
Abstract. Research on the polaron±polaron interaction and the
theory of large-radius bipolarons are reviewed. The difference
between the two-center and one-center continuum bipolaron
models in isotropic and anisotropic crystals is discussed. It is
shown that the inclusion of electron±electron correlations can
significantly reduce the bipolaron and Dÿ-center energies as
well as the energies of exchange-bound pairs of shallow hydro-
gen-like centers. The two-center bipolaron configuration corre-
sponds to a shallow secondary minimum and is unstable. The
phonon-mediated exchange interaction between Pekar polarons
has an antiferromagnetic nature and exceeds the ferromagnetic
interaction due to the Coulomb interaction of electrons local-
ized in polaron potential wells. The possibility that the super-
fluidity of bipolarons can give rise to high-temperature
superconductivity is discussed and problems related to the
Wigner crystallization of a polaron gas are examined.

1. Introduction

Electron±phonon interactions or polaron effects are currently
among the central topics of solid-state physics. Investigations
of various effects in which electron±phonon interactions
(EPIs) play a key role have been carried out since the 1940s
and have remained in the focus of attention throughout the
entire period of the development of modern physics.
Bipolaron research is of primary importance for solving
basic problems related to electron±phonon interactions. Of
special interest are attempts to explain the phenomenon of
superconductivity (SC) based on Bose condensation of a
bipolaron gas. The possibility of superfluidity of Bose
condensate of charged particles with integer spin (bosons)
had been discussed in the papers of Ginzburg [2] and
Schafroth [3] before the microscopic theory of superconduc-
tivity was developed by Bardeen, Cooper, and Schrieffer
(BCS theory) [1] and later analyzed in many other publica-
tions [4±8].

The problem of the possibility of occurring high-tempera-
ture superconductivity (HTSC) was addressed by Ogg [9, 10],
who tried to explain this phenomenon by the existence of
bound two-electron states; this author observed abnormally
high conductivity in metal±ammonia solutions frozen in
liquid nitrogen. Ogg had postulated the possibility of super-
conductivity at temperatures above the nitrogen boiling point
40 years before Bednortz andMuÈ ller discoveredHTSC (1986)
[11, 12] in copper oxide, lanthanum, and barium-based
ceramic, La2ÿxBaxCuO4, with the superconducting transi-
tion temperature Tc � 30 K. Ogg maintained in his sensa-
tional report [9] that the current induced in a ring of a sodium
solution frozen in ammonia persists for a few minutes, which
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corresponds to a decrease in solution resistance by 17 orders
of magnitude from its value in a liquid solution. The author
suggested that a drop in temperature in cavities between polar
NH3 molecules due to Bose condensation and superfluidity of
paired electrons gives rise to SC. That is how the notion of
bound electron pairs in a polar medium came into being.
However, later researchers failed to reproduce the results of
Ogg's experiments and gradually lost interest in them.

In 1973, Dmitrenko and Shchetkin [13] reported observa-
tion of unstable SC in a frozen sodium±ammonia solution.
Pashitskii [14] proposed a new theoretical interpretation of
these experimental data and considered the anomalous
conductivity of metal±ammonia solutions, emphasizing that
all experimental findings available up to then had suggested
an abnormally high but finite conductivity of NH3 :Na
solutions for T < 80 K, rather than HTSC.

Investigations into the formation of the stable two-
electron state in a crystal, or a bipolaron (BP), are directly
related to determination of the pairwise interaction potential
between two polarons as a function of distance between them.
The region of existence of large-radius BPs is restricted by the
relatively high value of the EPI FroÈ hlich constant [15]

a �
�

e 4m �

2�h 3oLO

�1=2�
1

e1
ÿ 1

e0

�
; �1�

where e and m � are the charge and effective mass of the band
electron, respectively,oLO is the frequency of the longitudinal
optical phonon in an ionic crystal, e1 and e0 are high-
frequency and statical permittivities, respectively, and
a > ac � 6:8 [16]; for a < ac, the bound BP state is nonexis-
tent. In Ref. [16], computation was performed by Feynman
trajectory integral method [17, 18] allowing for translation-
invariant solutions of polaron and BP problems. Methods
using direct variation of the BP wave function (WF) give
slightly higher critical values of EPI parameter, ac � 7:3 [19,
20] and ac � 6:9 [21]. These values were obtained alongside
determination of BP binding energy DEBP � 2EP ÿ EBP

(where EP and EBP are the polaron and BP ground state
energies, respectively) relative to polaron energy evaluated
with a high accuracy by the trajectory integral method in the
limit of Z � e1=e0 ! 0; they can be considered with an
equally good accuracy as the upper boundary of the existence
of bound BP in terms of a.

The BP problem was theoretically considered by Pekar
and Tomasevich [22] (strong coupling) in 1951 by the
variational method in the framework of continuous approx-
imation, with probe WFs being chosen in the multiplicative
form, without regard to correlation effects. The authors
demonstrated the lack of energy gain in this approximation;
in other words, the bound state of two large-radius polarons
in the common spherically symmetric polarization well
turned out to be energetically disadvantageous. The situa-
tion was further complicated by a computational error
(incorrect normalization factor) made in Ref. [23], where the
binding energy of F 0-center, i.e., a system of two electrons
(holes) trapped in a positively (negatively) charged point
defect (vacancy or nonisovalent impurity) in an ionic crystal,
was calculated using the two-electron variational WF of a
more general form, taking account of the Coulomb correla-
tions. The error resulted in a significant decrease in the
phonon polarization part of the adiabatic functional respon-
sible for efficacious electron±electron attraction (owing to the
exchange of virtual optical phonons). As the central charge

tended to vanish, i.e., upon transition from F 0-center to BP,
the bound state proved energetically unfavorable. Hence, the
general (wrong, as it has turned out) conclusion was drawn by
S I Pekar in his monographs [24, 25], with reference to
Tomasevich [23], that a spherically symmetric BP cannot
exist due to strong Coulomb repulsion. This conclusion was
also repeated in the work of Buimistrov and Pekar [26], who
proposed a variational method for calculating the energy
spectrum of one- and two-electron systems, including BP, for
an arbitrary binding force between electrons and a phonon
field.

In 1955, Moskalenko [27] considered a two-center (TC)
axially symmetric BP, i.e., the bound state of two polarons,
like a hydrogen molecule or Deigen's F2-center [28]. In such a
BP, the role of positively charged nuclei is played by polaron
wells, the centers of which do not coincide, while Coulomb
repulsion between electrons is substantially weakened by
exchange interactions in the singlet spin state, as in the
Heitler±London model of the hydrogen molecule. However,
the author of paper [27] chose for variational calculations too
large a distance R between polarons, at which repulsion
overrides attraction and increases with decreasing R. Due to
this and possibly to relatively small FroÈ hlich coupling
constant involved, neither a bound nor even a metastable
BP state was obtained in Ref. [27].

In 1957, Vinetskii and Gitterman [29] considered the
TCBP variational problem for any distance R and showed
the possibility of forming a bound state under certain
conditions. This problem was later addressed in greater
detail in a paper by Vinetskii [30]. Specifically, it was
demonstrated that the energy of a BP minus double polaron
energy has an absolute negative minimum at aF � 7:5 if the
parameter m � 1ÿ e1=e0 > 0:97, and a relative (metastable)
minimum if m > 0:94 (see Ref. [31]). As shown later [32, 33],
the binding energy of a TCBP increases considerably in
crystals with uniaxial anisotropy of band effective masses of
carriers of the light-plane or light-axis type and with
anisotropic permittivity of the lattice. This observation
refers, inter alia, to layered (quasi-two-dimensional) and
chain-like (quasi-one-dimensional) crystals, including metal-
oxide compounds (MOC) such as La2ÿxBaxCuO4 and
YBa2Cu3O7ÿx, in which HTSC was discovered [11, 12]. It is
worth noting that the variational WF of two electrons in
Refs [30±33] was chosen in the symmetric form, taking into
account indistinguishability (exchange interaction) of the
particles, but without regard to Coulomb correlation effects
related to the direct dependence of the WF on the interelec-
tron distance. The distance between centers of polarization
wells of two polarons being R � 0, the energy gain for BP
states also tended toward zero, in accordance with the results
reported in Ref. [22].

In 1982, Suprun and Moizhes [34] proposed a new
solution to the Pekar BP variational problem, taking into
consideration Coulomb correlations in the framework of the
simplest approximation [23]. They showed that correct
numerical calculation leads to a substantial energy gain (up
to 25% of the double polaron energy as e1=e0 ! 0); this
suggests stability of a spherically symmetric large-radius
bipolaron at a sufficiently large ionic bond �e1=e0 4 0:14�.
Later studies of one-center BPs (OCBPs) with account of
interelectron correlations [35, 36] demonstrated a much
greater energy gain than in Refs [32, 33] dealing with two-
center BPs (TCBPs) in anisotropic crystals.
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An earlier paper by Larsen [37] reported ``a huge binding
energy'' of small Dÿ-centers in ionic semiconductors. The
intermediate-coupling method of Buimistrov and Pekar [26]
was used in calculations and the Slater typeWFwas chosen as
a trial taking into account electron correlations. The author
of Ref. [37] was not interested in BP states, although the BP
functional could be obtained from the explicit limiting
transition to a simpler system (Coulomb center charge! 0),
while BP bound states for the chosen functions appeared at
somewhat larger coupling constants �a5 7:5�. The study
reported in paper [34] was conducted in the framework of
the strong-coupling notion; only in Ref. [38] was the
Buimistrov±Pekar method applied to calculating OCBP
energy for Gaussian functions taking into account electron
correlations.

Anderson [39, 40] showed in the framework of the
Hubbard model with negative correlation energy U < 0 at
sites (Uÿ-centers) the possibility of transition of a metal with
a half-filled conduction band (one electron per site) to the
charge-ordered dielectric state in which vacant sites alternate
with those occupied by bound electron pairs. Anderson
speculated that attraction between electrons at a single site
overruns Coulomb repulsion and is due to adiabatic interac-
tion between electrons and local atomic vibrations. In other
words, one can actually speak here about localized small-
radius BPs. Anderson's findings were soon confirmed in
experiments designed to study metal±insulator transitions in
Ti4O7 single crystals [41]. A similar problem of local electron
pairs with account of interaction (attraction or repulsion)
between the neighboring sites was considered in 1980 by
Kulik and Pedan [42]. These authors demonstrated forma-
tion of a delocalized (conducting and probably superconduct-
ing) state of local pairs under the proper conditions. The
possibility of electron pairing at sites with negative correla-
tion energy was also considered in papers [43, 44]. The large
strength of electron±phonon interactions, the high tempera-
ture of transition to the superconducting state unusual for
semiconductors and semimetals, along with some other
behavioral features in superconducting state for such com-
pounds as BaBixPb1ÿxO3, PbTe(Tl), and SrTiO3 have led to
the suggestion that the traditional BCS mechanism of super-
conductivity does not operate in these conditions [44, 45].

The small-radius BP model in narrow-band metals in the
strong-coupling approximation and their superconductivity
conditioned by Bose condensation were also considered by
Alexandrov and Ranninger [46±48].

A review by Mott [49] was devoted to small-radius spin
BPs and the possibility of explaining HTSC in terms of the
model of the spin BP in the triplet state. In an earlier study
[50], Nagaev considered the behavior of a spin polaron in
antiferromagnetic crystals with low NeÂ el temperatures.
Lakhno [54, 55] discussed the possibility of appearing
autolocalized states in high-temperature antiferromagnets
(analogs of condensons in covalent crystals [51±53]).

In 1975, Vinetskii and Pashitskii [56] addressed the
problem of the BP mechanism of SC in ionic crystals
exemplified by Nb-doped SrTiO3 pseudoferrielectrics [57]
owing to the superfluidity of quasi-ideal BP Bose gas. Due
to abnormally high permittivity of SrTiO3 at low tempera-
tures �e0 > 2� 104�, the condition n

1=3
0 a �B 4 1 (where n0 is the

concentration, a �B � e0�h
2=4e 2m �BP is the effective Bohr radius

of BP with mass m �BP and charge 2e) of high density (ideality)
of charged Bose gas for mBP 5 10m0 (where m0 is the free
electron mass) is fulfilled for n0 5 1018 cmÿ3, when the mean

distance between BPs, �r � nÿ1=3 � 10ÿ6 cm, is much greater
than intermediate-coupling BP radius r0 5 3a � 10ÿ7 cm (a is
the lattice constant). Notice that the macroscopic approxima-
tion is still applicable to such BPs because the effects of spatial
dispersion of permittivities e0 and e1, associated with crystal
lattice discreteness, are manifest in full measure for distances
r4 a, when e0 � e1. These ideas, including the idea of
enhanced binding energy of large-radius BPs in systems with
reduced dimension, have been developed in a number of
publications that followed the discovery of HTSC [16, 58].

According to Bogoliubov's microscopic superfluidity
theory [59] for a weakly nonideal Bose gas, the spectrum of
quasiparticles has a finite energy gap given by BP effective
plasma frequency o �p � �16pe 2n0=e0m �BP�1=2 owing to long-
range Coulomb interaction; therefore, it meets the Landau
superfluidity criterion [60]. Bose condensation temperature
T0 � 3:31�h 2n

2=3
0 =kBm

�
BP that in the present case can be

identified with critical temperature Tc of transition to the
superconducting state varies atm �BP � 10m0 depending on BP
concentration n0 in a broad range from T0 � 3 K at
n0 � 1018 cmÿ3 to T0 � 300 K at n0 � 1021 cmÿ3. In the
latter case, BP concentration is so high that, both in the case
of a BP gas and in the case of Cooper pairs, the composite
nature of a BP becomes apparent and it stops behaving like an
ideal Bose particle; at yet higher concentrations, BP dissoci-
ates into separate polarons.

The possibility of HTSC with Tc 5 100 K was demon-
strated in principle [61] based on the mechanism of large-
radius BP superconductivity in the framework of continuous
approximation [56] for ionic crystals. Investigations into this
mechanism are overviewed in paper [62]. Similar ideas were
put forward by Alexandrov [47] based on the small-radius BP
model [48].

Of special interest are copper-containing metal-oxide
compounds with the layer [e.g., La2�Sr;Br�CuO4

and �Bi;Tl�2�Sr;Ba�2CaCuO8] or the layer-chain-like
(YBa2Cu3O7) structure by virtue of their HTSC. The
reduced dimension (strong anisotropy) of the electronic
spectrum in such crystals has to manifest itself in their
superconducting properties. Quasi-two- or quasi-one-dimen-
sionality of the electronic spectrum has a noticeable influence
on the BP binding energy due to the quantum-mechanical
effect of enhancing attraction with a decrease in dimension-
ality of space. This accounts for the possibility of carrier
(electron, hole) pairing in the real (as opposed to momentum)
space, i.e., formation of BP rather than Cooper pairs, in the
layer and layer-chain MOC single crystals. One-dimensional
BPs in polymer chains of organic compounds like polyacety-
lene were theoretically considered in Refs [63, 64]. Experi-
mental evidence of BP conductivity for such low-dimensional
systems was obtained in Ref. [65], where the authors assumed
that the absence of an electron paramagnetic resonance
(EPR) signal correlated with conductivity in pyrrolic poly-
mers was due to the formation of mobile BPs. A review of
theoretical and experimental studies of soliton states and BPs
in conducting polymers can be found in Ref. [66].

A fierce dispute between P Anderson and N Mott
concerning the description of HTSC in terms of the BP
mechanism erupted in Physics World [67±69]. Anderson
refuted not only arguments in favor of BPs but also the very
possibility of polaron formation in metal-oxide ceramic. In
contrast, Mott alluded to one of his studies done jointly with
Alexandrov and Bratkovsky [70] and emphasized experimen-
tal data suggesting that the BP mechanism related to Bose
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condensation of small-radius BPs in cuprate MOCs is
responsible for HTSC. There was an equally tense debate
over the applicability of the BPmechanism to HTSC between
Ranninger and Alexandrov et al. [71±73]. De Mello and
Ranninger [71, 73] agreed that the BP mechanism can
account for SC in a number of compounds whose properties
had been studied in Refs [46, 48] but rejected the possibility of
explaining HTSC in the framework of this mechanism.

The polaron andBP theory originally designed to apply to
SC and HTSC phenomena is widely used in describing many
physical, chemical, and biological processes proceeding not
only in solids but also in organic compounds and polar
liquids, including water and aqueous solutions. The polaron
theory of charge transfer in proteins developed inRefs [74±80]
was used in paper [81] to describe the hydrated electron.
A S Davydov [82, 83] used the main provisions of the
translation-invariant theory of the continual polaron devel-
oped by Bogolyubov [84] and Tyablikov [85] as a basis for the
soliton concept applied to biological molecules. This aspect of
the polaron theory continues to be extensively developed [86±
88]. The dynamic theory of soliton formation and soliton
transfer in DNA is elaborated in Refs [89±95].

The present review concerns studies developing the large-
radius BP theory (continuous approximation) in the frame-
work of TC- and OC-models of BP; it considers the role of
electron correlations in the formation of bound BPs and
conditions for fulfillment of the virial theorem with respect to
the systems of interest. The relationship between BPs and
HTSC is also briefly discussed.

2. Two models of the large-radius bipolaron

2.1 General relations
In the continuous approximation, electron±phonon interac-
tion is described by the FroÈ hlich Hamiltonian that has the
following form for two electrons in a phonon field:

HBP � ÿ �h 2

2m �
�D1 � D2� � e 2

e1jr1 ÿ r2j � �ho
X
k

a�k ak

�
X
k

Vk

n�
exp �ÿikr1� � exp �ÿikr2�

�
a�k � h:c:

o
; �2�

where e0 and e1 are static and high-frequency permittivities,
respectively, Vk � �e=k�

������������������������
2p�ho=�V~e�p

, 1=~e � 1=e1 ÿ 1=e0, V
is the crystal volume, o is the optical phonon frequency, k is
the phonon wave vector, a�k and ak are the operators of
creation and annihilation of phonons with the wave vector k,
r1 and r2 are coordinates of the first and second electrons, and
m � is the electron effective mass.

Although the first successful studies designed to calculate
the energy of strong-coupling BPs [29, 30] were based on the
analogy with the hydrogen molecule, the BPHamiltonian has
an important feature distinguishing it from the hydrogen
molecule Hamiltonian; namely, Eqn (2) does not contain a
parameter analogous to the distance between two protons in
the molecule. Two forms of the dependence of hydrogen
molecule energy on the distance between protons are equally
frequently used in molecular physics: one takes into account
interproton repulsion, and the other does not. Both forms
were considered in the monograph by Slater [96, Figs 3.3 and
3.4, respectively]. The energy dependences disregarding inter-
nuclear repulsion are especially convenient for variational
calculations of the energy of a two-hydrogen-atom system

with closely located protons and accomplishing the limiting
transition corresponding to the `fusion' of two hydrogen
atoms into helium atom. In this case, the internuclear
distance dependence of the hydrogen molecule energy has a
sole minimum corresponding to the helium atom configura-
tion at point R � 0 (see Ref. [96, Fig. 3.3]). Thus, the
dependence of the hydrogen molecule WF on the interproton
distance does not by itself lead to the energy minimum at
point R � Rm 6� 0 due to the presence of the term describing
repulsion between protons in the Hamiltonian of the
hydrogen molecule.

Bearing in mind that the Hamiltonian (2) of two electrons
in a phonon field does not depend on the distance between the
centers of the polarization wells of two polarons, it is natural
to conjecture that potential dependences on the interpolaron
distance, describing the total energy of the system, must
correspond to potential dependences of the hydrogen
molecule energy on the distance between protons without
accounting for proton±proton repulsion; also, the BP ground
state exhibits spherical symmetry.

2.2 The one-center bipolaronÐanalog of the helium atom
Hamiltonian (2) is different from the Hamiltonian describing
the helium atom in the presence of electron±phonon interac-
tion and the absence of Coulomb electron±nucleus interac-
tion. When a Coulomb potential appears, whose field
contains moving electrons, the similarity with the helium
atom and the negative Hÿ ion becomes more explicit. It is
natural to suggest that the spherically symmetric WF should
correspond to the ground bound state of a two-electron
system, if any. As mentioned above, the first large-radius BP
model was constructed in complete analogy with the helium
atom. The two-electron WF in this model was chosen to be
sufficiently simple but to take into account interelectron
correlations related to the direct dependence of WF on
interelectron distance. Such a WF had the form [23, 24]

C�r1; r2� � N�1� ar1��1� ar2��1� br12�
� exp �ÿar1� exp �ÿar2� ; �3�

whereN is the normalization factor, r1 and r2 are coordinates
of the first and second electrons, respectively, r12 � jr1 ÿ r2j is
the distance between the first and second electrons, r1 � jr1j,
r2 � jr2j, and a and b are variational parameters.

The wave function of a simpler multiplicative form (the
product of WFs of noninteracting polarons) was utilized in
Ref. [22]. This WF can be obtained by assuming b � 0 in
formula (3). Calculations of the energy of BPs or F 0-centers
bound by single-chargeCoulomb potential were performed in
the framework of this model by O F Tomasevich [23]. This
model is a mathematical analog of a negative Hÿ ion in a
phonon field. Errors in the calculation of the normalization
factor in theWFof the form (3) andminor numerical errors in
the part corresponding to the phonon contribution in the BP
functional (see Ref. [23]) resulted in the underestimation of
the F 0-center energy and an erroneous conclusion about
unimportance of electron correlations related to the direct
dependence of WF on the distance between electrons. Later
on, the author of monograph [24] arrived at the conclusion
(with reference to work [23]) of the impossibility of formation
of a stable BP state in the framework of the one-center model.

The same function (3) was applied in calculating the BP
energy in ametal±ammonia solution byA SDavydov [97]. He
repeated the erroneous conclusion about OCBP instability.
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2.3 The two-center bipolaronÐanalog
of the hydrogen molecule
The failure to find the bound BP state in the framework of the
OC configuration led to appearing the TCBP model [29, 30].
Before that, polaron effects in ionic crystals for a pair of
F-centers (F2-centers) had been investigated by Deigen [28].
The employment of the continuous approximation allowed
this model to be regarded as a complete analog of the
hydrogen molecule resided in a phonon field. This latter
work provided a basis for the BP model [29] with the electron
WF chosen by perfect analogy with the WF of the H2

molecule:

C�r1; r2� � F�r1; r2� � F�r2; r1� : �4�
Wave functionF�r1; r2�was chosen in the form of the product
of hydrogen-like WFs centered at different points coinciding
with the centers of polarization wells of two polarons:

CBP�r1; r2� � N
ÿ
a�1�b�2� � a�2�b�1�� ; �5�

a�1� �
�
l3

p

�1=2

exp �ÿlra1� ;

b�1� �
�
l3

p

�1=2

exp �ÿlrb1� ;

N � 1��������������������
2�1� S 2�p ; S �

�
a�1�b�1� dt :

An alternative method for computation of BP energy was
used in Ref. [98] where a model Hamiltonian was proposed to
calculate OCBP energy by trajectory integral method. In this
study, a variational parameter was introduced to be treated as
the distance between the centers of polarization wells of two
polarons. The author of paper [98] undertook qualitative
consideration of the model and noticed the possibility of
appearing a stable BP state; however, he did not make
numerical calculations.

Over 30 years elapsed between the first reports on the
calculation of the energy of a strong-coupling BP [29, 30] and
publication of the paper by Suprun andMoizhes [34] in which
the authors corrected the erroneous estimates of OCBP
energy presented in Refs [23, 97]; they studied the TC model
of the BP despite the low value of binding energy.

After the publication of Ref. [34], different research
groups reproduced results of computation by a variety of
methods. The OC configuration of BPs having been found to
be energetically advantageous compared with the TC config-
uration, further studies of the latter model were virtually
discontinued.

In direct analogy with the hydrogen molecule, a
continuum TCBP in an isotropic ionic crystal had to
vibrate and rotate about a minimum corresponding to the
equilibrium distance between the centers of polaron polar-
ization wells. It will be shown in Section 3 that the TC
configuration of a BP corresponds to a secondary minimum
that disappears in the case of a more flexible choice of trial
WF, taking into account electron correlations arising from
the direct dependence of the WF on the distance between
electrons.

Because this review is concerned with the work develop-
ing the theory of large-radius continual BPs, it does not
encompass the problems of small-radius polarons or BPs
studied in Refs [99, 100] with the use of the intersite BP
model.

3. The inclusion of electron correlations
and spatial configuration of a bipolaron

3.1 The strong-coupling bipolaron
In the continuous approximation in the strong-coupling limit,
polaron and bipolaron functionals take the form [24, 34]

JP � T1

NP
ÿ e 2C

2N 2
P

�
C 2

1C
2
2

r12
dt12 ; �6�

JBP � T12

N
� e 20 JC

e1N
ÿ 2e 2C

N 2

�
C 2

12C
2
34

r13
dt12 dt34 ; �7�

whereNP,N are the normalization factors of the polaron and
BP WFs, respectively, and

Ti � ÿ �h 2

2m �

�
Ci DiCi dti ; i � 1; 2 ;

Di � q2

qx 2
i

� q2

qy 2
i

� q2

qz 2i
; T12 � T1 � T2 ;

JC �
�
rÿ112 C

2
12 dt12 ; C � eÿ11 ÿ eÿ10 ;

Ci � Ci�ri� ; C12 � C12�r12� ;

with m � and e being electron effective mass and charge,
respectively. The second term on the right-hand side of
formula (7) corresponds to the Coulomb repulsion.

Let us introduce effective hartree, Ha� � e 2=e1a �, as the
unit of energy, and effective Bohr radius a � � �h 2e1=m �e 2 as
the unit of length.

Functional (7) is obtained in the strong-coupling
approximation for a two-center WF symmetrized with
respect to interchange of the electron coordinates. The
presence of interelectron correlations is a necessary condi-
tion for the appearance of the bound BP state because the
BP functional identically decays into two polaron func-
tionals if the electron WF is chosen in the multiplicative
form, even in the strongest-coupling limit, when Z! 0. For
TCBPs, electron correlations are taken into account by the
choice of WF in the form of a symmetrized product of
polaron functions centered at different points; correlation
effects for the OC model (Pekar BP) are taken into
consideration by introducing the direct dependence of the
WF on the distance between electrons. A more complicated
WF generalizing the two models takes into account both
forms of electron correlations and permits obtaining OC-
and TC-models of BPs as limiting cases.

Interelectron correlations related to the direct dependence
of the electron WF on the distance between electrons were
taken into consideration in many studies. Here are a few
examples:

C12 � �1� Cr12�
�
1� b�r1 � r2�

�
� exp

�ÿd�r1 � r2�
�
cosh �Er12� �37�;

C12 �
X
i

�1� P12� exp �ÿa1ir1ÿ 2a2ir12ÿ a3ir2� �19; 20; 101� ;

C12 �
n
1ÿ k exp

�ÿE�r1 ÿ r2�2
�o

exp
�ÿd�r 21 � r 22 �

� �102� ;
C12 � �1� kr 212� exp

�ÿd�r 21 � r 22 �
� �103� ;
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where C, b, d, E, a1i, a2i, a3i, and k are variational parameters,
andP12 is the interchange operator for coordinates of the first
and second electrons.

3.1.1 Interelectron correlations and the spatial distribution of
the two-electron wave function. Various two-electron func-
tions were utilized to find the OCBP energy. The correct
Pekar BP functional in the strong electron±phonon interac-
tion limit, obtained using WF (3), is reported in Ref. [104].
Changes in BP wave functions, when interelectron correla-
tions are taken into consideration, can be deduced from the
comparison of the spatial distribution of probability density
of electron positions given by the WF squared in the ground
state for a BP with and without account of electron
correlations.

Figure 1 displays the electron density spatial distribution
for a Pekar BP wave function obtained in Ref. [105] without
and with account of electron correlations, respectively. One
electron is placed in the origin of coordinates �r1 � f0; 0; 0g�;
the radius vector of the second electron is r2 � fx2; y2; 0g. The
electron density in the origin of coordinates without account
of correlation additions is assumed to be unity. It can be seen
that forWF (3), after finding the BP functional minimum, the
region of small interelectron distances characterized by strong

electron±electron repulsion is practically excluded from
consideration. The Gaussian basis utilized in Refs [21, 105,
106], namely

C�r1; r2� �
Xn
i�1

Ci exp
ÿÿa1ir 21 ÿ 2a2i�r1r2� ÿ a3ir

2
2

�
; �8�

leads to a different WF density distribution, but the tendency
toward lowering the contribution from close interelectron
distances persists.

Figure 2 illustrates the electron density distribution for the
GaussianWFs of the form (8) without �a1i � a3i, a2i � 0� and
with �a1i 6� a3i, a2i 6� 0� account of electron correlations.

The wave function of two polarons located at a distanceR
between the centers of polarization wells can be chosen in the
form

C�r1; r2��
Xn
i� 1

Ci�1� P12� exp
ÿÿa1ir 2a1ÿ 2a2i�r1r2� ÿ a3ir

2
b2

�
;

�9�
where P12 is the interchange operator for coordinates of the
first and second electrons, ra1 and rb2 are radius vectors of the
first and second electrons in the two-center system of
coordinates with the centers at points a and b coinciding
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Figure 1. (a) Electron density for a one-center BPwithout account of interelectron correlations �b � 0� inWF (3). (b) The same forWF (3) taking account

of interelectron correlations.
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Figure 2. Electron density for WF (8) at n � 5 (a) without �a1i � a3i, a2i � 0� and (b) with �a1i 6� a3i, a2i 6� 0� account of interelectron correlations.

Variational calculations were performed in the strong-coupling limit for Z � 0.
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with the centers of polarization wells of polarons located at a
distance R from each other; the upper sign ��� refers to a
singlet state, and the lower one �ÿ� to a triplet state of the
two-polaron system.

When polarons that form BPs are spaced far apart, the
Gaussian WFs of the form (9) permit obtaining the correct
limiting transition to the functional represented by the sum of
functionals of two noninteracting polarons. Wave function
(3) possesses no such property. Figure 3 displays electron
density isolines obtained in the absence of electron correla-
tions �a1i � a3i, a2i � 0� [105] using the Gaussian WFs of the
form (9). Figure 3a illustrates the spatial distribution of
electron density for the equilibrium distance between the
centers of polarization wells of strong-coupling TCBPs for
Z � e1=e0 � 0. Figure 3b corresponds to the density of a
system comprising two polarons spaced far apart �R � 10�.
Taking account of interelectron correlations in the wave
function (9) �a1i 6� a3i, a2i 6� 0� barely changes the electron
density distributions at large distances between polarons.
However, in the case of a spherically symmetric WF, the
bipolaron energy drops down to a minimal value at point
R � 0.

3.1.2 Comparison of energy minima for one- and two-center
bipolarons. Let us compare the depth of energy minima

obtained in Ref. [106] for TC- and OC-configurations with
the help of the most general WF (9) allowing the two models
to be integrated. For theOC configuration, whenWF (9) goes
over into WF (8) at R � 0, the minimal BP energy
Em � ÿ0:136512 Ha�, i.e., BP binding energy is 25.8% of
the exact double strong-coupling polaron energy
EM
P � ÿ0:0542564 Ha�. The corresponding value for the

TC configuration (interelectron correlations related to the
direct dependence of the WF on the distance between
electrons are totally absent) is Em � ÿ0:11503 Ha� (the BP
binding energy is 6.02% of the double polaron energy) for the
equilibrium distance Rm � 5:0225 a � between the centers of
polarization wells of two polarons.

Table 1 lists energy values of the BP ground state obtained
by different methods in the strong-coupling limit at
Q � EBP=2EP and Q � � EBP=2E

M
P , where EP is the polaron

energy obtained in the same approximation as BP energy, and
EM
P � ÿ0:0542564 is the exact value of polaron energy in the

strong-coupling limit [107].
In Vinetskii's study [30] developing the TCBP theory,

polaron functions were chosen in a more general form
compared with those in earlier work [29], and the BP wave
function represented the symmetrized product of Pekar
polaron functions: �1�ara1� exp �ÿara1��1�arb2� exp �ÿarb2�
[where traditional notations for the TC-coordinate system are
used: ra1�ra2� is the radius vector of the first (second) electron
counted from the center a; rb1�rb2� is the same for the center b].
As follows from calculations in Ref. [30], the ratio EHL

BP =2EP,
where EHL

BP is the BP energy obtained in the framework of the
Heitler±London approximation, andEP is the polaron energy
for Pekar WF �1� ar� exp �ÿar�, was equal to 1.08; in other
words, it barely changed compared with the value obtained in
Ref. [29] for the simplest hydrogen-likeWF a�1�. Table 1 also
contains evaluated TCBP energies obtained by the molecular
orbital (MO) method for WFs:

F12 � C�r1�C�r2� � N12

ÿ
a�1� � b�1��ÿa�2� � b�2�� ; �10�

where a�1� and b�1� are hydrogen-like WFs [see formula (5)],
and N12 is the normalization factor.

It follows from the above consideration that disregarding
electron correlations related to the direct dependence of aWF
on the interelectron distance results in the emergence of an
extremely small energy minimum for a nonzero distance Rm

between the centers of polarization wells of two polarons.
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Figure 3. (a) Electron density isolines for equilibrium distanceRm between

the centers of TCBP polarization wells (interelectron correlations in WF

(9) are absent, so a1i � a3i, a2i � 0). (b) The same for two polarons spaced

apart at distance R � 10. The z-axis is directed along the line connecting

the centers of polarization wells of the two polarons. The origin of
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Table 1. BP energies and regions of existence, obtained by different methods in the strong-coupling limit (for Z � 0).

Method HL [29] HL� [105] MO [105] MO� [105] [34] [106] [106]

WF TC TC TC TC OC(C) TC(C) TC

ÿEBP

Rm

ÿEP

Zc
Z �c
Q

Q �

0.10612

4.5518

ELP

0.0535

0

1.0866

0.9779

0.10784

4.1155

ELP

0.0542

0

1.1043

0.9938

0.10024

2.5149

ELP

0.0142

0

1.0265

0.9238

0.10071

2.5538

ELP

0.0150

0

1.0313

0.9281

0.134624

0

0.05351

0.1392

0.1322

1.2579

1.2406

0.136512

0

EM
P

0.1432

0.1432

1.2581

1.2581

0.11503

5.0225

EM
P

0.016

0.016

1.0602

1.0602

Note. HL,MOÐHeitler±London method andmolecular orbital method, respectively [without variation of the parameter l inWFs (5) and (10)]; HL�,
MO�Ðthe same with variation of l; TC(C) , OC(C)Ð two- and one-center WFs taking account of electron correlations; EP, EBP Ðpolaron and BP

energies, respectively; Rm Ðequilibrium distance between the centers of polarization wells of two polarons; ELP � ÿ25=512Ðpolaron energy

obtained with the use of a hydrogen-like WF; EM
P � ÿ0:0542564Ðexact value of polaron energy in the strong-coupling limit [107] (effective hartree

Ha� � e 2=~ea � is used as the unit of energy, and effective Bohr radius a � � �h 2~e=m �e 2 as the unit of length); Zc, Z
�
c Ð critical values of parameter Z

calculated with respect to polaron energies ELP and EM
P , respectively; Q � EBP=2EP and Q � � EBP=2E

M
P .
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Such spatial configuration corresponding to TCBPs was first
considered in Refs [29, 30]. When the TCBP binding energy
was calculated with respect to the exact numerical value of
double polaron energy reported byMiyake [107], the depth of
the energy minimum for the TC configuration obtained with
the use ofWFs (5) and (10) proved too low for the existence of
the bound state, even in the strong-coupling limit, when
Z! 0. As seen from Table 1, Q � < 1 and Z �c � 0 held for
both the Heitler±London and molecular orbital methods. In
other words, the computation error for polaron energy was of
the same order of magnitude as the depth of the BP energy
minimum. This fact called into question the existence of
bound BPs because the above minimum could be the
consequence of an insufficiently flexible choice of bipolaron
WF.

In the strong-coupling limit, energy minima calculated in
paper [106] using theWFof themost general form (9) for both
OC- and TC-configurations are the deepest of all those
obtained thus far. These values are given in Table 1.

Because the exact value of strong-coupling polaron
energy is reproduced with an accuracy up to six decimal
places even for the polaron WF chosen as the sum of five
Gaussian terms, namely

C�r� �
X5
i� 1

Ci exp �ÿair 2� ; �11�

where Ci and ai are variational parameters, the error related
to inexact determination of polaron energy for a BP withWF
(9) is altogether absent [109]. Due to this, quantities Q and
Q �, Zc and Z �c characterizing the lower and upper boundaries
of BP energy and the region of BP existence in Z here coincide.

The strong-coupling polaron as a particle with a hydro-
gen-like spectrum was studied by the variational method in
Ref. [24]. In Refs [108±110], self-consistent excited states were
found by numerical solution of the corresponding Euler
equation. This problem was discussed at greater length in
review [111] considering the structure of the large-radius
polaron. Recently, a variational function for the first excited
self-consistent state of a polaron and F-center has been found
[112], which made it possible to exactly reproduce numerical
solutions of appropriate Euler equations obtained in the
strong-coupling limit for the 2p-state:

C2p �
X5
i

Ci sinh �biz� exp �ÿair 2� ; �12�

whereCi, ai, and bi are variational parameters. The use of five
terms in expression (12) improves numerical solution
E2p � ÿ0:022867 (see Ref. [109]) and gives a smaller energy
of the self-consistent state for the first excited level of polaron,
E2p � ÿ0:022967. As reported by Gabdullin [109], the
accuracy of the energy calculation did not exceed three
significant figures, meaning that the lower polaron energy
obtained by the variational method was unrelated to numer-
ical errors that occurred in work [109]. Numerical examples
were given for Z � 0. Any further increase in the number of
exponents does not lead to the lowering of the energy of the
polaron self-consistent 2p-state. Variational function (12)
allows the first excited state of both polaron and hydrogen
atom to be reproduced with an accuracy up to six decimal
places. Therefore, this function can be employed to find the
variational WFs of BP and F 0-center excited states at an
arbitrary electron±phonon coupling.

3.1.3 Polaron interaction energy as a function of distance
between the centers of polarization wells. As shown in
Table 1, the utilization of WF (9) allows both TC- and
OC-configurations of BPs to be reproduced. The former is
reproduced in the total absence of electron correlations for
a less general form (9) of WF, when additional limitations,
e.g., a1i � a3i, a2i � 0, are imposed on variational para-
meters. In variational calculations, only the lowest energy
value makes physical sense, whereas the remaining minima
are secondary ones and should be discarded. In other
words, TC configuration of BPs corresponds to a second-
ary minimum and appears as a result of the inflexible choice
of WF. This situation is illustrated by Fig. 4 showing BP
energy dependences as functions of distance between
polarons at different values of parameter Z, studied in
Ref. [106] and obtained using WF of the most general
form (9) �a1i 6� a3i, a2i 6� 0�. The double polaron energy is
taken as the reference point. The curves in Fig. 4 can be
interpreted as the interaction energy between two polarons.
Its dependence on the distance between the polarons has an
analog in the form of the dependence of interaction energy
between two hydrogen atoms on the internuclear distance,
without account of proton±proton repulsion (see mono-
graph [96], Fig. 3.3]).

At large distances between polarons, the BP energy tends
toward double polaron energy. As shown in Fig. 4, the BP
binding energy, i.e., the positive value of 2EP ÿ JBP�R� for
bound states, vanishes at Z � Zc � 0:143 and becomes
negative thereafter. Because the interaction energy tends
toward double polaron energy (toward zero in Fig. 4) at
large distances between the centers of the polarization wells of
two polarons, the distance dependences of their energy have
maxima. This necessitates consideration of the possibility of
occurrence of BP metastable states when passage to the large
interpolaron distance region requires that the potential
barrier be overcome. Such a possibility was discussed earlier
by Vinetskii and Semenets [31] for TCBPs.
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A large number of OCBP studies made by different
methods were published after issuing paper [34].

Feynman trajectory integral method was applied in
Ref. [113] to consider OCBPs in polar and covalent crystals.
Results in the strong-coupling limit for ionic crystals coincide
with calculated Pekar BP energies obtained by the traditional
variational method with the use of the trial WF in the form
C�r1; r2� � exp �ÿd�r 21 � r 22 � ÿ kr1r2�, taking into account
interelectron correlations. Such a simple function leads to
less accurate magnitudes of binding energy compared with
those reported in Ref. [34].

In paper [114], the OCBP was considered using the
Feynman±Haken method. As proposed by Haken [115], the
effective action Seff is chosen to correspond to the trial
Hamiltonian

Heff � ÿ 1

2
H 2
1 ÿ

1

2
H 2
2 �

1

2
C 2r 21 �

1

2
C 2r 22

� 1

4
D 0 2�r1 ÿ r2�2 ; �13�

where C and D 0 are the variational parameters. Thereafter,
the Jensen±Feynman inequality [17, 18] is utilized to find the
upper boundary of the BP energy:

E exact
0 4EFH � E eff

0 � lim
b!1

hhSÿ Seffii
b

; �14�

where E exact
0 is the exact BP energy, E eff

0 corresponds to Heff,
hh ii stands for statistical averaging with the weighting factor
exp �Seff�, b � 1=kBT, and kB is the Boltzmann constant.

Results in the strong-coupling limit are compared with the
results of calculations by the standard variational method
using different WFs. Application of the Feynman±Haken
method to the calculation of the OCBP energy gave the same
values as in Ref. [113]. However, the possibility of more exact
reproduction of strong-coupling data [34] by methods related
to the choice of trial action remains to be clarified.

This problem was further covered in paper [116]. In the
beginning, the author performs canonical transformation of
Hamiltonian (2) corresponding to strong coupling:

HBP ! ~HBP � exp �ÿS �HBP expS ; �15�

where S �Pk��xk1 � xk2�a�k ÿ h:c:�. Quantities xk1 and
xk2, unlike analogous quantities in the standard strong-
coupling scheme, are not variational parameters; they are
chosen in the form of the matrix elements xk1 � xk2 �
hPj exp �ikr1� � exp �ikr2�jPi of the two-electron variational
function jPi.

Furthermore, the Feynman±Haken procedure was fol-
lowed. Hamiltonian corresponding to effective action is
chosen in a form equivalent to expression (13) with the
effective potential

Veff�r1; r2� � l4r 21 � l4r 22 � 2b 4r1r2 ; �16�
where l and b are variational parameters. The third term in
the effective potentialVeff makes it possible to take account of
electron correlations. The energy of the BP ground state is
evaluated by a perturbation theory method up to the second
order. The basis is chosen as the system of eigenfunctions
corresponding to the solution of SchroÈ dinger equation with
the trial Hamiltonian. The wave function jPi corresponds to
the ground state. Variational parameters in the effective

potential are found by varying the system's energy obtained
in the first order of the perturbation theory. The author of
Ref. [116] thus used an alternative method to reproduce the
result for the OCBP energy reported earlier in Ref. [34].
Because the BP binding energy in paper [116] was found
based on the underestimated polaron energy (EP � ÿ0:05385
instead of the exact numerical value EM

P � ÿ0:0542564), the
region of Z values at which the BP exists was unjustifiably
extended �Zc � 0:165�.

The ground state of strong-coupling OCBPs in the center-
of-mass system was investigated in Ref. [117]. Because center-
of-mass coordinates and interelectron distance cannot be
separated, the authors proposed a scheme of iterative
numerical solution for two coupled equations written down
in these coordinates. The BP variational wave function found
in Ref. [118] was taken as the initial approximation in
Ref. [117]. Laborious numerical calculations gave Zc � 0:123
for the lower boundary of existence of the bound BP. This
value was computed with respect to the exact double BP
energy in the strong-coupling limit. Results of calculations
employing the numerical solution of a set of two integro-
differential equations suggest a few percent decrease in BP
ground state energy compared with the corresponding value
obtained in Ref. [118]. The authors of Ref. [119] proposed
convenient series expansions of BP energy in the electron±
phonon interaction parameter, which allow comparing BP
energy values obtained by trajectory integral method and
other methods and to determine trustworthy BP energies and
regions of existence in Zc at an arbitrary FroÈ hlich coupling
constant.

Regardless of the method, each computation of BP energy
represents a laborious numerical experiment requiring cum-
bersome calculations. The region of BP existence can be
extended far from always. The data on BP energy and the
region of Z values at which a BP exists, obtained in the strong-
coupling limit by variational calculations with the use of
multiparameter WFs in Refs [105, 106], appear to be reliable
and will hardly be improved in further studies. However,
more precise determination of BP energy spectrum character-
istics is not the main objective of such calculations; rather,
they are designed to develop computational methods for the
study of electron system energy in the fields of different
elementary excitations of the crystal lattice.

The axially symmetric TCBP, whose energy was calcu-
lated by Vinetskii and Gitterman [29], could rotate and
vibrate about a minimum corresponding to the equilibrium
distance between the centers of polarization wells of two
polarons. The hydrogen molecule served as a natural analog
in deriving the vibrational±rotational spectrum of such a
structure in Ref. [30]. After the publication of paper [34],
V L Vinetskii, one of the authors of TCBP studies [29, 30],
recognized the failure of thismodel; his last studywas devoted
to OCBPs [120].

Nevertheless, studies of the TCBP vibrational±rotational
spectrum near the physically senseless secondary minimum
gave rise to an erroneous line of BP research that still
continues to develop. We thoroughly analyzed such erro-
neous work in Ref. [121].

3.1.4 Long-range interactions between polarons. In the strong-
coupling approximation, the autolocalized polaron exhibits a
discrete spectrum and in this sense can be regarded as an
analog of the hydrogen atom [24, 111]. It was shown in
Ref. [106] that, at large interpolaron distances, electron
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correlations related to the direct dependence of the BPWFon
the distance between electrons do not play significant role. At
such distances, the WF of two polarons (Fig. 3b) can be
approximated with a high accuracy by the symmetrized
(singlet state) or antisymmetrized (triplet term) product of
WFs of isolated polarons. The terms corresponding to the
kinetic energy can be eliminated in the same way as in the
Heitler±London method for the hydrogen molecule [96]. The
energy of two noninteracting polarons can be regarded as the
ground state. Then, the energy of the two polarons can be
represented with an accuracy up to the terms quadratic in
overlap integral in the following form

Eint � E1 ÿ JexS1S2 ; �17�
where S1 and S2 are spins of the first and second polarons,
and

E1 � 1

e0

�
a�1�2b�1�2

r12
dt12 ; Jex � 1

e1
K1 ÿ 4

~e
K2K ; �18�

K1 �
�
a�1�b�1�a�2�b�2�

r12
dt12 ; K2 �

�
a�1�b�1�b�2�2

r12
dt12 ;

K �
�
a�1�b�1� dt1 :

Here, notations generally accepted for the coordinates of two-
center systems were introduced: a�1�, and b�1� are polaron
WFs centered at points a and b, respectively �a�1� � CP�ra1�,
b�1� � CP�rb1��. Variational function (11) can be used as a
polaron WF; this function permits reproducing, accurate to
six decimal places, the polaron energy value obtained by
Miyake [107] by numerical solution of the appropriate Euler
equation. In expression (18), the first term of exchange energy
Jex corresponds to ferromagnetic Coulomb exchange, while
the second one describes the antiferromagnetic interaction
between polarons due to the phonon contribution.

Thus, polarons repulse each other at large distances, while
the spin-dependent part of the interaction energy (total
exchange) has an antiferromagnetic (AF) nature (as Z! 0,
E1 � 1=e0R, Jex � ÿ3K 2=e1R). This also means that the
potential barrier needs to be overcome if the bipolaron state
is to be formed.

Because polarons repulse each other at large distances, a
polaron system can behave analogously to an electron gas
with Coulomb repulsion between the particles. In this system,
as in the electron gas [122], transition to the Wigner crystal is
possible at sufficiently low concentrations, provided condi-
tion kBT < e 2=e0a is satisfied (where a is the interparticle
distance). Wigner crystallization of polaron gas has been
considered in a series of studies. By way of example, it was
shown in Refs [123, 124] that a system of polarons
(continuous approximation) is subject to crystallization into
a hexagonal lattice with a period determined by polaron
concentration, as in the Wigner theory. The authors of
paper [125] assessed the stability of polaron Wigner crystals
and provided theoretical substantiation of the possibility of
insulator±superconductor transition in polaron lattice break-
down. It should be emphasized, without going into the details
of this phenomenon, that AF-exchange interaction between
polarons may lead to AF-ordering in the polaron system,
provided Wigner crystallization conditions are fulfilled [106].
Antiferromagnetism in electron Wigner crystals was consid-
ered in Refs [126, 127].

AF interaction between polarons may diminish the
paramagnetic constituent of magnetic susceptibility in a

polaron gas at an elevated polaron concentration, even if
bipolaron bound states fail to form.

3.2 The continual bipolaron in anisotropic crystals
Hamiltonian (2) can be generalized for the case of crystals
with anisotropic effective masses and permittivities. BP
energy in anisotropic crystals was calculated for the first
time for the two-center BP model in Refs [32, 33]. The main
purpose of calculations in such systems was to confirm the
authors' conjecture that bipolaron binding energy in aniso-
tropic systems, expressed in units of double polaron energy,
must increase compared with the corresponding values of
binding energy in isotropic crystals. Accordingly, the region
of Z values at which a BP exists must extend. Crystals with an
axially symmetric effective mass of charge carriers (`light-
plane' and `light-axis' type symmetries) were chosen as
concrete objects. The assumption of expanding the bipo-
laron region of existence over parameter Z was confirmed.

In later studies [35, 36], the BP Hamiltonian considered
earlier in Refs [32, 33] was utilized to determine the OCBP
binding energy. The trialWFwas chosen, taking into account
electron correlations, in the form

C�r1; r2� �
Xn
i� 1

Ci exp �ÿa1iz 21 ÿ 2a2iz1z2 ÿ a3iz
2
2 �

� exp �ÿb1i r 2
1 ÿ 2b2iq1q2 ÿ b3i r 2

2 � ; �19�

where q1 and q2 are radii vectors in the xy plane of the first and
second electrons, respectively: q � �x; y�, with Ci, a1i, a2i, a3i,
b1i, b2i, and b3i being variational parameters.

The energy minimum for OCBPs in anisotropic systems
considered in Refs [35, 36], as for an isotropic crystal, was
much deeper than for TCBPs. Therefore, the TCBP corre-
sponds to the secondary minimum in the case of anisotropic
crystals, too.

Figure 5 shows the dependences of BP energy on the
parameter Z for different anisotropy parameters of electron
effective masses m �xy=m

�
z in a crystal with an anisotropic

effective mass of the `light-plane' type. The region of
existence of anisotropic BP significantly extended. Calcula-
tions were made with five terms entering into expression (19).
Permittivities were assumed to be isotropic.

The example of the calculation of BP energy in Ref. [35]
refers to a crystal where both permittivities and electron
effective masses are anisotropic. The authors analyzed, as a
case in point, the BP energy in La2CuO4. Experimental
permittivities for these crystals are well known: e0 � 50,
e1 � 4 in a plane of CuO2 layers, and e0 � 23 in the
perpendicular direction. For isotropic effective masses, the
BP binding energy calculated in work [35] comprises 15.6% in
units of polaron energy, and increases to 25.2% in the
mxy 5mz limit, which makes the emergence of bound BPs in
this HTSC crystal highly probable, especially taking into
account that this material constitutes a system with well-
apparent anisotropy of the `light-plane' type.

3.3 The continual intermediate-coupling bipolaron
Free BPs and F 0-centers in ionic crystals for the case of
electron±phonon interaction with an arbitrary strength were
considered in paper [26]. Because the BP trial function was
chosen in the form of the product of polaron WFs, electron
correlations were absent and the BP bound state could not be
found. The Buimistrov±Pekar method [26] was successfully
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applied in a later study by Larsen [37], where the Dÿ-center
was considered in polar crystals.

3.3.1 Canonical transformation method applied to systems with
electron±phonon interaction. The Buimistrov±Pekar method
reduces to the choice of the trial function for a two-electron
system in a phonon field in the form

F12 � C�r1; r2� exp �ÿS1� exp �ÿS2�j0i ; �20�
S1 �

X
k

Fk�a�k ÿ ak� ;

S2 �
X

k; i� 1;2

gk
�
exp �ÿikri�a�k ÿ h:c:

�
;

where Fk and gk are variational functions corresponding to
static (strong coupling) and dynamic polarization of the
phonon field, respectively. Fk and gk, determined by varying
the effective Hamiltonian over these functions, are defined as
follows:

gk �
Vk

ÿ
1� w�k��

1� k 2 � w�k� ; Fk � ÿ�gk ÿ Vk�Uk ;

U�k� � 
cos �kr1� � cos �kr2�
�
; �21�

w�k� � 
cos �kr12��ÿ 1

2
U 2�k� :

The canonical transformation proposed by Adamowski
and Bednarek [20] to find the energy of the free BP and Dÿ-
center differs from the Buimistrov±Pekar transformation (20)
in the absence of variation over gk and Fk, and these functions
are chosen in the form

gk � Vk
l1

r 2
1 k

2 � 1
; Fk � Vk

l2
�r 2

2 k
2 � 1�2 ; �22�

where l1; 2 and r1; 2 are variational parameters.

Table 2 lists values of the BP ground state energy for
different parameters a and Z obtained by the Buimistrov±
Pekar method [26] in Ref. [128], and by the Adamowski
canonical transformation method [19] in Ref. [20].

Results of the variational calculation of BP energy by
different methods should be compared with the total ground
state energy as in Table 2 rather than with the BP binding
energy that is usually calculated with respect to polaron
energy obtained in the same approximation as the BP
energy, and may be different depending on the method
applied.

For the entire BP existence region, the Buimistrov±Pekar
method gives the lowest values of the ground state energy and
the widest region of BP existence compared with the best
results of direct variational methods, including variation of
the WF system [19, 20].

The dependences of BP energy as functions of the distance
between the centers of polarization wells of two polarons for
different WFs are shown in Fig. 6. All values are expressed in
Feynman units. In Ref. [21], such dependences are presented
for different electron±phonon coupling constants. Calcula-
tions were made by the Buimistrov±Pekar method [26].

It is well known that the best results of polaron energy
calculations for practically the entire range of the FroÈ hlich
coupling constant are obtained by the trajectory integral
method. However, this method loses its advantage for
systems with Coulomb interactions, such as BPs, Dÿ-
centers, and complexes of small impurity centers, compared
with calculations done by variation of the system's WF. For
example, the Feynman method gives higher BP energy values
than the Buimistrov±Pekar method for all a5 7:3 [21, 105].
At the same time, the best BP energy obtained by the latter
method for a � 7 was ÿ16:23 [21], i.e., greater than ÿ16:27
arrived at using integration over trajectories (this value was
reconstructed from the graphical data presented in Ref. [16]).
However, the region in which such an advantage of the
trajectory integral method holds true is very narrow;
specifically, the critical value of the parameter obtained in
Ref. [16] was ac � 6:8 compared with ac � 6:9 found in
Ref. [105]. It should be noted that the two values were
calculated with respect to the Feynman energy of the polaron.

Figure 6 illustrates an intermediate-coupling case: a � 9
and Z � 0 [105]. Feynman units are used as units of energy
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0.2
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DW=2JP

e1=e0

�m0e21=m
�
xy�DW
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1 0.05 0.20

Figure 5. Dependences of BP energies DW � JBP ÿ 2JP (double polaron

energy is taken as zero) and quantity DW=2JP on the e1=e0 ratio for

different anisotropy parameters of the electron effective mass and

isotropic permittivities. Lines 1±5 correspond to the parameter m �xy=m
�
z

equaling 1, 2ÿ2, 2ÿ4, 2ÿ15, and 2ÿ20, respectively.

Table 2. The BP ground state energy for different parameters a and Z. EBP

and EA
BP are BP energies computed by the Buimistrov±Pekar [26] and

Adamowski [19] methods in Refs [128] and [20], respectively.

a Z EBP [128] EA
BP [20]

6
0 ÿ12:703 ÿ12:601
0.01 ÿ12:595 ÿ12:487

7

0 ÿ16:243 ÿ16:067
0.01 ÿ16:053 ÿ15:91
0,10 ÿ14:598 ÿ14:500

9

0 ÿ24:927 ÿ24:652
0.01 ÿ24:650 ÿ24:354
0.10 ÿ22:068 ÿ21:756

20

0 ÿ111:928 ÿ110:504
0.01 ÿ110:497 ÿ109:064
0.10 ÿ96:878 ÿ95:335
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and length. In the simplest case of the absence of interelectron
correlations �a1i � a3i, a2i � 0�, the sole minimum in the total
energy vs. interpolaron distance plot corresponds to nonzero
R � Rm. The maximum occurs at R � 0. Increasing the
flexibility of the trial WF and assuming a1i 6� a3i, a2i � 0
gives two extrema as well (curve B in Fig. 6). Thus, the
bipolaron has a nonzero binding energy at R � 0 and the
maximum corresponds to this point, the same as in curve A.
Energy dependences A and B in Fig. 6 describe the TC model
of a BP. In the case of the most flexibleWF �a1i 6� a3i, a2i 6� 0�
chosen with account of the direct interelectron distance
dependence of the BP wave function, the BP energy for the
OC configuration deepens significantly and the secondary
minimum at point R � Rm disappears (curve C in Fig. 6).
Figure 6 demonstrates that the TC configuration of the BP
results from the inexact choice of the system's WF, while the
minimum corresponding to this configuration is a secondary
one. Thus, the continual TCBP as a stable entity makes no
physical sense whatever.

3.4 Dÿ-centers in ionic crystals
Reference [37] reported a giant rise in the binding energy of
Dÿ-centers in polar crystals, related to taking account of
interelectron correlations. Results of the calculation of the
parameters corresponding to AgCl and AgBr crystals were
discussed as concrete examples.

Consideration of BP bound on the Coulomb potential
gives rise to an additional system's parameter describing the
interaction of electrons with a static charge field. Let us
define Dÿ-center energy as a function of two dimensionless
parameters: the FroÈ hlich constant a of electron±phonon
interaction, and the effective rydberg-to-�ho ratio, R �
m �e 4=2e 20 �h 3o � �e 2=2r0�hoe0�2, where r0 �

������������������������
�h=2m ��hoe0

p
.

Numerical values of the ground state energy and binding
energy forDÿ-centers inAgCl andAgBr crystals, obtained by
canonical transformation methods in Refs [37, 101, 105], are
listed in Table 3.

Figure 7 presents a `phase diagram' of the Dÿ-center,
borrowed from paper [101]. It can be seen that the properties
of the Dÿ-center vary with changes in the parameters a andR.

Electron±phonon interaction can not only increase the
binding energy of the Dÿ-center but also cause its instability
(region I). Instability of the Dÿ-center is realized in TlCl,
TlBr, PbS, and PbSe semiconductors. In the P region, the Dÿ-
center for a5 1 resembles a negative hydrogen atomic ion,
and its binding energy increases as the parameter a increases.
This parameter region is characteristic of semiconducting II±
VI compounds. For a5aP � 7:2, and R5 2, the binding
energy of the Dÿ-center rapidly grows. This parameter region
is characteristic of crystals with ionic bonding. In the case of
strong electron±phonon interaction, the binding energy of the
Dÿ-center becomes commensurate with that of the hydrogen-
like D0-center and even exceeds it with a further rise in
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Figure 6. (a) Plots of BP energy vs. distance between centers of polarization wells of two polarons (Z � 0, a � 9). Curves A, B, C correspond to variations

of total BP energy. Bipolaron WF is given by Eqn (9) for a1i � a3i and a2i � 0; a1i 6� a3i and a2i � 0, and a1i 6� a3i and a2i 6� 0, respectively.

(b) Dependences of different contributions to BP energy on the interpolaron distance for WF (9) of the most general form: a1i 6� a3i, a2i 6� 0. VC is the

Coulomb repulsion,T andV s
ph are contributions corresponding to the addition of strong coupling to the kinetic energy and EPI energy,Vph � V s

ph � V int
ph

is the total contribution of the EPI constituent to the BP ground state energyEBP � T� VC � Vph, andV
int
ph is the addition of intermediate coupling to the

EPI energy.
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Figure 7. `Phase diagram' of the Dÿ-center: a is the FroÈ hlich constant of

electron±phonon interaction, andR � RD=�ho (the ratio of effective donor

rydberg RD � m �e 4=2�h 2e 20 to the energy �ho of longitudinal optical

phonons). The Dÿ-center is unstable in region I; formation of polarons

and D0-centers is energy-preferred in region P; in region U, the binding

energy of the D0-center is lower than that of the Dÿ-center (Uÿ-centers
with negative correlation energy); bipolarons are formed along with Uÿ-
centers in region B. (Taken from Ref. [101].)
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electron±phonon interaction strength (region U). This region
corresponds to alkali±haloid crystals. In region B, BPs form
along with Dÿ-centers. Nevertheless, they tend to localize
on positively charged donors because the binding energy of
Dÿ-centers is higher than that of BPs.

3.5 Exchange-coupled pairs
of paramagnetic centers in ionic crystals
If a TCBP as a self-contained structure is energetically
unstable, then an exchange-coupled pair of paramagnetic
centers (PCs) or BP bound on the TC Coulomb potential
constitutes a stable system. The first work designed to study
PCs and their complexes in a phonon field was carried out
using alkali±haloid crystals in the framework of continuous
approximation [28]. The F-centers of such crystals being
deep, neither the continuous approximation used to describe
electron±phonon interaction nor the effective mass approx-
imation for an electron localized at a center can be a proper
model. However, there are small hydrogen-like centers for
semiconducting II±VI and III±IV compounds, as well as for
crystals with ionic bonds (like AgBr and AgCl), for which the
continuous approximation is fulfilled with a sufficiently high
accuracy [37, 129, 130]. The distance between paramagnetic
centers in an exchange-coupled pair is determined by the
concentration of impurity centers, crystal growth conditions,
and the technical process of defect formation in the crystal
lattice rather than by the energy minimum. This makes
possible, in principle, the appearance of exchange-coupled
pairs in the entire range of distances between paramagnetic
centers. The dependences of different contributions to the
energy of such TC structures on the distance between PCs
were presented in Ref. [105]. If the PCs have moved to great
distances from each other, the role of electron correlations
significantly decreases. Electron correlations are essential for
PCs located at distances smaller than the PC Bohr radius and
for one-center systems, such as F 0- and Dÿ-centers [37, 101,
105, 128].

At large distances between PCs, the energy of interaction
between the centers can be regarded as a small addition to the
ground state energy that includes the energy of interaction
between isolated PCs and phonons. Then, the energy of
interaction between the centers, including Coulomb interac-
tions and indirect interactions via a phonon field (or other
elementary excitations of crystal lattice), can be considered in
terms of the perturbation theory. The problem in such a
formulation was addressed in papers [131, 132], where the

contribution of phonons to the energy of nonrelativistic
exchange interaction between PCs via the fields of optical
and acoustic phonons was studied. The numerical calcula-
tions reported in Refs [131, 132] demonstrated that the
phonon contribution to the energy of isotropic spin±spin
interaction of PCs is of the same order of magnitude as direct
Coulomb exchange. The temperature effects of exchange
interaction associated with phonons were investigated in
Ref. [132].

Today, interest in studying shallow exchange-coupled
pairs and Dÿ-centers has greatly increased owing to the
development of nanotechnologies and the possibility, in
principle, of creating quantum computers embodying elec-
tron spin resonance effects [133±135], in particular, with the
use of GeÿSi structures [136].

4. The virial theorem
and interpolaron interaction

Conditions for the fulfillment of the virial theorem (VT) for a
polaron functional in the general form for an arbitrary
coupling were investigated by Lemmens and Devreese [137],
and in application to strong-coupling BPs by the authors of
the present review in Ref. [104].

4.1 Scaling transformation and the virial theorem
for the strong-coupling polaron and bipolaron
In the strong-coupling limit, the energy EP of polaron
ground state and BP energy EBP are defined as the lower
boundaries (absolute minima) of functionals (6) and (7):
EP � min JP�C1� and EBP � min JBP�C12�, respectively, the
sole additional condition being normalizability of the trial
WF [138, p. 156].

Let us substitute the function c � l3N=2C�lr� for the trial
function C�r� (where r � fr1; r2; . . . ; rNg, N is the number of
electrons) and consider the scaling transformation coefficient
l as a variational parameter. If the function C�r� leads to an
extremum of the functional of interest, then c at l � 1 turns
intoC; consequently, JBP�c�must have an extremumat l � 1.

The variation of functional JBP�c�lr�� over parameter l
gives

dJBP
dl
� 0 : �23�

Relation (23) represents a mathematical expression of the
virial theorem associated with the scaling transformation of

Table 3.Ground state energies of the Dÿ-center (bound on the BP Coulomb potential) taken from Refs [37, 101, 105].

Crystal a R �ho, meV Eÿ E0 Eÿb E 0
b Eÿb =E

0
b Ref.

CdTe 0.272 0.657 21.08 ÿ1:266 ÿ0:965 0.029 0.693 0.042 [105]

CdS 0.529 0.783 38.0 ÿ1:931 ÿ1:363 0.039 0.834 0.047 [105]

ZnSe 0.45 0.924 31.4 ÿ1:926 ÿ1:428 0.048 0.978 0.049 [105]

AgBr 1.64 1.68 15.4
ÿ5:656
ÿ5:637

ÿ3:818
ÿ3:817

0.198
0.180
0.132

2.178
2.177
2.166

0.091
0.083
0.061

[105]
[101]
[37]

AgCl 1.9 1.9 24.4
ÿ6:668
ÿ6:643

ÿ4:483
ÿ4:482

0.285
0.261
0.202

2.583
2.582
2.560

0.110
0.101
0.078

[105]
[101]
[37]

CdF2 2.53 1.274 50.0 ÿ7:357 ÿ4:510 0.317 1.98 0.016 [105]

Note. Eÿ and E0 are the ground state energies of Dÿ- and hydrogen-like D0-centers, respectively. Eÿb and E 0
b are the binding energies corresponding to

these centers.
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coordinates of the system being considered and holds true for
any extremum of the initial functional, including any
secondary extremum.

In the strong-coupling limit, terms corresponding to the
kinetic and potential energies of functionals (6) and (7) exhibit
the property of homogeneity. Due to this, application of the
scaling transformation allows for variation over parameter l
in the analytical form and leads to simple expressions for the
ground state energy, for which the VT in the simplest form is
fulfilled at extreme points, namely, the kinetic energy of the
system equals the total energy taken with the opposite sign.
The scaling factor and the energy of the self-consistent ground
state for a normalized polaron and BP functions are defined
by the expressions

l � ÿ VP�BP�
2TP�BP�

; EP�BP� � ÿmin

�
V 2

P�BP�
4TP�BP�

�
; �24�

where EP�BP�, VP�BP�, TP�BP� are the mean values of total,
potential, and kinetic energies of the polaron (BP). In the
general case, in the presence of additional Coulomb interac-
tions in the system arising for bound polarons and BPs (e.g.,
F- and F 0-centers in polar crystals), themean potential energy
VP�BP� includes phonon field energy, electron±phonon inter-
action energy, and the energy of all Coulomb interactions in
the system.

It is worth noting that the property of homogeneity over
parameter l for the terms corresponding to mean kinetic and
potential energies is lost for the polaron and BP functionals
obtained by the Buimistrov±Pekar method; therefore, the VT
in the simplest form related to the scaling transformation of
electron coordinates cannot be fulfilled.

For a nonzero distance R between two polarons, the VT,
even in the strong-coupling regime, has a more complicated
form

R
dEBP�R�

dR
� 2TBP�R� � VBP�R� � 0 : �25�

Naturally, condition (23) must be satisfied at any value of
the electron±phonon interaction constant. However, it is
impossible to vary the polaron and intermediate-coupling
BP functionals over parameter l and obtain the scaling
transformation factor l in the analytical form. Nevertheless,
the VT at points corresponding to minima of polaron and
bipolaron functionals must be fulfilled and can be checked
numerically.

4.2 The Pekar 1 : 2 : 3 : 4 theorem
for the strong-coupling polaron
The VT in application to polarons studied by Pekar [24,
25] was called the 1 :2 :3 :4 theorem. The theorem states
that the following relations hold in the strong-coupling
limit:

TP � ÿFP ; Eph � ÿ2FP ; Eel � 3FP; Eint � 4FP ; �26�

where

FP � TP � 1

2
Eint ; Eel � TP � Eint : �27�

The ground state energy EP and quantities TP, Eph, Eint

(mean kinetic energy, phonon field energy, and electron±

phonon interaction energy, respectively) are described by the
expressions

EP �


CPjHPjCP

�
; TP �

�
CP

����ÿ �h 2

2m �
D

����CP

�
;

Eph �
�
CP

����X
k

�hoka
�
k ak

����CP

�
; �28�

Eint �
�
CP

����X
k

�
Vkak exp �ikr� � V �k a

�
k exp �ÿikr������CP

�
:

In the strong-coupling limit at minimum points, the total
polaron energy EP � TP � Eint � Eph equals the kinetic
energy taken with the opposite sign, and FP defined by
formula (27) coincides with the total energy of the self-
consistent state that can be interpreted as the polaron
thermal ionization energy.

4.3 The 1 : 3 : 4 theorem for electron systems
at an arbitrary strength of electron±phonon interaction
Relations (26) can be obtained by application of the
Hellmann±Feynman theorem [139, 140] to the polaron
functional. According to this theorem, when quantity
E0 � hF0jHjF0i depends on a certain parameter b, the
derivative with respect to b is expressed as

dE0

db
�
�
F0

���� dHdb
����F0

�
: �29�

Electron charge, effective mass, phonon energy, etc. may
be considered as the parameter b. Derivation of expressions
(26) using the Feynman theorem (29) was implemented by
Lemmens and Devreese [137]. This approach is not confined
to the strong-coupling limit. Reference [137] provides proof
that relations of the 1 :3 :4 theorem for polarons hold for
the entire variation range of the electron±phonon interac-
tion constant, whereas the 1 :2 relation, similar to equality
FP � EP, is satisfied only in the strong-coupling limit. The
1 :2 relation ensues from the fact that the ground state
energy must be proportional to a 2 and corresponds to the
strong-coupling limit considered by Pekar [24, 25]. As
shown in Ref. [141], the 1 :2 :3 :4 theorem remains true for
the terms proportional to a 2, provided the polaron energy
can be represented as a series expansion in the parameter
1=a 2.

The method employed in Refs [137, 142] for proving
the VT for polarons is just as well applicable to an
electron system with Coulomb interactions. The objects
of interest can be polarons bound on Coulomb centers
(shallow impurity centers in covalent crystals or F-centers
in ionic crystals), free bipolarons and those bound by
Coulomb centers (Dÿ- or F 0-centers, exchange-coupled
pairs of shallow impurity centers, or F2-centers), as well
as more complicated systems of impurity centers in a
phonon field. It is easy to show by means of simple
transformations that the 1 :3 :4 theorem remains true for
one-electron and two-electron (in the general case, many-
electron) systems in a phonon field at an arbitrary strength
of the electron±phonon interaction; in the case under
consideration, this theorem is formulated in a more
general form:

ÿT � ~F ; ~Eel � 3 ~F ; ~Eint � 4 ~F ; �30�
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with the notations generalizing definitions (27) for systems
with Coulomb interactions:

~F � T� 1

2
~Eint ; ~Eint � Eint � 2EC ; ~Eel � T� ~Eint ; �31�

where T is the kinetic energy, Eint is the electron±phonon
interaction energy, and EC � hF0jHCjF0i contains all Cou-
lomb interactions in the system.

For the BP functional, one finds

EBP �


F12jHBPjF12

�
; Eph �

�
F12

����X
k

�hoka
�
k ak

����F12

�
;

TBP �
X
i� 1; 2

�
F12

����ÿ �h 2

2m �
Di

����F12

�
; EC �

�
F12

���� e 2

e1r12

����F12

�
;

Eint

�
X

k; i� 1; 2

�
F12

����X
k

�Vkak exp �ikri�� V �k a
�
k exp �ÿikri�

�����F12

�
;

�32�

where F12 is the WF of the system with Hamiltonian (2).
Quantity EBP � TBP � EC � Eint � Eph defines the total BP
energy.

The problem of calculation of the quantities entering into
expressions (30) and defined by formulas (31), (32) is worthy
of special consideration.

By way of example, we shall discuss the calculation of
polaron- and BP-state energies employing the Buimistrov±
Pekar method [26]. BP trial functionF12 is chosen in the form
(20). In order to calculate mean values of quantities entering
Eqns (32), it is convenient to use expressions relating phonon
field and kinetic energy operators before and after canonical
transformation:

Uÿ1a�k U � a�k ÿ Fk ÿ
�
exp �ÿikr1� � exp �ÿikr2�

�
gk ;

Uÿ1
1

i
H1; 2U � 1

i
H1; 2

�33�

�
X
k

kgk
�
exp �ÿikr1; 2�a�k � exp �ikr1; 2�ak

�
;

where U � exp �ÿS1� exp �ÿS2�.
In other words, when verifying fulfillment of the virial

theorem defined by expressions (30), (31), it is first of all
necessary to perform a canonical transformation and obtain
expressions corresponding to the new (renormalized) values
of kinetic energy and electron±phonon interaction operators.
These operations should be followed by averaging over the
electron WFs.

Numerical testing indicates that virial relations (30) are
fulfilled for the BPs considered by the Buimistrov±Pekar
method for an arbitrary strength of electron±phonon inter-
action. Similar to the strong-coupling limit, the VT is satisfied
for both the OC-configuration of BPs and the TC-configura-
tion corresponding to the shallow secondary minimum that
disappears if the electron WF is chosen taking account of
electron correlations associated with the direct dependence of
the WF on the distance between electrons. Thus, the VT is
automatically fulfilled at points corresponding to minimal
functional values (including secondary minima). In confor-
mity with the variational principle, preference should be given
to lower energy values because greater ones may disappear
upon choosing a more flexible WF.

5. Polaron±polaron interactions

5.1 Interpolaron interaction
in the region of polaron negative binding energy
The consideration of problems pertaining to the study of the
dependence of interpolaron interaction energy on the dis-
tance between polarons in previous Section 4 involved the
region of crystal parameters corresponding to the BP positive
binding energy. Analysis of the distinctions between TCBPs
and OCBPs is of special importance for this region. Equally
significant is the problem of finding the interaction potential
between two polarons for the region of weak and intermediate
coupling of electrons to a phonon field. In the case of strong
coupling, the energy of polaron±polaron interaction asR! 0
tends toward a finite value and does not diverge as in
electron±electron interactions in crystals with a weak elec-
tron±phonon interaction. This property persists in the
crystal's parameter region in which no BP forms and a
polaron can be regarded as a particle with internal degrees
of freedom [24, 111].

The behavior of polaron±polaron interaction energy in
the parameter region where repulsion prevails for all inter-
polaron distances can be illustrated by the dependence of BP
energy on the distance between polaron well centers at
Z � 0:15, as shown in Fig. 4 (top curve). Evidently, polarons
repulse each other but give rise to a common potential well as
they draw closer together, the wall whereto both electrons
become attracted; therefore, at such distances electron
repulsion weakens.

In the literature, the term `polaron±polaron interaction
potential' is sometimes applied to different physical quanti-
ties. In this review, we define this potential as a quantity
corresponding to the difference between the total energy of a
two-electron system and the double energy of a free polaron.
This is the most general definition that holds true for any EPI
strength. Such a definition implies a contribution of all terms
of the initial Hamiltonian to the polaron interaction energy,
including the energy of electron interaction with the common
potential well resulting from polarization of the crystal lattice
by electrons.

Adamowski [19] applied the term `effective polaron±
polaron interaction' to that part of the effective BP Hamilto-
nian which depends on the distance r12 between electrons:

V12�r12� � 1

r12

�
b� 2al1�l1 ÿ 2�

�
1ÿ exp

�
ÿ r12

r1

��
ÿ al21

r1
exp

�
ÿ r12

r1

��
; �34�

where b � 2a=�1ÿ Z�.
Potential (34) assumes the character of repulsion potential

and increases the total BP energy; however, additional terms
in the effective Hamiltonian that can be interpreted as the
energy of electron interaction with lattice polarization
compensate for repulsion and give rise to the formation of a
bound state.

In the effective Hamiltonian obtained by the Buimistrov±
Pekar method, a similar interaction can be distinguished:

V12�r12� � 2
X
k

�g 2
k ÿ 2Vkgk� cos �kr12� : �35�

Nevertheless, in both cases such a distinction of pairwise
electron±electron interaction potential in the BP functional
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has a formal character since variational parameters l1 and r1
entering into expression (34) and the variational function gk
entering expression (35) contain implicit information about
the total BP functional and they can be found only by its
minimization.

The Hamiltonian of the Dÿ-center differs from the BP
Hamiltonian only in the additional Coulomb potential [37,
101]. For this reason, potentials (34) and (35) of effective
electron±electron interaction can be extrapolated to the
region of weak electron±phonon coupling. Such a passage to
the limit was explored by Larsen [37]. In this limit, it is
possible to neglect static polarization and put Fk � 0 and
gk � Vk=�1� k 2� in formula (20). The effective electron±
electron interaction potential obtained in this limit assumes
the form

V12�r12� � e

e0r12
� e

~er12

�
1ÿ 1

2
r12

�
exp �ÿr12� ; �36�

where b � 2a=�1ÿ Z�.
Potential V12�r12� is much weaker than the Haken

potential [115]

VH�r12� � e

e0r12
� e

~er12
exp �ÿr12� ; �37�

therefore, the utilization of V12�r12� instead of VH�r12� leads
to a greater binding energy of the Dÿ-center.

The energy spectrum of the Dÿ-center in semiconductors
with weak electron±phonon interaction was studied by Shi et
al. [143] in the context of perturbation theory.

Buimistrov and Pekar [26] also investigated the passage to
the limit of weak coupling. They considered the F-center as an
example. Putting the electron WF in the form C �
const � Vÿ1=2 (which corresponds to the absence of interac-
tion with the potential of static Coulomb charge, VC�r� � 0,
and the limiting case of weak coupling, Vk ! 0) leads to

exp �ikri� � 0 ; exp �ikri j� � di j
V
;

�38��
Hi exp �ikri�

�2 � k 2

V
;

where subscripts i; j � 1; 2 label electrons, V is the crystal
volume, and the function over-bars denote averaging over the
electron WF. In this limit, the effective radius of the F-center
tends toward infinity, the electron WF may be replaced by a
constant quantity, and the effective functional of the F-center
turns into the functional of a weak-coupling polaron with the
energy EP � ÿa�ho. The Buimistrov±Pekar method [26] that
takes no account of translational symmetry begins to give
smaller values for the polaron energy than the above linear
dependence only for a > 6.

More exact values of the polaron energy were obtained by
Buimistrov and Pekar [144], who took into consideration in
the polaron's effective Hamiltonian the additional terms
dependent on the total momentum, which arose from taking
account of the translational invariance of the initial Hamilto-
nian. Expressions for the polaron energy taking into account
translational invariance are rather cumbersome; for this
reason, numerical calculations of the polaron energy using
the translation-invariant Buimistrov±Pekar method remain
to be completed. This method has not thus far been used to
calculate BP energy, too. Approximate formulas allowing

polaron energy to be estimated in the case of intermediate
coupling were presented in Ref. [144]; they make it possible to
compare the above method with Feynman's trajectory
integral method. By way of example, it was reported in
Ref. [144] that the polaron energy estimated at a � 5 is
roughly 7% smaller than that assessed by the Feynman
method [17, 18].

The primary goal in many studies covering electron
interactions in crystals via a phonon field has not been to
determine the total energy of a two-electron system but to
examine the pair potential of electron±electron interactions,
whichweakensCoulomb repulsion. Tulub [145] has found the
electron±phonon interaction potential taking into account
relative momentum of electrons in the intermediate-coupling
approximation. To begin with, BP Hamiltonian (2) is written
in the center-of-mass system; then, coordinates of this center
are excluded by applying canonical transformation of Lee,
Low, and Pines (LLP) [146, 147]. The total momentum is
assumed to be zero and the effective Hamiltonian is split into
two parts, one of which,H0, includes only terms depending on
the interelectron distance and describes `free' motion of a
polaron having effective mass m � m �=2 in a phonon field
with the frequency ok � o� k 2=�4m�, while the other, HI,
contains all the remaining terms of the initial Hamiltonian,
plays the role of potential energy operator, and is considered
as a correction. The energy correction obtained in Ref. [145]
depends on the interelectron distance and has the form

jq�r12� � ÿ
e 2

r12~e
a 2 ÿ 2b 2

a 2
� e 2

r12~e
exp

�ÿ�a 2 ÿ b 2�1=2r12
�

� aÿ2
��a 2 ÿ 2b 2� cos �br12� ÿ 2�a 2 ÿ b 2�1=2b sin �br12�

�
;

�39�

where a 2 � 2m �o, 2b � q�1ÿ ~Z�, and q is the relative
momentum of two electrons. Quantities ~Z and q depend on
the total momentum P of the center of gravity of interacting
electrons; the explicit form of these functions can be found in
Refs [146, 147]. Quantity ~Z can be determined numerically for
each given value of total momentum P.

When the intermediate-coupling LLP method yields
satisfactory results for polaron energy at zero relative
momentum q, expression (39) can be regarded as an exact
one. Phonon interaction itself in the intermediate-coupling
region described by the LLP theory leads to electron±electron
attraction, but the interaction strength is insufficient for BPs
to form because the sum of Coulomb e 2=e1r12 and phonon
jq�r� potentials is always positive. As r! 0, the potential
jq�r� remains finite, and as r!1 the interaction between
two electrons is described by the Coulomb law e 2=�e0r12�.

Bishop and Overhauser [148] used a perturbation theory
method to explore indirect interaction between two elec-
trons via optical and acoustic phonon fields. The main
conclusion they arrived at is that the effective electron±
electron interaction in ionic crystals gives rise to attraction
between electrons and results in the screening of Coulomb
repulsion. Due to this, taking into account electron±phonon
interaction weakens `priming' Coulomb repulsion 1=�e1r12�,
which becomes equal to 1=�e0r12�. It creates a background
for oscillations of the electron±electron interaction poten-
tial. The oscillations are associated with the cutoff of the
phonon spectrum by the Debye value qD of the phonon
wave vector. The asymptotic behavior of the total effective
electron±electron interaction potential at large distances
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between the particles has the form [148]�
e 2

e1r12
� V�r12�

�
r12!1

� e 2

e1r12

�
1�

�
e1
e0
ÿ 1

��
1ÿ 1

2
cos

qDr12
b0

��
; �40�

where b0 � ��hq 2
D=�2m �o��1=2.

As follows from expression (40), the attractive potential
may arise for e0 > 3e1 between weak-coupling polarons due
to oscillating addition. For the parameters of LiCl crystal, the
first potential well 28 meV in depth associated with oscilla-
tions appears for electrons spaced 33 A

�
apart. According to

the authors of Ref. [148], such deep potential wells may
provoke formation of bound electron states in an ionic
crystal and Bose condensation in an electron system com-
posed of such pairs.

Oscillating behavior of potential (40) of indirect phonon-
mediated interactions and of the potential V�r12� defined by
expression (39) has essentially different nature. In the latter
case, as well as in the derivation of formulas (36), (34), and all
expressions for BP energy cited in this review, limits of
integration over phonon variables tend to infinity, which
corresponds to qD !1. In Ref. [146], such a scheme is
explained by the fact that the contribution to all integrals of
the phonon WF rapidly decreases with increasing wave
vector.

Formula (40) was derived on the assumption that the WF
of two electrons with opposite spins (spin variables are
denoted by " and #) has the form exp �ik"r1� and exp �ik#r1�,
while electron momenta k"; k# � 0. In this case, the WFs of
interacting electrons are constants, while interaction potential
is spherically symmetric and depends on r12 alone. In order to
obtain the interaction energy of two electrons, it is necessary
to average the effective potential over the electronWF. Then,
the contribution of oscillating terms to the polaron interac-
tion energy will be significantly smaller than to the initial
expression (40), and the role of oscillating terms averaged
over the electronWF chosen in the formC12 � const reduces
to addition� Vÿ1, which can be omitted in theV!1 limit.
There is no difficulty in understanding this fact if one makes
use of the following relation in integration of potential (40)
with respect to volume:

2p2

r12
�
�
exp �ikr�

k 2
dk

and of expressions (38).
If potential (36) is averaged using WF of the form

C12 � const, radius of Dÿ-center!1, and the second term
in this expression vanishes; therefore, the effective polaron
interaction energy will also correspond to e 2=e0r12.

5.2 Polaron gas
with account of polaron±polaron interactions
De Filippis, Cataudella, and Iadonisi [149] studied the
properties of a polaron gas, taking account of polaron±
polaron interactions. The consideration was confined to the
region of weak and intermediate (on the weak side) electron±
phonon coupling. The scheme for obtaining the effective
electron±electron interaction is essentially similar to that
used by Tulub [145]. First, the coordinate of the BP center
of mass is excluded by the LLPmethod, then theHamiltonian

thus obtained is studied by the variational method as
described inRef. [146]. The trial function is chosen in the form��C�r12�� � U1�r12� j0ij�r12� ;

where j�r� � Nr b exp �ÿgr�, N is the normalization factor,
and operator U1 is defined by the expression

U1�r12� � exp
�
fk�r12�ak ÿ f �k �r12�a�k

�
:

Further on, the effective potential of pairwise interelectron
interaction is considered as a function of the distance between
electrons. Similar to Ref. [148], averaging over this distance is
not performed, and the effective potential of interaction
between two electrons in a phonon field is examined instead
of the total energy of the system of two polarons.

The Bogolyubov±Tyablikov translation-invariant
approach [84, 85] proposed by Bogolyubov for polarons
was generalized by Solodovnikova and Tavkhelidze [150] for
a two-particle system.

The peculiarities of the behavior of effective interaction
energy of electrons in a phonon field are of importance for
the elaboration of the theory of collective effects observed in
a polaron gas. Apart from obvious analogies with collective
effects in solid-state plasma, as well as in atomic and
molecular gases, effects considered earlier in the work of
Bogolyubov and Vlasov [151, 152], the specific dependences
of polaron interaction in a phonon field may give rise to a
number of special features lacking in the previously studied
systems. For example, whole branches of the physics of
nonequilibrium processes concerned with the description of
gas and liquid properties can be, in the literal sense,
`rewritten' for the polaron gas. While fully retaining the
problem formulation set in Refs [151, 152] for systems of
interacting particles (atoms, molecules, electrons), it is
necessary to substitute the potential for pairwise interaction
between polarons into the relevant kinetic equations instead
of the pairwise interaction potential of the aforementioned
systems.

Assuming that polarons possess an internal structure
similar to the atomic one, it is possible to consider by analogy
the problem of finding solutions to a kinetic equation for the
atomic system. The simplest kinetic equation for such a
system has the form [152, Ch. 9]

qf �r; v; t�
qt

� divr vf� divv h _vi f � 0 ; �41�

h _vi � ÿ 1

m
gradr V ; �42�

V�r; t� �
�
K
ÿjrÿ r 0j� f �r 0; v 0; t� dr 0 dv 0; �43�

where K�jrÿ r 0j� is the interaction energy of the pair of
particles at points r and r 0. In a nondegenerate polaron gas,
polarons in thermal equilibrium obey the classical Maxwell±
Boltzmann distribution function, similar to atoms and
molecules in gases and liquids. This property was used by
Pekar [24] to develop a statistical theory of polaron gas in
solids, by Deigen [153] to study anomalies related to magnetic
susceptibility of metal±ammonia solutions, and by Krivoglaz
and Pekar [154] to assess the polaron effect on conduction
electron thermodynamics in semiconductors. In the state of
thermal equilibrium, the distribution function of a polaron
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system has the simplest form

f �r; v� � r�r�o�v2� ; �44�

where

r�r� � r0 exp
�
ÿV�r�

y

�
; o �

�
mv 2

2y

�3=2

exp

�
ÿmv 2

2y

�
;

�45�
here, y � kBT, and r0 is the normalization factor.

Substitution of expression (45) into formula (43) gives
nonlinear integral equation

V�r� �
�
K
ÿjrÿ r 0j� exp�ÿV�r 0�

y

�
dr 0 : �46�

According to the main inference stated by Vlasov in his
monograph [152, pp. 309±312], Eqn (46) describes both
gaseous and crystalline phases depending on density and
temperature of the medium, and interaction forces between
particles. A specific feature of the crystalline phase is the
spatial periodic structure of the distribution function deter-
mining the probability of particle location. In accordance
with this assumption, the periodicity in question is due to
peculiarities of statistical laws of particle motion that relate
atomic displacements in a crystal to the stationary periodic
structure of the distribution function rather than to the
forbiddance imposed on the displacement of atoms from the
equilibrium position.

Such a formulation of the problemwas used by Iadonisi et
al. [155, 156] in a theoretical consideration of the formation of
a polaron crystal from a low-density polaron gas. Interaction
between polarons was calculated in the framework of Pekar's
continuous theory for TCBPs. Because conjectured crystal-
lization occurred in the case of a low-density polaron gas, the
interpolaron distances were much greater than the effective
polaron radius. The difference in interaction potential
between polarons at such distances for TC- and OC-models
becomes smoothed out because the role of interelectron
correlations decreases. The asymptotic behavior of long-
range polaron±polaron interaction energy is described by
expression (17) regardless of the choice of the model. An
important characteristic of the interaction potential of two
polarons in OC- and TC-models is its finite value at a zero
distance, R � 0. In the low-density limit, the long-range
polaron±polaron interaction reduces to Coulomb repulsion,
1=e0R.

Nevertheless, the difference between TC- and OC- models
of the bipolaron is smoothed only in case of traditional
consideration of Wigner crystallization of polaron gas, when
the criterion for the existence of a `polaron crystal' is given by
the amplitude of polaron oscillations about the equilibrium
interpolaron separation [157].

The possibility of periodic solutions to integral equation
(46) identified in the Vlasovmethodwith the realization of the
crystalline state arises only on condition that attractive forces
prevail over repulsive ones; in other words, a necessary
condition is one in which the following integral inequality is
satisfied:�

K�s�s 2 ds < 0 : �47�

In this case, integral (47) must have a finite value.

Thus, it is not only the asymptotic behavior of the long-
range polaron±polaron interaction potential that is essen-
tial for the consideration of polaron gas crystallization
effects in the framework of Vlasov's model, but also the
region near R � 0. At small distances between the centers
of polaron polarization wells, electron correlations begin to
play an important role and polaron±polaron interaction
potential for the OC model has a much deeper potential
well than for the TC model (see Fig. 4). For this reason,
the value of integral form in the OC model may
significantly alter the criteria for the appearance of
periodic solutions and lattice parameters of the polaron
crystal considered in Ref. [156].

5.3 Effects of static and dynamic screening
of electron±electron interactions in a polaron gas
It should also be noted that a necessary condition in the
consideration of polaron gas is the assumption of electro-
neutrality of the system as a whole. To recall, consideration of
Wigner crystallization implies the introduction of the evenly
distributed background of positive charges, against which
electrons are located uniformly. In Ref. [149], the background
positive charge was taken into account, in that the region with
q � 0 was excluded from the consideration when sums taken
over wave vector q were calculated. The dependences of the
interaction energy of the two polarons in Fig. 4 were deduced
in the framework of traditional consideration of the BP
Hamiltonian without regard for additional screening by the
compensating charge field. Therefore, screening effects
related to the condition of electroneutrality of the polaron
gas must be taken into account before these dependences are
utilized for substitution into Eqn (46). Moreover, such
screening will ensure convergence of integral (46) computed
in infinite limits. In this case, the criteria for the existence of
BP bound states, polaron and BP effective masses, and
distance dependences of pairwise polaron interaction energy
(all being functions of polaron gas concentrations) may
change.

In intrinsic semiconductors, conditions of electroneu-
trality are satisfied due to the presence of an electron±hole
gas; in doped semiconductors, ionizing impurities function-
ing as the charged background should be taken into
consideration. Because conditions of a crystal electroneu-
trality are not necessarily of local character and impurities
can be nonuniformly distributed over the crystal lattice,
experimental examination of Wigner crystallization of an
electron gas in real three-dimensional crystals encounters
difficulty. Therefore, those dimension-reduced systems in
which the role of positive background is played by a
system of positively charged ions or holes localized in the
spatially remote region of the neighboring layer are
preferred [158].

Besides static screening effects associated with the
positively charged background, many-electron systems also
exhibit dynamic effects attributable to the influence of
plasma oscillations of current carriers on the properties of
autolocalized electron states, as well as to shallow impurity
centers and their complexes. Such effects, sometimes called
dynamic screening effects, were considered in many studies.
In Ref. [159], perturbation theory methods were applied to
find the potential for indirect interactions between para-
magnetic centers via a plasmon field in a covalent
semiconductor; the authors brought to attention the fact
that interactions between electrons of impurity centers and
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plasmons lowered the ground state energy of the localized
electrons, in perfect analogy with polaron effects in ionic
crystals. Effects associated with interactions between elec-
trons and plasma oscillations in the system of holes in a
covalent semiconductor with hole conduction were consid-
ered in Ref. [160]. Taking into account interactions with
plasma oscillations resulted in the appearance of a large-
radius exciton (continual exciton), the energy of which was
a function of hole concentration in the valence band. In
addition, Ref. [160] considered the possibility of the
formation of autolocalized one-electron (polaron) and two-
electron (bipolaron) states associated with electron±plasmon
interactions in covalent crystals. Iadonisi and colleagues
[161, 162] considered bipolarons in an ionic crystal with
plasma oscillations. Reference [162] focused on deriving the
expression for the potential of effective electron±electron
interaction via phonons and plasmons, examining asympto-
tic dependences of the potential in different limiting cases
corresponding to (1) the complete absence of interaction
with plasmons (electrons interact with phonons alone) and
(2) zero EPI (electrons interact only with plasma oscilla-
tions), and studying the asymptotic behavior of the
potential at large distances, depending on the concentra-
tion of the charge carriers. An important consequence of the
introduction of the electron±plasmon interaction into the
BP functional is also EPI screening since plasmons screen all
electrostatic interactions.

Additional effects related to interactions between local-
ized electrons and plasma oscillations manifested themselves
in all systems studied in Refs [159±162]; they could reduce the
total energy of the system. Plasma oscillations were consid-
ered as analogs of longitudinal optical phonons in ionic
crystals.

Ionic crystals can exhibit the presence not only quasiop-
tical plasmons but also quasiacoustic plasma oscillations. The
possibility of Cooper pairing of current carriers by means of
indirect interaction via plasmons was predicted by D Pines
long before the discovery of HTSC [163]. Such a mechanism
of superconductivity mediated through quasiacoustic plas-
mons was considered by FroÈ hlich [164] and Pashitskii [165].
Studies on this effect were reviewed by Pashitskii and
Pentegov [166]; these authors undertook a detailed analysis
of numerical calculations of screened Coulomb and retarded
electron±plasmon interactions in quasi-two-dimensional
layered crystals with the quasiacoustic plasmon dispersion
law. It was also shown in Ref. [166] that the plasmonic
mechanism of superconductivity ensures rather high tem-
peratures of transition to the superconducting state in 2D-
systems.

Expression (45) holds true for polaron gas at sufficiently
high temperatures. At low temperatures, peculiarities related
to the Fermi statistics of polarons should be taken into
account. Brosens, Klimin, and Devreese [167] studied a
multielectron system in a phonon field by the trajectory
integral method, which allows the effects of translational
invariance of many-particle systems to be considered.
Analysis involved interparticle interaction in the degenerate
polaron gas. Criteria for the formation of a stable multi-
polaron state corresponding to the ground state of a polaron
gas were scrutinized at sufficiently strong EPI and small
parameter Z. In the limiting case of interaction between two
polarons, the singlet term corresponds to the ground state, in
excellent agreement with the antiferromagnetic character of
polaron±polaron interaction (18).

6. Conclusions

A large number of publications concerning HTSC in
materials with totally new chemical composition and struc-
ture have appeared since the discovery of HTSC in cuprate
MOCs. These materials include bismuth and yttrium cera-
mics differing from cuprates in certain characteristics of
crystalline structure and conductance behavior. Supercon-
ductivity and HTSC (with Tc � 33 K in RbCs2C60) were
found in solid fullerenes formed by intercalation of alkali
metal atoms into a crystalline structure of C60 in the
stoichiometric ratio X3C60 or XY2C60 (where X and Y are
alkali metal atoms) [168±170]. Observation of HTSC with
critical temperature Tc � 39 K in the well-known material
MgB2 was reported in 2001 [171].

The majority of high-temperature superconductors con-
stitute extremely complicated oxide compounds of variable
composition that are highly sensitive to the conditions of
synthesis and thermal treatment. Such compounds also
demonstrate high instability during their further service. The
physical nature and mechanism of HTSC in such materials
remain to be elucidated. Controversy pertaining to this issue
was most pronounced in the fierce debate between P Ander-
son and N Mott [67±69], with the active participation of
K MuÈ ller, who continues to advocate the bipolaron mechan-
ism of HTSC [172] as opposed to the `magnetic' theory of
Anderson, despite criticism aimed at him from the latter
author. The bipolaron mechanism of HTSC with Jahn±
Teller pairing is considered in Refs [172, 173]. Reference [174]
contains a review of publications concerned with the relation-
ship between HTSC and Jahn±Teller properties of divalent
copper ions.

Bipolaron superconductivity at sufficiently high tempera-
tures can also be expected to appear in other types of ionic
compounds, metal±ammonia solutions, etc. Suffice it to say
that the CuCl and CdS crystals widely known and used in
semiconductor electronics attracted the close attention of
researchers long before the discovery of HTSC. Putative
observation [175] of HTSC in CdS uniformly compressed at
the liquid-nitrogen temperature was reported 6 years before
the discovery of HTSC with reference to the detection of the
Meissner effect usually accompanying HTSC. It was main-
tained in Ref. [175] that the magnetic properties of CdS under
uniform compression resemble in many respects those of low-
temperature type II superconductors, such as TaNb, in which
superconductivity was apparent at T � 4:2 K.

The anomalous magnetic properties of CuCl were
explored over a long period [176, 177]. Diamagnetic anoma-
lies were shown to develop during rapid freezing of CuCl at
temperatures above 90 K. Soon, independent studies of this
phenomenon [177] confirmed the anomalous enhancement of
diamagnetism in a temperature range of 120±230 K. The
authors attributed these anomalies and their instability in
time to the appearance of HTSC in part of the crystal rather
than in the bulk.

The diagnostics of HTSC transitions may be implemented
with a highly sensitive electron paramagnetic resonance
(EPR) technique. Specifically, transition to the HTSC state
is recorded from the nonresonant signal of microwave
absorption near zero magnetic fields. Nonresonant EPR
signals dependent on the magnetic field and related to the
Josephsonian character of superconductors were detected in
HTSC materials almost simultaneously with the discovery
thereof [178].
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The EPRmethod allowed natural SQUID structures to be
detected in monocrystalline HTSCs like RBa2Cu3O7ÿx
(where R � Y, Gd, Eu) [179]. From angular dependences of
microwave absorption, they were shown to be localized
strictly in the ab plane of crystal layers and attributed to the
direction of HTSC currents that most efficiently screen
external magnetic fields, while the component of the screen-
ing current parallel to the c-axis is almost inapparent [180].

It can be concluded that EPRmakes it possible not only to
determine with high accuracy the superconducting transition
temperature, but also to confirm (by a noncontact method)
that the orientation of superconducting layers inHTSC single
crystals coincides with their ab plane. This finding is in
excellent agreement with the assumption accepted in the
theory of the bipolaron HTSC mechanism that current
carriers responsible for the transition to the HTSC state are
localized in CuO2 layers. According to the bipolaron theory,
conductance between layers occurs through a hopping
mechanism and behaves in layers like the conductance
inherent in heavy particles (polarons and bipolarons) [68].
As shown in Section 3.2, the probability of bipolaron
formation increases with decreasing dimension of the super-
conductor or weakening the crystal anisotropy effects.

Nonresonance microwave absorption in weak magnetic
fields for T4 280 K was also detected in ferrielectric single
crystals (LiNbO3) characterized by marked anisotropy of
static permittivity [181]. Lithium niobate single crystals were
simultaneously doped withMg (up to 8 mol%) and Fe or Cr.
This phenomenon was interpreted in Ref. [181] as the
emergence of signals from HTSC regions inside the single
crystal.

We believe that the search for HTSC in metal±ammonia
solutions should be continued and further use of EPR
diagnostics may facilitate attempts to repeat Ogg's experi-
ments on HTSC in these materials.

Given the realization of such a possibility in metal±
ammonia solutions, the drop in resistance to near zero upon
their rapid freezing (when `hardening' of electron and BP
concentrations occurs) corresponding to the complete dis-
sociation of alkali metal atoms, e.g., Na, into ions and
autolocalized electrons at temperatures relevant to the liquid
state [182] can be interpreted as the development of unstable-
in-time HTSC. A gradual increase in sample resistance with
time from zero (anticipatedHTSC at 135K) to the finite value
observed by Dmitrenko and Shchetkin [13] may be due to BP
capture by Na� ions at low temperatures with the formation
of energetically more preferred F- and F 0-centers; this
accounts for the decrease in the concentration of free BPs
and the transition of the solution to the dielectric state. The
probability of the formation of F- and F 0-centers is higher
than that of BPs. Nevertheless, in ionic systems with high
static permittivity �e0 4 e1�, the bonding of electronswith the
positively charged `nucleus' of the F 0-center weakens and the
singlet electron pair localized at the F 0-center can perform
translational movements under the action of the external
electric field.

The main postulate in one of the first theoretical studies
devoted to the anomalous magnetic properties of metal±
ammonia solutions [183] was a proposition that complete
dissociation of metal atoms into a cation and electron does
not occur in such media. It was emphasized that the presence
of paramagnetic centers in these solutions (which are analogs
of F-centers in alkali±haloid crystals) was confirmed in
nuclear magnetic resonance (NMR) experiments. Because

electron correlations were disregarded in the calculation of
two-electron systems like F 0-centers and bipolarons, the
binding energy of these structures was deemed insignificant.
Statistical computation of the density of polarons, F-centers,
and exchange-coupled pairs for different metal concentra-
tions in a metal±ammonia solution was carried out on the
assumption that it contains no other components of interest.
The enhanced diamagnetism of the solutions was entirely
attributed to the appearance of exchange-coupled pairs or
F2-centers, i.e., a complete analog of the hydrogen molecule
placed in a phonon field and a TCBP prototype. The main
proposition of Ref. [183] (the absence of complete electron
dissociation in metal±ammonia solutions) has been con-
firmed in many radio spectroscopy studies [184±186]. The
scheme of statistical calculation of the concentration of
different constituents in metal±ammonia solutions (polar-
ons, F- and F2-centers) at given temperatures and concentra-
tions of dissolved metals, proposed by Deigen [183], may
serve as an example for reproducing these findings, taking
into account the presence of F 0-centers and BPs in the
solution. At present, it is the diamagnetic F 0-centers that are
considered to be responsible for the enhancement of diamag-
netism in solutions with a rise in dissolved metal concentra-
tion [184±186].

The polaron model of solvated electrons in metal±
ammonia solutions, explored in Refs [56, 97, 153, 183, 187],
was proposed and developed as an alternative to the cavity
model considered, in particular, byOgg for the explanation of
possible autolocalization of one or two electrons in spheri-
cally symmetric cavities formed by ammonia molecules. The
latter model constituted one of the main lines of research in
the physics of solvated electrons [182, 188]. Application of the
polaron and BP theory in cluster physics [189±195] made it
possible to look at the cavity model in metal±ammonia
solutions from the opposite point of view. In either case, a
reduction in the system's dimension leads to localization of
charged particles virtually at quantum dots [189] simulated by
the spherically symmetric cavity or ammonia cluster consid-
ered in Refs [190±195]. The polaron theory predicts the
minimal cluster size at which an excess electron can be
captured. In Refs [190, 191], electronic states in clusters of
polar molecules were described in terms of Pekar's polaron
model. The approach developed in this work makes it
possible not only to estimate the critical cluster size but also
to calculate photoionization energy for �H2O�n and �NH3�n
clusters, consistent with its experimental values depending on
the number n of molecules in a cluster. The authors of
Refs [192, 195] considered BPs and F 0-centers localized in
clusters. Their data confirm the possibility of the formation of
extended one- and two-electron states in water and ammonia
clusters. For example, the formation of a polaron and a BP in
an ammonia cluster is possible if their radii exceed the critical
sizes R1 � 36 A

�
and R2 � 80 A

�
, respectively [192]. (For

comparison, the effective radius of an ammonia molecule is
Reff � 2:85 A

�
.)

A review of research on metal±ammonia solutions by
radio spectroscopy techniques can be found in the work of
Edwards [185, 186] and in Ref. [184] concerned with polarons
and BPs in these media. The authors not only consider the
history of their study and prospects for the search of HTSC in
such solutions but also analyze the relationship between the
theory of bipolaron superconductivity and BCS theory.
Much attention is given to these issues in paper [62], which
reviews investigations into large-radius BPs.
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The paper by Devreese and Alexandrov [196], focused on
the theory of Holstein and Jahn±Teller polarons and small-
radius BPs, deals also with Pekar's polaron and the BP;
moreover, studies on large-radius BPs by the trajectory
integral method are discussed at length. A separate part of
this publication is devoted to polaron excitons.

The present review summarizes an almost 60-year experi-
ence in the development of BP theory. The polaron and BP
theory being a fundamental one, it has given rise to many new
concepts, such as the theory of spin-polarons and BPs in
magnetic crystals [197, 198], bipolaron theory of negatively
charged clusters [192], and the bipolaron theory of conductiv-
ity of polymers [66] and biological molecules [199, 200]. The
BP theory may find application in the description of strong
interactions between elementary particles [201, 202]; in other
words, it has implications for many new issues. As mentioned
in the Introduction, elaboration of the bipolaron HTSC
theory continues to be relevant and has become highly
topical in recent years. The point is that small-radius BPs
which were long considered to be the main candidates for
Bose particles in HTSC ceramics possess too large a mass and
cannot ensure a high critical transition temperature [203]. It
was hypothesized that HTSC can be achieved based on the
large-radius bipolarons considered in this review, for which
the dependence of mass on the electron±phonon coupling
constant has a polynomial rather than exponential character.
Such an HTSC mechanism appears to be more probable
because the data expounded in Section 3.2 suggest that the
possibility of BP formation significantly increases in aniso-
tropic polar media, including high-temperature superconduc-
tors.

This work was supported by RFBR grants 07-07-00313
and 09-07-12073.
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