
21 October 2009, in the conference hall of the Lebedev
Physical Institute, Russian Academy of Sciences, a scientiéc
session of the Physical Sciences Division was held honoring
the 90th birthday of Academician I M Khalatnikov. The
following talks were given at the session:

(1) Andreev A F (Kapitza Institute of Physical Problems,
Russian Academy of Sciences, Moscow) ``Momentum deécit
in quantum glasses'';

(2) Kamenshchik A Yu (Dipartimento di Fisica and
Istituto Nazionale di Fisica Nucleare, Bologna, Italy;
Landau Institute for Theoretical Physics RAS, Moscow)
``The problem of singularities and chaos in cosmology'';

(3) Pokrovsky V L (Landau Institute for Theoretical
Physics, RAS, Moscow; Department of Physics, Texas
A&M University, USA) ``I M Khalatnikov's works on
scattering of high-energy particles'';

(4) Khriplovich I B (Budker Institute of Nuclear Physics,
Novosibirsk) ``Screening and antiscreening of charge in gauge
theories.''

Brief versions of talks 2 ± 4 are given below.
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The problem of singularities
and chaos in cosmology

A Yu Kamenshchik

1. Introduction

We consider different aspects of the problem of cosmological
singularities, such as the Belinsky±Khalatnikov±Lifshitz
(BKL) oscillatory approach to a singularity, the new features
of cosmological dynamics in the neighborhood of a singular-
ity in multidimensional and superstring cosmological models,
and their connections with modern branches of mathematics
such as infinite-dimensional Lie algebras. The chaoticity of
the oscillatory approach to the cosmological singularity is
also discussed. The conclusions contain some thoughts about
the past and the future of the Universe in light of the

oscillatory approach to the Big Bang and the Big Crunch
cosmological singularities.

Many years ago, in conversations with his students, Lev
Davidovich Landau used to say that three problems were the
most important for theoretical physics: the problem of the
cosmological singularity, the problem of phase transitions,
and the problem of superconductivity [1]. We now know that
the great breakthrough was achieved in the explanation of
the phenomena of superconductivity [2] and phase transi-
tions [3]. The cosmological singularity problem has been
extensively studied during the last 50 years and many
important results have been obtained, but it still preserves
some intriguing aspects. Moreover, some quite unexpected
facets of the problem of the cosmological singularity were
discovered. Isaak Markovich Khalatnikov, who was one of
the students of Landau, made a significant contribution to
the discovery and elaboration of different aspects of the
problem of the cosmological singularity and the chaos
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arising in the process of the asymptotic approach to this
singularity.

In our review [4] published 10 years ago in an issue of this
journal dedicated to the 90th anniversary of Landau's birth,
we discussed some issues connected with the problem of
singularity in cosmology. In a paper dedicated to the 100th
birthday of Landau [5], we dwelled on relations between the
well-known old results of these studies and new developments
in this area.

In the present paper, dedicated to the 90th birthday of
I M Khalatnikov, I give a brief review of some old and new
ideas connected with the development of the theory of the
asymptotic approach to the cosmological singularity, and try
to argue why this could be interesting not only for physicists
and mathematicians but also for a wider audience.

To begin with, we recall that Penrose and Hawking [6 ± 8]
proved the impossibility of indefinite continuation of geode-
sics under certain conditions. This was interpreted as pointing
to the existence of a sigularity in the general solution of the
Einstein equations. These theorems, however, did not allow
finding the particular analytic structure of the singularity.
The analytic behavior of the general solutions of the Einstein
equations in the neighborhood of a singularity was investi-
gated by Lifshitz and Khalatnikov [9 ± 12] and Belinsky,
Lifshitz, and Khalatnikov [13 ± 15]. These papers revealed
the enigmatic phenomenon of an oscillatory approach to the
singularity, which has become known also as the Mixmaster
Universe [16]. The model of a closed homogeneous but
anisotropic universe with three degrees of freedom (the
Bianchi type-IX cosmological model) was used to demon-
strate that the universe approaches the singularity in such a
way that its contraction along two axes is accompanied by an
expansion along the third axis, and the axes change their roles
according to a rather complicated law that reveals a chaotic
behavior [14 ë 18].

The study of the dynamics of the universe in the vicinity of
a cosmological singularity has exploded as a developing field
of modern theoretical and mathematical physics. We first
note a generalization of the oscillatory approach to the
cosmological singularity in multidimensional cosmological
models. It was noted in [19 ± 21] that the approach to the
cosmological singularity in multidimensional (Kaluza±Klein
type) cosmological models has a chaotic character in space-
times whose dimension is not higher than ten, while in
spacetimes of higher dimensions, the universe enters a
monotonic Kasner-type contracting regime after undergoing
a finite number of oscillations.

The development of cosmological studies based on super-
string models has revealed some new aspects of the dynamics
in the vicinity of the singularity [23 ± 25]. First, it was shown
that mechanisms for changing Kasner epochs exist in these
models, and they are due not to gravitational interactions but
to the influence of other fields present in these theories.
Second, it was proved that cosmological models based on
the six main superstring models plus the D � 11 supergravity
model exhibit a chaotic oscillatory approach toward the
singularity. Third, the connection between cosmological
models manifesting an oscillatory approach toward a
singularity and a special subclass of infinite-dimensional Lie
algebras [26], so-called hyperbolic Kac±Moody algebras, was
discovered (a comprehensive review of the corresponding
mathematical tools with their application to BKL studies
was given in [27]). The study of the algebraic structures
underlying the chaotic approach to the cosmological singu-

larity opens some new (although still very weakly elaborated)
prospects for the development of a consistent quantum
gravity theory [28].

In speaking about the new aspects of the oscillatory
approach to the cosmological singularity in multidimen-
sional and superstring theories, we must not forget that the
`classical' BKL behavior for the 3+1 dimensional general
relativity has not yet been totally understood, and requires
further study. In addition, we try to attract attention to some
philosophical aspects of this phenomenon, which have so far
been underestimated.

The structure of the paper is as follows. In Section 2, we
briefly discuss the Landau theorem on the singularity, which
was not published in a separate paper and was reported in
book [29] and review [9]; in Section 3, we recall the main
features of the oscillatory approach to the singularity in
relativistic cosmology, including its chaoticity; Section 4 is
devoted to the modern development of BKL ideas and
methods, including dynamics in the presence of a massless
scalar field, multidimensional cosmology, superstring cos-
mology, and the correspondence between chaotic cosmologi-
cal dynamics and hyperbolic Kac±Moody algebras; in the
concluding Section 5, we express some thoughts about the
past and the future of the Universe in light of the BKL
phenomenon.

2. Landau theorem on the singularity

We consider a synchronous reference frame with the metric

ds 2 � dt 2 ÿ gab dx
a dxb ; �1�

where gab is the spatial metric. Landau pointed out that the
determinant g of the metric tensor in a synchronous reference
frame must tend to zero at some finite time if some simple
conditions on the equation of state are satisfied. To prove this
statement, it is convenient to write the 0ÿ0 component of the
Ricci tensor as

R 0
0 � ÿ

1

2

qK a
a

qt
ÿ 1

4
K b

aK
a
b ; �2�

where Kab is the extrinsic curvature tensor defined as

Kab �
qgab
qt

; �3�

and the spatial indices are raised and lowered by the spatial
metric gab. The Einstein equation for R 0

0 is

R 0
0 � T 0

0 ÿ
1

2
T ; �4�

where the energy±momentum tensor is

T j
i � �r� p� uiu j ÿ d j

i p ; �5�

where r, p, and ui are the energy density, the pressure, and the
four-velocity. The quantity in the right-hand side of Eqn (4),

T 0
0 ÿ

1

2
T � 1

2
� r� 3p� � � r� p� uau a ; �6�

is positive whenever

r� 3p > 0 : �7�
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Hence, it follows from Eqn (4) that

1

2

qK a
a

qt
� 1

4
K b

aK
a
b 4 0 : �8�

Because of the algebraic inequality

K b
aK

a
b 5

1

3
�K a

a �2 ; �9�

we have

qK a
a

qt
� 1

6
�K a

a �2 4 0 �10�
or

q
qt

1

K a
a
5

1

6
: �11�

If K a
a > 0 at some instant of time, then as t decreases, the

quantity t decreases to zero within a finite time. Hence, K a
a

tends to �1, and because of the identity

K a
a � g ab

qgab
qt
� q

qt
ln g ; �12�

this means that the determinant g tends to zero [no faster
than g according to inequality (11)]. If K a

a < 0 at the initial
instant, then the same result follows for the increasing time.
A similar result was obtained in [30, 31] for dust-like matter
and in [32].

This result does not prove that a true physical singularity
inevitably exists in spacetime itself, irrespective of the chosen
reference system. However, it played an important role in
stimulating discussion about the existence and generality of
singularities in cosmology. We note that the energodomi-
nance condition in (7) used in the proof of the Landau
theorem also appears in the proof of the Penrose and
Hawking singularity theorem [6 ± 8]. Moreover, the break-
down of this condition is necessary for an explanation of the
phenomenon of cosmic acceleration.

The Landau theorem is deeply connected with the
appearance of caustics studied by Lifshitz, Khalatnikov, and
Sudakov [33, 34] and discussed between them and Landau in
1961. In trying to geometrically construct a synchronous
reference frame, one starts from the three-dimensional
Cauchy surface and designs a family of geodesics orthogonal
to this surface. The length along these geodesics serves as the
time measure. It is known that these geodesics intersect on
some two-dimensional caustic surface. This geometry con-
structed for empty space is also valid in the presence of dust-
like matter ( p � 0). Such matter moving along the geodesics
concentrates on caustics, but the increase in density cannot be
unbounded because the arising pressure destroys the caus-
tics. 1 This question was studied by Grishchuk [35]. Later,
Arnold, Shandarin, and Zeldovich [36] used caustics for the
explanation of the initial clustering of dust, which, while not
creating physical singularities, is nevertheless responsible for
the creation of so-called pancakes. These pancakes represent
the initial stage of the development of the large-scale structure
of the universe.

3. Oscillatory approach to the singularity
in relativistic cosmology

One of the first exact solutions found in the framework of
general relativity was the Kasner solution [22] for the Bianchi
type-I cosmological model representing a gravitational field
in an empty space, with the Euclidean metric depending on
time according to the formula

ds 2 � dt 2 ÿ t 2p1 dx 2 ÿ t 2p2 dy 2 ÿ t 2p3 dz 2 ; �13�
where the exponents p1, p2, and p3 satisfy the relations

p1 � p2 � p3 � p 2
1 � p 2

2 � p 2
3 � 1 : �14�

Remarkably, this solution was the first nonstationary
cosmological solution, found before the isotropic Friedmann
solution. Perhaps because of its `exoticity,' it was for many
years ignored by working cosmologists and became appre-
ciated only in the 1950s.

Choosing the order of the exponents as

p1 < p2 < p3 ; �15�

we can parameterize them as [9, 10]

p1 � ÿu
1� u� u 2

; p2 � 1� u

1� u� u 2
; p3 � u�1� u�

1� u� u 2
:

�16�
As the parameter u varies in the range u5 1, p1 and p2 take all
their permissible values:

ÿ 1

3
4 p1 4 0; 04 p2 4

2

3
;

2

3
4 p3 4 1 : �17�

The values u < 1 lead to the same range of values of p1, p2,
and p3 because

p1

�
1

u

�
� p1�u�; p2

�
1

u

�
� p3�u�; p3

�
1

u

�
� p2�u� : �18�

The parameter u, introduced in the early 1960s, is very useful,
and its properties have attracted the attention of researchers
in various contexts. For example, in recent paper [37], a
connection was established between the Lifshitz±Khalatni-
kov parameter u and the invariants arising in the context of
Petrov's classification of Einstein spaces [38].

In the case of Bianchi type-VIII or Bianchi type-IX
cosmological models, the Kasner regime in (13) and (14) is
no longer an exact solution of the Einstein equations;
however, generalized Kasner solutions can be constructed
[11 ± 15]. It is possible to construct some kind of perturbation
theory where the exact Kasner solution in (13) and (14) plays
the role of the zeroth-order approximation, while the role of
perturbations is played by those terms in the Einstein
equations that depend on spatial curvature tensors (appar-
ently, such terms are absent in the Bianchi type-I cosmology).
This perturbation theory is effective in the vicinity of a
singularity or, in other terms, at t! 0. The remarkable
feature of these perturbations is that they imply a transition
from the Kasner regime with one set of parameters to the
Kasner regime with another set.

The metric of the generalized Kasner solution in a
synchronous reference system can be written in the form

ds 2 � dt 2 ÿ �a 2lalb � b 2mamb � c 2nanb� dx a dx b ; �19�1 In an empty space, the caustic is a mathematical, but not a physical,

singularity. This follows simply from the fact that we can always shift its

location by changing the initial Cauchy surface.
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where

a � t pl ; b � t pm ; c � t pn : �20�

The three-dimensional vectors l,m, and n define the directions
along which the spatial distances vary with time according to
power laws (20). We set pl � p1, pm � p2, and pn � p3, such
that

a � t p1 ; b � t p2 ; c � t p3 ; �21�

i.e., the Universe is contracting in directions given by the
vectorsm and n and is expanding along l. It was shown in [14]
that the perturbations caused by spatial curvature termsmake
the variables a, b, and c undergo a transition to another
Kasner regime characterized by the formulas

a � t p
0
l ; b � t p

0
m ; c � t p

0
n ; �22�

where

p 0l �
j p1j

1ÿ 2j p1j ; p 0m � ÿ
2j p1j ÿ p2
1ÿ 2j p1j ; p 0n � ÿ

p3 ÿ 2j p1j
1ÿ 2j p1j :

�23�

The effect of the perturbation is therefore to replace one
`Kasner epoch' by another such that the negative power of t is
transformed from the l to the m direction. During the
transition, the function a�t� reaches a maximum and b�t� a
minimum. Hence, the previously decreasing quantity b now
increases, the quantity a decreases, and c�t� remains a
decreasing function. The previously increasing perturbation
that caused the transition from regime (21) to (22) is damped
and eventually vanishes. Then another perturbation begins to
grow, which leads to a new replacement of one Kasner epoch
by another, and so on.

We emphasize that just the fact that the perturbation
implies a change in dynamics that suppresses this perturba-
tion allows using the perturbation theory so successfully. We
note that the effect of changing the Kasner regime exists
already in cosmological models that are simpler than those of
Bianchi type IX and Bianchi type VIII. As a matter of fact, in
a Bianchi type-II universe, only one type of perturbations
exists, connectedwith spatial curvature, and this perturbation
leads to a change in theKasner regime (one bounce). This fact
was known to Lifshitz and Khalatnikov at the beginning of
the 1960s, and they discussed this topic with Landau (just
before his tragic accident), who appreciated it highly. The
results describing the dynamics of the Bianchi type-IX model
were reported by Khalatnikov in his talk given in January
1968 at the Henri Poincar�e Seminar in Paris. J A Wheeler,
who was present there, pointed out that the dynamics of the
Bianchi type-IX universe represent a nontrivial example of a
chaotic dynamical system. Later, K Thorn distributed a
preprint with the text of this talk.

Returning to the rules governing the bouncing of a
negative power of time from one direction to another, we
emphasize that the very complicated system of nonlinear
partial differential equations is reduced in the vicinity of a
singularity to a rather simple system of ordinary differential
equations. To extract information about rules (23), it was
enough to analyze them qualitatively. This analysis may be
compared with a description of the motion of a ball climbing
up a hill: after reaching the highest possible point, it stops and

begins rolling down. At the foot of the hill, its velocity is equal
to its initial velocity, but with the opposite sign. Moreover,
some kind of a conservation law for the sum of velocities
corresponding to the expansion (contraction) of different
space directions was used in [14, 29].

On the other hand, it was shown that bouncing rules (23)
can be conveniently expressed by means of parameterization
(16):

pl � p1�u�; pm � p2�u�; pn � p3�u� ; �24�
and then

p 0l � p2�uÿ 1�; p 0m � p1�uÿ 1�; p 0n � p3�uÿ 1� : �25�

The greater of the two positive exponents remains positive.
Successive changes (25), accompanied by a bouncing of

the negative power between the directions l andm, continue as
long as the integral part of u is not exhausted, i.e., until u
becomes less that unity. Then, according to Eqn (18), the
value u < 1 transforms into u > 1, and at this moment either
the exponent pl or pm is negative and pn becomes the smaller
of the two positive numbers ( pn � p2). The next sequence of
changes bounces the negative power between the directions n
and l or n andm.We emphasize that the Lifshitz±Khalatnikov
parameter u is useful because it allows encoding rather
complicated laws of transitions between different Kasner
regimes (23) in such simple rules as u! uÿ 1 and u! 1=u.

Consequently, the evolution of our model toward a
singular point consists of successive periods (called eras) in
which distances along two axes oscillate, while the distance
along the third axis decreases monotonically, and the volume
decreases � t. In the transition from one era to another, the
axes along which the distances decrease monotonically are
interchanged. The order in which the pairs of axes are
interchanged and the order in which eras of different lengths
follow each other acquire a stochastic character.

To every (sth) era, there corresponds a decreasing
sequence of values of the parameter u. This sequence has the
form u

�s�
max; u

�s�
max ÿ 1; . . . ; u

�s�
min, where u

�s�
min < 1. We introduce

the notation

u
�s�
min � x �s�; u �s�max � k �s� � x �s� ; �26�

i.e., k �s� ��u �s�max� (the square brackets denote the greatest
integer 4 u

�s�
max). The number k �s� defines the era length. For

the next era, we obtain

u �s�1�max �
1

x �s�
; k �s�1� �

�
1

x �s�

�
: �27�

The ordering with respect to the lengths k�s� of successive
eras (measured by the number of Kasner epochs contained in
them) asymptotically acquires a stochastic character. The
random nature of this process arises because of rules (26) and
(27), which define the transitions from one era to another in
an infinite sequence of values of u. If this infinite sequence
begins with some initial value u

�0�
max � k �0� � x �0�, then the

lengths k �0�, k �1�; . . . are the numbers appearing in an
expansion into a continuous fraction:

k �0� � x �0� � k �0� � 1

k �1� � 1

k �2� � . . .

: �28�
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We can describe this sequence of eras statistically if,
instead of a given initial value u

�0�
max � k �0� � x �0�, we consider

a distribution of x �0� over the interval �0; 1� governed by some
probability law [17]. Then we also obtain some distributions
of the values of x �s� that terminate every sth series of
numbers. It can be shown that as s increases, these distribu-
tions tend to a stationary (independent of s) probability
distribution w�x� in which the initial value x �s� is completely
`forgotten':

w�x� � 1

�1� x� ln 2 : �29�

It follows from Eqn (29) that the probability distribution of
the lengths k is given by

W�k� � 1

ln 2
ln
�k� 1� 2
k�k� 2� : �30�

The source of stochasticity arising at the oscillatory
approach to the cosmological singularity can be described as
follows: the transition from one Kasner era to another is
described by the transformation

Tx �
�
1

x

�
; i:e:; xs�1 �

�
1

xs

�
�31�

of the interval �0; 1� into itself; the curly brackets denote the
fractional part. This transformation expands and has the
property of exponential instability. It is not a one-to-one
transformation; its inverse is not unique. In other words,
fixing the value of the parameter u, we can predict the
evolution toward the singularity, but we cannot describe the
past.

We can pass from a one-sided infinite sequence

�x0; x1; x2; . . .� �32�

to a doubly infinite sequence [18]

X � �. . . ; xÿ2; xÿ1; x0; x1; x2; . . .� : �33�

The sequence X is equivalent to the sequence of integers

K � �. . . ; kÿ2; kÿ1; k0; k1; k2; . . .� �34�

such that

ks �
�

1

xsÿ1

�
: �35�

Conversely,

xs � 1

ks�1 � 1

ks�2 � . . .

� x�s�1 ; �36�

x�s � �ks; ks�1; . . .� ; �37�

xÿs � �ksÿ1; ksÿ2; . . .� : �38�
The shift of the entire sequence X to the right means a joint
transformation

x�s�1 �
�

1

x�s

�
; xÿs�1 �

1��
1

x�s

�
� xÿs

� : �39�

This is a one-to-one map in the unit square, which permits
exactly calculating the probability distributions for other
parameters describing successive eras, such as the parameter
d giving the relation between the amplitudes of the logarithms
of the functions a, b, and c and the logarithmic time [18].
Thus, we see from the results of statistical analysis of
evolution in the neighborhood of a singularity [17] that the
stochasticity and probability distributions of parameters
occur already in classical general relativity.

At the end of this section, a historical remark is in order.
Continuous fraction (28) was shown in 1968 to I M Lifshitz
(Landau had already passed away), and he immediately
noticed that formula (29) for a stationary distribution of the
values of x can be derived. Later, it became known that this
formula was derived in the nineteenth century by Gauss, who
had not published it but described it in a letter to a colleague.

4. Oscillatory approach to the singularity:
modern development

The oscillatory approach to the cosmological singularity
described in the preceding section was developed for empty
spacetime. It is not difficult to understand that in a universe
filled with a perfect fluid with the equation of state p � wr,
where p is the pressure, r is the energy density, and w < 1, the
presence of this matter cannot change the dynamics in the
vicinity of the singularity. Indeed, using the energy conserva-
tion equation, it can be shown that

r � r0
�abc�w�1 �

r0
t w�1

; �40�

where r0 is a positive constant. Therefore, the term represent-
ing matter in the Einstein equations behaves as 1=t 1�w and at
t! 0 is weaker than the terms of geometric origin coming
from the time derivatives of the metric, which behave as 1=t 2,
to say nothing of perturbations due to the spatial curvature,
which are responsible for changes to the Kasner regime and
behave as 1=t 2�4j p1j. But the situation changes drastically if
the parameter w is equal to unity, i.e., the pressure is equal to
the energy density. Such kind of matter is called `stiff matter'
and can be represented by a massless scalar field. In this case,
r � 1=t 2 and the contribution of matter is of the same order
as the leading term of geometric origin. Hence, it is necessary
to find a Kasner-type solution taking the presence of terms
connected with stiff matter (a massless scalar field) into
account. This was studied in [39]. It was shown that the scale
factors a, b, and c can again be respectively represented as t 2p1 ,
t 2p2 , and t2p3 , where the Kasner indices satisfy the relations

p1 � p2 � p3 � 1; p 2
1 � p 2

2 � p 2
3 � 1ÿ q 2 ; �41�

where the number q 2 reflects the presence of stiff matter and is
bounded by

q 2 4
2

3
: �42�

It follows that if q 2 > 0, then combinations of positive
Kasner indices satisfying relations (41) exist. Moreover, if
q 2 5 1=2, only sets of three positive Kasner indices can satisfy
relations (41). If a universe finds itself in aKasner regime with
three positive indices, the perturbative terms existing due to
spatial curvature are too week to change this Kasner regime,
and it therefore becomes stable. This means that in the
presence of stiff matter, after a finite number of changes in
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Kasner regimes, the universe finds itself in a stable regime and
oscillations stop. Thus, themassless scalar field plays an `anti-
chaotizing' role in the process of cosmological evolution [39].
The Lifshitz±Khalatnikov parameter can also be used in this
case. The Kasner indices satisfying relations (41) are con-
veniently represented as [39]

p1 � ÿu
1� u� u 2

;

p2 � 1� u

1� u� u 2

�
uÿ uÿ 1

2

ÿ
1ÿ �1ÿ b2�1=2�� ;

p3 � 1� u

1� u� u 2

�
1� uÿ 1

2

ÿ
1ÿ �1ÿ b 2�1=2�� ;

b 2 � 2�1� u� u 2�2
�u 2 ÿ 1�2 : �43�

The range of u is nowÿ14 u4 1, while the admissible values
of the parameter q at a given u are

q 2 4
�u 2 ÿ 1�2

2�1� u� u 2�2 : �44�

It can be easily shown that after one bounce, the value of q 2

changes according to the rule

q 2 ! q 0 2 � q 2 1

�1� 2p1�2
> q 2 : �45�

Hence, the value of q 2 increases and the probability of finding
all threeKasner indices to be positive therefore increases. This
again confirms the statement that after a finite number of
bounces, in the presence of amassless scalar field, the universe
finds itself in the Kasner regime with three positive indices
and the oscillations stop.

In the second half of the 1980s, a series of papers was
published [19 ± 21] where solutions of the Einstein equations
were studied in the vicinity of the singularity for (d� 1)-
dimensional spacetimes. A multidimensional analog of a
Bianchi type-I universe was considered, where the metric is a
generalized Kasner metric:

ds 2 � dt 2 ÿ
Xd
i�1

t 2pi dx i 2 ; �46�

where the Kasner indices pi satisfy the conditionsXd
i�1

pi �
Xd
i�1

p2i � 1 : �47�

In the presence of spatial curvature terms, a transition
from one Kasner epoch to another occurs and is described by
the following rule: the new Kasner exponents are equal to

p 01; p
0
2; . . . ; p 0d � ordering of q1; q2; . . . ; qd; �48�

q1 � ÿp1 ÿ P

1� 2p1 � P
; q2 � p2

1� 2p1 � P
; . . . ;

qdÿ2 � pdÿ2
1� 2p1 � P

; qdÿ1 � 2p1 � P� pdÿ1
1� 2p1 � P

;

qd � 2p1 � P� pd
1� 2p1 � P

; �49�

where

P �
Xdÿ2
i�2

pi : �50�

However, such a transition fromoneKasner epoch to another
occurs if at least one of the numbers

ai j k � 2pi �
X
l6�j; k; i

pl �i 6� j; i 6� k; j 6� k� : �51�

is negative. For spacetimes with d < 10, one of the a is always
negative, and hence one change in the Kasner regime is
followed by another, implying the oscillatory behavior of
the universe in the neighborhood of the cosmological
singularity. But for spacetimes with d5 10, there exist such
combinations of Kasner indices that satisfy Eqn (47) and for
which all the ai j k are positive. If a universe enters the Kasner
regime with such indices (the so-called ``Kasner stability
region''), its chaotic behavior disappears and this Kasner
regime preserves itself. The hypothesis was put forward that
in spacetimes with d5 10, after a finite number of oscilla-
tions, the universe under consideration finds itself in the
Kasner stability region and the oscillating regime is replaced
by a monotonic Kasner behavior.

The discovery that the chaotic character of the approach
to the cosmological singularity disappears in spacetimes with
d5 10 was unexpected and looked like an accidental result of
an interplay between real numbers satisfying generalized
Kasner relations (49). It later became clear that a deep
mathematical structure, the hyperbolic Kac±Moody alge-
bras, are underlying this fact. Indeed, in the series of works
by Damour, Henneaux, Nicolai, and others (see, e.g.,
Ref. [16]) on cosmological dynamics in models based on
superstring theories and living in 10-dimensional spacetime
and on the d� 1 � 11-dimensional supergravitymodel, it was
shown that these models reveal a BKL-type oscillating
behavior in the vicinity of the singularity. The important
new feature of the dynamics in these models is the role played
by nongravitational bosonic fields (p-forms), which are also
responsible for transitions from one Kasner regime to
another. For a description of these transitions, the Hamilto-
nian formalism [16] is very convenient.

In the framework of this formalism, the configuration
space of the Kasner parameters describing the dynamics of
the universe can be treated as billiards, while the curvature
terms in the Einstein theory and the p-form potentials in
superstring theories play the role of cushions on these billiard
tables. The transition fromoneKasner epoch to another is the
rebound off one of the cushions. There is a correspondence
between the rather complicated dynamics of a universe in the
vicinity of the cosmological singularity and the motion of an
imaginary ball on a billiard table.

However, amore striking and unexpected correspondence
exists between the chaotic behavior of the universe in the
vicinity of the singularity and such an abstract mathematical
object as the hyperbolic Kac±Moody algebras [23 ± 25]. We
briefly explain what this means. Every Lie algebra is defined
by its generators hi; ei; fi; i � 1; . . . ; r, where r is the rank of
the Lie algebra, i.e., the maximal number of its generators hi
that commute with each other (these generators constitute the
Cartan subalgebra). The commutation relations between
generators are

�ei; fj� � di j hi ;

�hi; ej� � Ai j ej ;

�hi; fj� � ÿAi j fj ;

�hi; hj� � 0 : �52�
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The coefficients Ai j constitute the r� r generalized Cartan
matrix, such that Aii � 2, its off-diagonal elements are non-
positive integers, and Ai j � 0 for i 6� j implies Aj i � 0. The ei
may be called raising operators, similar to the well-known
operator L� � Lx � iLy in the theory of angular momentum,
while the fi are lowering operators like Lÿ � Lx ÿ iLy. The
generators hi of the Cartan subalgebra can be compared with
the operator Lz. The generators must also satisfy the Serre
relations

�ad ei�1ÿAi j ej � 0 ;

�ad fi�1ÿAi j fj � 0 ; �53�
where �adA�B � �A;B �.

The Lie algebras G�A� built on a symmetrizable Cartan
matrix A have been classified according to the properties of
their eigenvalues:

if A is positive definite, G�A� is a finite-dimensional Lie
algebra;

if A admits one zero eigenvalue and the others are all
strictly positive, G�A� is an affine Kac±Moody algebra;

if A admits one negative eigenvalue and all the others are
strictly positive, G�A� is a Lorentz KM algebra.

A correspondence exists between the structure of a Lie
algebra and a certain system of vectors in an r-dimensional
Euclidean space, which essentially simplifies the task of
classification of the Lie algebras. These vectors, called roots,
represent the raising and lowering operators of the Lie
algebra. The vectors corresponding to the generators ei and
fi are called simple roots. The system of positive simple roots
(i.e., those roots corresponding to the raising generators ei)
can be represented by the nodes of Dynkin diagrams, while
the edges connecting (or not connecting) the nodes give
information about the angles between simple positive root
vectors.

An important subclass of Lorentz KM algebras can be
defined as follows: aKMalgebra such that the deletion of one
node from its Dynkin diagram gives a sum of finite or affine
algebras is called a hyperbolic KM algebra. These algebras
are all known. In particular, no hyperbolic algebras exist with
a rank higher than 10.

We recall some more definitions from the theory of Lie
algebras. Reflections with respect to hyperplanes orthogonal
to simple roots leave the systems of roots invariant. The
corresponding finite-dimensional group is called the Weyl
group. Finally, the hyperplanes mentioned above divide the
r-dimensional Euclidean space into regions called Weyl
chambers. The Weyl group transforms one Weyl chamber
into another.

Now, we can briefly formulate the results of the approach
in [40] following papers [23 ± 25]: the links between the
billiards describing the evolution of the universe in the
neighborhood of a singularity and their corresponding Kac±
Moody algebra can be described as follows:

the Kasner indices describing the `free' motion of the
universe between rebounds from the cushions correspond to
elements of the Cartan subalgebra of the KM algebra;

the dominant cushions, i.e., the terms in the equations of
motion responsible for the transition from one Kasner epoch
to another, correspond to simple roots of the KM algebra;

the group of reflections on the cosmological billiard table
is the Weyl group of the KM algebra;

the billiard table can be identified with the Weyl chamber
of the KM algebra.

Two types of billiard tables can be imagined: infinite ones
where linear motion without collisions with the cushions is
possible (nonchaotic regime), and those where rebounds from
the cushions are inevitable and the regime can only be chaotic.
Remarkably, Weyl chambers of hyperbolic KM algebras are
designed such that infinitely repeating collisions with the
cushions occur. It has been shown that all the theories with
the oscillating approach to the singularity such as the Einstein
theory in dimensions d < 10 and superstring cosmological
models correspond to hyperbolic KM algebras.

The existence of links between the BKL approach to the
singularity and the structure of some infinite-dimensional Lie
algebras has inspired some authors to declare a new program
of development of quantum gravity and cosmology [28]. They
propose ``to take seriously the idea that near the singularity
(i.e. when the curvature gets larger than the Planck scale) the
description of a spatial continuum and space-time based
(quantum) field theory breaks down, and should be replaced
by a much more abstract Lie algebraic description. Thereby
the information previously encoded in the spatial variation of
the geometry and of the matter fields gets transferred to an
infinite tower of Lie-algebraic variables depending only on
`time'. In other words we are led to the conclusion that space±
and thus, upon quantization also space-timeÐactually
disappears (or `de-emerges') as the singularity is approached.''

5. Conclusion: some thoughts about the past
and future of the Universe

In the preceding section, we outlined the newest developments
in the theory of the BKL approach to the cosmological
singularity connected with superstring-inspired cosmological
models and infinite-dimensional Lie algebras. But already in
the `standard' (3+1)-dimensional general relativity, the effect
of the oscillatory approach to the singularity and the
chaoticity implied by it is of great interest. Indeed, the
discovery of nonstatic time-dependent cosmological solu-
tions in general relativity, first and foremost the Friedmann
solutions, has given birth to animated discussions on such
questions as:

Did the Universe have a beginning ?
Will the Universe have an end?
Can the Universe exist during a énite interval of time?
What was before the beginning and what will be after the

end?
These questions look quite reasonable because we know

that in all threeFriedmannmodelsÐ flat, open, and closedÐ
theUniverse has a beginning and this beginning is nothing but
the Big Bang singularity. In the closed Friedmann model, the
Universe also has the endÐ theBigCrunch singularityÐand
exists during a finite period of time. Moreover, according to
the so-called StandardCosmologicalModel, basedona rather
large set of observational data, something like the Big Bang
took place approximately 13.7 billion years ago (measured in
terms of cosmic, i.e., synchronous, time). The more or less
accepted existence of the beginning of the evolution of the
Universe and the possible existence of the end of the Universe
can be a source of joy for those who believe in the creation of
the Universe and for whom its possible end can also confirm
their philosophical or theological beliefs. It is curious that the
PontificalAcademyofSciences organized a special conference
at the Vatican in October±November of 2008 with the title
``Scientific insights into the evolution of the universe and of
life.'' On the other hand, the possibility of a finite-time
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existence of the Universe can provoke some kind of psycho-
logical discomfort in those forwhomthis finite duration seems
to be senseless. For some, the fact that their own existence
takes place in theUniverse that exists only for a finite periodof
time can appear depressing.

In analyzing these aspects of the problem of the evolution
of the Universe, we should ask ourself which time parame-
trization we should use in speaking about the time of the
existence of the Universe. As we know since the creation of
special relativity, time is relative. In the framework of general
relativity, time becomes even more relative and can run with
different rates at different spatial points. Making conformal
transformations (for example, in constructing the Penrose
conformal diagrams [6 ± 8]), we can turn an infinite time
interval into a finite time interval. Why should we then use
cosmic time? The answer to this question is simple: cosmic
time for a particle staying at rest in a Friedmann homo-
geneous and isotropic Universe coincides with the proper
time introduced in special relativity. Hence, when we are
considering the present-day Universe, it is quite reasonable to
discuss it in terms of cosmic time and to say that the Universe
was created 13.7 billion years ago. But when we consider the
vicinity of the Big Bang cosmological singularity in the past,
or when we admit the possibility of the existence of a Big
Crunch singularity in the distant future, the situation changes
drastically. The Universe is extremely anisotropic in the
neighborhood of such singularities and is described by a
chaotic succession of Kasner epochs and eras, as was
discussed above. (We can be precise here: by choosing very
special isotropic initial conditions, we can avoid the chaoticity
in the neighborhood of the Big Bang singularity, which can
have the Friedmannian form in principle; it is impossible not
to have a chaotic regime in the vicinity of the Big Crunch
singularity, because the inhomogeneities developed during
the evolution of the Universe make its contracting stage
highly anistropic [41]).

Therefore, while the evolution from an arbitrary instant
of cosmic time to the instant corresponding to the initial Big
Bang or final Big Crunch singularity occupies a finite
interval of cosmic time, an infinite number of events occurs
during this finite period. The infinite chaotic succession of
Kasner epochs and eras renders cosmic time as a measure of
cosmological evolution senseless. Indeed, we have an
infinite history that separates us from the birth of the
Universe at the Big Bang. If the contraction of the
Universe culminating in the encounter with the Big Crunch
singularity awaits us in the future [42, 43], we still have an
infinite number of events in front of us. Thus, the BKL
oscillatory regime of approaching the cosmological singu-
larity screens us from the Big Bang and the Big Crunch.

From the mathematical standpoint, this means that the
natural time parameter in the vicinity of a singularity is not
cosmic time but logarithmic time. As cosmic time runs from
the zero instant corresponding to the singularity to some
finite instant t1, logarithmic time runs from ÿ1 to ln t1,
spanning an infinite interval of time.

Remarkably, a comment concerning the importance of
logarithmic time can already be found in the penultimate
paragraph of the Landau and Lifshitz monograph [29]: ``The
successive series of oscillations crowd together as we
approach the singularity. An infinite number of oscillations
are contained between any finite world time t and themoment
t � 0. The natural variable for describing the time behavior of
this evolution is not the time t, but its logarithm, ln t, in terms

of which the whole process of approach to the singular point
is spread out to ÿ1.''

A similar idea is also expressed in paper [28] cited above:
``There is no `quantum bounce' bridging the gap between an
incoming collapsing and an outgoing expanding quasi-
classical universe. Instead `life continues' at the singularity
for an inénite aféne time, but with the understanding that
(i) dynamics no longer ``takes place'' in space, and (ii) the
inénite aféne time [measured, say, by the Zeno-like time
coordinate t ] corresponds to a sub-Planckian interval
0 < T < TPlanck of geometrical proper time.'' Curiously, the
analog of the object that the authors of [28] call Zeno-like time
is the so-called spatial tortoise coordinate in the Schwarzs-
child geometry [44]. Both these names have their origin in
Zeno's paradox about Achilles and the tortoise, which is,
perhaps, theérst example of transforming aénite time interval
into an inénite one (see, e.g., section I of the third part of the
third volume ofWar and Peace by Leo Tolstoy [45]).

Concluding, I would like to say semiseriously that the
discovery of the oscillatory approach to the cosmological
singularity has a practical meaning: it liberates us from the
fear of the end of the world.

This work was supported in part by the RFBR grant
08-02-00923 and by the grant LSS-4899.2008.2.
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Above the barriers
(I M Khalatnikov's works
on the scattering of high-energy particles)

V L Pokrovsky

Relatively recently, in the fall of 1957, I had the good fortune
to speak at Landau's seminar on the over-barrier reflection of
high-energy particles. I was then working in Novosibirsk, at
the Institute of Radiophysics, whose director was one of my
teachers Yu B Rumer, and he introduced me to Landau. My
coauthors weremy fellow students and friends SK Savvinykh
and F R Ulinich [1, 2]. The reflection of particles whose
energy exceeds the barrier height is a strictly quantum effect: a
classical particle just slows down as it approaches the tip of
the barrier and then accelerates. We solved the Schr�odinger
equation in the semiclassical approximation, formally
expanding it into a power series in the small parameter l=a,
where l is the de Broglie wavelength and a is a characteristic
size of the potential. The peculiarity of the problem, which
was not noticed by other theoreticians, lay in the fact that
each consecutive term of the expansion contained a singular-
ity of a higher order than the previous one. As a result, they
differed only by universal numerical factors. It turned out to
be possible to sum this numerical series using an exactly
solvable problem. Landau liked the work, and I was invited to
present it at his seminar. Following my talk, I met many
celebrities whom I had previously known only through their

publications and from legends. Isaak Markovich Khalatni-
kov showed the most vivid interest. He proposed collaborat-
ing, which was flattering forme. He explained his interest by a
mission assigned to him by Landau to find a mistake in
L Schiff's work on the same topic. This explanation sounded
somewhat strange, because we had already found themistake.
Only later did I realize that I became an object of his most
sincere and absolutely disinterested affection to any fledgling
theorist who came up with an interesting idea. Just this
property later made him an ideal director of the Institute of
Theoretical Physics and let him gather a unique team, which
quickly gained worldwide recognition. I hope, however, that
our relationship involved some individual element, the proof
of which is our friendship and longstanding research
collaboration, which extended to 1992. It would probably
have lasted even longer if it had not been interrupted by the
turbulent events of that time. The close rapprochement
needed for collaborative work became possible due to
another of Khalatnikov's rare qualities: his complete lack of
both arrogance and servility, as well as his simple and calm
way of communicating.

We both realized that the work I presented was just the
beginning. Although the method of series summation led to a
beautiful and nontrivial result, it was still not physically
transparent. It was not clear how to generalize it to similar
problems of quantum and classical mechanics. Contemplat-
ing this problem, we came to the following idea [3]. Classical
and semiclassical particles are reflected at a turning point,
where their kinetic energy becomes zero. If the particle energy
exceeds the height of the barrier, no turning point exists at a
real value of its coordinate. But it appears in the complex
coordinate plane if the potential is an analytic function.
Going into a complex plane is a rather common operation in
quantummechanics. Going into a complex momentum plane
is physically equivalent to tunneling, i.e., penetration into the
region of classically forbidden coordinates. Similarly, going
into the complex coordinate plane means penetration into the
region of classically forbidden momenta. Therefore, we
needed to find a suitable path in the complex plane along
which a wave travels without reflection to a complex turning
point, and then strongly changes in its vicinity. Then the path
goes to the real axis, where we can find the reflected wave. In
practice, this program was accomplished as shown in Fig. 1.
The path begins on the real coordinate axis x at x!1. In
this region, where the potential can be neglected, only the
transmitted wave C � t exp �ikx� exists, where t is the
transmission amplitude. After that, the path climbs in the
upper half of the complex plane until it intersects with the line
C1 going through the turning point x0 nearest to the real axis,
on which the semiclassical action S�x; x0� �

� x
x0
p�x 0� dx 0,

C2 C1

x0

x �0

Figure 1.
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where p�x� � �2m�Eÿ V�x���1=2, is purely real (this line is
called an anti-Stokes line). At infinity, line C1 runs parallel to
the real axis. The solution we started with oscillates on this
line. Up to a numerical factor, it is given by the typical
semiclassical expression c � A=

���������
p�x�p

exp �iS�x; x0�=�h�. As
usual, the semiclassical approximation is invalid in the
vicinity of a turning point; but we can bypass this point
from below along a large enough arc. In this case, however,
the semiclassical exponential increases until reaching the so-
called Stokes line, on which S�x; x0� becomes purely
imaginary, and then decreases, and the second exponential
with the minus sign in front of S�x; x0� appears in its
background. This change in the asymptotic regime is called
the Stokes phenomenon. As a result, on the second anti-
Stokes line C2, which passes through the same turning point
x0 at the angle 120

� to C1 and satisfies the same condition that
S�x; x0� be real, the asymptotic form of the wave function
consists of two exponentials:

c�x���
C2
� A���������

p�x�p �
exp

�
iS�x; x0�

�h

�
ÿ i exp

�
ÿ iS�x; x0�

�h

��
:

�1�

The path continues along C2 far to the left, where the
potential can again be neglected. Along the entire line C2,
asymptotic form (1), corresponding to the two waves
propagating in opposite directions with equal absolute
values of the amplitude, is valid. On the complex line C2, the
initial wave is completely reflected at the turning point. But
when the path goes to the real axis as x! ÿ1, one of the
exponentials increases, whereas the other decreases. The
absolute value of their ratio, which is equal to the reflection
amplitude up to a phase factor, can be easily calculated as

jrj�exp

�
ÿ 2

�h
Im

�x0
0

p�x� dx
�
� exp

�
i

�h

�x0
x �
0

p�x� dx
�
: �2�

This result shows that the reflection does not occur in any
order in powers of �h or of the ratio of the wavelength l to the
characteristic size of the potential a. This effect is exponen-
tially small. This smallness resembles another strictly quan-
tum effect, quantum tunneling. As well as the tunneling
amplitude, the over-barrier reflection amplitude contains an
imaginary action in the exponent between the two turning
points, which, in contrast to tunneling, are in the complex
coordinate plane.

In the 1960s, this work was mostly developed by Soviet
theorists. Several interesting papers were written by
A M Dykhne. In 1961, he considered the motion of a
semiclassical particle in a periodic potential [4]. It is well
known that the spectrum has a band structure in this case, and
the wave functions are modulated Bloch plane waves. The
analogue of the over-barrier reflection in this problem is the
appearance of band gaps at energies exceeding the maximum
of the periodic potential. In this case, the particle reflects from
the system of periodically placed turning points xn, as shown
in Fig. 2. All of them are connected by anti-Stokes lines.
Dykhne found that the position of the band gaps is given by
the `Bohr' quantization rule

� xn�1
xn

p�x� dx � m�h, while the
widths of the band gaps are determined by the above-barrier
reflection coefficient: D � �ho exp

ÿ
2i=�h

� xn
x �n

p�x� dx�. Bands of
a finite, exponentially small width appear at energies smaller
than themaximum of the potential due to tunneling under the

barriers. Dykhne's result shows that in a periodic potential of
a general form, the number of bands separated from each
other by gaps is infinite. On the other hand, Dubrovin and
Novikov [5] showed that for a particular class of potentials,
the number of bands is finite. It is still not known how to
resolve this controversy. The potentials leading to a finite-
band spectrum are elliptic double-periodic functions. This
means that the turning points form a regular lattice in the
complex plane with the same periods. Presumably, the
reflection disappears as a result of interference on this
lattice, but this hypothesis has not been proved yet.

Dykhne applied the same method to solve the problem of
transitions when two levels cross in the complex time plane
[6, 7]. The same problem when the levels cross in real time is
known as the Landau±Zener problem (or theory) [8, 9]. This is
one of the most important results of nonstationary quantum
mechanics. Landau, and independently from him Zener,
considered a nonstationary two-level system that can be
described by the Hamiltonian

HLZ � E1�t� D
D � E2�t�

� �
: �3�

The diagonal elements of Hamiltonian (3) are called
diabatic levels, while the quantities E� � �E1 � E2�=2����E1 � E2�=2�2 � D 2

	1=2
, which are obtained by formal

diagonalization of this Hamiltonian, are called adiabatic
levels. It is assumed that the process occurs adiabatically,
with the exception of a short time interval close to the instant
of intersection of the diabatic levels. Without a loss of
generality, we can assume that this instant occurs at t � 0.
After that, we can assume the dependence of the diabatic
levels on time to be linear. Finally, we assume that
E1�ÿE2��h _Ot=2. The amplitude of survival on one of the
diabatic levels, found by Landau and Zener, is given by

ALZ � exp

�
ÿ 2pD 2

�h 2 _O

�
: �4�

What happens if the levels do not cross on the real time
axis? Following what was said, it is obvious that the crossing
point must be found in the complex time plane and the
problem must be solved near that point. I suggested this
formulation of the problem to Dykhne as the initiation of his
PhD dissertation, but I did not participate in solving this
problem. The solution was found by Dykhne and simulta-
neously by Landau, who discovered a mistake in the original
version of Dykhne's solution. Landau's solution was pub-
lished in the third and subsequent editions of Quantum

x0 x1 x2

Re x

xÿ2 xÿ1

x �0 x �1 x �2x �ÿ2 x �ÿ1

Figure 2.
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Mechanics [10]. Landau reduced this problem to one of over-
barrier reflection. It is not surprising that these results look
similar. The transition amplitude from one level to another,
found by Dykhne and Landau, is

ADL � exp

�
i

�h

�t0
t �
0

�
E2�t� ÿ E1�t�

�
dt

�
; �5�

where t0 is the crossing point of the levels in the complex time
plane. We note that in this case, the crossing amplitude is
exponentially small. Equation (5) is known in the literature as
the Dykhne formula or the Landau±Dykhne formula.
Landau±Zener formula (4) directly follows from it. Indeed,
according to the assumptions of this theory, E��t� ÿ Eÿ�t� ����hOt�2 � 4D 2

�1=2
and t0 � i2D=�h _O. The integration in the

exponential in Eqn (5) is done along the imaginary axis and
immediately leads to Eqn (4).

This problem is related to the question of the change in an
adiabatic invariant in classical mechanics. It is known that
under a slow variation of theHamiltonian, the classical action
per period is approximately conserved. This action is an
adiabatic invariant. What is the accuracy of this approximate
conservation law? The answer depends on time intervals
within which the perturbation acts and the observation is
performed. In the simplest case, when the perturbation tends
to zero sufficiently fast as t! �1, and the observation is
made when the perturbation can be neglected, the change in
the adiabatic invariant first found by Dykhne can be rather
easily linked to the Dykhne±Landau problem, at least in the
case of one-dimensional motion. It is known that in the
semiclassical approximation, the action within a period is
quantized with the period 2p�h. Up to this factor, the action
coincides with the level number n. In the language of quantum
mechanics, the change in the adiabatic invariant means a
transition from one level to another. The value of this change
is DI � 2p�h

P
n 0 �n 0 ÿ n�wn; n 0 , where wn; n 0 denotes the prob-

ability of transition from level n to level n 0. In the adiabatic
regime, the transitions between the nearest levels n 0 ÿ n � �1
are the most probable, while other transitions are much less
probable. Because of a weak dependence of wn; n�1 on n, we
obtain [6, 7, 11]

DI � 2ph
dwn; n�1

dn
� i2ph 2

�t0
t �
0

qo
qI

dt exp

�
2i

�t0
t �
0

o�t� dt
�
;

�6�
where o is the frequency of classical motion, which slowly
depends on time. The change in the adiabatic invariant turns
out to be exponentially small. But if the measurement is done
within a finite and not exponentially large period of time, then
the change becomes much larger; it oscillates in time and
simultaneously decays as 1=t, just like the transition prob-
abilities. This phenomenon, unknown at that time, leads to a
disagreement with the experimental results.

A more general situation with several periodic motions
was investigated byAASlutskin in the framework of classical
mechanics. The description of Slutskin's work can be found in
the last editions of Mechanics by Landau and Lifshitz [12] in
Pitaevskii's treatment.

A three-dimensional generalization of the issue of over-
barrier reflection was achieved in a sequence of papers [13±16]
by Patashinskii, Pokrovsky, and Khalatnikov, published in
1962±1964. This work was started during Landau's scientific
life and was discussed with him repeatedly. In the course of

this work, Khalatnikov and I invented the poles of the
scattering amplitude in the complex momentum plane: back
then, these poles were not yet called Regge poles. This nut,
however, was so hard to crack that we were able to finish this
work only several years later, with the participation of Sasha
Patashinskii. The formulation of the problem was as follows.
Classical mechanics allows scattering in a definite cone of
angles. Quantum mechanics does not have this limitation.
What is the amplitude of semiclassical scattering at a
classically forbidden angle? In classical mechanics, each
allowed scattering angle y corresponds to a definite value of
the impact parameter r. Following the same line of reasoning
as in the case of over-barrier reflection, it can be conjectured
that the scattering at a classically forbidden angle should
correspond to a complex impact parameter. Usually, the
semiclassical approximation in scattering theory is obtained
by means of the Watson transform of the Faxen±Holtzmark
formula for the scattering amplitude:

f �y� � 1

2ik

X1
l�0
�2l� 1� exp �2idl�Pl�cos y�

� ÿ 1

2ik

�
G
nS�n�Pnÿ1=2�ÿ cos y� dn

cos np
: �7�

The integration contour G is shown in Fig. 3. It has to be
deformed if possible in order to pass through the saddle point
in the direction of the steepest descent. The value n at the
saddle point is the impact parameter up to some factor
(r � n=k), which corresponds to the scattering angle y. Free
contour deformation is obstructed by poles of the function
S�n�. Therefore, in a certain region of parameters, the
contribution of the poles dominates in the scattering
amplitude and the use of a complex impact parameter
depending on the scattering angle becomes invalid. A
detailed description of the result is inappropriate in this
short note; but it is possible to show how the poles of the
reflection amplitude appear. The function S�n� is defined by
the asymptotic form of the radial wave function,

Rnÿ1=2�r� � 1

r

�
A�n� exp

�
i

�
krÿ

�
nÿ 1

2

�
p
2

��
ÿ B�n� exp

�
ÿ i

�
krÿ

�
nÿ 1

2

�
p
2

���
;

as S�n� � A�n�=B�n�. The pole appears when B�n� � 0. We
consider how the radial wave function behaves in the complex
r plane. Typical anti-Stokes lines passing through the turning
point r1 nearest to the real axis are shown in Fig. 4a. The
radial wave function decays near the coordinate origin, i.e.,
has only one exponential R � exp �iS�r; r1�=�h� in the sector
left of the turning point. In passing to the right anti-Stokes
line, the radial wave function acquires the second exponential,
R � exp �iS�r; r1�=�h� ÿ i exp �ÿiS�r; r1�=�h�, whose coeffi-

G

n

Figure 3.
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cient remains the same as r! �1. This means that B�n� 6� 0
andS�n� does not have a pole. The pole appears at the value of
n defined by two conditions: 1) a second turning point r2
appears on the same anti-Stokes line (Fig. 4b); 2) the action
between the two turning points obeys Bohr's rule
S�r; r1� � np�h. Under this condition, the second exponential
disappears after passing the second turning point.

In the following rather long time period, activity in this
area almost disappeared and the above-mentioned papers
were seldom cited. Interest in them was suddenly resumed in
the late 1980sÐearly 1990s because of the development of
new areas in physics and mathematics. In physics, it was the
pattern formation theory, in particular, fractal crystal growth
and the theory of motion of the interface between viscous and
ideal fluids trapped between two parallel plates (Hele±Shaw
flow). The new mathematical science is called `asymptotics
beyond-all-orders' (in the sense of perturbation theory).
Among the scientists who significantly contributed to this
new discipline are M Kruskal, M Berry, J Boyd, J Langer,
H Segur, H Levine, H Muller-Krumbhaar, S Tanveer,
B Shraiman, D Bensimon, M Mineev, V Mel'nikov, E Bren-
ner, and P Wiegmann. The first step was taken by Kruskal
and Segur in their work devoted to dendritic crystal growth
[17], in which our method was first generalized to a nonlinear
problem. This research is active even nowadays. In addition
to the original papers, many collections of papers, reviews,
and monographs have been published. I refer to two of them.
The first is a collection of articles [18] named Asymptotics
beyond all orders, published in 1991. It contains several
important reviews of the above-mentioned problems. The
second is a book by J Boyd, Weekly nonlocal solitary waves
and Beyond-All-Orders Asymptotics [19], published in 1999.
Even though the title looks more specialized, this book
contains a detailed and clear description of general methods
and related areas, and it can therefore be recommended as a
primer on the subject. With the permission of the author, I
reproduce some excerpts from this book related to our work
of 1969.

Boyd calls our method ``Matched asymptotics in the
complex plane'' and characterizes it as rather general and
applicable to a large number of different problems. Here is
what he writes in the introduction to the corresponding
chapter:

``The earliest use of matched asymptotics in the complex
plane was by Pokrovsky and Khalatnikov (1961), who
generalized the semiclassical theory to calculate exponen-
tially small reflection of waves from a potential barrier whose
height is everywhere less than the energy of the waves.
Kruskal and Segur (1985, 1991) applied their ideas to a
nonlinear phenomenon: Dendritic fingering of a solid-liquid
interface. Later, Segur and Kruskal (1987) and Pomeau,
Ramani, and Grammaticos (1988) applied the method to
solitary waves. Since then, there have been many applica-
tions; Akylas and Grimshow (1992) study of nonlocal higher

mode of internal gravity solitons is particularly readable.
Grimshow and Joshi (1995) have extended Pomeau et al.
(1988) to the higher order with corrections.''

While describing our work of 1961, Boyd intentionally
uses rather vague and extremely general terminology. To
characterize it, we consider Fig. 5, by which he substitutes our
more precise Fig. 1. All details are omitted; what is left is the
general idea of motion with a known solution from one
infinity to a complex turning point, and then from this point
with the other known solution to the other infinity. In an even
more abstract form, the method of matched asymptotics is
illustrated in Fig. 6. It shows an external region in which the
asymptotic form of the solution must be found, two adjacent
regions where the asymptotic forms are known up to several
unknown constants, separated by the line of the change in the
asymptotic regime (Stokes line), and the internal region in the
complex plane where the asymptotics are invalid. It is
required to solve the problem in the internal region. Usually,
it is possible to use the proximity of this region to a certain
point at which the short-wavelength approximation is strictly

exp�iS=�h� ÿ i exp�ÿiS=�h�

a

r

r1

exp�iS=�h�
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b
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r
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invalid (the analog of the turning point in classical mechan-
ics), solve the internal problem, if not analytically then
numerically, and match it with the two different asymptotic
forms in the adjacent regions. In this form, themethod is valid
even for nonlinear problems, for which different types of
wave solutions are known, for example, solitons, automodel
solutions, and shock waves. Apart from considering the
previously discussed problems of over-barrier reflection,
Boyd illustrates the general method by the original solution
of the problem of a pendulum driven by a force slowly
depending on time. The corresponding equation of motion is

utt � u � f �et� ; �8�

where e is a small parameter. Let the solution at t < 0 be close
to f �et�. For t > 0, it differs by a solution of the homogeneous
equation: u�t! �1� � f �et� � c sin t. To find the constant
c, we need to solve the problem in the vicinity of the pole of
f �x� and match the two asymptotic forms of u with the
solution in the internal region. The problem was solved in the
case where the pole of f�x� located at a point xs is of the
second order. The function f �x� in the internal region is
substituted by the function �xÿ xs�ÿ2, and the solution of the

standard equation obtained from (8) for U�e 2u, namely,
Utt �U��tÿ xs=e�ÿ2, is the so-called Borel logarithm
U�t� � Bo�t� � �10 exp �ÿs� ln �1� s 2=t 2� ds, where t �
tÿ xs=e. When t changes its sign after circulating around
the origin, the Borel logarithm acquires the additional term
2pi exp �ÿit�. Matching this solution with the asymptotic
expression in the region 1 < t < 1=e and then going down to
the real axis t, we find c � �2p=e 2� exp �ixs=e�. As expected,
this is an exponentially small quantity. Surprisingly, the
solution of this linear problem appeared to be a key to the
solution of the much more complicated nonlinear problem
on the variation of a soliton in the framework of the
Korteweg±de Vries equation with the added fifth derivative
when the soliton slowly propagates from one end of the line
to another [20]. The solution is too cumbersome, and it is
difficult to describe it briefly, but the very formulation of the
problem gives an idea of what class of problems can be
solved by the method of matched asymptotics.

I reproduce here two tables extracted from the same book
by Boyd, collecting the information about the class of
problems, excluding the solitons, in which exponentially
small effects localized in the complex plane appear
(Table 1, 2). The method of matched asymptotics can be

Table 1.Nonsoliton, nonquantum exponential smallness.

Phenomenon Field References

Dendritic crystal growth Condensed matter Kessler, Koplik & Levine (1988)

Viscous éngering
(SaffmanëTaylor problem)

Fluid dynamics Shraiman (1986), Hong & Langer (1986),
Combescot et al. (1986),
Tanveer (1990, 1991)

Diffusive front merger. Exponentially êow Reaction-diffusion systems Carr (1992), Hale (1992), Carr & Pego (1989),
Fusco & Hale (1989),
Laforgue & O'Malley (1994, 1995),
Reyna &Ward (1994, 1995),
Ward & Reyna (1995)

Stokes' phenomenon in asymptotic expansions Applied mathematics Dingle (1973), Berry (1989, 1995),
Berry & Howls (1990, 1991, 1993, 1994),
Olver (1974, 1991, 1993), Olde Daalhuis (1992),
Paris & Wood (1992), Paris (1992),
Howls (1997), Jones (1997)

Rapidly-forced pendulum Classical physics Chang (1991),
Scheurle et al. (1991)

Resonant sloshing in a tank Fluid mechanics Byatt-Smith & Davie (1991)

Laminar êow in porous pipes Fluid mechanics. Space plasmas Berman (1953), Robinson (1976),
Terril (1965, 1973), Terril & Thomas (1969),
Grundy & Allen (1994)

JeffreyëHamel êow stagnation points Higher-order boundary layer Bulakh (1964)

Shocks in a nozzle Fluid mechanics Adamson & Richey (1973)

Slow viscous êow past a circle, sphere Fluid mechanics (log & power series) Proudman & Pearson (1957),
Chester & Breach (1969), Skinner (1975),
Kropinski & Ward & Keller (1995)

Equatorial Kelvin wave instability Meteorology, oceanography Boyd & Christidis (1982, 1983),
Boyd & Natarov (1998)

Error: midpoint rule Numerical analysis Hildebrand (1974)

Radiation leakage from éber optics waveguide Nonlinear optics Kath & Kriegsmann (1988),
Paris & Wood (1989)

Particle channeling in crystals Condensed matter physics Dumas (1991)
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applied tomany of these problems. The variety of phenomena
united by a similar mathematical structure is striking. Among
others, these are abstract mathematics, hydrodynamics,
meteorology, solid state physics, and quantum mechanics. I
believe that many things have yet to be discovered.

I hope that this brief review will renew IMKhalatnikov's
interest in this circle of questions. According to my observa-
tions, his interest in science and his research activity have not
weakened.
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Screening and antiscreening of charge
in gauge theories

I B Khriplovich

We discuss charge renormalization in vector theories with an
Abelian and non-Abelian gauge group on the qualitative
level.

1. The discussed studies began with the remarkable paper
by Landau, Abrikosov, and Khalatnikov [1], published more
than half a century ago. In particular, it was demonstrated
therein that the observable electron charge e in quantum
electrodynamics is related to the bare charge e0 as

e 2 � e 20

�
1� e 20

12p2
ln

L2

m 2

�ÿ1
< e 20 ; �1�

wherem is the electronmass andL is the cut-off parameter for
divergent integrals (of course, L4m). This and other
relations discussed below are presented in the leading
logarithmic approximation, i.e., we keep only the leading
power of the large logarithm in the coefficient at a given
power of the coupling constant (which is assumed to be
small).

The fact that the observable charge is less than the bare
one is a quite natural and obvious result of vacuum
polarization: the bare charge attracts virtual particles with a
charge of the opposite sign, and repulses virtual particles with
a charge of the same sign (Fig. 1).

On the other hand, it can be easily demonstrated that
inequality (1) naturally follows from the unitarity relation,
according to which the imaginary part of the photon
polarization operator is positive definite, ImP > 0. It should
be combined, of course, with the dispersion relation for the
polarization operator.

This is a result for all time in quantum electrodynamics.
2. However, 11 years later, Vanyashin and Terentjev [2],

investigating the contribution of a charged vector particle to
the nonlinear Lagrangian of a constant electromagnetic field,
discovered that the contribution of this particle (with the

gyromagnetic ratio g � 2) to the charge renormalization is
quite different:

e 2 � e 20

�
1ÿ 7e 20

12p2
ln

L2

m 2

�ÿ1
> e 20 : �2�

In other words, the antiscreening of a charge occurs in the
electrodynamics of a vector particle. But how can this be
reconciled with the simple qualitative arguments presented
above? What is the difference between an electron with spin
s � 1=2 and a W boson with s � 1?

The difference is first of all that the electrodynamics of a
vector particle is a nonrenormalizable theory, 1 in which the
photon polarization operator diverges, generally speaking,
not logarithmically, as is the case of the electrodynamics of
spin-1/2 particles [see (1)], but as L. Of course, the leading,
quadratically divergent contribution to the charge renorma-
lization, proportional to L 2=m 2, would have the same sign as
the logarithmic contribution in formula (1), and would
therefore result in screening. But the technique used in [2]
for calculation of a nonlinear Lagrangian of the electromag-
netic field was such that power-like divergences in L 2=m 2

were eliminated from the result. As regards the sign of the
logarithmically divergent contribution to the charge renor-
malization, it is not then fixed by simple qualitative argu-
ments.

Result (2) is certainly quite meaningful and interesting.
Relations of this type arise in modern models of the
electroweak interaction where power-like divergencies are
absent.

3. Four years later, the structure of the polarization
operator was found for a massless vector field with self-
coupling described by the non-Abelian gauge group SU�2�;
the Coulomb gauge was used in the calculation [3].

The charge renormalization is described in this gauge by
two diagrams (see Figs 2 and 3). The dashed line refers, as
previously, to the Coulomb field; the wavy line refers to
actually propagating three-dimensionally transverse vector
quanta. Because these quanta are massless, the divergence at
small momenta are cut off at �q 2.

Figure 1. Vacuum polarization in quantum electrodynamics.
1 The importance of this fact was emphasized by I Ya Pomeranchuk as

soon as paper [2] appeared.

Figure 2. Contribution of three-dimensionally transverse quanta to

vacuum polarization.
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The contribution of Fig. 2 to the observable charge g 2 is
given by

g 2
0

�
1� g 2

0

12p2
ln

L 2

�q 2

�ÿ1
: �3�

There is nothing surprising here: everything agrees quite
naturally with result (1) for quantum electrodynamics.

But in the theory with a non-Abelian gauge group, a
diagram arises that is absent in electrodynamics; this diagram
has no imaginary part because the Coulomb field (dotted line)
does not propagate in time. The nature of this contribution is
the interaction of the Coulomb field with the fluctuations of
the three-dimensionally transverse physical degrees of free-
dom in the second order of the perturbation theory.

The sign of this contribution is opposite to that of (3), and
numerically this contribution is much larger. With both
contributions taken into account, the total result for the
coupling constant is

g 2 � g 2
0

�
1�

�
1

12
ÿ 1

�
g 2
0

p2
ln

L 2

�q 2

�ÿ1
� g 2

0

�
1ÿ 11g 2

0

12p2
ln

L 2

�q 2

�ÿ1
: �4�

Instead of the Abelian screening of the charge, its non-
Abelian antiscreening arises!

4. For the further physical interpretation, it is convenient
to pass to the running coupling constant g��q 2� in result (4),
which in the same logarithmic approximation is

g 2��q 2� � g 2

�
1� 11g 2

12p2
ln

�q 2

�q 2
0

�ÿ1
; �5�

where g is the renormalized coupling constant and �q0 is the
normalization point in the momentum transfer.

It is clear from expression (5) that in the limit as �q 2 !1,
i.e., at short distances, the effective coupling constant tends to
zero, g 2��q 2� ! 0. This allows using the perturbation theory
in this limit, as �q 2 !1. The remarkable fact is that the
interaction of quarks at small distances is well described by
such a vector theory (which has the SU�3� gauge group,
however). This is the asymptotic (in the sense of large
momenta), or ultraviolet freedom [4 ± 6].

On the other hand, at small �q 2, i.e., at large distances, the
effective coupling constant

g 2��q 2� � g 2

�
1� 11g 2

12p2
ln

�q 2

�q 2
0

�ÿ1
;

increases and the perturbation theory becomes inapplicable.
The interaction between quarks at large distances becomes so
strong that quarks do not exist in a free state at all. This is the
region of quark confinement, or infrared slavery. A closed
quantitative theory that describes quark confinement does
not exist at present.

5. I have to add that paper [1] is in no way the only study
Isaak Markovich Khalatnikov made for all time.

And last but not least, I have heard that to his centenary

For his Merit and his classic works,
Order they will add to his awards!
He'll get certainly this honor,
And to celebrate the Order
We will get together here of course!

� � �

I am grateful to V V Sokolov and M I Vysotsky for the
discussions. The work was supported by the Russian
Foundation for Basic Research Grant No. 08-02-00960-a.
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