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Above the barriers
(I M Khalatnikov's works
on the scattering of high-energy particles)

V L Pokrovsky

Relatively recently, in the fall of 1957, I had the good fortune
to speak at Landau's seminar on the over-barrier reflection of
high-energy particles. I was then working in Novosibirsk, at
the Institute of Radiophysics, whose director was one of my
teachers Yu B Rumer, and he introduced me to Landau. My
coauthors were my fellow students and friends SK Savvinykh
and F R Ulinich [1, 2]. The reflection of particles whose
energy exceeds the barrier height is a strictly quantum effect: a
classical particle just slows down as it approaches the tip of
the barrier and then accelerates. We solved the Schr�odinger
equation in the semiclassical approximation, formally
expanding it into a power series in the small parameter l=a,
where l is the de Broglie wavelength and a is a characteristic
size of the potential. The peculiarity of the problem, which
was not noticed by other theoreticians, lay in the fact that
each consecutive term of the expansion contained a singular-
ity of a higher order than the previous one. As a result, they
differed only by universal numerical factors. It turned out to
be possible to sum this numerical series using an exactly
solvable problem. Landau liked the work, and I was invited to
present it at his seminar. Following my talk, I met many
celebrities whom I had previously known only through their

publications and from legends. Isaak Markovich Khalatni-
kov showed the most vivid interest. He proposed collaborat-
ing, which was flattering forme. He explained his interest by a
mission assigned to him by Landau to find a mistake in
L Schiff's work on the same topic. This explanation sounded
somewhat strange, because we had already found themistake.
Only later did I realize that I became an object of his most
sincere and absolutely disinterested affection to any fledgling
theorist who came up with an interesting idea. Just this
property later made him an ideal director of the Institute of
Theoretical Physics and let him gather a unique team, which
quickly gained worldwide recognition. I hope, however, that
our relationship involved some individual element, the proof
of which is our friendship and longstanding research
collaboration, which extended to 1992. It would probably
have lasted even longer if it had not been interrupted by the
turbulent events of that time. The close rapprochement
needed for collaborative work became possible due to
another of Khalatnikov's rare qualities: his complete lack of
both arrogance and servility, as well as his simple and calm
way of communicating.

We both realized that the work I presented was just the
beginning. Although the method of series summation led to a
beautiful and nontrivial result, it was still not physically
transparent. It was not clear how to generalize it to similar
problems of quantum and classical mechanics. Contemplat-
ing this problem, we came to the following idea [3]. Classical
and semiclassical particles are reflected at a turning point,
where their kinetic energy becomes zero. If the particle energy
exceeds the height of the barrier, no turning point exists at a
real value of its coordinate. But it appears in the complex
coordinate plane if the potential is an analytic function.
Going into a complex plane is a rather common operation in
quantummechanics. Going into a complex momentum plane
is physically equivalent to tunneling, i.e., penetration into the
region of classically forbidden coordinates. Similarly, going
into the complex coordinate plane means penetration into the
region of classically forbidden momenta. Therefore, we
needed to find a suitable path in the complex plane along
which a wave travels without reflection to a complex turning
point, and then strongly changes in its vicinity. Then the path
goes to the real axis, where we can find the reflected wave. In
practice, this program was accomplished as shown in Fig. 1.
The path begins on the real coordinate axis x at x!1. In
this region, where the potential can be neglected, only the
transmitted wave C � t exp �ikx� exists, where t is the
transmission amplitude. After that, the path climbs in the
upper half of the complex plane until it intersects with the line
C1 going through the turning point x0 nearest to the real axis,
on which the semiclassical action S�x; x0� �

� x
x0
p�x 0� dx 0,

C2 C1

x0

x �0

Figure 1.
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where p�x� � �2m�Eÿ V�x���1=2, is purely real (this line is
called an anti-Stokes line). At infinity, line C1 runs parallel to
the real axis. The solution we started with oscillates on this
line. Up to a numerical factor, it is given by the typical
semiclassical expression c � A=

���������
p�x�p

exp �iS�x; x0�=�h�. As
usual, the semiclassical approximation is invalid in the
vicinity of a turning point; but we can bypass this point
from below along a large enough arc. In this case, however,
the semiclassical exponential increases until reaching the so-
called Stokes line, on which S�x; x0� becomes purely
imaginary, and then decreases, and the second exponential
with the minus sign in front of S�x; x0� appears in its
background. This change in the asymptotic regime is called
the Stokes phenomenon. As a result, on the second anti-
Stokes line C2, which passes through the same turning point
x0 at the angle 120

� to C1 and satisfies the same condition that
S�x; x0� be real, the asymptotic form of the wave function
consists of two exponentials:

c�x���
C2
� A���������

p�x�p �
exp

�
iS�x; x0�

�h

�
ÿ i exp

�
ÿ iS�x; x0�

�h

��
:

�1�

The path continues along C2 far to the left, where the
potential can again be neglected. Along the entire line C2,
asymptotic form (1), corresponding to the two waves
propagating in opposite directions with equal absolute
values of the amplitude, is valid. On the complex line C2, the
initial wave is completely reflected at the turning point. But
when the path goes to the real axis as x! ÿ1, one of the
exponentials increases, whereas the other decreases. The
absolute value of their ratio, which is equal to the reflection
amplitude up to a phase factor, can be easily calculated as

jrj�exp

�
ÿ 2

�h
Im

�x0
0

p�x� dx
�
� exp

�
i

�h

�x0
x �
0

p�x� dx
�
: �2�

This result shows that the reflection does not occur in any
order in powers of �h or of the ratio of the wavelength l to the
characteristic size of the potential a. This effect is exponen-
tially small. This smallness resembles another strictly quan-
tum effect, quantum tunneling. As well as the tunneling
amplitude, the over-barrier reflection amplitude contains an
imaginary action in the exponent between the two turning
points, which, in contrast to tunneling, are in the complex
coordinate plane.

In the 1960s, this work was mostly developed by Soviet
theorists. Several interesting papers were written by
A M Dykhne. In 1961, he considered the motion of a
semiclassical particle in a periodic potential [4]. It is well
known that the spectrum has a band structure in this case, and
the wave functions are modulated Bloch plane waves. The
analogue of the over-barrier reflection in this problem is the
appearance of band gaps at energies exceeding the maximum
of the periodic potential. In this case, the particle reflects from
the system of periodically placed turning points xn, as shown
in Fig. 2. All of them are connected by anti-Stokes lines.
Dykhne found that the position of the band gaps is given by
the `Bohr' quantization rule

� xn�1
xn

p�x� dx � m�h, while the
widths of the band gaps are determined by the above-barrier
reflection coefficient: D � �ho exp

ÿ
2i=�h

� xn
x �n

p�x� dx�. Bands of
a finite, exponentially small width appear at energies smaller
than themaximum of the potential due to tunneling under the

barriers. Dykhne's result shows that in a periodic potential of
a general form, the number of bands separated from each
other by gaps is infinite. On the other hand, Dubrovin and
Novikov [5] showed that for a particular class of potentials,
the number of bands is finite. It is still not known how to
resolve this controversy. The potentials leading to a finite-
band spectrum are elliptic double-periodic functions. This
means that the turning points form a regular lattice in the
complex plane with the same periods. Presumably, the
reflection disappears as a result of interference on this
lattice, but this hypothesis has not been proved yet.

Dykhne applied the same method to solve the problem of
transitions when two levels cross in the complex time plane
[6, 7]. The same problem when the levels cross in real time is
known as the Landau±Zener problem (or theory) [8, 9]. This is
one of the most important results of nonstationary quantum
mechanics. Landau, and independently from him Zener,
considered a nonstationary two-level system that can be
described by the Hamiltonian

HLZ � E1�t� D
D � E2�t�

� �
: �3�

The diagonal elements of Hamiltonian (3) are called
diabatic levels, while the quantities E� � �E1 � E2�=2����E1 � E2�=2�2 � D 2

	1=2
, which are obtained by formal

diagonalization of this Hamiltonian, are called adiabatic
levels. It is assumed that the process occurs adiabatically,
with the exception of a short time interval close to the instant
of intersection of the diabatic levels. Without a loss of
generality, we can assume that this instant occurs at t � 0.
After that, we can assume the dependence of the diabatic
levels on time to be linear. Finally, we assume that
E1�ÿE2��h _Ot=2. The amplitude of survival on one of the
diabatic levels, found by Landau and Zener, is given by

ALZ � exp

�
ÿ 2pD 2

�h 2 _O

�
: �4�

What happens if the levels do not cross on the real time
axis? Following what was said, it is obvious that the crossing
point must be found in the complex time plane and the
problem must be solved near that point. I suggested this
formulation of the problem to Dykhne as the initiation of his
PhD dissertation, but I did not participate in solving this
problem. The solution was found by Dykhne and simulta-
neously by Landau, who discovered a mistake in the original
version of Dykhne's solution. Landau's solution was pub-
lished in the third and subsequent editions of Quantum

x0 x1 x2

Re x

xÿ2 xÿ1

x �0 x �1 x �2x �ÿ2 x �ÿ1

Figure 2.
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Mechanics [10]. Landau reduced this problem to one of over-
barrier reflection. It is not surprising that these results look
similar. The transition amplitude from one level to another,
found by Dykhne and Landau, is

ADL � exp

�
i

�h

�t0
t �
0

�
E2�t� ÿ E1�t�

�
dt

�
; �5�

where t0 is the crossing point of the levels in the complex time
plane. We note that in this case, the crossing amplitude is
exponentially small. Equation (5) is known in the literature as
the Dykhne formula or the Landau±Dykhne formula.
Landau±Zener formula (4) directly follows from it. Indeed,
according to the assumptions of this theory, E��t� ÿ Eÿ�t� ����hOt�2 � 4D 2

�1=2
and t0 � i2D=�h _O. The integration in the

exponential in Eqn (5) is done along the imaginary axis and
immediately leads to Eqn (4).

This problem is related to the question of the change in an
adiabatic invariant in classical mechanics. It is known that
under a slow variation of theHamiltonian, the classical action
per period is approximately conserved. This action is an
adiabatic invariant. What is the accuracy of this approximate
conservation law? The answer depends on time intervals
within which the perturbation acts and the observation is
performed. In the simplest case, when the perturbation tends
to zero sufficiently fast as t! �1, and the observation is
made when the perturbation can be neglected, the change in
the adiabatic invariant first found by Dykhne can be rather
easily linked to the Dykhne±Landau problem, at least in the
case of one-dimensional motion. It is known that in the
semiclassical approximation, the action within a period is
quantized with the period 2p�h. Up to this factor, the action
coincides with the level number n. In the language of quantum
mechanics, the change in the adiabatic invariant means a
transition from one level to another. The value of this change
is DI � 2p�h

P
n 0 �n 0 ÿ n�wn; n 0 , where wn; n 0 denotes the prob-

ability of transition from level n to level n 0. In the adiabatic
regime, the transitions between the nearest levels n 0 ÿ n � �1
are the most probable, while other transitions are much less
probable. Because of a weak dependence of wn; n�1 on n, we
obtain [6, 7, 11]

DI � 2ph
dwn; n�1

dn
� i2ph 2

�t0
t �
0

qo
qI

dt exp

�
2i

�t0
t �
0

o�t� dt
�
;

�6�
where o is the frequency of classical motion, which slowly
depends on time. The change in the adiabatic invariant turns
out to be exponentially small. But if the measurement is done
within a finite and not exponentially large period of time, then
the change becomes much larger; it oscillates in time and
simultaneously decays as 1=t, just like the transition prob-
abilities. This phenomenon, unknown at that time, leads to a
disagreement with the experimental results.

A more general situation with several periodic motions
was investigated byAASlutskin in the framework of classical
mechanics. The description of Slutskin's work can be found in
the last editions of Mechanics by Landau and Lifshitz [12] in
Pitaevskii's treatment.

A three-dimensional generalization of the issue of over-
barrier reflection was achieved in a sequence of papers [13±16]
by Patashinskii, Pokrovsky, and Khalatnikov, published in
1962±1964. This work was started during Landau's scientific
life and was discussed with him repeatedly. In the course of

this work, Khalatnikov and I invented the poles of the
scattering amplitude in the complex momentum plane: back
then, these poles were not yet called Regge poles. This nut,
however, was so hard to crack that we were able to finish this
work only several years later, with the participation of Sasha
Patashinskii. The formulation of the problem was as follows.
Classical mechanics allows scattering in a definite cone of
angles. Quantum mechanics does not have this limitation.
What is the amplitude of semiclassical scattering at a
classically forbidden angle? In classical mechanics, each
allowed scattering angle y corresponds to a definite value of
the impact parameter r. Following the same line of reasoning
as in the case of over-barrier reflection, it can be conjectured
that the scattering at a classically forbidden angle should
correspond to a complex impact parameter. Usually, the
semiclassical approximation in scattering theory is obtained
by means of the Watson transform of the Faxen±Holtzmark
formula for the scattering amplitude:

f �y� � 1

2ik

X1
l�0
�2l� 1� exp �2idl�Pl�cos y�

� ÿ 1

2ik

�
G
nS�n�Pnÿ1=2�ÿ cos y� dn

cos np
: �7�

The integration contour G is shown in Fig. 3. It has to be
deformed if possible in order to pass through the saddle point
in the direction of the steepest descent. The value n at the
saddle point is the impact parameter up to some factor
(r � n=k), which corresponds to the scattering angle y. Free
contour deformation is obstructed by poles of the function
S�n�. Therefore, in a certain region of parameters, the
contribution of the poles dominates in the scattering
amplitude and the use of a complex impact parameter
depending on the scattering angle becomes invalid. A
detailed description of the result is inappropriate in this
short note; but it is possible to show how the poles of the
reflection amplitude appear. The function S�n� is defined by
the asymptotic form of the radial wave function,

Rnÿ1=2�r� � 1

r

�
A�n� exp

�
i

�
krÿ

�
nÿ 1

2

�
p
2

��
ÿ B�n� exp

�
ÿ i

�
krÿ

�
nÿ 1

2

�
p
2

���
;

as S�n� � A�n�=B�n�. The pole appears when B�n� � 0. We
consider how the radial wave function behaves in the complex
r plane. Typical anti-Stokes lines passing through the turning
point r1 nearest to the real axis are shown in Fig. 4a. The
radial wave function decays near the coordinate origin, i.e.,
has only one exponential R � exp �iS�r; r1�=�h� in the sector
left of the turning point. In passing to the right anti-Stokes
line, the radial wave function acquires the second exponential,
R � exp �iS�r; r1�=�h� ÿ i exp �ÿiS�r; r1�=�h�, whose coeffi-

G

n

Figure 3.
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cient remains the same as r! �1. This means that B�n� 6� 0
andS�n� does not have a pole. The pole appears at the value of
n defined by two conditions: 1) a second turning point r2
appears on the same anti-Stokes line (Fig. 4b); 2) the action
between the two turning points obeys Bohr's rule
S�r; r1� � np�h. Under this condition, the second exponential
disappears after passing the second turning point.

In the following rather long time period, activity in this
area almost disappeared and the above-mentioned papers
were seldom cited. Interest in them was suddenly resumed in
the late 1980sÐearly 1990s because of the development of
new areas in physics and mathematics. In physics, it was the
pattern formation theory, in particular, fractal crystal growth
and the theory of motion of the interface between viscous and
ideal fluids trapped between two parallel plates (Hele±Shaw
flow). The new mathematical science is called `asymptotics
beyond-all-orders' (in the sense of perturbation theory).
Among the scientists who significantly contributed to this
new discipline are M Kruskal, M Berry, J Boyd, J Langer,
H Segur, H Levine, H Muller-Krumbhaar, S Tanveer,
B Shraiman, D Bensimon, M Mineev, V Mel'nikov, E Bren-
ner, and P Wiegmann. The first step was taken by Kruskal
and Segur in their work devoted to dendritic crystal growth
[17], in which our method was first generalized to a nonlinear
problem. This research is active even nowadays. In addition
to the original papers, many collections of papers, reviews,
and monographs have been published. I refer to two of them.
The first is a collection of articles [18] named Asymptotics
beyond all orders, published in 1991. It contains several
important reviews of the above-mentioned problems. The
second is a book by J Boyd, Weekly nonlocal solitary waves
and Beyond-All-Orders Asymptotics [19], published in 1999.
Even though the title looks more specialized, this book
contains a detailed and clear description of general methods
and related areas, and it can therefore be recommended as a
primer on the subject. With the permission of the author, I
reproduce some excerpts from this book related to our work
of 1969.

Boyd calls our method ``Matched asymptotics in the
complex plane'' and characterizes it as rather general and
applicable to a large number of different problems. Here is
what he writes in the introduction to the corresponding
chapter:

``The earliest use of matched asymptotics in the complex
plane was by Pokrovsky and Khalatnikov (1961), who
generalized the semiclassical theory to calculate exponen-
tially small reflection of waves from a potential barrier whose
height is everywhere less than the energy of the waves.
Kruskal and Segur (1985, 1991) applied their ideas to a
nonlinear phenomenon: Dendritic fingering of a solid-liquid
interface. Later, Segur and Kruskal (1987) and Pomeau,
Ramani, and Grammaticos (1988) applied the method to
solitary waves. Since then, there have been many applica-
tions; Akylas and Grimshow (1992) study of nonlocal higher

mode of internal gravity solitons is particularly readable.
Grimshow and Joshi (1995) have extended Pomeau et al.
(1988) to the higher order with corrections.''

While describing our work of 1961, Boyd intentionally
uses rather vague and extremely general terminology. To
characterize it, we consider Fig. 5, by which he substitutes our
more precise Fig. 1. All details are omitted; what is left is the
general idea of motion with a known solution from one
infinity to a complex turning point, and then from this point
with the other known solution to the other infinity. In an even
more abstract form, the method of matched asymptotics is
illustrated in Fig. 6. It shows an external region in which the
asymptotic form of the solution must be found, two adjacent
regions where the asymptotic forms are known up to several
unknown constants, separated by the line of the change in the
asymptotic regime (Stokes line), and the internal region in the
complex plane where the asymptotics are invalid. It is
required to solve the problem in the internal region. Usually,
it is possible to use the proximity of this region to a certain
point at which the short-wavelength approximation is strictly

exp�iS=�h� ÿ i exp�ÿiS=�h�

a

r

r1

exp�iS=�h�

r2

b

exp�iS=�h�

exp�iS=�h�
r1

r2

r

Figure 4.
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invalid (the analog of the turning point in classical mechan-
ics), solve the internal problem, if not analytically then
numerically, and match it with the two different asymptotic
forms in the adjacent regions. In this form, themethod is valid
even for nonlinear problems, for which different types of
wave solutions are known, for example, solitons, automodel
solutions, and shock waves. Apart from considering the
previously discussed problems of over-barrier reflection,
Boyd illustrates the general method by the original solution
of the problem of a pendulum driven by a force slowly
depending on time. The corresponding equation of motion is

utt � u � f �et� ; �8�

where e is a small parameter. Let the solution at t < 0 be close
to f �et�. For t > 0, it differs by a solution of the homogeneous
equation: u�t! �1� � f �et� � c sin t. To find the constant
c, we need to solve the problem in the vicinity of the pole of
f �x� and match the two asymptotic forms of u with the
solution in the internal region. The problem was solved in the
case where the pole of f�x� located at a point xs is of the
second order. The function f �x� in the internal region is
substituted by the function �xÿ xs�ÿ2, and the solution of the

standard equation obtained from (8) for U�e 2u, namely,
Utt �U��tÿ xs=e�ÿ2, is the so-called Borel logarithm
U�t� � Bo�t� � �10 exp �ÿs� ln �1� s 2=t 2� ds, where t �
tÿ xs=e. When t changes its sign after circulating around
the origin, the Borel logarithm acquires the additional term
2pi exp �ÿit�. Matching this solution with the asymptotic
expression in the region 1 < t < 1=e and then going down to
the real axis t, we find c � �2p=e 2� exp �ixs=e�. As expected,
this is an exponentially small quantity. Surprisingly, the
solution of this linear problem appeared to be a key to the
solution of the much more complicated nonlinear problem
on the variation of a soliton in the framework of the
Korteweg±de Vries equation with the added fifth derivative
when the soliton slowly propagates from one end of the line
to another [20]. The solution is too cumbersome, and it is
difficult to describe it briefly, but the very formulation of the
problem gives an idea of what class of problems can be
solved by the method of matched asymptotics.

I reproduce here two tables extracted from the same book
by Boyd, collecting the information about the class of
problems, excluding the solitons, in which exponentially
small effects localized in the complex plane appear
(Table 1, 2). The method of matched asymptotics can be

Table 1.Nonsoliton, nonquantum exponential smallness.

Phenomenon Field References

Dendritic crystal growth Condensed matter Kessler, Koplik & Levine (1988)

Viscous éngering
(SaffmanëTaylor problem)

Fluid dynamics Shraiman (1986), Hong & Langer (1986),
Combescot et al. (1986),
Tanveer (1990, 1991)

Diffusive front merger. Exponentially êow Reaction-diffusion systems Carr (1992), Hale (1992), Carr & Pego (1989),
Fusco & Hale (1989),
Laforgue & O'Malley (1994, 1995),
Reyna &Ward (1994, 1995),
Ward & Reyna (1995)

Stokes' phenomenon in asymptotic expansions Applied mathematics Dingle (1973), Berry (1989, 1995),
Berry & Howls (1990, 1991, 1993, 1994),
Olver (1974, 1991, 1993), Olde Daalhuis (1992),
Paris & Wood (1992), Paris (1992),
Howls (1997), Jones (1997)

Rapidly-forced pendulum Classical physics Chang (1991),
Scheurle et al. (1991)

Resonant sloshing in a tank Fluid mechanics Byatt-Smith & Davie (1991)

Laminar êow in porous pipes Fluid mechanics. Space plasmas Berman (1953), Robinson (1976),
Terril (1965, 1973), Terril & Thomas (1969),
Grundy & Allen (1994)

JeffreyëHamel êow stagnation points Higher-order boundary layer Bulakh (1964)

Shocks in a nozzle Fluid mechanics Adamson & Richey (1973)

Slow viscous êow past a circle, sphere Fluid mechanics (log & power series) Proudman & Pearson (1957),
Chester & Breach (1969), Skinner (1975),
Kropinski & Ward & Keller (1995)

Equatorial Kelvin wave instability Meteorology, oceanography Boyd & Christidis (1982, 1983),
Boyd & Natarov (1998)

Error: midpoint rule Numerical analysis Hildebrand (1974)

Radiation leakage from éber optics waveguide Nonlinear optics Kath & Kriegsmann (1988),
Paris & Wood (1989)

Particle channeling in crystals Condensed matter physics Dumas (1991)
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applied tomany of these problems. The variety of phenomena
united by a similar mathematical structure is striking. Among
others, these are abstract mathematics, hydrodynamics,
meteorology, solid state physics, and quantum mechanics. I
believe that many things have yet to be discovered.

I hope that this brief review will renew IMKhalatnikov's
interest in this circle of questions. According to my observa-
tions, his interest in science and his research activity have not
weakened.
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Table 1 (continued)

Phenomenon Field References

Island-trapped waves Oceanography Lozano &Meyer (1976), Meyer (1980)

Rising bubbles Fluids Vanden-Broeck (1984, 1986, 1988, 1992)

Chaos onset Physics Holmes, Marsden & Scheurle (1988)

Separatrix separation Applied mathematics Hakim & Mallick (1993)

Slow manifold in geophysical êuids Meteorology, oceanography Lorenz & Krishnamurthy (1987),
Boyd (1994), Camassa (1995)

Table 2. Selected examples of exponentially small quantum phenomena.

Phenomenon Field References

energy of a quantum double well (H�2 , etc.) Atomic physics, quantum chemistry Fr�oman (1966), Cizek et al. (1986)

Imaginary part of eigenvalue of a metastable
quantum species: stark effect
(external electric éeld)

Atomic physics, quantum chemistry Oppenheimer (1928), Reinhardt (1982),
Hinton & Shaw (1985), Benassi et al. (1979)

(ImE ): cubic anharmonicity Quantum chemistry Alvarez (1988)

(ImE ): quadratic Zeeman effect

(external magnetic éeld)

Atomic physics, quantum chemistry Cizek and Vrscay (1982)

Transition probability, two-state quantum sys-
tem (exponentially small in speed of variations)

Quantum mechanics Berry & Lim (1993)

Superoscillations in Fourier integrals, quantum
billiards, etc.

AppliedMathematics. QuantumMechanics elec-
tromagnetics

Berry (1994)

Width of stability bands for Hill's equation Quantum physics, astronomy Weinstein and Keller (1985, 1987)

Above-the-barrier scattering Quantum physics Pokrovskii & Khalatnikov (1961)
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