
Abstract. Experimental investigations of neural system func-
tioning and brain activity are standardly based on the assump-
tion that perceptions, emotions, and cognitive functions can be
understood by analyzing steady-state neural processes and
static tomographic snapshots. The new approaches discussed
in this review are based on the analysis of transient processes
and metastable states. Transient dynamics is characterized by
two basic properties, structural stability and information sensi-
tivity. The ideas and methods that we discuss provide an expla-
nation for the occurrence of and successive transitions between
metastable states observed in experiments, and offer new ap-
proaches to behavior analysis. Models of the emotional and
cognitive functions of the brain are suggested. The mathemati-
cal object that represents the observed transient brain processes
in the phase space of the model is a structurally stable hetero-
clinic channel. The possibility of using the suggested models to
construct a quantitative theory of some emotional and cognitive
functions is illustrated.

``It is a great pleasure for us to
think about how we think.''

Anonymus

1. Introduction: what we discuss and why now

1.1 Dynamical modeling of cognition
The tradition of understanding thought based on dynamical
systems theory has its roots in the cybernetics era of the 1940s
[1]. However, with the dominance of symbolic artificial
intellect and `information-processing psychology' and the
absence of a good experimental technology in the 1960s and
1970s, dynamical-systems-based approaches were not exten-
sively pursued. More recently, the idea that dynamics is a
relevant framework for understanding cognition has become
popular again. For example, [2] describes the development of
kicking and reaching in infants in terms of dynamical notions
such as the stability of attractors in a phase space that is
defined by the body and environmental parameters. Move-
ments to new stages in development are explained in terms of
bifurcations to new attractors as a result of the change in
order parameters, e.g., infant weight or body length, as the
infant grows. Thelen and Smith believe that `higher cognition'
is ultimately rooted in these types of spatial skills learned in
infancy, and thus that higher cognition will itself be best
understood dynamically. They contrast their account with
traditional `information processing' theories of development,
in which new developmental stages are caused by brain
maturation and the increasing ability of maturing infants to
reason logically.

The study [3] formulates the general idea of continuity,
namely that cognition should be characterized as a continual
coupling among brain, body, and environment that unfolds in
real time, as opposed to the discrete time steps of the artificial
intellect. This is said to contrast with computations that focus
on `internal structure,' i.e., its concern with the static
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organization of information processing and representational
structure in a cognitive system. A dynamical approach means
that the organization of brain structures is also dynamical and
functional, i.e., not only anatomical. Thus, the dynamical
approach to cognition is a confederation of research efforts
bound together by the idea that natural cognition is a
dynamical phenomenon and best understood in dynamical
terms. This contrasts with the `law of qualitative structure' [4]
governing orthodox or `classical' cognitive science, which
holds that cognition is a form of digital computation.

The temporal characteristics of information flow in the
brain depend on both the neural network architecture and the
type of connections. In particular, inhibitory connections
supported by interneurons are responsible for the spatio-
temporal transient activity. On the other hand, excitatory cell
assemblies, and associated connections, ensure that informa-
tion `goes to the right place at the right time' [5]. One can say
that any coarse-grain cognitive pattern (mode or representa-
tion) observed in experiments can inhibit alternative activity
patterns among workspace neurons [6]. At the same time,
these modes sequentially inhibit each other, because only one
representation is possible at any given time. As a result,
mental activities, i.e., cognition, emotion, and conscious-
ness, arise in the form of sequences of representations.

A dynamical system for the modeling of emotion and
cognition and their interactions is a set of quantitative
variables changing continually, concurrently, and interde-
pendently over quantitative time in accordance with dynami-
cal principles, which are embodied in a set of differential
equations. Dynamics in this sense includes a very successful
experience of dynamical modeling that scientists use to
understand natural phenomena via nonlinear dynamical
models. This experience includes a set of concepts, proofs,
and tools for understanding the behavior of systems in
general. An important insight of dynamical systems theory
is that behavior can be understood geometrically in some
projection of the state (phase) space. The behavior can then be
described in terms of attractors, transients, stability, cou-
pling, bifurcations, chaos, etc.

Although classical cognitive science has interpreted
cognition in principle as something that happens over time,
the dynamical approach sees cognition as being in time, i.e., as
an essentially temporal phenomenon. For example, when a
dynamical model of the information (sensory) coding is
created, time is included in the coding space [7]. Details of
timing (durations, rates, synchronies, etc.) matter [8].

1.2 Brain imaging
Recent work in brain imaging has revealed many funda-
mental properties, and, in particular, the functional organiza-
tion of brain systems. Most of these results have been
expressed in the form of averaged-in-time spatial patterns
indicating the brain areas that are simultaneously activated in
various emotional and cognitive states. These findings create
an impression that we can get a clear fingerprint, i.e., a
portrait of the specific emotion or the execution of the
specific cognitive function. However, neither emotions nor
cognition are frozen functional patterns. The underlying
neuro-dynamics, i.e., the temporal evolution of emotion and
cognition and their reciprocal link, can be extracted only by
detection of the sequential brain activity in representing and
translating a sequence [9].

Some brain imaging methods of today provide very high
temporal resolution. For example, Positron Emission Tomo-

graphy (PET) is characterized by low time resolution (about
10 s [10]). High temporal resolution is characterized by
electro-encephalography (EEG), whose resolution is about
2 ms [11]. Unfortunately, the EEG method has a very blurry
spatial resolution.

Blood-oxygen-level dependent (BOLD) imaging, a Mag-
netic Resonance Imaging (MRI) technique, can provide
whole brain coverage approximating a one-second temporal
and one-millimeter spatial resolution, hence making it a
strong candidate for the application of nonlinear dynamical
systems theory to emotion, cognition, and their interaction in
the brain [12].

1.3 Dynamics of emotions
In 1872 Charles Darwin published the book Expression of the
Emotion in Man and Animals. He formulated there the idea
that the evolution principle is applicable to the emotional-
behavioral development of animals, but not only to their bio-
physiological development. There is a clear evolutionary
connection between the behavior of humans and animals.
The important theoretical point here is that, for Darwin,
similar bodily expressions indicate the same state of mind in
both animals and humans. Clinical reports of congenitally
blind children also served as apparent corroboration of this
position: ``The inheritance of most of our expressive actions
explains the fact that those born blind display them both with
man and animals, express the same state of mind by the same
movements'' [13]. Darwin's idea became a very powerful one.
Today the point of view that emotions are the archaic form of
a consciousness is still popular.

It is well known in psychology that both emotion and
cognition are multistep dynamical processes of the percep-
tion, processing, and creation of new information. Each
metastable state that is represented by such process is
characterized by specific cause-response connections
between external and internal informational flows [14].

As we already said, the dynamics of emotion and
cognition are strongly connected. Thus, positive emotions
appear, as a rule, when the outcome of our activity
corresponds to the expected one. If not, negative emotions
appear. This is cognitive dissonance. Everybody knows how
to avoid such an uncomfortable state: we have to persuade
ourselves that our expectation exactly corresponds to the
outcome, or to get one's way in the next attempt. Nowadays
even an `informational theory of emotion' exists [15].
According to this theory, the intensity and sign of our
emotion is determined by the strength of the desire and the
probability of getting a satisfactory result in existing environ-
ment [16 ± 18].

The quest for the dynamical origin of emotions goes back
many decades. Franz [19] devoted attention to the dynamics
of emotions by describing emotional sequences together with
their content. He emphasized that only the balance between
incorporation, elimination, and retention represents the
fundamental dynamics of the biological process called life.
Recently, Zautra [20] has developed a two-dimensional
approach in which both positive and negative emotions are
conceptualized and measured as co-occurring simultaneous
dynamical processes.

Whereas behaviorism dominated the psychological and
psychiatric sciences during the first half of the 20th century,
cognitive science became the central paradigm of the latter
half. This new line of interest was fostered by the promise of
the dynamics of cognition as an integrated and fertile
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approach to understanding the mind [21]. `The cognitive
revolution' has started to inform us about the dynamics of
emotion, as well.

Due to the great progress in measurement and imaging
technologies within the last two decades, we now have a
deeper understanding of the neural substrates of emotion and
cognition. Although further progress, especially in temporal
resolution, is still needed to delineate many important details,
it is clear from the current evidence that human mental life is
governed by a complex nonlinear dynamical system in a
nonstationary (i.e., transient) regime.

The experimental insight into the matter corresponds to a
period when the mature theory of dynamical systems was
itself in flux. In particular, the recent shift in interest towards
complex systems has been establishing a valuable array of
tools and an important motivation for physicists and
engineers to tackle mental phenomenaÐan ancient problem
that still lacks a rigorous formulation.

The extension of dynamical systems research towards
complex systems analysis [22] promises resolutions of these
qualitative aspects, which are required to apply the rich
theory of dynamical systems to brain-like complex systems.
It is reasonable to emphasize here three approaches that are
closely connected with each other: (i) a structural approach,
which focuses on the specific architecture of connections (e.g.,
`small-world' type [23]); (ii) an informational approach that
describes the dynamics of principal information flows [24, 25];
and (iii) an approach considering functional modes [26, 27].
In this review we mostly follow the last one.

2. Mental modes

2.1 State space
As the two main players in human mental life, emotion and
cognition have been under the spotlight for researchers for a
long time, both individually and jointly. Given the necessity
that any useful analysis must be based on an accurate
quantification of the investigated phenomenon, numerous
attempts have been made to assess cognition and emotion.
Being directly related to the processing of auxiliary informa-
tion, cognition has attracted relatively more attention in these
efforts, particularly in the form of task development assessing
decision making tasks [28, 29]. Although tests aimed solely at
emotional quantities also exist (see, for example [30]), the
assessment of emotions or their effects have often been
attempted in a cognitive theme involving, for example,
appraisal of an emotional stimulus [31, 32] on decision-
making with the participation of memory [33, 34].

The critical constructive question to tackle the problem is:
What is the best state space to describe the evolution of
mental, i.e., emotional and cognitive, modes while capturing
the functional complexity? To answer this question, we can
use the experience of the investigation of complex systems in
nature, in particular, turbulent flows [35]. It tells us that we
need to know just the equations for coarse grain liquid
particles, i.e., the micro details related to molecular dynamics
are not directly effective for a macroscopic description.
However, such details are consequential for the parameters
of a macroscopic model. Although the situation with cortex
dynamics is much more complex, the analogy suggests some
insight and direction. A similar approach, a neural mass
model, has been suggested in [36, 37]. We also use the course-
grain description, but in a different form (see Section 4).

2.2 Functional networks
The dynamical system perspective and the models of both
cognitive functions and emotions are based on the assump-
tion that the brain is a complex neural network of many
dynamical sub-networks (neural clusters) working in coher-
ence within a sequential time structure (see Fig. 1). Under-
standing the dynamics of this structure underlying certain
emotional and cognitive functions and constructing a reason-
able model based on this can be helpful in evaluating and
predicting specific features in a psychiatric disorder.

New results in brain imaging, particularly functionalMRI
(fMRI) data, have revealed some fundamental properties and
the functional organization of the brain systems that correlate
with emotion and cognitive functions [38, 39].

Each of the brain centers that form the functional
emotional subcircuit or mode is itself a very complex
dynamical system with several characteristic time scales (see
Fig. 2). These systems are open to an enormous range of
neural stimulations from a wide range of brain areas. The
spatiotemporal pattern of brain activity underlying an
emotion is typically very sensitive to external or internal
stimuli. For example, the amygdala, which plays a key role
in emotional modes, receives information from both cortical
and subcortical structures. These include highly processed
information from the visual system, the auditory cortex, the
olfactory and gustatory neocortex, and the somatosensory
cortex. In short, it is directly informed about each of the five
senses. The amygdala also receives projections from the
association cortex, from the thalamus (relaying basic,
unprocessed sensory signals), the hippocampus (high level
information about the relationship between objects and
events in the external world), and from a range of structures
that represent internal bodily states, such as hunger and
thirst.

It is important to take into account that emotions and
cognition are active processes that result in a specific changing
of the organization of the brain in time and the brain's
dynamical response to environmental information and
representation of the self. These processes are determined by
the functional (not necessarily anatomical) connections

Figure 1. Schematic representation of three different functional modes in a

complex neural network. (Different colors in the electronic version.) The

nodes are different brain centers. The connections between them can be

activated or inhibited depending on informational inputs. Figuremodified

from [40].
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between brain areas or neural circuits that participate in the
execution of cognitive functions and the generation of
emotions. At different segments or steps of temporal
emotional or cognitive processes, these networks form
different temporal sequences that execute and represent
different emotions and cognitive functions in the brain.

Dynamical variables describing emotion, cognition, and
their mutual interaction form a joint workspace (or state
space). To understand how to choose such variables, we have
to know some details of the organization of emotional and
cognitive modes. Let us consider emotion. As we already
pointed put, an emotion is a result of the coordinated
dynamical activity of many brain areas (sub-networks).
Examples of such areas are the posterior orbitofrontal
cortex, the anterior temporal sensory association areas, and
the amygdala. These areas are not all inclusive, but they have
a key role in temporal emotional processing. They sequen-
tially interact in evaluating the sensory and emotional aspects of
the environment for decision and action of the complex
behavioral coping response (see Fig. 3).

2.3 Emotion-cognition tandem
Most theories view the emotion-cognition interaction cross-
sectionally, as disease-specific or based on a particular level of
knowledge (i.e. neuroanatomical, pharmacological, etc.). To
illustrate our point, let us refer to the current theories of Panic
Disorder. The neuroanatomical theory of panic, as proposed
in [41], describes a functional relationship between different
anatomical parts of the brain. However, the theory of anxiety
and panic disorders must be multi-dimensional. In particular,
the theory must handle `alarm' responses (amygdala and
central gray nuclei), abnormal cognitions (striatal circuits),
and controlling pathological behaviors (involving executive
cortices). Under stress, people lose the ability to maintain
positive feelings because they have become inversely linked,
causally, with negative states. This state of affect simplifica-
tion has the effect of reducing information-processing
capacity and therefore reducing emotional clarity, one of the
key components of emotional cognition.

The mental process in the joint emotion-cognition
workspace is indeed a competition for resources that are
needed to carry out each process. Two basic types of such
finite resources are the energy (e.g., oxygen and glucose) and
the information (attention and memory). Emotional apprai-
sal and cognitive-emotional dynamics interplay continu-
ously in time. This interplay could have an extremely
important (perhaps central) role in diagnosis. Nevertheless,
little attention has been given to the temporal dimension of
emotion and emotion-cognition interaction processes [42±
44]. By focusing on nonlinear dynamical interaction between
cognition and emotions, [45] provides a valuable platform
for integrating psychological and neural perspectives on the
emotion-cognition interface. The author discussed a wide-
ranging and timely theoretical formulation of emotion-
cognition relations and, in particular, emphasized:
(a) bidirectional interactions between appraisal and emo-
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Figure 2. (Left) Possible dynamical regimes of specific brain centers: (a) a heteroclinic chain, (b) a heteroclinic cycle, (c) a strange attractor. (Right) Global

connections between brain centers.
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Figure 3. An illustration of the emotion-cognition tandem including the

self. All three mental activities develop in time in parallel and continuously

exchange information.
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tion; (b) sub-cortical psychological and neural constituents
underlying the emergence of emotion-appraisal processes;
and (c) large-scale functional coupling through oscillatory
neurophysiological mechanisms.

The joint emotio-cognitive behavior has its basis in the
dynamical coordination of many brain centers, which often
participate in both emotional and cognition activity [45, 46].
Due to this overlap, emotion and cognition are integrated in
the sense of being partly separable [47, 48].

Emotional and cognitive modes in the brain interfere and
exchange information reciprocally. As we have already
emphasized, this relation is driven by a competition for
energy and informational resources [48±51]. On the neuro-
biological level, the cognitive control of emotion follows from
the direct inhibition of negative emotional modes by the
centers that underlie the correct behavior [51].

On this basis, much is known about the interaction of
emotion and cognition. However, to the best of our know-
ledge, the developing theory of emotion still lacks a
mathematical model that accounts for emotion-cognition
interaction in time based on observable principles. Such
models should describe and predict the mental processes and
their bifurcations with control parameters (i.e., the physiolo-
gical state, drug concentration, etc.).

2.4 Dynamical model of consciousness
Consciousness underlines the main aspects of cognitive
human behavior. Understanding the neurobiological and
dynamical mechanisms of consciousness has proved to be
one of the most mysterious problems for neuroscientists.
Progress in recent years, however, allows for the develop-
ment of theories of consciousness through integration of
evidence from physiological, behavioral, and modeling
studies. Any kind of cognition (perception, image recogni-
tion, self, awareness, etc.) can be conscious. For example, a
conscious awareness is the process in which external or
internal stimuli are perceived, are recognized, and can be
intentionally acted on. Experiments using simple sensory
stimuli suggest that even the primary sensory areas in the
brain may be involved in the process of conscious awareness
[52]. Once conscious awareness is established, it is fed back in
time to process the primary input [53].

It has been accepted since the time of William James that
consciousness is a continuous and transient process [54].
After half a century, Gurwitsch [55] has put this pioneering
idea on a time axis: transients link the current mental state to
what came before and what is to come after. According to
him, every mental state has a (finite) duration and complies
with a temporal order as imposed by the continuously flowing
stream of consciousness. In the context of our work, mental
states correspond to conscious metastable states, and tem-
poral order to a sequence of metastable states.

Due to the provocative nature of this topic for physicists,
we would like to clarify the dynamical modeling of conscious-
ness.

What are the main differences between conscious and
unconscious cognitive functions? It is the ability of a human
being to predict the future based on past experience and
knowledge, and to use it in the present in order to create the
future. A dynamical model of any conscious cognition has to
include two sub-systems, namely, the part that represents the
cognitive process in the present [it can be a basic model: see
Eqns (6)±(9) below], and the part that reconstructs a possible
future based on the analyses of the past and using the present

cognitive metastable state as initial conditions. In contrast to
the first sub-system, the second one resides in an imaginary
universe where time is compressed. The fast prediction
together with the best possible version of the future (as a
result of decision-making) is used for the correction of the
present. Because conscious activity is able hold only a limited
number of items at once, it only gives us a fragmentary picture
of the future. This is one of the reasons why we are mistaken
so often.

From the neurophysiological point of view, consciousness
is a temporal process associated with low-amplitude irregular
high-frequency EEG activity (20±70 Hz). In contrast, uncon-
scious states like deep sleep, a coma, general anesthesia, and
epileptic states show a predominance of slow rhythms, high-
amplitude, and amore regular spectrum at less than 4Hz [56].
As fMRI investigations indicate, the consciousness involves
widespread, low-amplitude interactions of many brain cen-
ters.

The fact that time is a critical attribute of the conscious-
ness is clearly illustrated by recent experiments [57], which
show that the human conscious experience is the ability to not
only experience the present moment but also recall the past
and predict the future, a facility that is called `mental time
travel.'

To build the dynamical model of the consciousness, it is
necessary to formalize the main properties of consciousness
(see, for example, [58]). These are:

(i) Consciousness is a simulator (or game generator) that
enables the brain to process experiences that are not actually
occurring. Such a simulator of experience can attach to or
detach from perception and physical action as necessaryÐ
the decision to attach is under the control of the simulator,
but may be overruled by emotion and perceptions (for
example, pain). During the representation, details of percep-
tion are substituted by simulation, causing various illusions
and false memories.

(ii) The simulator detaches during dreaming, remembering,
and imaginingÐdetached simulation of an event causes the
same cortical neurons to fire that the actual event does.

(iii) Simulation allows complex situations to be explored
many times for more efficient learning (e.g., thinking about
future moves in a chess game, rather than actually making each
move).

(iv) Consciousness is a sequential dynamical process: The
constantly evolving sequence of conscious content simulates
cause and effect in a sequence of world events. Conscious
content may evolve due to an interruption of attention to
simulate a different sequence of events. Its availability
depends on the quality of representation, where quality is
defined by stability in time, strength, reproducibility, sensi-
tivity, and metastability.

The quality of simulation depends on the stability against
diverse perturbations, on the reproducibility that is necessary
for the repeated analysis of the same events, and on the
lifetime of metastable statesÐ too short a lifetime may not be
sufficient for storing the results in memory.

One of the most popular approaches to consciousness
modeling is based on the global workspace theory [6, 59]. The
main idea of this theory is the following. Informational inputs
from inside or outside (external stimuli) the brain activate
excitatory neurons with long-range axons, leading to the
emergence of a global pattern among workspace neurons.
According to the global workspace theory, transient links
among specialized brain processing modules form a dynamic
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network that generates new information depending on incom-
ing signals [60]. However, this theory cannot explain the
underlying dynamical mechanism. To model the main
dynamical properties of the consciousness, we suggest here
merging the global workspace theory with the theory of the
transient dynamics of complex networks based on the
winnerless competition principle (see below, and also [27,
61, 62]). The most difficult problem here is to find time
dependent variables convenient for measurements and suffi-
cient for the dynamical description. We suggest using as
dynamical variables the strengths of cognitive modes, which
is discussed below. Nonlinear differential equations that
describe the interaction of these variables is a dynamical
model that we are looking for.

We would like to mention here one more problem that is
directly related to consciousness, namely the self. Despite
being treated continuously as a fundamental question since
the earliest era of psychiatry [54], the concept of `self' is a
relatively new and very active field of study in neuro-
psychiatry. Among a few establishments in this line, there is
growing evidence that self-reference is a stand-alone process
in the human brain [64±67]. It is also believed to be closely
related to a distinct brain system, called the default network.

The search for a baseline condition in brain imaging
studies has revealed the default network (see Fig. 4), whose
activity was not initially interpreted beyond assuming it as a
`resting state.' The pioneering studies [68±70] enlightened the
neural substrates of this activity, its distinct connectivity
among other brain systems, and its crucial role in self-
referencing in both active and passive cognitive states.

In recent decades, because of some success in quantum
computing, we can observe an increase in interest in the very
contradictory problem of ``Quantum Consciousness'', which
has already been discussed for many years [72±74, 76]. Here is
not the right place to consider the details of this subject. We
just wish to say that the basic idea supporting the approach is
Everett's Many-Worlds Interpretation of quantum measure-
ment, which was formulatedmore than half a century ago (see
for details [77]). The main assumption in the corresponding
theory is this: consciousness selects a specific solution within
the possible multi-variance of the informational world. As we
already emphasized, one of the important functions of
consciousness is the generation of new information. It is a
clear contradiction of a purely `selective' approach to
``Quantum Consciousness.''

3. CompetitionÐ reliability and sensitivity

3.1 Transients versus attractors in the brain
Traditional efforts in modeling dynamical phenomena are
predominantly based on the fact that dynamical systems
tend to converge to stable fixed points or dynamical states
(limit cycles or strange attractors) where the density of all
flows (matter, energy, or information) are balanced. A
dissipative complex network of agents (i.e., neurons, brain
centers, etc.) with symmetric interactions gives rise to a
convergent behavior involving multiple attractors [78, 79].
The basins of attraction can be arranged to partition the
state space to satisfy certain needs. When applicable, a
Lyapunov function can be a handy tool in the analysis and
design of such systems, since it translates the fixed points as
extrema on an energy landscape while providing a clear
image of the basins (see Fig. 5). There may be certain neural
phenomena, such as an associative memory [80], that would
benefit from a dynamical model operated in this mode, i.e.,
as a map from initial conditions to the attractors. However,
computing with attractors makes very limited use of
complex dynamical networks in general: once the attractor
(or its vicinity) is reached, the `dynamical' nature of the
system becomes irrelevant. Since attractors mark the
terminal states of the process, this perspective assigns a
mere quantizer role to such a network that could be
formulated equally effectively by an algebraic transform.
Furthermore, it overlooks the qualities of the path from the
initial condition to the attractor, a phase where nonlinear
systems could exploit their remarkable repertoire of beha-
viors. Therefore, confining dynamical models to the
symmetry assumption not only is unrealistic, but also rules
out a continuum of opportunities within the modeling
capacity of dynamical systems. Let us discuss here a
contrary paradigm.

A fundamental responsibility of the nervous system that
shapes the dynamical processes in the brain is the internal
regulation of the organism so that the available resources are
distributed properly among emotions, thoughts, and actions.
This constitutes the origin of the time dependence in the
functional brain organization underlying the emotional or the
cognitive processes: at different time steps of these processes,
the participating brain centers (or even the networks of
centers) can be different and the activity in any one of them
alone might not be sufficient to identify the ongoing emotion
or cognitive function. A spatiotemporal competition of
multiple networks of brain centers, on the other hand, can

dMPFC

PCC/Rsp

vMPFC

HF+

LTC

IPL

Figure 4. The default network, as explored so far, comprises six brain

regions: Ventral medial prefrontal cortex (vMPFC), posterior cingulate/

retosplenial cortex (PCC/Rsp), inferior parietal lobule (IPL), lateral

temporal cortex (LTC), dorsal medial prefrontal cortex (dMPFC), and

hippocampal formation �HF��. The approximate locations of these core

areas are marked in the figure (adapted from [71]).
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achieve this. In fact, the dynamic interaction ofmodes forms a
reproducible temporal pattern that is specific to the ongoing
emotion or cognitive function. Technically, such a temporal
aspect of encoding is the only possible scheme for the brain to
be capable of executing a continuum of emotions and
virtually infinitely many cognitive functions while possessing
a finite number of elements (i.e., centers). Thus, emotions and
cognition are sequential dynamic processes resulting from the
interactions of different brain subsystems (modes) and their
coordination and synchronization in time. (About the synchro-
nization in neuronal systems, see [5, 81, 82].)

3.2 Cognitive variables
The critical constructive question for tackling the problem is
the choice of the best medium to describe the evolution of
such emotional and cognitive modes while capturing the
functional complexity.

We suppose that the specific cognitive activities can be
described by the interaction of a finite number of cognitive
modes. We can describe in this way the fMRI series of
snapshots taken at consecutive instants (i.e., an fMRI
movie), when a subject is busy with the execution of some
cognitive job, for example, decision making. As experiments
showed, the distinct networks of coherently working brain
centers underlie this activity and they constitute an image of
a spatial pattern in each frame. In spite of the vast diversity
of these patterns across the frames, each of them can be
considered as a sequential activity of the finite number N of
functional modes. The overall movie, then, is a reproducible
spatio-temporal sequence illustrating the time-varying
ordered contribution of each (observable) mode in the
process. There are several ways to extract these modes from
the experimental data; for example, it can be the main
principal components that describe brain activity in time
[83, 84]. Thus, a snapshot of brain activity at time t captures
a combination of cognitive variables in the formPN

i� 1 Ai�t�Ui, where Ui is the fixed spatial form (e.g.,
coordinates) of the ith cognitive mode, and Ai�t� is its level
of activity, e.g., the average intensity of voxels covering Ui in
the BOLD image at time [85]. The number N of these modes
depends on the level of detail that we wish to describe.

These modes in the modeling may include appraisal or the
execution of a strategy (policy), or may even be as broad as
decision making, a default network, or self-reflection activ-
ities. Despite being a coarse-grain partitioning of the
cognitive universe, these functions can still be distinguished
by the active brain subnetworks underlying them. We denote
these cognitive modes by the nonnegative time-varying
variables Ai, i � 1; . . . ;N; indicating the average activity of
the corresponding sub-networks.

As a mental activity, a cognitive process requires both
energy and informational resources (e.g., attention and
working memory) to proliferate. In the ecological model
that we suggest below, we encapsulate all these resources in
a real variable RA within the interval �0; 1�, which denotes the
ratio of the resources supplied to the total demand from the
cognitive process.

3.3 Emotional variables
It is known that distinct emotional modes have certainmental
fingerprints characterized by the specific connections of brain
centers involved in it (and this is an active field of research). A
well-explored example is the sadness network in the human
brain [86].

Following the same reasoning presented for the cognitive
variables above, the emotion-related functional can be a read-
out in the form

PM
i Bi�t�Vi, where Bi are the emotion modes

and Vi are their temporal and spatial activities. Since the
spatial functions are assumed to be known for all modes and
fixed for all times, the temporal evolution of emotion modes
are captured by Bi�t�.

Another critical observation is that the activity patterns of
emotions are unlikely to coexist for a long time, yet overlap
during smooth transitions. This observation is consistent with
the general ecological principle that we expand on below and
adopt throughout the modeling effort.

Analogously to RA, which represents the resources
allocated to cognition, we introduce the positive quantity RB

denoting the supplied rate of resource demand from the
emotional process.

The manner in which individuals receive, process, and
interpret information in time is the key to understanding

Attractor 1

a b c

d e

Single attractor Five attractors Continuous
attractor

Attractor 1

Attractor 2Attractor 2 Initial conditions Initial conditions

Figure 5. Energy landscapes are illustrative tools in attractor-oriented analysis and design. The top row shows three landscapes accommodating different

types of attractors: (a) a global attractor, (b) distinct local attractors, and (c) a continuous attractor. The surfaces on the bottom row are associated with

two multi-stable systems where the basins of attraction are color-coded. In simple systems, one can obtain clear-cut borders as in panel (d). As system

complexity increases, the borders can become fractal [see panel (e)], which makes the computation with attractors questionable. (Figure courtesy of

T Nowotny.)
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emotional representation, the execution of cognitive func-
tions, and biobehavioral organization [87, 88]. For healthy
people, these processes are sequentially organized in time
following a stable (i.e., robust) one-directional information
flow. Although the execution of multiple mental processes
seems feasible in a healthy human brain, the critical resource
of attention is available to just one of them at any given time.
Therefore, progress (in the form of a metastable state
sequence) can actually occur in only one process at an
arbitrary instant.

3.4 Metastability and dynamical principles
We suppose that the reader has got some knowledge about
emotion and cognition interaction; thus, it is the right time to
introduce the principles that form the basis of their dynamical
modeling. These principles are:

(i) the existence of metastable states representingmodes in
the unified emotion-cognition working space,

(ii) the structural stability of the transients that are formed
by the switching of brain modes among these states,

(iii) ecological, i.e., competition, principles governing
these switchings.

The first item, metastability, is a general nonlinear
dynamics concept, which describes states of delicate equili-
brium. Metastability in the brain is a phenomenon which is
being studied in neuroscience to elucidate how the human
mind processes information and recognizes patterns. There
are semi-transient equilibria in the brain which persist for a
while and are different from the usual equilibrium state [89].
Themetastable activity of the cortex can also be inferred from
the behavior [90]. Metastability is a principle that describes
the brain's ability to make sense out of seemingly random
environmental cues [91, 92].

Metastability is supported by the flexibility of coupling
among diverse brain centers or neuron groups [83, 85, 93±95].
The temporal order of the metastable states is determined by
the functional connectivity of the underlying networks and
their causality structure [96]. The mathematical image of a
metastable state is a saddle in the state space of the dynamical
model. The image of the transition between these saddles is
the unstable separatrix connecting them (see Fig. 6). Such a
construction is named a heteroclinic chain.

3.5 Winnerless competitionÐ structural stability
of transients
Competition without a winner (or continuously changing
winners) is a widely-known phenomenon in systems involv-
ing more than two interacting agents that satisfy a relation-
ship similar to the popular game rock±paper±scissors or the

voting paradox [97, 98]. The participants in such a process can
become winners periodically or, especially when the number
of participants is more than three, the process can be
noncyclic and can even be terminated following a stable
sequence of transients, and one participant becomes the
ultimate winner. Busse and Heiskes [99] modeled the
thermo-convection in a horizontal liquid layer rotating
around a vertical axis. Different convective patterns with
rolls orientations of 0�, 120�, and 240� periodically switch
among each other [100].

As a generic dynamical phenomenon, which is rare in
simple systems yet common in complex ones, sequential
switching among saddles can provide concise and construc-
tive formulations in a variety of real-world problems [101].
Prototype dynamical models that are widely accepted in
computational neuroscience [102] and ecology [103±106]
have been shown to exhibit a transitive winnerless competi-
tion for a fairly broad range of parameters [101, 107, 108].

Since the time spent within a saddle vicinity is inversely
proportional to the (logarithm of the) noise level (variance)
[109, 110], the characteristic time of such a transient varies in a
wide range. In a stable heteroclinic sequence, the order of
temporal winners is fixed and the noise is able to accelerate
the process. Thus, the noise must be large enough to maintain
the switching behavior at the desired rate (on average) and small
enough to keep the heteroclinic nature of the system on track,
i.e. to maintain stability.

Embedding a structurally stable heteroclinic skeleton in
the phase space (see Fig. 6b) results in a channel which routes
the volume around it along the imposed sequence.Within this
volume the system behavior is reproducible with finite
accuracy. Since the location of the saddles conveys input-
specific information, which is activated the corresponding
metastable states and their sequential order by the strength
and the topology of the connections, the system becomes both
noise-rejecting and input-sensitive (due to following the
stimulus-specific channel) simultaneously. The key mechan-
ism underlying the winnerless competition in the brain is
inhibition, which is known to exist in neural systems at micro-
and macroscopic levels [111±114].

There is substantial experimental support [62, 89, 115]
(also outlined below) that metastability and transient
dynamics are the key phenomena that can contribute to the
modeling of cortical processes and thus yield a better under-
standing of a dynamical brain.

There is a fundamental contradiction between the stability
of transient brain dynamics and their sensitivity to informa-
tion signals. The resolution of this contradiction, as we
discussed above, can be found by informational reconstruc-

tkÿ1

tk�1

tk�2tk

a b

Figure 6. (a) A heteroclinic chain with two saddles. (b) A structurally-stable heteroclinic channel.
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tion of a heteroclinic channel, i.e., by choosing new
metastable states. It is an example of the interaction of
dynamical and informational processes in nonequilibrium
dissipative systems. The general problems of such interactions
are discussed in Kadomtsev's interesting book [116] and
reviews [117±119].

3.6 Examples: competitive dynamics in sensory systems
The way sensory signals are processed in animals is through
the activation of specific groups of neurons, which are
determined by both the quality and the quantity of the
stimulus. The intrinsic dynamics of neural networks pro-
duces firing patterns that encode the informational input and
relay them to further processing centers upstream. In general,
this code is spatio-temporal and sequential. Transitive
winnerless competition is a sound mathematical method to
explain these reproducible transient phenomena. The compe-
titive nature of neuronal processing in general provides
another clue that winnerless competition may underlay a
sequential activity. When characterizing the dynamics of
biological sensory systems, the variability observed in
recordings from the neural activity appears as noise, but is
not actually a noise component. It should be viewed as

fragments of the competitive sequential activity. Such a
phenomenon has been observed recently in experiments with
olfactory and gustatory sensory systems [115, 120].

An analysis of the response in a rat's gustatory cortex to
prototype tastes reveals that a reproducible taste-specific
switching pattern is triggered shortly after the stimulus is
presented [115] (see Fig. 7).

Experimental observations in the olfactory systems of
locusts [121] and zebrafish [122] reveal odor- and concentra-
tion-specific, reproducible, and transient patterns of activity
in principal neurons. Here, the odor representations are
spatio-temporal successions of states, or trajectories, each
corresponding to one odor identity and one concentration
[121] (see also Fig. 8).

The rules governing the WLC resemble the competition
among different species for resources [101]. This analogy links
the WLC concept with brain functions via a popular
standpoint in brain research. This ecological perspective on
the brain's organization suggests that it is the strict competi-
tion for finite resources among brain networks that maintains
the collective dynamics. For example, a competitive activity
of multiple brain areas [123, 124] is fundamentally important
for thinking, in particular, for sentence comprehension [125].
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Figure 7. Neurons in the rat's gustatory cortex generate a taste-specific sequential pattern. The top row shows the sequential WLC activity among

10 cortex neurons in response to four taste stimuli. A HiddenMarkovModel (HMM) of joint temporal activity (the ticks denoting the action potentials)

reveals that the network behavior is best represented by four discrete states in a winnerless competition setting. The dashed horizontal line denotes the

threshold, above which (with probability 0.8) the network is considered to be occupying the corresponding state (i.e., the state becomes the winner). The

second row lists the outcome of the four replicates of the previous experiment on the same network and confirms the reproducibility of the sequential

activity: the order of the observed states is the same in each trial. Note, however, that the switching times are irregular. The translation of the four HMM

states into firing rates for each stimulus are given in the last row. (Figure adapted from [115].)
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These results provide indirect support for the argument that
the WLC is widespread in the nervous system. The WLC
opens a new avenue in modeling and analysis of complex
cortical processes.

3.7 Formalism for structural stability of transients
The mathematical method that represents a reproducible
transient activity is the Stable Heteroclinic Channel (SHC),
consisting of saddle sets, their vicinities, and the separatrices
connecting them. An SHC is characterized by two properties:
(i) a sufficiently strong convergence of the phase volume in the
vicinity of each saddle with respect to the stretching along
unstable separatrices, and (ii) the relatively long (but finite)
passage (or exit) time that the system spends in the vicinity of
a saddle in the presence of moderate noise.

Let us consider a channel that consists of saddles, each
having one-dimensional unstable manifolds, i.e., a separatrix
leading to the next saddle. To obtain the condition of the
channel's stability, we must consider elementary phase
volume in the neighborhood of each saddle that is com-
pressed along the stable separatrices and stretched along the
unstable separatrix. Let us order the eigenvalues of saddle i as

li1 > 0 > Re fli2g5Re fli3g5 . . . 5Re fling : �1�

The number

ni � ÿRe fli2g
li1

�2�

is called the saddle value.
If

ni > 1 ; �3�

the compression along the stable manifolds dominates the
stretching along the unstable manifold, and the saddle is
called a dissipative saddle. If all saddles in the heteroclinic
chain are dissipative, the trajectories in their vicinity cannot
escape from the chain, providing stability.

In the absence of noise, a state vector approaching a
saddle along a stable manifold is confined to the neighbor-
hood of the saddle indefinitely. The exit from a saddle's
neighborhood is possible only due to a strong enough
perturbation. The dependence of the exit time on the noise
level was studied in [109] and [110]. A local stability analysis
around a saddle fixed point results in the relation

t i � 1

li1
ln

1

jZj ; �4�

where t i is the mean time spent in the neighborhood of
saddle i (provided that initial points belong to the stable
manifold), i.e., the lifetime of a metastable state, and jZj is
the level of noise. In the framework of a specific model, one
can derive the inequalities on the model parameters using
conditions (2) and (3), which guarantee the stability of the
heteroclinic channel.

3.8 Hierarchy of brain informational flows:
heteroclinic tree
The brain's hierarchical organization [126], i.e., from the
perception levels to more complex sub-core and cortex
structures, supports the idea of the hierarchical organization
of information flows in the brain. In fact, the idea of one-
dimensional flows of visual, auditory, and other information
about environment, which transfer through centers of the
preliminary processing to the cortex decision-making centers
and behavior generation, looks very attractive. However, the
reality is more challenging. The brain is characterized by a
huge number of informational feedbacks. This is a way to
control sensory systems by the cortex. In particular, by
concentrating attention the brain is choosing which sensory
information is critical for executing cognitive functions and
surviving in extreme conditions.

At the same time, the idea of the hierarchical organization
of brain informational flows looks very promising [127]. In
contrast to the traditional view, we have to consider the
informational flows in the phase space of the corresponding
dynamical model, but not in the physical space of the brain.

a b c

d

Figure 8. Spatio-temporal representation of sensory information in the olfactory system of a locust (antennal lobe): (a) Schematic of an insect antennal

lobe sectioned through its equatorial plane; (b) response of 110 neurons of the antennal lobe to an odorant that lasted 1.5 s; (c) projection of neural activity

on 3D principal component space (black trajectory is the average of 10 different experiments); (d) diversity of heteroclinic sequences in an ensemble of

seven neuronal groups.

366 M I Rabinovich, M KMuezzinoglu Physics ±Uspekhi 53 (4)



Figure 9 illustrates divergent informational flows along
chains of metastable states. Different flows converge into the
main channel and end in a state corresponding to the final
decision or event. Such a representation naturally satisfies the
causal answer relationship and suggests the basis for solving
new problems. It can be analyses of the working memory
capacity [128] or the stability dependence of cognitive
information flow on emotion.

The `information theory of living systems' is only in its
infancy; however, some interesting results have already been
published [127, 129±132].

4. Basic ecological model

4.1 The Lotka±Volterra system
The competition within and between cognitive and emotional
modes can be described by the Generalized Lotka±Volterra
(GLV) model, given by

t
d

dt
xi�t� � xi

�
mi�E � ÿ

Xn
i� 1

ji j�E � xj�t�
�
� xi�t� Z�t� ;

�5�
i � 1; . . . ; n :

Here, xi 5 0 is the ith competing agent, E is the input that
captures all (known) external effects on the competition, t is
the time-constant, mi's are the increments that represent the
resources available to the competitor i to prosper, ji j is the
competition matrix, and Z�t� is a multiplicative noise
perturbing the system.

Depending on the ratio of the control parameters, this
model can describe a vast diversity of behaviors. When
connections are nearly symmetric, i.e., ji j � jji, two or
more stable states can co-exist, yielding a multi-stable
behaviorÐ the initial condition determines the final state.
When the connections are strongly nonsymmetric, hetero-
clinic contours or limit cycles in their vicinities can emerge.

Dynamical chaos can be observed in this case [133]. A specific
kind of dynamical chaos, where the order of the switching is
deterministic, but the life-time of the metastable states is
random, can also be observed [134]. We think that such
reproducibility of the order of metastable states, despite the
irregularity in timing, can be interesting for the processing of
observed data.

For a given model, the values of the control parameters
that ensure the stability of the transients can be obtained from
inequalities derived from (1) and (2). In [135], such conditions
have been generalized in the case of weakly-interacting
subsystems like (5).

As we already discussed, cognition and emotion are
strongly connected. Nevertheless, it is reasonable to suppose
that the modes within one family are more strongly
connected than the modes between these two families. One
can thus consider that one family does not `destroy' the
dynamics of the other family, but modulates it. In
particular, cognition supports emotional equilibrium,
whereas emotion excites or inhibits cognition. Therefore, it
is natural to describe their interaction based on coupled
subsystems of type (5). Also taking into account the
dynamics of resources, we should write a third set of
equations describing the resource modes (i.e., attention,
memory, and energy). It is important to emphasize the
special role of attention in this interaction: it selects the
sensory cues that are critical for the current decision-making
process. Based on experimental evidence, the dynamics of
attention can also be described by a competition among
informational entities. For the sake of simplicity, let us
consider that these entities are total emotional
~B �PM

i�1 Bi�t� and total cognitive ~A�PN
i�1 Ai�t� activities.

We then write the model in the following form:

tA
d

dt
Ai�t� � Ai�t�

�
si�I;B;D�RA ÿ

XN
j� 1

ri j�D�Aj�t�
�

� Ai�t� Z�t� ; i � 1; . . . ;N ; �6�

tB
d

dt
Bi�t� � Bi�t�

�
zi�S;A;D�RB ÿ

XM
j� 1

xi j�D�Bj�t�
�

� Bi�t� Z�t� ; i � 1; . . . ;M ; �7�

tRA

d

dt
RA�t� � RA�t�

h
~Aÿ ÿRA�t� � fA�I;D�RB�t�

�i
; �8�

tRA

d

dt
RB�t� � RB�t�

h
~Bÿ ÿRB�t� � fB�S;D�RA�t�

�i
: �9�

The nonnegative variables Ai and Bi, as described above,
correspond to the cognitive and emotional modes, the union
of which is denoted by A and B, respectively. The general
intensities of these variables are denoted by ~A and ~B,
respectively. The proposed model is merely a formulation
of the competition within and among these two sets of
modes. Both of these modes are open to the external world
through the quantities I and S, denoting the cognitive load
and the stressor, respectively, and D is the control parameter
characterizing the medication. The coupled processes evolve
on time scales determined by the parameters tA and tB. Both
processes are open to brain noise, which appears as the
multiplicative perturbation Z�t� in the equations. The
variables RA and RB characterize the resource dynamics,
where fA and fB control the level of competition for
resources.

Figure 9. A heteroclinic tree in the multi-dimensional phase space of the

emotion-cognition interaction dynamical model. The terminal state

corresponding to the final decision (or strategy) of behavior is indicated

by the white circle.
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Cognitive and emotional brain processes have different
qualities: the former is usually characterized as a sequentially
ordered brain activity advancing at a regular pace, whereas
the latter is a highly variable, fast, and sometimes unpredict-
able activity. Based on these observations, the suitable
operating regime for a (healthy) cognitive process is the
stable heteroclinic chain. There is no particular constraint
posed at this point on the quality of emotional dynamics;
they can also follow a heteroclinic sequence with a short
switching period, a recurrence behavior, or a strange
attractor.

The competition within cognitive and emotional modes is
regulated by the self-excitations s and z, by the competition
matrices r and x, and by the time constants tA and tB,
respectively. The dependence of these increments on A and
B, respectively, describes the direct influence of cognition on
emotion, and vice versa. For example, these could be set to
describe the excitatory or inhibitory action of the emotion on
cognition. They could also reflect the suppression of emotion
through a correct behavioral strategy under stress.

4.2 Stress and hysteresis
It is well known that different emotions can switch between
each other. Therefore, the cognitive-emotion dynamics can
bifurcate from one dynamical image to another. It would be
very interesting to find the relationship between the control
parameters that correspond to the bifurcation surface based
on the models (6)±(9). Finding such relationship may allow
quantitative prediction of psychiatric disorders. It is interest-
ing that in some areas of the parameter space two different
stable objects. Hence, bistability and hysteresis are observed
[136].

In Fig. 10, we present an example where an auxiliary
stressor S triggers these emotions, which in turn disrupts an
ongoing cognitive sequence.

Let us consider N � 5 cognitive modes and M � 5
emotional components. The multiplicative perturbation Z�t�
is white noise with variance 10ÿ8 and 10ÿ3 for the cognitive
and the emotional dynamics, respectively, and the time
constants are tA � tB � 20.

Without loss of generality, we prescribed the finite
heteroclinic sequence of saddles e1 ! 2! � � � ! e5 for
emotional modes. The mode e5 is a stable attractor (i.e.,
without any unstable manifold so that the system is confined
to the vicinity of e5 once it enters its domain of attraction).
This state marks the terminal cognitive mode, such as the
execution of a certain coping strategy, whereas the preceding
modes denote the cognitive tasks that lead to this resulting
activity. They could be called, for instance, perception,
appraisal, evaluation, and selection, in their order of appear-
ance in the sequence.

The feasible values of ri j that can establish the desired
heteroclinic skeleton in the A network constitute a broad
continuum in the parameter space. A set of sufficient
conditions that determine a part of this region in the form of
simple inequalities on si and ri j can be found in [61].
Following these conditions, we set rii � 1:0 for
i 2 f1; . . . ; 5g, riÿ1; i � 1:5 for i 2 f2; . . . ; 5g, ri; i�1 � 0:5 for
i 2 f1; . . . ; 4g, and ri j � rjÿ1; j � 2 for j 2 f2; 3; 4g and
i =2 jÿ 1; j; j� 1.

In this illustration, the five emotional modes were
organized as a heteroclinic sequence, albeit a cyclic one, by
introducing the e5 ! e1 transition. We note that we do not
necessarily name the emotional components individually, but
interpret their mean activity as the degree of anxiety, a
negative emotional state. In this respect, the precise dynami-
cal quality of the emotional network is not of primary
consideration in our design; for the sake of our illustrations,
the emotional behavior could have been realized simply as a
limit cycle, or as a strange attractor. The xi j was evaluated as
done above for ri j, yet taking into account the e5 ! e1
transition, which results in x5;5 � 0:5.

We disregard any transient drug effect in the simulations,
thus assume that D, thus both matrices r and x are fixed.
These matrices configure the competition within the cognitive
and the emotional modes. The interaction between them is
regulated by the choice of the increment functions s and z, as
well as through resource competitions (8) and (9).

All five increments si in the cognitive process were
modelled as 1ÿPi�1 Bi�t�, i.e., inversely proportional to
the total (negative) emotional activity. The increments zi for
the five emotional modes were considered independent of the
cognitive activity in this example; they were all equal to the
externally applied stressor quantity S, which was assumed to
be nonnegative.

The resource competition RA vs. RB is regulated by the
equations (8) and (9) with parameters fA � fB � 0:3 and
random initial conditions.

With the selected parameters, the integration of ordinary
differential equations were performed by the Milstein
approximation. Figure 10 illustrates the suppression of and
delay in the cognition due to emotional activity, which is
induced by an external stressor.

An interesting prediction that can be derived from the
model is the contrast in the switching regimes of the total
activity in the cognitive and the emotional network during the
rising and decay periods of S. This can be better observed in
Fig. 11.
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Figure 10. Simulation of the stressor-induced emotion-cognition interac-

tion generated by the proposed ecological model. The bottom curve is the

temporal profile of the stressor, which triggers the emotional activity

depicted in the second row. Arousal of these emotional modes affects the

ongoing cognitive activity negatively, as seen in the first row. This effect

is due to two couplings between the cognitive and emotional processes:

(i) the direct interaction encoded in the cognitive increments s (see text),

and (ii) resource competition, which is shown in the third row.
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4.3 Mood-cognition interaction in the resting state
Such interaction in the absence of stress depends on the
psychiatric profile of the individuals. Individuality is fixed
by the value of parameters in the framework of our model. In
fact, all we need to know is just the ratio of characteristic
timescales, the level of excitation, and the degree of the non-
symmetry of the inhibitory connections. Let us first consider
an average (i.e., healthy) person.

Suppose that a cognitive activity, in the form of a transient
process, is to be finished in solving an internally-formulated
problem. We represent this cognitive process by five modes,
mood (in the absence of stress) by threemodes, and emotional
memory by two modes. The model parameters are indicated
in the caption of Fig. 9. The initial conditions are as follows:

at t � 0 all but one cognitive mode is equal to zero. One
emotional mode, namely the one representing a negative
mood, is not equal to zero, whereas the other is set to zero.
The memorymode, reminiscent of a positive image, is slightly
larger than the intensity of the memory mode, which we
assume to be representing a negative image. The phase
portrait of the considered dynamical process is given in
Fig. 12, and the corresponding time series in Fig. 13. One
can see that, at the first stage of the process, the positive
reminiscences suppress the negative emotions and support
cognitive activity. Then, the negative reminiscences push out

0.15

0.05

0.6 0.7 0.8
Stressor

A
ve
ra
ge

em
o
ti
o
n
al

ac
ti
vi
ty

RB

S2 > S1

RA

B 0

A0
L
ev
el
o
f
p
an

ic
Level of anxiety

RB

S3 > S2

RA

B 0

A0

L
ev
el
o
f
p
an

ic

Level of anxiety

RB

S4 > S3

RA

B 0

A0

L
ev
el
o
f
p
an

ic

Level of anxiety

RB

S1

RA

B 0

A0

L
ev
el
o
f
p
an

ic

Level of anxiety

Stimulus strengthLevel of disorder

M
o
o
d
/b
eh
av
io
r

Figure 11. Bifurcation origin of hysteresis: (top row) The sequence of phase portraits that corresponds to increasing stressor intensity, with the basins of

attractors A0 and B 0 indicated. (bottom left) Witney fold or Cusp catastrophe [137]; (bottom right) the hysteresis obtained from the model.
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Figure 13. A self-induced emotion-cognition interaction as generated by

the proposed ecological model. The interpretations are as in the previous

figure. Here, a certain cognitive mode, the A4 denoted by the green curve,

triggers emotional activity, which suppresses cognitive activity in return.

The emotional activity is time-limited as encoded in x (see text); the

cognitive process returns to back its track after this period.
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the positive ones and negative emotions become prevalent
(see also [138]). As a result, cognitive activity goes down.
However, cognition still controls emotion partially, and
eventually negative reminiscences vanish, yielding the suc-
cess of the cognitive job. Of course, for another psychiatric
profile, the interaction between mood and cognition could be
different. For example, reminiscences could be exchanging
with each other chaotically, as could emotion. In some region
of the control parameters, negative reminiscences can gen-
erate a depression lasting for a very long time.

The discussed dynamical model is a viable mathematical
description of the mental brain dynamics delineating the
crucial elements of emotion, cognition, and attention mem-
ory.

The analysis and simulation of this self-perturbating
system can reveal different characteristics and interaction
schemes of the two processes. This should be a scenario-based
approach, where the exact emotional and cognitive modes, as
well as all known (or investigated) interactions, are encoded
in the model.

What aspects of the proposed dynamical model of the
emotion-cognition interaction are specific to an individual or
to any given psychiatric disorder? We can think of two
answers to this important question: (i) the coupling schemes
connecting emotion $ cognition $ memory processes; and
(ii) the time constants setting the pace for each process. The
former determines the scheduling of the components in the
course of mental activity. For instance, the appraisal is likely
to trigger a coping strategy, which is shaped by the current
emotional state. The co-occurrence or a particular sequential
order of these processes in time forms a non-coincident
pattern that may be unique for an individual and/or may be
indicative of a disorder.

The timing of these episodes is another mental character-
istic. For instance, prematurely terminated appraisal may
result in an improper coping strategy, or coping may not arise
at all if the appraisal gets stuck, occupying the stage
indefinitely.

5. Conclusion

Coming back to the epigraph of the review, we have to say
that we do not know the origin of thought. However, we hope
that we have delivered to the reader our vision of how to build
a theory of cognition and emotion and how to develop
corresponding dynamical models. Our focus here was on the
specific mental phenomenon: the emotion-cognition interac-
tion.

Principles: Because of the brain's exclusive complexity
and the necessity to get a successful description of a
continuum of different cognitive and behavioral brain
functions, it is possible to build such a theory only if we can
find a reasonable level of abstraction. We do not think that
this abstraction should be at the level of neuronal groups, or
even of brain centers, but of transient cognitive modes and
intermediate entities, particularly metastable states. Themain
principles that have to be the basis of such a theory are: (i) the
robustness of brain dynamics against noise, (ii) the reprodu-
cibility of mental activities in a similar environment and
personal shape, and (iii) the ecological principleÐcompeti-
tion of mental modes for energy and information resources.

In the framework of such a theory, normal mental
activities can be viewed as emergent properties of the
dynamics of complex functional networks, whereas mental

disorders can be viewed as distortions of these dynamical
networks. Quantification of mental processes based on types
of dynamical distortion is a new discipline in diagnostics,
modeling, and tackling mental disorders.

Analyses of transient patterns of mood have emerged as a
new field in psychiatry. The creation of this new field can be
called the ``Project for a Dynamic Psychiatry'', as a para-
phrase of Freud's ``Project for a Scientific Psychology'' [139].

Dynamical Images: Under basal resting conditions, most
healthy neural sub-systems demonstrate irregular complex
dynamics that represent weakly interacting multiple mental
processes that operate over multiple time scales. These
processes prime the brain for an adaptive response, making
it ready and able to react to new cognitive information or
internal and external psychological perturbations. This
reaction in a normal situation leads to a robust and reliable
condition.

The dynamical principles that we have discussed above
provide us the understanding of the origin of the robustness
and the reliability ofmental behavior. This behavior is a result
of temporal brain activity that is an open complex none-
quilibrium system with finite energy and informational
resources. We have shown that the competition between
different modes, each functionally depending on incoming
information, solve the fundamental contradiction between
robustness and sensitivity to a weak informational signal. The
dynamical image of such activity in the state space of the
corresponding dynamical model is a Stable Heteroclinic
Channel (SHC) that is a sequence of metastable states,
whose vicinities are connected by unstable trajectories, i.e.,
separatrices.

We have analyzed here the simplest variant of the
heteroclinic channel, i.e. with one-dimensional unstable
separatrices. As our preliminary computer experiments
indicate, a heteroclinic channel that consist of saddles with
many dimensional unstable separatrices can nevertheless be
stable. Everything depends on the values of the positive
Lyapunov exponents: if one of them is clearly dominant, it
decisively determines the departing direction, consolidating
the robustness of transient behavior. When there are several
positive Lyapunov exponents of one order, functionally
oriented cognitive behavior can be distorted. From this
point of view, certain psychiatric disorders involving emo-
tion and cognition can be distinguished by the dynamical
parameters quantifying these exponents.

Using Dynamical Characteristics in a Clinic: Recent
clinical observations have shown that a mental disorder (just
like mental health) cannot be described by analysis of the
mood over a short period of time. Such mental disorders are
dynamical. For example, in a recent paper, Katerndahl et al.
[140] have asked the basic questions about the levels of mood
variability between healthy and unhealthy people. They
analyze and compare the dynamic patterns of hourly mood
variation among newly diagnosed primary care patients to
determine whether the major depressive disorder or panic
disorder compared with patterns in patients without either
disorder. Their premise is that in `normal' people, mood states
might vary over time in a dynamical pattern similar to that
seen for heart rate. Heart rate variability in normal people has
been shown to have some level of chaoticity. Normal controls
displayed a circadian mood pattern with chaotic dynamics.
Depressed subjects did not show a circadian pattern of mood
variation. Panic disorder subjects had variable patterns of
mood dynamics but generally did not match the combination
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of circadian pattern and dynamical chaos seen in controls.
Taken together, these results suggested that healthy indivi-
duals (i.e. without a disorder) might experience a normal
circadian rhythm in mood with superimposed mood changes
as the chaotic response to multiple social or biological
stressors during a day, while either the circadian rhythm or
the responsiveness to stressors is impaired in those with mood
or anxiety disorders.

Our efforts that focus on new dynamical models of
emotion and cognition in fact suggest to clinicians new
approaches for recording and analyzing data, and, further-
more, for diagnosis. Now is the time to use functional brain
imaging to identify patterns of brain activity in response to
selected stimuli, and genemapping to identify genetic features
associated with specific mental disorders. If we can add
transient brain dynamics to the psychiatry toolbox, the
ability to identify and classify mental and behavioral
disorders will be greatly enhanced.
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