the
segment �ÿp; p� in the cross section shown in Fig. 20), so that
the permittivity and permeability components never become
zero in this region.

8. Overcoming dispersion and anisotropy:
plane layer cloaking

Thus, we have seen that frequency dispersion is an inalienable
property of a cloaking shell, which at the same time prevents
the shell from being perfect. It is then logically expected that
the smoother the frequency dependences of the permittivity
and permeability components ei j�o�, mi j�o�, the lower the
absorption and hence the better the cloaking effect. In this
context, an important issue is finding an optimal coordinate
transformation that minimizes the dispersion, while preser-
ving the cloaking properties of the shell.

The search for such a transformation is the subject of
Ref. [35], where the degree of dispersion of a cloak is
considered to be directly dependent on the degree of its
anisotropy. The authors reformulated the problem into one
of smoothing out the anisotropy by appropriately shaping the
cloak and choosing a coordinate transformation.

The title of Ref. [35], ``Hiding under the Carpet: A New
Strategy for Cloaking'', graphically presents the authors'
idea: cloaking against the background of a smooth surface
using a plane layer which has an indentation on its lower
surface where the object to be hidden is placed (Fig. 21).

The following is the procedure for finding a transforma-
tion which maps a rectangle w� h into a rectangle with an
indentation and which produces the minimum anisotropy in
doing so. The first step in this procedure is assuming that the
cloaking layer reflects radiation in the sameway as a dielectric
plate with e � eref and m � 1.

This being so, the cloak itself is visible in a medium with
e � 1 and m � 1 (unlike the cloaks in all the preceding cases)
and is transparent, but the observer cannot even imagine
there is an object under the layer and all they see is the `floor'
(similar to circus tricks with mirrors).

The cloaking shell may indeed bemade totally invisible by
coating its top and ends with a so-called impedance-matching
layer, in which the refractive index varies linearly from n0 � 1
at the outer surface to n � ������

eref
p

at the inner surface. The
impedances at the interfaces then turn out to be matched, so
there is no reflection from them and all the parts of the system,
except for the background surface, become invisible (Fig. 22).

At the next step, the authors of Ref. [35] consider an
arbitrary transformation, corresponding to the conditions of
the problem, from the Cartesian coordinates �x; y� to curvi-
linear coordinates �x; Z� and arrive at the following expres-
sions for the permittivity and permeability:

e � eref����������
det g
p ; �m i j� � LLT����������

det g
p : �28�

Here, L is the transformation matrix, and g � LTL is the
transformation metric (we note that e is a scalar quantity
which is a function of the coordinates, and that �m i j� is a tensor
whose components are also spatially inhomogeneous).

Next, the so-called `anisotropy factor'

a � max

�
nT
nL

;
nL
nT

�
�29�

is introduced, where nT;L � �����������emT;L
p

are the refractive indices
along the principal axes of the permeability tensor, and mT
and mL are its principal values.

The larger the value of a, the stronger the anisotropy.
Accordingly, the problem reduces to finding such a coordi-
nate transformation for which the anisotropy factor a
(dependent only on the shape of the L matrix) is a
minimum. This is a variational problem which, according to
the authors of Ref. [35], should be solved numerically. The
final result they expect to obtain is a value of near unity for a,
which allows neglecting anisotropy.

The idea outlined above was implemented by the authors
of Ref. [36], who succeeded in numerically finding the optimal
transformation as programmed in Ref. [35]. The anisotropy
factor was indeed found to be close to unity �a � 1:04�, so
that the cloaking shell is considered in Ref. [36] as virtually
isotropic, meaning that its refractive index is single and
spatially inhomogeneous.

Figure 23 shows the distribution of this index throughout
the cloaking layer. Importantly, the refractive index is
nowhere less than unity, which essentially means the
implementation of the idea of cloaking in an optically dense
medium. True, in this approach total invisibility is impossible
without a matching layer.

Although there is now no need to satisfy the conditions
e; m < 1, the authors of Ref. [36] use metamaterials to create
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h
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Virtual system
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y

Figure 21. Real and virtual systems, the term virtual meaning how things

appear to the observer (taken from Ref. [35]).
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Figure 22. Trajectories of rays incident (a) on the background surface, and

(b) on the cloaking layer (taken from Ref. [36]).
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cloaking devices. This time, metamaterials consisting of
I-shaped elements operate at frequencies below the resonant
frequency (note that in most metamaterials e; m < 1 for
frequencies above the resonant one, whereas at low frequen-
cies they also have e; m > 1).

Reference [36] presents experimental results of plane layer
cloaking. The cloaking layer they created consisted of about
10,000 I-elements, more than 6,000 of them being unique
(Figs 24 and 25).

Through the efforts of the designers of this layer a special
library of data on the refractive index and impedance as
functions of size was compiled for metamaterials consisting
of identical I-elements (it goes without saying that the data
were obtained numerically). Using this library, a structure
with the desired distributions of refractive index and
impedance can be obtained. The location of each individual
element (or `metaatom') in this structure is not determined `by
hand', but is calculated with a simpleMonte Carlo algorithm.

The I-shaped metaatom is not at all an accidental choice.
If such a cloaking shell is made of, for example, ring
resonators, then any effort to minimize anisotropy will be of
no avail. Indeed, the aim of these efforts is to decrease
dispersion, but ring resonators by themselves have consider-
able dispersion in the (near-resonance!) e; m > 1 range.

Numerical experiments in Ref. [36] demonstrated that
while I-shaped elements also have a resonant frequency, a
frequency range (below the resonant frequency) where
dispersion is virtually absent exists for them; this is the
so-called nonresonant region (Fig. 26). The sizes of the
I-elements were chosen so that their permittivities had the
desired value precisely in the nonresonant frequency range.
As a result, the metamaterial synthesized from these elements
turned out to have negligible dispersion.

Thus, a cloaking shell with very low dispersion was
obtained. In addition to lower absorption, one more great
advantage here is that the cloaking effect is observed in a
broader frequency range.

The experiments of Ref. [36] were carried out at four
different frequencies: 13, 14, 15, and 16 GHz. Figure 27
presents the results of these experiments. The fact that the
field patterns are virtually identical for all four frequencies
allows the conclusion that the broadband cloaking effect does
indeed show itself. The experimenters believe (but could not
verify because of facility limitations) that this cloaking device
has in fact a wider operation regime.

Thus, the plane cloaking layer solves a number of serious
problems at one fell swoop:
� extension of the frequency range;
� a decrease in absorption;
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Figure 24. Cloaking layer structure (taken from Ref. [36]).
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� elimination of the singular point problem (the indenta-
tion in the layer `grows' from a plane region underneath).

The fact that the layer is flat is not actually of fundamental
significance: all the above listed problems were solved not in
terms of shape but rather by minimizing anisotropy. It is
hoped, therefore, that cloaks of more complex shapes but
with the same remarkable properties will be developed in the
near future.

9. Some practical problems in cloaking

The plane cloaking experiment of Ref. [36] allows the
assertion that coordinate transformations can in principle
produce an almost perfect cloaking effect. However, it is so
far the only experiment of this kind, not counting the first
cylindrical shell experiments [2] which were conducted under,
shall we say, hothouse laboratory conditions: the incident
radiationÐplanar; the surrounding mediumÐhomoge-
neous, and the object cloakedÐpassive.

All this is irrelevant to our practical purposes. Given a
typical applied problemÐsay, to make invisible a missile
flying in the air at 2 km sÿ1 in the frequency range of 1±
5 GHzÐnew questions immediately arise.
� A moving object always scatters differently than when

at rest. Does motion affect the invisibility properties of an
object (via the Doppler effect, for example)?
� The air, and even more so the exhaust wake, can be

rather inhomogeneous. Can the ambient inhomogeneity be
taken into account beforehand when designing the cloaking
device?
� A missile (if of course it is a controlled one, as most

current missiles are) should receive and transmit signals. But
an object placed within a cloak becomes blind! If anything, it
cannot receive signals in the cloaking range (which simply
cannot penetrate to the interior), and indeed a signal in
another frequency ranges can be scattered in a totally
unpredictable way in the cloak.

Such are the problems that stick out, but how many more
are going to emerge when the cloaking of a real-life missile is
attempted!

The above problems have, of course, been long recog-
nized, and the first proposals for solving them have already
appeared. We intend now to consider these.

9.1 Ambient inhomogeneity
The coordinate transformationmethod allows for cloaking in
an inhomogeneous and even anisotropic surrounding med-
ium (although the ê and m̂ tensors of the cloaking shell were
originally derived for an isotropic surrounding medium (see
Appendix I), the extension to the anisotropic case is
straightforward [37]). However, the more complex the
properties of the surrounding medium, the more complex
those of the cloak.

Consider, as an example, the results concerning a
cylindrical cloaking shell in a double layer medium [38].
Figure 28 depicts the parameters of the problem. The
results for the permittivity and permeability components
have the form (7) but (the only difference) with all
components of the ê tensor multiplied by the expression
e1 sign �dÿ r sinj� � e2 sign �r sinjÿ d �. Thus, the permit-
tivity of the shell is nonuniform not only in r but also inj, and
all its components depend on the layer permittivities e1 and e2
and the position of the interface d. It is clear that displacing
the cloaking shell with respect to the interface strongly
distorts the cloaking effect.

This approach requires prior knowledge of the distribu-
tion of ambient refractive index, and the cloaking effect will
occur only for a certain position of the shell with respect to its
surroundings. This inflexibility implies that such a cloak will
hardly meet the practical requirements, i.e., the cloaking
problem in an inhomogeneous medium remains open.

9.2 Blindness of the object being cloaked
In many practical cases cloaking does indeed turn out to be of
no use if it prevents the object cloaked from communicating
with the world outside. The most obvious way out is to make
a shell with a `window' in it. But how to prevent the window
from hampering the cloaking effect?

One proposal [39] consists in creating a cylindrical shell in
the form of a variable thickness layer (Fig. 29) such that at its
narrowest cross section the permittivity and permeability
tensors of the shell and of the environment are approxi-

y

d

0

R1

e2

e1

R2

x

Figure 28.Cylindrical cloaking shell in a double layer medium (taken from

Ref. [38]).

a b

c d

e f

Figure 27. Oblique incidence of a ray on (a) a background surface

(14 GHz), (b) an object (14 GHz), (c) a cloaked object (14 GHz), (d) a

cloaked object (13 GHz), (e) a cloaked object (15 GHz), (f) a cloaked

object (16 GHz) (taken from Ref. [36]).
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mately equal, ei j � e 0i j, mi j � m 0i j (strict equality is generally
impossible to achieve, while at the same time maintaining the
ideal cloaking effect). This narrow region can then be
removed without substantial damage, resulting in a window.

Of course, the partial removal of the shell causes some
distortion of the cloaking effectÐ to a degree which depends
on how much the components of the ê and ê 0 (m̂ and m̂ 0)
tensors will ultimately differ in the window region. For
example, a hole in a simple spherical cloak will produce
much stronger distortion.

To find the corresponding transformation for such an
open shell requires numerical work. The transformation is
defined piecewise (using the polygon method), allowing even
more than one window to be made.

10. Theoretical description of cloaking

The above discussion of achievements and challenges in the
field of cloaking relied on numerical assumption±verification
experiments. However, the researchers involved did not limit
themselves to empirical studies (nor would their colleagues in
any other field) and started developing theoretical models for
describing cloaking by the wave flowmethod. Nowwhat does
it mean exactly to describe cloaking theoretically? The answer
is, given the conditions of the problem (the type of the
incident wave, and geometrical and material parameters of
the shell), to derive analytical expressions for the electric and
magnetic field components at any point at any time.

One possibility is, of course, to substitute the problem
parameters into the system of Maxwell's equation and,
having solved it, to obtain exact values for the components
of the B and D vectors. The problem is only that, except for
some simple cases, Maxwell's equations are not solved
analytically. Cloaking problems are, due primarily to their
anisotropy, too complicated for this, which leaves numerical
methods as the only tool for directly solving Maxwell's
equations.

The theoretical model of cloaking currently used by most
researchers is based on the decomposition of the vectors B
and D at every point into two mutually perpendicular
components, each considered independent (according to the
Mie theory of light scattering, this is legitimate in the absence
of field sources). The reader is referred to Ref. [40] for a
general exposition of this model. Let us consider this model as
applied to the spherical cloaking shell discussed in Ref. [41].

Suppose a cloaked sphere is exposed to a z-directed
linearly polarized electromagnetic wave (Fig. 30), so that
E � ex exp �ik0z�, where k0 � o

���������
m0e0
p

is the free-space wave

vector. The time-dependent factor exp �ÿiot� will be omitted
throughout.

It can be shown that electromagnetic field vectors can at
any point be represented as two mutually perpendicular
components, to each of which its own vector potential
corresponds:

BTM � HH� ATM ; �30a�

DTM � i

o

�
HH� � m̂ÿ1 HH� ATM�

	
; �30b�

BTE � i

o

�
HH� �̂eÿ1 HH� ATE�

	
; �30c�

DTE � ÿHH� ATE : �30d�
Subscript TM corresponds to the TM mode with respect

to the vector r: BTM ? r, DTM kr, and subscript TE corre-
sponds to the TE mode with respect to the vector r: DTE ? r,
BTE kr.

For example, for the incidence direction shown in Fig. 30,
the incident wave at point �R2; 0; 0� resides in the form of a
TM mode: DTM � e0E, BTM � m0H �DTE � 0, BTE � 0�. At
point �0; 0;R2�, on the contrary, there is only a TE mode:
DTE � e0E,BTE � m0H �DTM � 0,BTM � 0�. At other points,
both regimes are present and D � DTE �DTM, B �
BTE � BTM.

The vector potentials ATE and ATM corresponding to the
TE and TM modes are at each point parallel to vector r
(because it is with respect to vector r that we have decomposed
the field into the TMandTE components), so that they can be
represented in the forms

ATE � erFTE ; ATM � erFTM ; �31�

where FTM and FTE are the so-called scalar potentials (not to
be confused with the electrostatic potential).

In expressions (30) ê and m̂ are the permittivity and
permeability tensors of the shell, with components given by
expressions (4). Because eyy � eff, we will use the same
symbol et for both and, similarly, myy � mff � mt.

From Eqns (30) and (31) we find the wave equation for
FTE and FTM giving, in spherical coordinates, the following:�

1

SR

q2

qr 2
� 1

r 2 sin y
q
qy

�
sin y

q
qy

�
� 1

r 2 sin2 y

q2

qj 2
� 1

SR
k 2
t

�
F � 0 ; �32�
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Figure 30. Spherical cloak (taken from Ref. [41]).
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Figure 29. Normalized amplitude distribution for the electric field of

radiation incident on a closed (a) and open (b) heart-shaped cloaking shell

(taken from Ref. [39]).
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where kt � o
��������
etmt
p

, and where SR � et=err for the TM
component, and SR � mt=mrr for the TE component.

Equation (32) is solved by the standard method of
separation of variables. Putting F � f �r� g�y� h�j� we
obtain h�j� � exp ��imj� (harmonic functions), g�y� �
Pm
n �cos y� (associated Legendre polynomials), and f �r� �

kt�rÿ R1� bn�kt�rÿ R1��, where bn are spherical Bessel func-
tions.

The solutions so obtained can be written out as

F c
TM �

cosj
o

X
n

n
d �M�n cn

�
kt�rÿ R1�

�
� f �M�n wn

�
kt�rÿ R1�

�o
P 1
n �cos y� ; �33�

F c
TE �

sinj
oZ0

X
n

n
d �N�n cn

�
kt�rÿ R1�

�
� f �N�n wn

�
kt�rÿ R1�

�o
P 1
n �cos y� :

Here, d
�M�
n , d

�N�
n , f

�M�
n , and f

�N�
n are the unknown expansion

coefficients, cn�x� and wn�x� are Riccati±Bessel functions of
the first and second kind, and Z0 �

�����������
m0=e0

p
, n � 1; 2; 3; . . . .

Scalar potentials are marked by `c' for cloak, indicating that
the solutions are obtained for the interior of the cloak, i.e.,
R1 < r < R2.

This is now to be followed by matching the solutions with
the scalar potentials of the incident (i) and scattered (s)
radiation for r > R2 and the internal (`in') field within the
cavity of the cloak, i.e., for r < R1. This is conveniently done
by representing these potentials in terms of spherical
harmonics:

F i
TM �

cosj
o

X
n

ancn�k0r�P 1
n �cos y� ; �34�

F i
TE �

sinj
oZ0

X
n

ancn�k0r�P 1
n �cos y� ;

F s
TM �

cosj
o

X
n

anT
�M�
n zn�k0r�P 1

n �cos y� ; �35�
F s

TE �
sinj
oZ0

X
n

anT
�N�
n zn�k0r�P 1

n �cos y� ;

F in
TM �

cosj
o

X
n

c �M�n cn�k1r�P 1
n �cos y� ; �36�

F in
TE �

sinj
oZ0

X
n

c �N�n cn�k1r�P 1
n �cos y� :

Here, an � �ÿi�ÿn�2n� 1�=�n�n� 1��, c �M�n , c
�N�
n , T

�M�
n , and

T
�N�
n are the expansion coefficients, zn�x� is the Riccati±Bessel

function of the third kind, and k1 � o
���������
e1m1
p

.
From the matching conditions at the boundaries r � R1

and r � R2 (the continuity of the potentials and of their first
derivatives), it can be seen that some of the expansion
coefficients should be identically zero. These are c

�M�
n , c

�N�
n ,

T
�M�
n , T

�N�
n , f

�M�
n , and f

�N�
n . Thus, we arrive at the conclusion

that fields are absent in the cavity of the cloak (as are stray
fields). This is exactly what corresponds to the perfect
cloaking effect.

Substituting expressions for scalar potentials first into
Eqn (60) and then into Eqn (59), it is an easy matter to obtain
analytical expressions for the components of the B and D
vectors at any point in space.

The same procedure can be carried out for any shape of
cloaking shell: it is only necessary that all the problem
parameters be first expressed in spherical coordinates. If, as
is sometimes the case, a coordinate system conformal to the
shape of the shell is more convenient to work with, then F i,
F s, and F in should be represented as series expansions in
special functions suited to the geometry of the problem,
rather than in spherical functions. This was done, for
example, in Ref. [42], which performs a theoretical analysis
of a cylindrical cloak with the parameters (7) and in which all
the potentials are expanded in cylindrical (Bessel, Hankel, or
Neumann) functions. There is one more point to note: in the
cylindrical problem, the decomposition of the fields into TE
and TM components is with respect to the cylinder axis, not
the radius vector.

Theoretical analysis has revealed a number of interesting
features in the behavior of cloaking shells. The same Ref. [42],
for example, analyzed a nonperfect cylindrical shell without a
thin inner layer d (Fig. 31). The tensor components
eff � mff � r=�rÿ a� on the inner surface of the cylindrical
cloak became infinite, and the authors of Ref. [42] set to
check, with the view to avoid singular points, how strongly
the removal of the thin inner layer influences the cloaking
effect.

Using the above theoretical model, they wrote down the
amplitude of the radiation scattered by a d-perturbed shell.
Letting d tend to zero, they found that when d is decreased by
three orders of magnitude, scattering amplitude decreases at
most by one! Such slow convergence implies that even the
slightest deviation from the perfect shape will cause signifi-
cant scattering, which undoubtedly makes the cylindrical
shell with parameters (7) ineffective. It is, in fact, this study
which encouraged the search for cylindrical shells free of
singular points (see Section 7).

The same theoretical model has been applied to describe
the interaction of cloaking shells with spherical and cylind-
rical waves [43, 44] (recall that all the previously mentioned
studies assumed incident radiation to have a plane front). It
was revealed that cloaking devices with perfect parameter
values maintain their cloaking properties for spherical and
cylindrical electromagnetic waves.

Finally, this theory was instrumental in finding new
applications for the method of coordinate transformation.
The authors of Ref. [40] found that by varying the form of the
transformation for a spherical shell, it is possible to obtain a
concentrator or rotator of an electromagnetic field instead of
a cloaking device (Fig. 32).

It should be noted that solutions (33) were obtained for
particular forms of the permittivity and permeability tensors.

b

a
d

Figure 31. Cylindrical cloak with perturbation d (taken from Ref. [42]).
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Were these tensors represented in the general form [through
the transformation functions r 0 � f �r; y;j�, y 0 � g�r; y;j�,
j 0 � h�r; y;j�], the expressions for the scalar potentials
would be more complicated. To give an example, here is the
general expression obtained in Ref. [40]:

F � B̂n�k0 f �Pm
n �cos g��Am cosmh� Bm sinmh� ; �37�

where B̂n�x� is theRiccati±Bessel function, andAm andBm are
unknown expansion coefficients.

Because expression (37) for the scalar potential directly
involves transformation functions, these will also enter the
final expressions for the electric and magnetic field vectors.
Thus, by varying the form of coordinate transformation, a
desired field configuration can be achieved. This is exactly the
way in which the transformations that yield the concentrator
and rotator of an electromagnetic field were obtained. In the
former case, this is a linear transformation: r 0 � cr� d,
y 0 � y, j 0 � j, and only the boundary conditions are
different from those for the cloaking shell. In the latter case,
this is the logarithmic transformation: r 0 � r, y 0 � y, j 0 �
j0��ln rÿ lnR2�=�lnR1 ÿ lnR2��.

11. Beyond electrodynamics

Maxwell's equations describing electromagnetic waves are
invariant under space transformations, and it is exactly this
fact which lies at the heart of the cloaking method we are
discussing. Now, besides electromagnetic waves, other types
of waves also exist, such as elastic, plasma, gravitational,
probability density, etc., each of which is described by
equations that have wave type solutions. If these equations
are also invariant under coordinate transformations, then all
the ideas we discussed in Section 3 for electromagnetic waves
are applicable to other types of waves.

11.1 Acoustic cloaking
The fact, shown in Ref. [45], that elastic wave equations
possess this invariance property impacted the development of
acoustic cloaking, which is the full analogue of its electro-
magnetic counterpart. The role of the permittivity and
permeability tensors is here played by themass density tensor.

Although amaterial with anisotropic density seems at first
sight rather exotic, the model demonstrated in Fig. 33 clearly
illustrates that such media can be created. If the vertical and

horizontal strings differ in stiffness, the properties of such a
medium will be different in different directions, which makes
the medium anisotropic.

The density tensor for an acoustic cloaking shell is readily
obtained based on the parameters of its electromagnetic
analogue [46]. Note first that the continuity equation which
follows from Maxwell's equations has the form

H
�
s�x�HV�x�� � f �x� ; �38�

where V�x� is the electric potential, s�x� is the conductivity,
and f �x� is the source function.

A similar equation, also following from momentum
conservation law and the stress±strain relationship, can be
written out for sound vibrations in the form

H
�

1

r�x� Hp�x�
�
� ÿ o2

l�x� p�x� ; �39�

where r�x� is the density, p�x� is the pressure, l�x� is the
elasticity modulus, and o is the vibration frequency.

Note here the correspondence

�
V�x�; s�x�; f �x��$ �

p�x� ; 1

r�x� ; ÿ
o2

l�x� p�x�
�
: �40�

In an electromagnetic field, the transformation
�x1; x2; x3� ! �x 01; x 02; x 03� with the matrix A �Aki � qx 0k=qxi�
yields

ŝ 0�x 0� � As�x�AT

detA
; �41�

f 0�x 0� � f �x�
detA

; �42�

where ŝ 0�x 0� this time is the conductivity tensor. Then
from correspondence (40), one finds 1=�r̂ 0�x 0�� �
A�1=r�x��AT=detA and l 0�x 0� � l�x�=detA. For example,
using transformation (1) for a spherical shell we obtain

r 0rr �
R2 ÿ R1

R2

r 0 2

�r 0 ÿ R1�2
; r 0yy � r 0ff �

R2 ÿ R1

R2
; �43�

l 0�r� � �R2 ÿ R1�3
R 3

2

r 0 2

�r 0 ÿ R1�2
: �44�

m

m m

m

m m

m

Cavity

Elastic
medium

Figure 33. Medium with an anisotropic mass density. Horizontal and

vertical strings have different stiffnesses; at the center of each cavity is a

load of mass m attached to the strings (taken from Ref. [45]).

a b

f4�r�

Figure 32. Concentrator and rotator interacting with an electromagnetic

field: (a) electric field amplitude distribution for incidence on a field

concentrator, and (b) magnetic field amplitude distribution for incidence

on a field rotator (dark arrows indicate the direction of the Poynting

vector). (Taken from Ref. [40].)
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Such a cloak can be designed from acoustic metama-
terials, which are also analogues of electromagnetic
materials and which are composite media in the sense of
an isotropic matrix with a periodic array of inclusions
(`metaatoms'). Possible inclusions are strings, finite mass
membranes, or structures similar to those shown in Fig. 33.
Close to a resonant frequency, the effective mass of an
individual resonator (for example, a membrane) can take
negative values; however, similar to electromagnetic
metamaterials, this is also the region of maximum
absorption (Fig. 34) [47]. In yet another example, shown
in Fig. 35, the acoustic metamaterial consists of a system
of hollow cylinders placed within the thickness of a
polymer material.

Many shapes of cloaking devices, including spherical, do
not require that the material parameters be negative.
However, in the electromagnetic case, to achieve values of
0 < e, m < 1 one needs inherently anisotropic metamaterials,
because in usual dielectrics e; m > 1. As for the density,
among natural media one can find those with virtually any
positive value of density. Therefore, the perfect acoustic
coating can be approximately replaced by a multilayer
coating consisting of several layers of an isotropic substance.
The thickness of each layer should be much less than the
incident wavelength, which presents no difficulty for sound
waves.

As shown in Ref. [48], a multilayer (20 layers)
acoustic coating gives a good cloaking effect. Because
layers are in this case isotropic, the cloaking effect occurs
over a fairly broad frequency range (Fig. 36). Thus,
compared to the electromagnetic case, in the acoustic

case the frequency range allowing for the cloaking effect
is easier to extend.

11.2 Quantum-mechanical cloaking
Invariance in relation to coordinate transformations can also
be proved for the stationary SchroÈ dinger equation [49, 50].
When subjected to the transformation �x1; x2; x3� !
�q1; q2; q3�, the stationary SchroÈ dinger equation with the
effective mass tensor, written in paper [49], viz.

ÿ �h 2

2
H
��m̂ ��ÿ1Hc�� V�r�c � Ec ; �45�
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Figure 34. Characteristics of a resonator in the form of a thin finite-mass

membrane: (a) effective mass (solid lines, left axis) and normalized

vibration amplitude (dashed line, right axis), and (b) amplitude (solid

line, left axis) and phase (dashed line, right axis) of a transmitted wave

(taken from Ref. [47]).

Figure 35. Prototype of acoustic material (fromTMiyashita et al., inProc.

5th World Congress on Ultrasonics; TO-PM04.02).
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retains its form if we set

m̂ 0 � ĥm̂ĥ

j det ĥ j ; �46�

V 0 � E� j det ĥ j �Vÿ E � ; �47�
where m̂ � � m0m̂ is the effective mass tensor, and ĥi j � hidi j,
hi � jqx=qqij are the LameÂ coefficients.

For example, performing the transformation r 0 � g�r�,
y 0 � y, j 0 � j, the parameters for a spherical cloaking shell
are found to be

V 0�r;E � �
�
1ÿ

�
g

r

�2

g 0�r�
�
E ; �48�

m 0rr � g 0�r�
�
r

g

�2

m0 ; m 0yy � m 0ff �
1

g 0�r� m0 : �49�

Thus, theoretically the cloaking method works as well for
probability density waves; however, creating suitable media is
still an open question. The first analogues of such media to be
fabricated will most likely be semiconductor nanostructures.

11.3 Cloaking using wave type transformation
One further, very interesting, approach to cloaking is to
change the typeÐor even the physical natureÐof a wave
propagating in the cloak. The idea is that the surface of a body
is given certain properties (including impedance) at which the
energy of the incident plane electromagnetic wave is mostly
carried away by excited (secondary) waves of a different type,
the remainder being absorbed by the surface. The secondary
wave `flows around' the body cloaked, is transformed back
into an electromagnetic wave, reappears as light at the back
side of the body and partially restores the form of the incident
wave.

The secondary wave can be of various physical natures,
including a surface electromagnetic wave (see Refs [51±53] for
calculations) or a surface plasma wave (surface plasmons; see
Refs [54, 55]). It should be remembered, though, that its phase
velocity should exceed that of the primary wave for the phase
front to be restored at the back side of the cloaked body. If the
secondary wave is a surface wave, as considered in Refs [51±
55], the wave transformation can allow for a much smaller
thickness of the cloak. Moreover, secondary waves can be
helpful in solving the problem of a blind cloaked object we

mentioned in Section 9.2. Thus, Ref. [56] suggests and
validates the idea of a sensor surrounded by a cloaking shell
whose cloaking effect is obtained using a secondary wave (or
plasmons): the sensor can receive, process, and transfer a
signal while remaining invisible to the external observer. As a
further advantage of a plasmon secondary wave, the cloaking
of nanostructured objects in the optical range was demon-
strated in Ref. [57] (see Fig. 37).

12. Related ideas

This section presents some new ideas that follow from,
though have no direct relation to, the cloaking ideas
discussed above. To better understand these ideas, let us
here re-emphasize the key points of left-handed optics: plane
[58] and spherical [59, 60] layers of left-handed material may
possess the properties of a perfect lens; and it is possible to
choose a coordinate transformation which allows a wave
concentrator and a wave rotator to be built (see Fig. 32) [40].
The idea of a concentrator, when developed, leads, in
principle, to highly directional antennas less than wavelength
in size! As for the wave rotator, this is the first step to
implementing the laboratory model of the black hole.

12.1 Small-sized directional antennas
There are two well-known traditional approaches to making
highly directional antennas: using phased antenna arrays, and
using quasioptical antennas (paraboloids, etc.) many wave-
lengths in size. Antennas around or even less than a
wavelength in size produce poorly directional radiation, as
exemplified by the hole-less-torus-shaped directional diagram
of an elementary dipole.

Reference [61] demonstrated that, using a cloaking shell
that implements a concentrator type coordinate transfor-
mation, it is possible to obtain a small-sized directional
antenna. Shown in Fig. 38 are example results from wave
pattern calculations performed in Ref. [61] for a plane,
8-cm-long, 2-GHz antenna surrounded by a shell with a
radius of 20 cm. Similar calculations for a scaled-down
parabolic antenna were performed in Ref. [62].

12.2 Laboratory black hole model
We have already noted in Section 3 that when implementing
the cloaking by the wave flow method, there is a geometric
equivalence between the way rays pass through the cloaking

10 mm 4.2 mm

r2

a

Cloaked
circle

Uncloaked
circle

b

r1 r1

Figure 37.Microphotographs of ringmicrostructures: (a) white light illumination, and (b) surface plasmon cloaking at l � 532 nm (taken fromRef. [57]).
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material and the coordinate lines (and metric) under the
conditions of antigravitation, with geodesic lines pushed
apart. In Fig. 39, a caricature borrowed from Ref. [63] is
given as an illustration. Such `antigravitation' in a shell is, of
course, virtual, with no chance of a massive particle being
deflected.

Now, is it possible to model the deflection of an
electromagnetic wave in a gravitational field, when the
coordinate lines, on the contrary, come closer together? The
answer turns out to be yes if one makes use of a coordinate
transformation of the `rotator' type. Figure 40 presents the
results of calculating the capture of a wave by a cloaking shell
discussed in Ref. [64]. The same wave capture is predicted by
the general theory of relativity (GTR) for the neighborhood
of a massive black hole: at whatever angles rays enter the shell
they accumulate and are absorbed near the virtual `horizon
line'. Thus, an operating laboratory model of a black hole can
become a prototype of a new generation of a solar heating cell
with an absorption efficiency of close to 100%. Also, using
such a capsule in laser-controlled fusion is worth considering
in the very near future.

12.3 Wormhole and magnetic monopole models
In Ref. [65], a simple wormhole configuration was suggested
as a development of the bulk models of gravitating objects in
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Figure 39. Well-meant caricature of Albert Einstein highlighting mathe-

matical equivalence between cloaking and antigravitation (taken from

Ref. [63]).
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Figure 40. Calculated results for the capture of a Gaussian beam by a shell

modeling a black hole: (a) lateral capture (black lines are for ray

trajectories), and (b) central capture (taken from Ref. [64]).
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GTRÐa typical nontrivial metric structure which, for
ordinary gravitation, allows for superluminal transport and
even a so-called time machine [66, 67]. Its model uses a
cylindrical cloaking tube and is applicable, of course, only to
electromagnetic waves, not to massive particles. Its technolo-
gical applications conceivably include new optical cables,
optical computers, 3D video displays, and optical video
systems for magnetic resonance visualization and so forth.
One proposal is, curiously enough, an electromagnetic model
of the monopole, also described in Ref. [65]. According to this
model, the cloaking tube encloses the magnetic field lines
between the opposite magnetic poles localized at the two ends
of the tube.

The field of cloaking abounds with ideas. We see, at any
rate, that a host of possibilities have opened up for
synthesizing electromagnetic fields in networks containing
tubular cloaking elements.

13. Recent experiments on wave flow cloaking

With new ideas, calculations, and experiments being pub-
lished on a weekly basis, wave flow cloaking technologies
seem to have reached their apogee in terms of development
rate. This section presents some new experimental data which
were obtained in what we consider unusual geometric and
instrumental settings and which reveal new aspects in the
method under review.

13.1 Broadband invisibility
for a warped cylindrical scatterer in a waveguide
Experiments in Ref. [68] investigated a cylinder-shaped
metallic object surrounded by a warped cloaking shell and
placed in a rectangular waveguide. The shell was a set of
truncated-cone-shaped metallic plates that were put on the
cylinder. The geometry and design dimensions of these
experiments are displayed in Fig. 41. The result was that the
cloaking shell near the cylinder worked as a periodic sequence
(stack) of radial waveguides of variable thickness (from H to
h). The excitation, in themaster waveguide, of a wave with the
electric field parallel to the cylinder axis produced the
cloaking effectÐ in the sense that the wave restored its
shape after bending around the scattererÐand, as Fig. 42
shows, there is a wide range of frequencies for which the effect
is possible.

13.2 Cloaking model using a lumped LC circuit
It is a well-known fact (see Ref. [69]) that an anisotropic
dielectric medium with ê and m̂ tensors can be represented
as an equivalent electric circuit consisting of lumped RLC
elements. In this circuit, the inductances L, capacitances C,
and resistors R model the diagonal elements of the m̂
tensor, the elements of the ê tensor, and dissipation,
respectively, whereas the components of the electromag-
netic field are equivalent to voltages and currents in the
circuit elements.

Based on this simple idea, a circuit with lumped LC
elements was used to experimentally model wave flow
cloaking [70]. Specifically, a plane circular circuit (see
Fig. 43) was assembled comprising 30 azimuthal layers with
90 microcircuits in each (15 inner and 15 outer layers
modeling the cloaking shell and the background, respec-
tively). Each of the microcircuits contained a cross-like
assembly of four inductive elements, the center of the cross
being grounded through a capacitor. The parameters of the
LC elements were chosen so as to model the coordinate
transformation (7).

The measured results are presented in Fig. 44. Notice the
occurrence of a marked cloaking effect at three frequencies
for a wave with a circular phase front.
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14. Conclusion

This paper has outlined the theoretical background and basic
ideas of wave flow cloaking. It is shown that the key
mathematical problem in cloaking any particular object is to
find the suitable spatial coordinate transformation on the
basis of which expressions for the components of the
permittivity and permeability tensors can be obtained.

The results obtained for cloaking shells of various shapes
were presented. It was shown that the key problems in their
design, such as extending the cloaking frequency range,
decreasing anisotropy, securing the absence of magnetiza-
tion, and eliminating the blindness of the cloaked object, and
some others can be effectively solved by appropriately
choosing the coordinate transformation.

The results of some series of experiments demonstrating
the fundamental possibility of wave flow cloaking were
presented.

15. Appendices

I. Proof of Maxwell's equations invariance
under the general coordinate transformation
The proof follows Ref. [1].

Maxwell's equations in Cartesian coordinates are written
out as

HH� E � ÿmm0
qH
qt

; HH�H � �ee0 qE
qt

; �50�

where e and m are scalar functions of coordinates. Suppose the
Cartesian coordinate system is subject to the nonsingular
point transformation q1�x; y; z�, q2�x; y; z�, and q3�x; y; z�.
The intersections of the surfaces q2 � const, q3 � const give
coordinate lines q1, etc. (Fig. 45), which are smooth due to the
absence of singular points in the transformation.

Now, what will Maxwell's equation look like in the new
coordinates?

Let u1, u2, and u3 be the unit vectors corresponding to the
coordinate lines q1, q2, and q3. The arc length element is given
by

ds 2 � dx 2 � dy 2 � dz 2 � Q11 dq
2
1 �Q22 dq

2
2 �Q33 dq

2
3

� 2Q12 dq1 dq2 � 2Q13 dq1 dq3 � 2Q23 dq2 dq3 ; �51�
where

Qi j � qx
qqi

qx
qqj
� qy
qqi

qy
qqj
� qz
qqi

qz
qqj

: �52�

The length element of the ith coordinate line is defined as

dsi � Qi dqi ; �53�
where for brevity we denote

Q 2
i � Qii : �54�

To calculate HH� E, let us take a surface element small
enough to be considered a parallelepiped (Fig. 46).

We now denote the projections of the E vector as

E1 � Eu1 ; E2 � Eu2 ; E3 � Eu3 �55�
and apply the Stokes theorem to obtain

�HH� E��u1 � u2� dq1 Q1 dq2 Q2

� dq1
q
qq1
�E2 dq2 Q2� ÿ dq2

q
qq2
�E1 dq1 Q1� : �56�

a b

Figure 45.Coordinate grids �x; y; z� (a) and �q1; q2; q3� (b) in the Cartesian

coordinate system. (Taken from Ref. [1].)
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Figure 43. Photograph of an LC circuit modeling wave flow cloaking;

upper right inset: equivalent circuit of the microdevice; lower inset:

photograph of the microdevice (taken from Ref. [70]).
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The left-hand side of equation (56) is the flux of the curl of
E through our surface element, whereas the right-hand side is
a curvilinear integral over the contour of the parallelepiped
(Fig. 47).

Dividing both parts of equation (56) by dq1 dq2 yields

�HH� E��u1 � u2�Q1Q2 � q
qq1

~E2 ÿ q
qq2

~E1 � �HHq � ~E�3 ; �57�

where we have introduced

~E1 � Q1E1 ; ~E2 � Q2E2 ; and ~E3 � Q3E3 : �58�

The superscript 3 in Eqn (57) denotes the contravariant
component of the vector HHq � Ê (the curl of ~E in the new
coordinates).

Let us write the magnetic field vector H in contravariant
components:

H � H 1u1 �H 2u2 �H 3u3 : �59�
Expression (59) can be recast in a covariant form by using the
metric tensor g:

gÿ1
H 1

H 2

H 3

24 35 � u1 u1 u1 u2 u1 u3
u2 u1 u2 u2 u2 u3
u3 u1 u3 u2 u3 u3

" #
H 1

H 2

H 3

24 35 � H1

H2

H3

" #
; �60�

or

Hi �
X3
j� 1

g i jHj : �61�

Multiplying the right-hand and left-hand sides of Max-
well's equation HH� E � ÿmm0 qH=qt by �u1 � u2�Q1Q2 and
using Eqns (59) and (61) we obtain

�HH� E��u1 � u2�Q1Q2 � m0m
qH
qt
�u1 � u2�Q1Q2

� ÿm0m
X3
j� 1

g 3 j qHj

qt
u3�u1 � u2�Q1Q2 : �62�

Introducing the notation

~Hj � QjHj ; �63�
m i j � mg i j

��u1�u2 � u3�
��Q1Q2Q3�QiQj�ÿ1 �64�

and using Eqns (64) and (57) we arrive at

�HHq � ~E�i � ÿm0
X3
j� 1

m i j q ~Hj

qt
: �65�

Taking into account the symmetry between the electric
and magnetic fields, we can write down

�HHq � ~H�i � �e0
X3
j� 1

e i j
q ~Ej

qt
; �66�

where

e i j � eg i j
��u1�u2 � u3�

��Q1Q2Q3�QiQj�ÿ1 : �67�

Thus,Maxwell's equations (50) do retain their form under
a transformation into coordinates �q1; q2; q3�.

II. Calculating ray trajectories in cloaking shells
Calculations below follow Ref. [71].

As known from geometrical optics, ray trajectories are
defined by the equations

dx

dt
� qH

qk
; �68�

dk

dt
� ÿ qH

qx
: �69�

Here, x � fx; y; zg is the radius vector in Cartesian coordi-
nates, k is the wave vector, and t is a parameter with a
dimension of length. Hereinafter, qf=qa designates a vector
with the components�

qf
qax

;
qf
qay

;
qf
qaz

�
:

It can be shown [71] that the Hamiltonian H for an
anisotropic medium with e � m � n assumes the form

H � f �x��knkÿ det n� ; �70�

with f �x� being an arbitrary function of the radius vector.
A ray refracts twice when passing through a cloaking

shell: at the entrance to and exit from it, and in either case
boundary conditions must be satisfied. If the incident
radiation is a plane wave, the boundary conditions have the
form

�k1 ÿ k2� � m � 0 ; �71�
H�k2� � 0 ; �72�

where k1 and k2 are the wave vectors on one side and the other
side of the interface, and m is the interface normal. Condition
(71) expresses the continuity of the normal component of the
k vector, and condition (72) is the requirement for the wave to
maintain its front plane.

The set of equations (71) and (72) determines all
components of the vector k2, but because the Hamiltonian is
quadratic in k, this set has two solutions: one for energy

E2Q2 dq2
E2Q2 dq2 � dq1

q
qq1
�E2Q2 dq2�

E1Q1 dq1 � dq2
q
qq2
�E1Q1 dq1�

E1Q1 dq1

Figure 47. Integration contour for applying the Stokes theorem. (Taken

from Ref. [1].)

Q3 dq3u3

Q2 dq2u2

Q1 dq1u1

Figure 46. Parallelepiped built on vectors u1 and u2 is a small surface

element. (Taken from Ref. [1].)
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transfer from the first medium to the second, and the other
vice versa. It is therefore necessary to supplement equations
(71) and (72) with a condition determining exactly in which
direction the energy is transferred. For the wave vector
directed from the first to the second medium this condition
is as follows

qH
qk

m > 0 : �73�

To calculate the trajectory of a specific ray, its initial
direction and point of emanationmust be specified and the set
of equations (68), (69) is integrated by eliminating the variable
t and taking into account the initial conditions. Then, the
tensor n obtained by the coordinate transformation and the
unit tensor are substituted into expression (70) to give,
respectively, the trajectories k�x� of the ray inside and
outside of the shell, which should be matched using the
conditions (71)±(73).

Considering as an example a ray in a spherical cloaking
shell, the tensor n in Cartesian coordinates is given by

n � b

bÿ a

�
Iÿ 2arÿ a 2

r 4
r
 r

�
; �74�

where a �b� is the inner (outer) radius of the shell, and r
 r is
the outer self-product of the radius vector r [71]. The outer
product of vectors x and y is defined as the multiplication of a
column vector by a row vector, namely

x
 y �
x1
x2
x3

 !
� y1 y2 y3� �

x1y1 x1y2 x1y3
x2y1 x2y2 x2y3
x3y1 x3y2 x3y3

 !
: �75�

Substituting Eqn (74) into Eqn (70) and for simplicity
choosing f �x� � �bÿ a�=2b as an arbitrary function in
formula (70), the Hamiltonian for the spherical shell is
found to be

H � 1

2
kkÿ 1

2

2arÿ a 2

r 4
�xk�2 ÿ 1

2

�
b�rÿ a�
r�bÿ a�

�2
; �76�

where r is the absolute value of the vector x.
Taking derivatives yields

qH
qk
� kÿ 2arÿ a 2

r 4
�xk�x ; �77�

qH
qx
� ÿ 2arÿ a 2

r 4
�xk�k� 3arÿ 2a 2

r 6
�xk�2x

ÿ
�

b

bÿ a

�2�
arÿ a 2

r 4

�
x : �78�

Dividing Eqn (78) by Eqn (77) and integrating the
resulting expression using the initial conditions, we find the
trajectory of the ray in the cloaking shell. The numerical
integration for a number of rays with different exit points
yields the trajectories depicted in Fig. 1.

III. Historical remarks: is wave flow cloaking
a decades-old idea?
As we have shown, wave flow cloaking is based on a quite
transparent physical idea and relies on fairly simple mathe-
matics and soÐas far as its simplest version, a cloaking shell
with 0 < e < 1 and m � 1, is concernedÐcould have been
suggested and tested long before the work of J Pendry and
coworkers [1, 2]. If anything, there was sufficient knowledge
for this: for example, the trajectories of rays in an arbitrary,
spherically symmetric, radially inhomogeneous medium had

been quite thoroughly investigated as far back as the mid-
20th century for a number of applications, including the
spherical Luneburg±Maxwell fisheye lens [72, 73], the
explanation of mirages (see above) [74], and long-range
radio communication [75]. A long-known phenomenon in
long-range radio communication, and one very close to
cloaking, is so-called critical refraction. The essence of this
effect is that the curvature of the surface a ray bends around is
compensated for by variation in the refractive index, with the
result that the rays become straightÐwhich is exactly what
makes a surface protrusion invisible.

There is indeed literature evidence that, supposedly,
experiments on achieving invisibility for a large-sized object
were performed in the US using the wave flow method and in
connection with which the name of Albert Einstein himself is
mentioned.

Specifically, or according to the claims made in near-
scientific belles lettres, the USS Eldridge DE (Destroyer
Escort) 173 was experimented on in 1943 with the goal of
making it invisible for radarÐ the so-called Philadelphia
Experiment (aka Project Rainbow) which, all claims notwith-
standing and with no official confirmation from the
U.S. Navy, is still considered a hoax.

The mysterious event has been the subject of two dozen or
so books, and in 1984, The Philadelphia Experiment, a hit
movie by Stewart Raffill, appeared on screens all over the
world. Some information on the Philadelphia Experiment can
also be found in the popular online encyclopediaWikipedia at
http://en.wikipedia.org/wiki/Philadelphia_Experiment
where, incidentally, metamaterial-based cloaking is men-
tioned. (A reader with knowledge of Russian may also turn
to Refs [76, 77].)

Briefly, at the heart of the experiment were several high-
frequency transformers which were to be installed and
simultaneously turned on aboard the destroyerÐwith the
idea that the powerful high-frequency fields would produce
high enough ionization of the air around the ship (plasma
being exactly amediumwhere 0 < e < 1 and m � 1). To quote
from Ref. [77], the idea was ``to generate great electromag-
netic field domains which, when properly configured, would
be able to bend light and radio waves around the ship'', thus
making it invisible to enemy observers. Further on, ``the
bending of light by 10 percent'' is mentioned. And still

USS Eldridge Destroyer Escort 173.
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further, the effects discussed ``included the ionization of the
surrounding air, a `boiling' of the water, and a `Zeemaniz-
ing' of the atoms.'' Similar information can be gleaned from
book [78].

Intriguingly, though, unintended and unplanned effects
occurred during the experiment: in the optical range, the ship
vanished into fog and became virtually invisible; at the very
moment of disappearance, it was allegedly seen elsewhere, in
the town of Norfolk, and, upon returning, terrible things
happened to the crew: many of them suffered severe burns or
died.

It is argued that Albert Einstein, Robert Oppenheimer,
John von Neumann, and Nikola Tesla were invited to work
out and direct these experiments. For example, Albert
Einstein was often seen in the company of navy men in those
years.

Explanations of what really happened to the destroyer
abound, but are mostly too absurd even to be mentioned in a
respected physics journal. According to some, suffice it to say,
Einstein andOppenheimer were invited as experts in practical
antigravitation (!!) and quantum teleportation and their task
was first to `decompose' the ship into individual atoms, then,
by using antigravitation, transfer the atoms to somewhere
else, and there to puzzle them back together. As for Tesla, his
role was to establish communications with extraterrestrial
civilizations.

Whether or not this legend is based on real-life experi-
ments will not be discussed here. What is important to us is
that information about such experiments first leaked into
print in 1964, implying that it was long before J Pendry,
already in 1964 or at least in 1979 (according toRef. [78]), that
journalists learned from somebody that a large-scale object
could be rendered invisible by making rays bend around it.
Journalists understood this!

It is perhaps worth explaining what the mysterious word
`Zeemanizing' we mentioned a few paragraphs back means.
[Interestingly, the Russian authors of Refs [76, 77] failed to
translate it intoRussian, and, it seems, the authors of Ref. [78]
did not understand it, as the quotation marks around the
word indicate. Suffice it to say that the word `zeeman' in some
West-European (e.g., Dutch) languages means `sailor'.] This
term, as any educated physicist will easily realize, refers to the

magnetic Zeeman splitting of the electron and nuclear levels
in the atoms constituting the medium, an effect which clearly
affects the refractive properties of the medium at the energy-
sublevel transition frequency. But this frequency, as calcu-
lated for magnetic fields used in warship demagnetization
devices that were employed during WWII as an antimine
measure, lies exactly in the radar frequency range, so it is now
clear where the need for `boiling water' came from. The point
is that Zeeman splitting occurs only in atoms and molecules
with unpaired electrons, but N2, O2, H2, and He, the major
components of air, have all their valence electrons paired,
which makes Zeeman splitting forbidden. The `Zeemaniza-
tion' of the air requires that either it be ionized or dissociated
or that some of its components be excited, both of which
require huge energy depositions. One simple solution might
be to have the ambient air around the ship saturated with sea
water vapor with its asymmetric metal-chloride molecules.

Exactly which methodÐair ionization near the plasma
frequency cutoff or themagnetic `Zeemanization' of seawater
vapor and sprayÐwas primarily used to bend radar rays to
achieve invisibility for radars, we do not know. But the term
`Zeemanization' enables a fairly accurate dating of when the
idea of how to make a ship-sized object invisible first arose.
The reader may have already guessed that there is a special
term for this, the electron paramagnetic (or spin) resonance
(EPR or ESR), an effect which was discovered by
E K Zavoisky in 1944 [79], exactly in salt (metal-chloride)
solutions; in the 1950s, EPR was already a ubiquitous term.
Hence, the term `Zeemanization' could only be used by a
professional well-versed in the essence of EPR, while still
lacking proper wordingÐwhich means the 1940s. Inciden-
tally, E K Zavoisky himself pointed out more than once (see
Ref. [80]) that some foreign researchers had conceived the
idea of the effect before him and indeed had attempted to
detect it but failed.

To summarize, it can be said that the favored choice must
have been air ionization because, in addition to other
practical difficulties in dealing with the Zeeman effect, the
refractive index changes little near the resonance.

This being so, the role of the project leader scientists
becomes clear. Einstein and Oppenheimer were needed
exactly because of their authoritative expertise in space
metrics and coordinate transformations. Von Neumann
could have been instrumental in organizing plasma profile
computations and the calculation of energy expenditure
needed to implement the coordinate transformation. The
most likely task for Tesla was the installation and tuning of
HF inductors (known among experimentalists as Tesla
transformers [81]) for the ionization of the ambient air.

Thus, it can be argued that at least a few decades ago the
concept of wave flow cloaking was known to and understood
by some specialists.
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