
21 October 2009, in the conference hall of the Lebedev
Physical Institute, Russian Academy of Sciences, a scientiéc
session of the Physical Sciences Division was held honoring
the 90th birthday of Academician I M Khalatnikov. The
following talks were given at the session:

(1) Andreev A F (Kapitza Institute of Physical Problems,
Russian Academy of Sciences, Moscow) ``Momentum deécit
in quantum glasses'';

(2) Kamenshchik A Yu (Dipartimento di Fisica and
Istituto Nazionale di Fisica Nucleare, Bologna, Italy;
Landau Institute for Theoretical Physics RAS, Moscow)
``The problem of singularities and chaos in cosmology'';

(3) Pokrovsky V L (Landau Institute for Theoretical
Physics, RAS, Moscow; Department of Physics, Texas
A&M University, USA) ``I M Khalatnikov's works on
scattering of high-energy particles'';

(4) Khriplovich I B (Budker Institute of Nuclear Physics,
Novosibirsk) ``Screening and antiscreening of charge in gauge
theories.''

Brief versions of talks 2 ± 4 are given below.

PACS numbers: 01.65.+g, 04.20. ± q, 98.80. ± k

DOI: 10.3367/UFNe.0180.201003h.0313

The problem of singularities
and chaos in cosmology

A Yu Kamenshchik

1. Introduction

We consider different aspects of the problem of cosmological
singularities, such as the Belinsky±Khalatnikov±Lifshitz
(BKL) oscillatory approach to a singularity, the new features
of cosmological dynamics in the neighborhood of a singular-
ity in multidimensional and superstring cosmological models,
and their connections with modern branches of mathematics
such as infinite-dimensional Lie algebras. The chaoticity of
the oscillatory approach to the cosmological singularity is
also discussed. The conclusions contain some thoughts about
the past and the future of the Universe in light of the

oscillatory approach to the Big Bang and the Big Crunch
cosmological singularities.

Many years ago, in conversations with his students, Lev
Davidovich Landau used to say that three problems were the
most important for theoretical physics: the problem of the
cosmological singularity, the problem of phase transitions,
and the problem of superconductivity [1]. We now know that
the great breakthrough was achieved in the explanation of
the phenomena of superconductivity [2] and phase transi-
tions [3]. The cosmological singularity problem has been
extensively studied during the last 50 years and many
important results have been obtained, but it still preserves
some intriguing aspects. Moreover, some quite unexpected
facets of the problem of the cosmological singularity were
discovered. Isaak Markovich Khalatnikov, who was one of
the students of Landau, made a significant contribution to
the discovery and elaboration of different aspects of the
problem of the cosmological singularity and the chaos
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arising in the process of the asymptotic approach to this
singularity.

In our review [4] published 10 years ago in an issue of this
journal dedicated to the 90th anniversary of Landau's birth,
we discussed some issues connected with the problem of
singularity in cosmology. In a paper dedicated to the 100th
birthday of Landau [5], we dwelled on relations between the
well-known old results of these studies and new developments
in this area.

In the present paper, dedicated to the 90th birthday of
I M Khalatnikov, I give a brief review of some old and new
ideas connected with the development of the theory of the
asymptotic approach to the cosmological singularity, and try
to argue why this could be interesting not only for physicists
and mathematicians but also for a wider audience.

To begin with, we recall that Penrose and Hawking [6 ± 8]
proved the impossibility of indefinite continuation of geode-
sics under certain conditions. This was interpreted as pointing
to the existence of a sigularity in the general solution of the
Einstein equations. These theorems, however, did not allow
finding the particular analytic structure of the singularity.
The analytic behavior of the general solutions of the Einstein
equations in the neighborhood of a singularity was investi-
gated by Lifshitz and Khalatnikov [9 ± 12] and Belinsky,
Lifshitz, and Khalatnikov [13 ± 15]. These papers revealed
the enigmatic phenomenon of an oscillatory approach to the
singularity, which has become known also as the Mixmaster
Universe [16]. The model of a closed homogeneous but
anisotropic universe with three degrees of freedom (the
Bianchi type-IX cosmological model) was used to demon-
strate that the universe approaches the singularity in such a
way that its contraction along two axes is accompanied by an
expansion along the third axis, and the axes change their roles
according to a rather complicated law that reveals a chaotic
behavior [14 ë 18].

The study of the dynamics of the universe in the vicinity of
a cosmological singularity has exploded as a developing field
of modern theoretical and mathematical physics. We first
note a generalization of the oscillatory approach to the
cosmological singularity in multidimensional cosmological
models. It was noted in [19 ± 21] that the approach to the
cosmological singularity in multidimensional (Kaluza±Klein
type) cosmological models has a chaotic character in space-
times whose dimension is not higher than ten, while in
spacetimes of higher dimensions, the universe enters a
monotonic Kasner-type contracting regime after undergoing
a finite number of oscillations.

The development of cosmological studies based on super-
string models has revealed some new aspects of the dynamics
in the vicinity of the singularity [23 ± 25]. First, it was shown
that mechanisms for changing Kasner epochs exist in these
models, and they are due not to gravitational interactions but
to the influence of other fields present in these theories.
Second, it was proved that cosmological models based on
the six main superstring models plus the D � 11 supergravity
model exhibit a chaotic oscillatory approach toward the
singularity. Third, the connection between cosmological
models manifesting an oscillatory approach toward a
singularity and a special subclass of infinite-dimensional Lie
algebras [26], so-called hyperbolic Kac±Moody algebras, was
discovered (a comprehensive review of the corresponding
mathematical tools with their application to BKL studies
was given in [27]). The study of the algebraic structures
underlying the chaotic approach to the cosmological singu-

larity opens some new (although still very weakly elaborated)
prospects for the development of a consistent quantum
gravity theory [28].

In speaking about the new aspects of the oscillatory
approach to the cosmological singularity in multidimen-
sional and superstring theories, we must not forget that the
`classical' BKL behavior for the 3+1 dimensional general
relativity has not yet been totally understood, and requires
further study. In addition, we try to attract attention to some
philosophical aspects of this phenomenon, which have so far
been underestimated.

The structure of the paper is as follows. In Section 2, we
briefly discuss the Landau theorem on the singularity, which
was not published in a separate paper and was reported in
book [29] and review [9]; in Section 3, we recall the main
features of the oscillatory approach to the singularity in
relativistic cosmology, including its chaoticity; Section 4 is
devoted to the modern development of BKL ideas and
methods, including dynamics in the presence of a massless
scalar field, multidimensional cosmology, superstring cos-
mology, and the correspondence between chaotic cosmologi-
cal dynamics and hyperbolic Kac±Moody algebras; in the
concluding Section 5, we express some thoughts about the
past and the future of the Universe in light of the BKL
phenomenon.

2. Landau theorem on the singularity

We consider a synchronous reference frame with the metric

ds 2 � dt 2 ÿ gab dx
a dxb ; �1�

where gab is the spatial metric. Landau pointed out that the
determinant g of the metric tensor in a synchronous reference
frame must tend to zero at some finite time if some simple
conditions on the equation of state are satisfied. To prove this
statement, it is convenient to write the 0ÿ0 component of the
Ricci tensor as

R 0
0 � ÿ

1

2

qK a
a

qt
ÿ 1

4
K b

aK
a
b ; �2�

where Kab is the extrinsic curvature tensor defined as

Kab �
qgab
qt

; �3�

and the spatial indices are raised and lowered by the spatial
metric gab. The Einstein equation for R 0

0 is

R 0
0 � T 0

0 ÿ
1

2
T ; �4�

where the energy±momentum tensor is

T j
i � �r� p� uiu j ÿ d j

i p ; �5�

where r, p, and ui are the energy density, the pressure, and the
four-velocity. The quantity in the right-hand side of Eqn (4),

T 0
0 ÿ

1

2
T � 1

2
� r� 3p� � � r� p� uau a ; �6�

is positive whenever

r� 3p > 0 : �7�
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Hence, it follows from Eqn (4) that

1

2

qK a
a

qt
� 1

4
K b

aK
a
b 4 0 : �8�

Because of the algebraic inequality

K b
aK

a
b 5

1

3
�K a

a �2 ; �9�

we have

qK a
a

qt
� 1

6
�K a

a �2 4 0 �10�
or

q
qt

1

K a
a
5

1

6
: �11�

If K a
a > 0 at some instant of time, then as t decreases, the

quantity t decreases to zero within a finite time. Hence, K a
a

tends to �1, and because of the identity

K a
a � g ab

qgab
qt
� q

qt
ln g ; �12�

this means that the determinant g tends to zero [no faster
than g according to inequality (11)]. If K a

a < 0 at the initial
instant, then the same result follows for the increasing time.
A similar result was obtained in [30, 31] for dust-like matter
and in [32].

This result does not prove that a true physical singularity
inevitably exists in spacetime itself, irrespective of the chosen
reference system. However, it played an important role in
stimulating discussion about the existence and generality of
singularities in cosmology. We note that the energodomi-
nance condition in (7) used in the proof of the Landau
theorem also appears in the proof of the Penrose and
Hawking singularity theorem [6 ± 8]. Moreover, the break-
down of this condition is necessary for an explanation of the
phenomenon of cosmic acceleration.

The Landau theorem is deeply connected with the
appearance of caustics studied by Lifshitz, Khalatnikov, and
Sudakov [33, 34] and discussed between them and Landau in
1961. In trying to geometrically construct a synchronous
reference frame, one starts from the three-dimensional
Cauchy surface and designs a family of geodesics orthogonal
to this surface. The length along these geodesics serves as the
time measure. It is known that these geodesics intersect on
some two-dimensional caustic surface. This geometry con-
structed for empty space is also valid in the presence of dust-
like matter ( p � 0). Such matter moving along the geodesics
concentrates on caustics, but the increase in density cannot be
unbounded because the arising pressure destroys the caus-
tics. 1 This question was studied by Grishchuk [35]. Later,
Arnold, Shandarin, and Zeldovich [36] used caustics for the
explanation of the initial clustering of dust, which, while not
creating physical singularities, is nevertheless responsible for
the creation of so-called pancakes. These pancakes represent
the initial stage of the development of the large-scale structure
of the universe.

3. Oscillatory approach to the singularity
in relativistic cosmology

One of the first exact solutions found in the framework of
general relativity was the Kasner solution [22] for the Bianchi
type-I cosmological model representing a gravitational field
in an empty space, with the Euclidean metric depending on
time according to the formula

ds 2 � dt 2 ÿ t 2p1 dx 2 ÿ t 2p2 dy 2 ÿ t 2p3 dz 2 ; �13�
where the exponents p1, p2, and p3 satisfy the relations

p1 � p2 � p3 � p 2
1 � p 2

2 � p 2
3 � 1 : �14�

Remarkably, this solution was the first nonstationary
cosmological solution, found before the isotropic Friedmann
solution. Perhaps because of its `exoticity,' it was for many
years ignored by working cosmologists and became appre-
ciated only in the 1950s.

Choosing the order of the exponents as

p1 < p2 < p3 ; �15�

we can parameterize them as [9, 10]

p1 � ÿu
1� u� u 2

; p2 � 1� u

1� u� u 2
; p3 � u�1� u�

1� u� u 2
:

�16�
As the parameter u varies in the range u5 1, p1 and p2 take all
their permissible values:

ÿ 1

3
4 p1 4 0; 04 p2 4

2

3
;

2

3
4 p3 4 1 : �17�

The values u < 1 lead to the same range of values of p1, p2,
and p3 because

p1

�
1

u

�
� p1�u�; p2

�
1

u

�
� p3�u�; p3

�
1

u

�
� p2�u� : �18�

The parameter u, introduced in the early 1960s, is very useful,
and its properties have attracted the attention of researchers
in various contexts. For example, in recent paper [37], a
connection was established between the Lifshitz±Khalatni-
kov parameter u and the invariants arising in the context of
Petrov's classification of Einstein spaces [38].

In the case of Bianchi type-VIII or Bianchi type-IX
cosmological models, the Kasner regime in (13) and (14) is
no longer an exact solution of the Einstein equations;
however, generalized Kasner solutions can be constructed
[11 ± 15]. It is possible to construct some kind of perturbation
theory where the exact Kasner solution in (13) and (14) plays
the role of the zeroth-order approximation, while the role of
perturbations is played by those terms in the Einstein
equations that depend on spatial curvature tensors (appar-
ently, such terms are absent in the Bianchi type-I cosmology).
This perturbation theory is effective in the vicinity of a
singularity or, in other terms, at t! 0. The remarkable
feature of these perturbations is that they imply a transition
from the Kasner regime with one set of parameters to the
Kasner regime with another set.

The metric of the generalized Kasner solution in a
synchronous reference system can be written in the form

ds 2 � dt 2 ÿ �a 2lalb � b 2mamb � c 2nanb� dx a dx b ; �19�1 In an empty space, the caustic is a mathematical, but not a physical,

singularity. This follows simply from the fact that we can always shift its

location by changing the initial Cauchy surface.
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where

a � t pl ; b � t pm ; c � t pn : �20�

The three-dimensional vectors l,m, and n define the directions
along which the spatial distances vary with time according to
power laws (20). We set pl � p1, pm � p2, and pn � p3, such
that

a � t p1 ; b � t p2 ; c � t p3 ; �21�

i.e., the Universe is contracting in directions given by the
vectorsm and n and is expanding along l. It was shown in [14]
that the perturbations caused by spatial curvature termsmake
the variables a, b, and c undergo a transition to another
Kasner regime characterized by the formulas

a � t p
0
l ; b � t p

0
m ; c � t p

0
n ; �22�

where

p 0l �
j p1j

1ÿ 2j p1j ; p 0m � ÿ
2j p1j ÿ p2
1ÿ 2j p1j ; p 0n � ÿ

p3 ÿ 2j p1j
1ÿ 2j p1j :

�23�

The effect of the perturbation is therefore to replace one
`Kasner epoch' by another such that the negative power of t is
transformed from the l to the m direction. During the
transition, the function a�t� reaches a maximum and b�t� a
minimum. Hence, the previously decreasing quantity b now
increases, the quantity a decreases, and c�t� remains a
decreasing function. The previously increasing perturbation
that caused the transition from regime (21) to (22) is damped
and eventually vanishes. Then another perturbation begins to
grow, which leads to a new replacement of one Kasner epoch
by another, and so on.

We emphasize that just the fact that the perturbation
implies a change in dynamics that suppresses this perturba-
tion allows using the perturbation theory so successfully. We
note that the effect of changing the Kasner regime exists
already in cosmological models that are simpler than those of
Bianchi type IX and Bianchi type VIII. As a matter of fact, in
a Bianchi type-II universe, only one type of perturbations
exists, connectedwith spatial curvature, and this perturbation
leads to a change in theKasner regime (one bounce). This fact
was known to Lifshitz and Khalatnikov at the beginning of
the 1960s, and they discussed this topic with Landau (just
before his tragic accident), who appreciated it highly. The
results describing the dynamics of the Bianchi type-IX model
were reported by Khalatnikov in his talk given in January
1968 at the Henri Poincar�e Seminar in Paris. J A Wheeler,
who was present there, pointed out that the dynamics of the
Bianchi type-IX universe represent a nontrivial example of a
chaotic dynamical system. Later, K Thorn distributed a
preprint with the text of this talk.

Returning to the rules governing the bouncing of a
negative power of time from one direction to another, we
emphasize that the very complicated system of nonlinear
partial differential equations is reduced in the vicinity of a
singularity to a rather simple system of ordinary differential
equations. To extract information about rules (23), it was
enough to analyze them qualitatively. This analysis may be
compared with a description of the motion of a ball climbing
up a hill: after reaching the highest possible point, it stops and

begins rolling down. At the foot of the hill, its velocity is equal
to its initial velocity, but with the opposite sign. Moreover,
some kind of a conservation law for the sum of velocities
corresponding to the expansion (contraction) of different
space directions was used in [14, 29].

On the other hand, it was shown that bouncing rules (23)
can be conveniently expressed by means of parameterization
(16):

pl � p1�u�; pm � p2�u�; pn � p3�u� ; �24�
and then

p 0l � p2�uÿ 1�; p 0m � p1�uÿ 1�; p 0n � p3�uÿ 1� : �25�

The greater of the two positive exponents remains positive.
Successive changes (25), accompanied by a bouncing of

the negative power between the directions l andm, continue as
long as the integral part of u is not exhausted, i.e., until u
becomes less that unity. Then, according to Eqn (18), the
value u < 1 transforms into u > 1, and at this moment either
the exponent pl or pm is negative and pn becomes the smaller
of the two positive numbers ( pn � p2). The next sequence of
changes bounces the negative power between the directions n
and l or n andm.We emphasize that the Lifshitz±Khalatnikov
parameter u is useful because it allows encoding rather
complicated laws of transitions between different Kasner
regimes (23) in such simple rules as u! uÿ 1 and u! 1=u.

Consequently, the evolution of our model toward a
singular point consists of successive periods (called eras) in
which distances along two axes oscillate, while the distance
along the third axis decreases monotonically, and the volume
decreases � t. In the transition from one era to another, the
axes along which the distances decrease monotonically are
interchanged. The order in which the pairs of axes are
interchanged and the order in which eras of different lengths
follow each other acquire a stochastic character.

To every (sth) era, there corresponds a decreasing
sequence of values of the parameter u. This sequence has the
form u

�s�
max; u

�s�
max ÿ 1; . . . ; u

�s�
min, where u

�s�
min < 1. We introduce

the notation

u
�s�
min � x �s�; u �s�max � k �s� � x �s� ; �26�

i.e., k �s� ��u �s�max� (the square brackets denote the greatest
integer 4 u

�s�
max). The number k �s� defines the era length. For

the next era, we obtain

u �s�1�max �
1

x �s�
; k �s�1� �

�
1

x �s�

�
: �27�

The ordering with respect to the lengths k�s� of successive
eras (measured by the number of Kasner epochs contained in
them) asymptotically acquires a stochastic character. The
random nature of this process arises because of rules (26) and
(27), which define the transitions from one era to another in
an infinite sequence of values of u. If this infinite sequence
begins with some initial value u

�0�
max � k �0� � x �0�, then the

lengths k �0�, k �1�; . . . are the numbers appearing in an
expansion into a continuous fraction:

k �0� � x �0� � k �0� � 1

k �1� � 1

k �2� � . . .

: �28�
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We can describe this sequence of eras statistically if,
instead of a given initial value u

�0�
max � k �0� � x �0�, we consider

a distribution of x �0� over the interval �0; 1� governed by some
probability law [17]. Then we also obtain some distributions
of the values of x �s� that terminate every sth series of
numbers. It can be shown that as s increases, these distribu-
tions tend to a stationary (independent of s) probability
distribution w�x� in which the initial value x �s� is completely
`forgotten':

w�x� � 1

�1� x� ln 2 : �29�

It follows from Eqn (29) that the probability distribution of
the lengths k is given by

W�k� � 1

ln 2
ln
�k� 1� 2
k�k� 2� : �30�

The source of stochasticity arising at the oscillatory
approach to the cosmological singularity can be described as
follows: the transition from one Kasner era to another is
described by the transformation

Tx �
�
1

x

�
; i:e:; xs�1 �

�
1

xs

�
�31�

of the interval �0; 1� into itself; the curly brackets denote the
fractional part. This transformation expands and has the
property of exponential instability. It is not a one-to-one
transformation; its inverse is not unique. In other words,
fixing the value of the parameter u, we can predict the
evolution toward the singularity, but we cannot describe the
past.

We can pass from a one-sided infinite sequence

�x0; x1; x2; . . .� �32�

to a doubly infinite sequence [18]

X � �. . . ; xÿ2; xÿ1; x0; x1; x2; . . .� : �33�

The sequence X is equivalent to the sequence of integers

K � �. . . ; kÿ2; kÿ1; k0; k1; k2; . . .� �34�

such that

ks �
�

1

xsÿ1

�
: �35�

Conversely,

xs � 1

ks�1 � 1

ks�2 � . . .

� x�s�1 ; �36�

x�s � �ks; ks�1; . . .� ; �37�

xÿs � �ksÿ1; ksÿ2; . . .� : �38�
The shift of the entire sequence X to the right means a joint
transformation

x�s�1 �
�

1

x�s

�
; xÿs�1 �

1��
1

x�s

�
� xÿs

� : �39�

This is a one-to-one map in the unit square, which permits
exactly calculating the probability distributions for other
parameters describing successive eras, such as the parameter
d giving the relation between the amplitudes of the logarithms
of the functions a, b, and c and the logarithmic time [18].
Thus, we see from the results of statistical analysis of
evolution in the neighborhood of a singularity [17] that the
stochasticity and probability distributions of parameters
occur already in classical general relativity.

At the end of this section, a historical remark is in order.
Continuous fraction (28) was shown in 1968 to I M Lifshitz
(Landau had already passed away), and he immediately
noticed that formula (29) for a stationary distribution of the
values of x can be derived. Later, it became known that this
formula was derived in the nineteenth century by Gauss, who
had not published it but described it in a letter to a colleague.

4. Oscillatory approach to the singularity:
modern development

The oscillatory approach to the cosmological singularity
described in the preceding section was developed for empty
spacetime. It is not difficult to understand that in a universe
filled with a perfect fluid with the equation of state p � wr,
where p is the pressure, r is the energy density, and w < 1, the
presence of this matter cannot change the dynamics in the
vicinity of the singularity. Indeed, using the energy conserva-
tion equation, it can be shown that

r � r0
�abc�w�1 �

r0
t w�1

; �40�

where r0 is a positive constant. Therefore, the term represent-
ing matter in the Einstein equations behaves as 1=t 1�w and at
t! 0 is weaker than the terms of geometric origin coming
from the time derivatives of the metric, which behave as 1=t 2,
to say nothing of perturbations due to the spatial curvature,
which are responsible for changes to the Kasner regime and
behave as 1=t 2�4j p1j. But the situation changes drastically if
the parameter w is equal to unity, i.e., the pressure is equal to
the energy density. Such kind of matter is called `stiff matter'
and can be represented by a massless scalar field. In this case,
r � 1=t 2 and the contribution of matter is of the same order
as the leading term of geometric origin. Hence, it is necessary
to find a Kasner-type solution taking the presence of terms
connected with stiff matter (a massless scalar field) into
account. This was studied in [39]. It was shown that the scale
factors a, b, and c can again be respectively represented as t 2p1 ,
t 2p2 , and t2p3 , where the Kasner indices satisfy the relations

p1 � p2 � p3 � 1; p 2
1 � p 2

2 � p 2
3 � 1ÿ q 2 ; �41�

where the number q 2 reflects the presence of stiff matter and is
bounded by

q 2 4
2

3
: �42�

It follows that if q 2 > 0, then combinations of positive
Kasner indices satisfying relations (41) exist. Moreover, if
q 2 5 1=2, only sets of three positive Kasner indices can satisfy
relations (41). If a universe finds itself in aKasner regime with
three positive indices, the perturbative terms existing due to
spatial curvature are too week to change this Kasner regime,
and it therefore becomes stable. This means that in the
presence of stiff matter, after a finite number of changes in
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Kasner regimes, the universe finds itself in a stable regime and
oscillations stop. Thus, themassless scalar field plays an `anti-
chaotizing' role in the process of cosmological evolution [39].
The Lifshitz±Khalatnikov parameter can also be used in this
case. The Kasner indices satisfying relations (41) are con-
veniently represented as [39]

p1 � ÿu
1� u� u 2

;

p2 � 1� u

1� u� u 2

�
uÿ uÿ 1

2

ÿ
1ÿ �1ÿ b2�1=2�� ;

p3 � 1� u

1� u� u 2

�
1� uÿ 1

2

ÿ
1ÿ �1ÿ b 2�1=2�� ;

b 2 � 2�1� u� u 2�2
�u 2 ÿ 1�2 : �43�

The range of u is nowÿ14 u4 1, while the admissible values
of the parameter q at a given u are

q 2 4
�u 2 ÿ 1�2

2�1� u� u 2�2 : �44�

It can be easily shown that after one bounce, the value of q 2

changes according to the rule

q 2 ! q 0 2 � q 2 1

�1� 2p1�2
> q 2 : �45�

Hence, the value of q 2 increases and the probability of finding
all threeKasner indices to be positive therefore increases. This
again confirms the statement that after a finite number of
bounces, in the presence of amassless scalar field, the universe
finds itself in the Kasner regime with three positive indices
and the oscillations stop.

In the second half of the 1980s, a series of papers was
published [19 ± 21] where solutions of the Einstein equations
were studied in the vicinity of the singularity for (d� 1)-
dimensional spacetimes. A multidimensional analog of a
Bianchi type-I universe was considered, where the metric is a
generalized Kasner metric:

ds 2 � dt 2 ÿ
Xd
i�1

t 2pi dx i 2 ; �46�

where the Kasner indices pi satisfy the conditionsXd
i�1

pi �
Xd
i�1

p2i � 1 : �47�

In the presence of spatial curvature terms, a transition
from one Kasner epoch to another occurs and is described by
the following rule: the new Kasner exponents are equal to

p 01; p
0
2; . . . ; p 0d � ordering of q1; q2; . . . ; qd; �48�

q1 � ÿp1 ÿ P

1� 2p1 � P
; q2 � p2

1� 2p1 � P
; . . . ;

qdÿ2 � pdÿ2
1� 2p1 � P

; qdÿ1 � 2p1 � P� pdÿ1
1� 2p1 � P

;

qd � 2p1 � P� pd
1� 2p1 � P

; �49�

where

P �
Xdÿ2
i�2

pi : �50�

However, such a transition fromoneKasner epoch to another
occurs if at least one of the numbers

ai j k � 2pi �
X
l6�j; k; i

pl �i 6� j; i 6� k; j 6� k� : �51�

is negative. For spacetimes with d < 10, one of the a is always
negative, and hence one change in the Kasner regime is
followed by another, implying the oscillatory behavior of
the universe in the neighborhood of the cosmological
singularity. But for spacetimes with d5 10, there exist such
combinations of Kasner indices that satisfy Eqn (47) and for
which all the ai j k are positive. If a universe enters the Kasner
regime with such indices (the so-called ``Kasner stability
region''), its chaotic behavior disappears and this Kasner
regime preserves itself. The hypothesis was put forward that
in spacetimes with d5 10, after a finite number of oscilla-
tions, the universe under consideration finds itself in the
Kasner stability region and the oscillating regime is replaced
by a monotonic Kasner behavior.

The discovery that the chaotic character of the approach
to the cosmological singularity disappears in spacetimes with
d5 10 was unexpected and looked like an accidental result of
an interplay between real numbers satisfying generalized
Kasner relations (49). It later became clear that a deep
mathematical structure, the hyperbolic Kac±Moody alge-
bras, are underlying this fact. Indeed, in the series of works
by Damour, Henneaux, Nicolai, and others (see, e.g.,
Ref. [16]) on cosmological dynamics in models based on
superstring theories and living in 10-dimensional spacetime
and on the d� 1 � 11-dimensional supergravitymodel, it was
shown that these models reveal a BKL-type oscillating
behavior in the vicinity of the singularity. The important
new feature of the dynamics in these models is the role played
by nongravitational bosonic fields (p-forms), which are also
responsible for transitions from one Kasner regime to
another. For a description of these transitions, the Hamilto-
nian formalism [16] is very convenient.

In the framework of this formalism, the configuration
space of the Kasner parameters describing the dynamics of
the universe can be treated as billiards, while the curvature
terms in the Einstein theory and the p-form potentials in
superstring theories play the role of cushions on these billiard
tables. The transition fromoneKasner epoch to another is the
rebound off one of the cushions. There is a correspondence
between the rather complicated dynamics of a universe in the
vicinity of the cosmological singularity and the motion of an
imaginary ball on a billiard table.

However, amore striking and unexpected correspondence
exists between the chaotic behavior of the universe in the
vicinity of the singularity and such an abstract mathematical
object as the hyperbolic Kac±Moody algebras [23 ± 25]. We
briefly explain what this means. Every Lie algebra is defined
by its generators hi; ei; fi; i � 1; . . . ; r, where r is the rank of
the Lie algebra, i.e., the maximal number of its generators hi
that commute with each other (these generators constitute the
Cartan subalgebra). The commutation relations between
generators are

�ei; fj� � di j hi ;

�hi; ej� � Ai j ej ;

�hi; fj� � ÿAi j fj ;

�hi; hj� � 0 : �52�
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The coefficients Ai j constitute the r� r generalized Cartan
matrix, such that Aii � 2, its off-diagonal elements are non-
positive integers, and Ai j � 0 for i 6� j implies Aj i � 0. The ei
may be called raising operators, similar to the well-known
operator L� � Lx � iLy in the theory of angular momentum,
while the fi are lowering operators like Lÿ � Lx ÿ iLy. The
generators hi of the Cartan subalgebra can be compared with
the operator Lz. The generators must also satisfy the Serre
relations

�ad ei�1ÿAi j ej � 0 ;

�ad fi�1ÿAi j fj � 0 ; �53�
where �adA�B � �A;B �.

The Lie algebras G�A� built on a symmetrizable Cartan
matrix A have been classified according to the properties of
their eigenvalues:

if A is positive definite, G�A� is a finite-dimensional Lie
algebra;

if A admits one zero eigenvalue and the others are all
strictly positive, G�A� is an affine Kac±Moody algebra;

if A admits one negative eigenvalue and all the others are
strictly positive, G�A� is a Lorentz KM algebra.

A correspondence exists between the structure of a Lie
algebra and a certain system of vectors in an r-dimensional
Euclidean space, which essentially simplifies the task of
classification of the Lie algebras. These vectors, called roots,
represent the raising and lowering operators of the Lie
algebra. The vectors corresponding to the generators ei and
fi are called simple roots. The system of positive simple roots
(i.e., those roots corresponding to the raising generators ei)
can be represented by the nodes of Dynkin diagrams, while
the edges connecting (or not connecting) the nodes give
information about the angles between simple positive root
vectors.

An important subclass of Lorentz KM algebras can be
defined as follows: aKMalgebra such that the deletion of one
node from its Dynkin diagram gives a sum of finite or affine
algebras is called a hyperbolic KM algebra. These algebras
are all known. In particular, no hyperbolic algebras exist with
a rank higher than 10.

We recall some more definitions from the theory of Lie
algebras. Reflections with respect to hyperplanes orthogonal
to simple roots leave the systems of roots invariant. The
corresponding finite-dimensional group is called the Weyl
group. Finally, the hyperplanes mentioned above divide the
r-dimensional Euclidean space into regions called Weyl
chambers. The Weyl group transforms one Weyl chamber
into another.

Now, we can briefly formulate the results of the approach
in [40] following papers [23 ± 25]: the links between the
billiards describing the evolution of the universe in the
neighborhood of a singularity and their corresponding Kac±
Moody algebra can be described as follows:

the Kasner indices describing the `free' motion of the
universe between rebounds from the cushions correspond to
elements of the Cartan subalgebra of the KM algebra;

the dominant cushions, i.e., the terms in the equations of
motion responsible for the transition from one Kasner epoch
to another, correspond to simple roots of the KM algebra;

the group of reflections on the cosmological billiard table
is the Weyl group of the KM algebra;

the billiard table can be identified with the Weyl chamber
of the KM algebra.

Two types of billiard tables can be imagined: infinite ones
where linear motion without collisions with the cushions is
possible (nonchaotic regime), and those where rebounds from
the cushions are inevitable and the regime can only be chaotic.
Remarkably, Weyl chambers of hyperbolic KM algebras are
designed such that infinitely repeating collisions with the
cushions occur. It has been shown that all the theories with
the oscillating approach to the singularity such as the Einstein
theory in dimensions d < 10 and superstring cosmological
models correspond to hyperbolic KM algebras.

The existence of links between the BKL approach to the
singularity and the structure of some infinite-dimensional Lie
algebras has inspired some authors to declare a new program
of development of quantum gravity and cosmology [28]. They
propose ``to take seriously the idea that near the singularity
(i.e. when the curvature gets larger than the Planck scale) the
description of a spatial continuum and space-time based
(quantum) field theory breaks down, and should be replaced
by a much more abstract Lie algebraic description. Thereby
the information previously encoded in the spatial variation of
the geometry and of the matter fields gets transferred to an
infinite tower of Lie-algebraic variables depending only on
`time'. In other words we are led to the conclusion that space±
and thus, upon quantization also space-timeÐactually
disappears (or `de-emerges') as the singularity is approached.''

5. Conclusion: some thoughts about the past
and future of the Universe

In the preceding section, we outlined the newest developments
in the theory of the BKL approach to the cosmological
singularity connected with superstring-inspired cosmological
models and infinite-dimensional Lie algebras. But already in
the `standard' (3+1)-dimensional general relativity, the effect
of the oscillatory approach to the singularity and the
chaoticity implied by it is of great interest. Indeed, the
discovery of nonstatic time-dependent cosmological solu-
tions in general relativity, first and foremost the Friedmann
solutions, has given birth to animated discussions on such
questions as:

Did the Universe have a beginning ?
Will the Universe have an end?
Can the Universe exist during a énite interval of time?
What was before the beginning and what will be after the

end?
These questions look quite reasonable because we know

that in all threeFriedmannmodelsÐ flat, open, and closedÐ
theUniverse has a beginning and this beginning is nothing but
the Big Bang singularity. In the closed Friedmann model, the
Universe also has the endÐ theBigCrunch singularityÐand
exists during a finite period of time. Moreover, according to
the so-called StandardCosmologicalModel, basedona rather
large set of observational data, something like the Big Bang
took place approximately 13.7 billion years ago (measured in
terms of cosmic, i.e., synchronous, time). The more or less
accepted existence of the beginning of the evolution of the
Universe and the possible existence of the end of the Universe
can be a source of joy for those who believe in the creation of
the Universe and for whom its possible end can also confirm
their philosophical or theological beliefs. It is curious that the
PontificalAcademyofSciences organized a special conference
at the Vatican in October±November of 2008 with the title
``Scientific insights into the evolution of the universe and of
life.'' On the other hand, the possibility of a finite-time
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existence of the Universe can provoke some kind of psycho-
logical discomfort in those forwhomthis finite duration seems
to be senseless. For some, the fact that their own existence
takes place in theUniverse that exists only for a finite periodof
time can appear depressing.

In analyzing these aspects of the problem of the evolution
of the Universe, we should ask ourself which time parame-
trization we should use in speaking about the time of the
existence of the Universe. As we know since the creation of
special relativity, time is relative. In the framework of general
relativity, time becomes even more relative and can run with
different rates at different spatial points. Making conformal
transformations (for example, in constructing the Penrose
conformal diagrams [6 ± 8]), we can turn an infinite time
interval into a finite time interval. Why should we then use
cosmic time? The answer to this question is simple: cosmic
time for a particle staying at rest in a Friedmann homo-
geneous and isotropic Universe coincides with the proper
time introduced in special relativity. Hence, when we are
considering the present-day Universe, it is quite reasonable to
discuss it in terms of cosmic time and to say that the Universe
was created 13.7 billion years ago. But when we consider the
vicinity of the Big Bang cosmological singularity in the past,
or when we admit the possibility of the existence of a Big
Crunch singularity in the distant future, the situation changes
drastically. The Universe is extremely anisotropic in the
neighborhood of such singularities and is described by a
chaotic succession of Kasner epochs and eras, as was
discussed above. (We can be precise here: by choosing very
special isotropic initial conditions, we can avoid the chaoticity
in the neighborhood of the Big Bang singularity, which can
have the Friedmannian form in principle; it is impossible not
to have a chaotic regime in the vicinity of the Big Crunch
singularity, because the inhomogeneities developed during
the evolution of the Universe make its contracting stage
highly anistropic [41]).

Therefore, while the evolution from an arbitrary instant
of cosmic time to the instant corresponding to the initial Big
Bang or final Big Crunch singularity occupies a finite
interval of cosmic time, an infinite number of events occurs
during this finite period. The infinite chaotic succession of
Kasner epochs and eras renders cosmic time as a measure of
cosmological evolution senseless. Indeed, we have an
infinite history that separates us from the birth of the
Universe at the Big Bang. If the contraction of the
Universe culminating in the encounter with the Big Crunch
singularity awaits us in the future [42, 43], we still have an
infinite number of events in front of us. Thus, the BKL
oscillatory regime of approaching the cosmological singu-
larity screens us from the Big Bang and the Big Crunch.

From the mathematical standpoint, this means that the
natural time parameter in the vicinity of a singularity is not
cosmic time but logarithmic time. As cosmic time runs from
the zero instant corresponding to the singularity to some
finite instant t1, logarithmic time runs from ÿ1 to ln t1,
spanning an infinite interval of time.

Remarkably, a comment concerning the importance of
logarithmic time can already be found in the penultimate
paragraph of the Landau and Lifshitz monograph [29]: ``The
successive series of oscillations crowd together as we
approach the singularity. An infinite number of oscillations
are contained between any finite world time t and themoment
t � 0. The natural variable for describing the time behavior of
this evolution is not the time t, but its logarithm, ln t, in terms

of which the whole process of approach to the singular point
is spread out to ÿ1.''

A similar idea is also expressed in paper [28] cited above:
``There is no `quantum bounce' bridging the gap between an
incoming collapsing and an outgoing expanding quasi-
classical universe. Instead `life continues' at the singularity
for an inénite aféne time, but with the understanding that
(i) dynamics no longer ``takes place'' in space, and (ii) the
inénite aféne time [measured, say, by the Zeno-like time
coordinate t ] corresponds to a sub-Planckian interval
0 < T < TPlanck of geometrical proper time.'' Curiously, the
analog of the object that the authors of [28] call Zeno-like time
is the so-called spatial tortoise coordinate in the Schwarzs-
child geometry [44]. Both these names have their origin in
Zeno's paradox about Achilles and the tortoise, which is,
perhaps, theérst example of transforming aénite time interval
into an inénite one (see, e.g., section I of the third part of the
third volume ofWar and Peace by Leo Tolstoy [45]).

Concluding, I would like to say semiseriously that the
discovery of the oscillatory approach to the cosmological
singularity has a practical meaning: it liberates us from the
fear of the end of the world.

This work was supported in part by the RFBR grant
08-02-00923 and by the grant LSS-4899.2008.2.
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Above the barriers
(I M Khalatnikov's works
on the scattering of high-energy particles)

V L Pokrovsky

Relatively recently, in the fall of 1957, I had the good fortune
to speak at Landau's seminar on the over-barrier reflection of
high-energy particles. I was then working in Novosibirsk, at
the Institute of Radiophysics, whose director was one of my
teachers Yu B Rumer, and he introduced me to Landau. My
coauthors weremy fellow students and friends SK Savvinykh
and F R Ulinich [1, 2]. The reflection of particles whose
energy exceeds the barrier height is a strictly quantum effect: a
classical particle just slows down as it approaches the tip of
the barrier and then accelerates. We solved the Schr�odinger
equation in the semiclassical approximation, formally
expanding it into a power series in the small parameter l=a,
where l is the de Broglie wavelength and a is a characteristic
size of the potential. The peculiarity of the problem, which
was not noticed by other theoreticians, lay in the fact that
each consecutive term of the expansion contained a singular-
ity of a higher order than the previous one. As a result, they
differed only by universal numerical factors. It turned out to
be possible to sum this numerical series using an exactly
solvable problem. Landau liked the work, and I was invited to
present it at his seminar. Following my talk, I met many
celebrities whom I had previously known only through their

publications and from legends. Isaak Markovich Khalatni-
kov showed the most vivid interest. He proposed collaborat-
ing, which was flattering forme. He explained his interest by a
mission assigned to him by Landau to find a mistake in
L Schiff's work on the same topic. This explanation sounded
somewhat strange, because we had already found themistake.
Only later did I realize that I became an object of his most
sincere and absolutely disinterested affection to any fledgling
theorist who came up with an interesting idea. Just this
property later made him an ideal director of the Institute of
Theoretical Physics and let him gather a unique team, which
quickly gained worldwide recognition. I hope, however, that
our relationship involved some individual element, the proof
of which is our friendship and longstanding research
collaboration, which extended to 1992. It would probably
have lasted even longer if it had not been interrupted by the
turbulent events of that time. The close rapprochement
needed for collaborative work became possible due to
another of Khalatnikov's rare qualities: his complete lack of
both arrogance and servility, as well as his simple and calm
way of communicating.

We both realized that the work I presented was just the
beginning. Although the method of series summation led to a
beautiful and nontrivial result, it was still not physically
transparent. It was not clear how to generalize it to similar
problems of quantum and classical mechanics. Contemplat-
ing this problem, we came to the following idea [3]. Classical
and semiclassical particles are reflected at a turning point,
where their kinetic energy becomes zero. If the particle energy
exceeds the height of the barrier, no turning point exists at a
real value of its coordinate. But it appears in the complex
coordinate plane if the potential is an analytic function.
Going into a complex plane is a rather common operation in
quantummechanics. Going into a complex momentum plane
is physically equivalent to tunneling, i.e., penetration into the
region of classically forbidden coordinates. Similarly, going
into the complex coordinate plane means penetration into the
region of classically forbidden momenta. Therefore, we
needed to find a suitable path in the complex plane along
which a wave travels without reflection to a complex turning
point, and then strongly changes in its vicinity. Then the path
goes to the real axis, where we can find the reflected wave. In
practice, this program was accomplished as shown in Fig. 1.
The path begins on the real coordinate axis x at x!1. In
this region, where the potential can be neglected, only the
transmitted wave C � t exp �ikx� exists, where t is the
transmission amplitude. After that, the path climbs in the
upper half of the complex plane until it intersects with the line
C1 going through the turning point x0 nearest to the real axis,
on which the semiclassical action S�x; x0� �

� x
x0
p�x 0� dx 0,

C2 C1

x0

x �0

Figure 1.
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