
Abstract. The problem of irreversible targeted energy transfer
is approached in a new way using the analogy between a system
of two weakly coupled parametric pendulums or oscillators and
nonadiabatic Landau ±Zener tunneling in a two-state quantum
system. This analogy predicts that efficient irreversible transfer
of vibrational energy is possible between two subsystems if the
frequency of at least one of them changes adiabatically slowly
with time, thus allowing an internal resonance to occur between
them. We also show that evolution equations for the transition
of the Landau ±Zener tunneling type give a quantitative predic-
tion for the part of the initially imparted energy that is retained
asymptotically in the protected classical system. The findings
made can be used for designing new types of energy traps for the
dynamical protection of various mechanical systems.

1. Introduction

Tunneling is one of the most striking manifestations of
quantum behavior and has been the subject of extensive
research in both fundamental and applied physics [1]. A
well-known generic example of a tunneling phenomenon is
Landau±Zener tunneling (LZT) in which a quantum system
subject to an external force tunnels across an energy gap
between two anticrossing energy levels [2±5] (see also recent
review [6]). Quantum LZT was observed in semiconductor
superlattices for electrons [7, 8], as well as in optical lattices

for ultracold atoms [9, 10] and Bose±Einstein condensates
[11, 12]. In the case of electrons in a semiconductor super-
lattice, the external force responsible for nonadiabatic
energy-level crossing and LZT is exerted by an external
electric field. Gravitation or acceleration fields play a similar
role for ultracold atoms and Bose±Einstein condensates.
Landau±Zener tunneling of optical waves has been observed
in optical lattices [13] and optical waveguide arrays [14].
Recently, the Landau±Zener tunneling of bulk and surface
acoustic waves in ultrasonic superlattices was predicted and
observed [15, 16]. In addition, these predictions and observa-
tions were also extended to macroscopic two-dimensional
phononic crystals made of rigid cylinders immersed in water
[17, 18]. Effective external forces in optical or acoustic LZT
are produced by the perturbation of the corresponding
optical or ultrasonic superlattice.

The common feature of all the aforementioned examples
of nonadiabatic LZT is the irreversible (and almost unidirec-
tional) exchange of energy between two energy states caused
by an external force or perturbation. The possibility of this
type of exchange would also be desirable in vibrating
mechanical systems, e.g., in bridges, in towers, in airplane
wings, and in other structures. (The macroscopic dynamical
instability of an automotive bridge, which was observed on
20 May 2010 in the city of Volgograd, gives evidence of the
desirability of the construction of such systems.) Here, the
impact excitation, which is capable of causing dynamic
instability or destruction of the mechanical system, must be
irreversibly transferred to another systemwhich plays the role
of an energy trap. It turns out that a classical system governed
by equations similar to those of a quantum system can in fact
be designed. We noticed earlier a profound analogy between
adiabatic quantum tunneling and energy exchange between
weakly coupled linear or nonlinear classical oscillators [19±
21]. In this study, we present for the first time a vibrational
analogue of nonadiabatic quantum Landau±Zener tunneling,
which reveals a possibility for the creation of a new type of
energy traps. We demonstrate analytically and numerically
that a transition of the LZT type can be realized in a system of
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two weakly coupled pendulums or oscillators. For this to
occur, the length of at least one of the pendulums (or the mass
or spring stiffness of at least one of the oscillators) should be
changed adiabatically slow during the vibrations. As a result,
an efficient irreversible transfer of vibrational energy from
one pendulum or oscillator to the other occurs under the
condition that the weakly coupled subsystems pass through
the internal resonance. Precisely such resonant vibrational
mechanical systems represent the simplest energy traps of a
new type, which can be utilized in more complex systems for
their dynamical protection from vibro-impact actions, with
possible applications in macro-, micro-, and nanomechanics.

It isworthmentioning thatwedonot claim a strict analogy
with the quantum LZT in an infinite time interval, which was
considered both in the papers byLLandau andCZener and in
numerous subsequent papers. The papers by Dykhne [22],
Demkov and Osherov [23], and Demkov and Kunike [24]
allowone todescribe thenonadiabatic transitionwhichoccurs
in a finite time interval (see also more recent paper [25]).
Naturally, accounting for the finiteness of the time interval for
the energy exchange between the subsystems is very important
for mechanical systems. The analogy we are discussing is due
to the fact that the two weakly coupled classical subsystems in
the vicinity of the internal resonance show the behavior
similar to that in the case of quantum LZT. The essence of
the described effect lies in the irreversible energy transfer from
one subsystem to another, which is determined by the system
behaviorwithin a finite time interval. It turns out that this time
interval is relatively narrow in comparisonwith the character-
istic time of the transition of theLandau±Zener tunneling type
[6, 26, 27], but this time interval remains wide enough in
comparison with the period of classical vibrations. As we will
show, the deviation from a behavior similar to that in the case
of quantumLZT turns out to be inessential for the irreversible
energy transfer in mechanical systems far from the point of
internal resonance.

From the physical point of view, the irreversible energy
exchange in question can be considered as the targeted energy
transfer which is under active discussion in recent literature
(see Refs [19±21, 28±30]). However, the mechanisms of
irreversible targeted energy transfer considered in these
papers are based on nonlinear resonance at which the
nonlinearity in the system of interest is assumed to be rather
strong. In contrast to that, the mechanisms of irreversible
energy exchange considered in our paper are revealed in linear
systems, although, as we will show in Section 4, these
mechanisms also remain in nonlinear systems. The possibility
of irreversible energy exchange in a linear mechanical system
was recently predicted and verified experimentally [31].

2. Statement of the problem

We consider a system of two plane pendulums with lengths l1
and l2, and masses m1 and m2, weakly coupled by a spring
(with a length comparable to l1). The Lagrange function of
the system is written as follows:

L � 1

2

�
m1l

2
1

�
dj1

dt

�2

�m2l
2
2

�
dj2

dt

�2�
ÿ g
�
m1l1�1ÿ cosj1� �m2l2�1ÿ cosj2�

�
ÿ 1

2
k12�l1 sinj1 ÿ l2 sinj2�2 ; �1�

wherej1 andj2 are the deflection angles, and k12 is the spring
constant. Let l1 be a constant, and l2 be a specified function of
time. Then the corresponding equations of motion are written
out as

d2j1

dt 2
� g
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We assume further that

l2�t� � l1
ÿ
1� D2�t�

�
; �3�

where D2�t� describes a relatively small change of l2 with time.
In the following we consider three functions D2�t�Ðone
smooth and two piecewise smooth functions:

D2�t� � d2 ÿ f2T2 tanh
t

T2
; �4�

D2�t� � d2 ÿ f2t ; 0 < t4T2 ,
d2 ÿ f2T2 ; t > T2 ,

�
�5�

D2�t� � d2 ÿ g2t
2 ; 0 < t4T2 ;

d2 ÿ g2T
2
2 ; t > T2 ,

�
�6�

where d2, f2=o1, and g2=o 2
1 are independent small parameters

of the same sign, and o1 �
���������
g=l1

p
. Saturation time

T2 > d2=f2, T2 >
������������
d2=g2

p
, T2 4 1=o1 makes l2 positive at

any instant for positive d2, f2, and g2. As we will show in
Sections 3 and 4, all the functions (4), (5), and (6), which
describe both linear and quadratic in time changes in l2 for
t < T2, lead to the irreversible energy exchange between the
pendulums with qualitatively similar features. This confirms
that the effect revealed by us indeed has the generic origin.

3. Irreversible energy exchange in the linear
regime

Since the LZT is basically a linear phenomenon, we start the
analysis of irreversible energy exchange process with con-
sidering linearized equations (2) in the limit of j1 5 1 and
j2 5 1. There are several ways to proceed from two real
differential equations of the second order to four complex
equations of the first order. Following the approach used in
Ref. [32], we introduce two complex envelopes a1 and a2 of the
real deflection angles j1 and j2:

j1;2 �
1

2

�
a1;2 exp �ÿio1t� � a �1;2 exp �io1t�

�
; �7�

where it is assumed that da1;2=dt5o1a1;2.
As follows from equation (7), the real part of the variable

ai determines the envelope of ji, while its imaginary part
determines the envelope of the dimensionless time derivative
dji=dt=o1, i � 1, 2. These properties of complex envelopes
allow us to relate easily the envelope modulus jaij with the
vibrational energy of the linearized i-th pendulum:
Ei � 0:5gl1mijaij2.

Substituting equations (3) and (7) into linearized equa-
tions (2), we get the following two evolution equations for the
complex envelopes a1 and a2 in the main approximation with
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respect to small parameters d2, f2=o1, g2=o 2
1 , and k12=mo 2

1

[ m=1=�1=m1 � 1=m2� is a reduced mass of m1 and m2]:

i
da1
dt
� k12

2m1o1
�a1 ÿ a2� ;

i
da2
dt
� k12

2m2o1
�a2 ÿ a1� ÿ 1

2
o1D2�t� a2 : �8�

We also obtain two corresponding equations for the complex-
conjugate envelopes a �1 and a �2 . It follows from equations (8)
that the total vibrational energy of the coupled linearized
pendulums, 0:5gl1

ÿ
m1ja1j2 �m2ja2j2

�
, is the integral of

motion. For t < T2 and D2�t� given by equation (4) or
equation (5), equations (8) coincide with the modified
description of the quantum Landau±Zener transition [3].
The multiple scale expansion procedure presented, for
instance, in Ref. [33], leads to similar complex evolution
equations.

The same equations (8) describe the dynamics of the
complex envelopes of the real displacements u1 and u2 of
two oscillators with masses m1 and m2 and springs with
similar modulus of rigidity k1, or two oscillators with equal
masses m1 and springs with moduli of rigidity k1 and k2,
weakly coupled by a spring with the modulus of rigidity
k12 5 k1, when eitherm2 or 1=k2 changes in time according to
equation (3) (where l1;2 should be replaced by m1;2 or 1=k1;2,
respectively). Introducing two complex envelopes a1 and a2 of
the real displacements u1 and u2 according to representation
(7) in which j1;2 should be replaced by displacements u1;2,
under the same assumption da1;2=dt5o1a1;2 we arrive at
evolution equations (8) for the complex envelopes a1 and a2,
in which o1 �

�������������
k1=m1

p
now. In this case, one should put

m1 � m2 into the evolution equation for a2.
The tunneling dynamics of two weakly coupled ideal

Bose±Einstein condensates in a macroscopic double-well
potential are also described by equations similar to equations
(8) (see Refs [19±21, 34±37]). In this case, the beatings between
the coupled states of the condensates constitute quantum
Rabi oscillations, and the parameter D2�t� in equations (8)
describes the time dependence of the depth of the trapping
potential in one of the coupled quantumwells. But in contrast
to practically linearmechanical systems, ideal (noninteracting
and nonsuperfluid) Bose±Einstein condensates do not exist in
nature and this limit can be realized only at the magnetically
tunable Feshbach resonance (see, e.g., Ref. [38]). 1

For large positive t, the asymptotic analytical solution of
equations (8) with D2�t� given by equation (4) or equation (5)
and the initial conditions

��a1�ÿ1���2 � 1, a2�ÿ1� � 0 has the
following form��a1�1���2 � exp �ÿR�; R � pk 2

12

m1m2j f2jo 3
1

: �9�

This quantity describes the part of the initial vibrational
energy of pendulum 1 that is retained asymptotically in this
subsystem (at a large delay time).

Remarkably, the `tunneling' exponential function (9) for
the system of two classical particles corresponds to the
nonperturbative approximation, as in the case of a quantum
Landau±Zener transition, but it does not contain the Planck
constantÐ the cornerstone parameter in quantum mechan-
ics. Function (9) takes into account, inter alia, that only one of
the coupled pendulums is driven parametrically and that the
inequality of pendulum masses takes place in general. In the
case of positive d2 and f2, the applicability of equation (9) to
classical systems, which are described by equations (2)±(5), is
limited by the finite width of the `time window' of the
parametric drive: t 2 �0;T2�, and T2 4 �1� d2�=f2. Exponen-
tially small probability ja1�1�j2 of the `survival amplitude' of
the final state of subsystem 1 implies the existence of a wide
enough timewindow for the parametric drive (as in the case of
quantum LZT). Therefore, equation (9) cannot be applied to
classical oscillator systems with high values of the parameter
R andmass ratiom1=m2. Parameter d2 entering into Eqns (4)±
(6) effectively stretches out this time window.

To check the efficiency of the system of pendulums in the
capacity of an energy trap, we simulated the time evolution of
vibrational energies of the coupled pendulums from the
solution of linearized input equations (2) for real deflection
angles j1 and j2, and compared it with the numerical
solution of equations (8) for the complex envelopes a1 and
a2, which are similar to the equations describing quantum
transition like Landau±Zener tunneling. Since the damping of
low-frequency vibrations of pendulums is very small, we
neglected the damping effect on the energy exchange between
the pendulums.

Time-dependent vibrational energies E1 and E2 of
pendulums 1 and 2 with equal masses and their total energy
ET, obtained as solutions of linearized equations (2) (solid
lines 1 ± 3), together with the solution of equations (8)
describing the LZT type transition (dashed lines 4 and 5),
and with the energy given by Eqn (9) that is retained
asymptotically in pendulum 1 (solid line 6) are shown in
Figs 1a±c, respectively, for D2�t� given by equations (4), (5),
or (6). The initial conditions correspond to the impact
excitation of pendulum 1. The following realistic parameters
and initial conditions were taken in simulations: l1�0:305m,
m1�0:244 kg, k12 � 0:785 Nmÿ1, d2 � 0:22, f2 � 0:0625 sÿ1,
andT2 � 15:6 s in Figs 1a, b; g2 � 0:0177 sÿ2 andT2 � 8 s in
Fig. 1c, and

j1�0� � 0; j2�0� � 0; _j2�0� � 0; _j1�0� � 0:61 rad sÿ1;

ia1�0� � _j1�0�
o1

; a2�0� � 0 : �10�

As evident from Fig. 1, an irreversible and intensive
energy flow from pendulum 1 to pendulum 2 occurs. One
can also conclude from this figure that equations (8)
describing an LZT type transition correctly reflect the

1 Equations describing the dynamics of the macroscopic tunneling of two

weakly linked nonideal Bose±Einstein condensates in a double-well

potential [19±21, 34±37] in the mean-field approximation can be derived

with the use of the Gross±Pitaevskii equation [39±41]. It is worth

mentioning in this connection that an equation similar to the Gross±

Pitaevskii equationwas derived earlier byVLGinzburg and LP Pitaevskii

[42, 43] in the framework of the theory of superfluid helium near the

l-point (see also the review paper [44].) The dynamical (time-dependent)

Ginzburg±Pitaevskii equation for the macroscopic C function of super-

fluid helium near the l-point in the single-velocity regime, for vn � 0, and

neglecting specifically quantum effects and relaxation phenomena is

equivalent to the Gross±Pitaevskii equation for the classical macroscopic

C function of an inhomogeneous nonideal Bose±Einstein condensate,

although nonlinear terms in these two equations have different origins.

The single-velocity regime for the superfluid helium can be realized in

narrow capillaries in which the motion of the normal component is

blocked by wall friction and the wave of the fourth sound can propagate

in the superfluid component [45, 46]. The dispersion and absorption of the

fourth sound near the l-point are affected by the slow relaxation of the

small density of the superfluid component, which leads to the appearance

of the effective second viscosity in the system [45, 47, 48].

December 2010 Vibrational analogue of nonadiabatic Landau ëZener 1283



regularities of the process during its initial stage, when the
most intensive resonance energy exchange proceeds. The
prediction for the part of the initial vibrational energy that is
retained asymptotically in pendulum 1 is also impressively
confirmed in our simulations, although the factor R in
equation (9) is not small for the parameters utilized in Fig. 1:
R � 2:85. According to our simulations, this value of R gives
an approximate upper limit of the applicability of equation
(9) for the classical systems considered. A large enough
saturation time T2 only influences the transient dynamics of
energy exchange without affecting the asymptotic value (9) of

the energy of pendulum 1 (as in the case of LZT in the two-
level quantum system which is described by equations similar
to equations (4) and (8); see Refs [24, 25]).

The exact internal resonance is reached in the system
under consideration at the instant when l2 � l1 (or m2 � m1,
k2 � k1) and the eigenfrequencies of the coupled pendulums
(or oscillators) become equal. This occurs at t � d2=f2 or
t � ������������

d2=g2
p

. As the system moves out of the resonance (for
t > d2=f2 or t >

������������
d2=g2

p
), there is no considerable reverse

energy flow from pendulum 2 to pendulum 1. It is precisely
this phenomenon that allows considering pendulum 2 as an
energy trap. It is also worthmentioning that the irreversibility
of the energy transfer is achieved in the linear systems
considered only due to the parametric drive and the LZT-
like dynamic behavior, but not due to nonlinear resonance as,
for example, in the paper [29], where nonlinear resonance has
played, in contrast, an important role in the irreversible
energy transfer in the system of interest.

Importantly, for the times t > 2d2=f2 or t >
��������������
2d2=g2

p
we

are dealing with a phenomenon that is beyond the considered
analogy with the LZT. Nevertheless, the irreversible energy
transfer goes on even though the energy of the first pendulum
has already substantially decreased (see Fig. 1). The quantity
m1ja1j2 �m2ja2j2 is not conserved anymore, even approxi-
mately. Essentially, in all the cases presented in Fig. 1 those
characteristics of the process considered that are important
for possible applications, such as the time evolution and
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in the calculations are given by equations (3)±(6) and (10) in the case of

equal pendulum masses.
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averaged asymptotic value of the vibrational energy of
pendulum 1, are correctly described by equations (8) and
(9), which are related to conservative LZT type transitions
(dashed line 4 in all plots in Fig. 1). At the same time, the
classical systems under consideration are inherently noncon-
servative.

Our calculations also demonstrate that the employment of
a larger or smaller mass for pendulum 2 does not suppress the
irreversible energy transfer from pendulum 1 (see Fig. 2). By
the proper choice of the parameters d2 and k12 together with
themass ratiom1=m2, we can reach a good agreement with the
predictions given by equations (8) and (9) describing the LZT
type transition, both for m2 < m1 (see Fig. 2a at m2 � 0:5m1)
and for m2 > m1 (see Fig. 2b at m2 � 2m1). These calcula-
tions, together with the results shown in Fig. 1, confirm the
robustness of the revealed effect of irreversible energy
exchange in the linear regime.

4. Irreversible energy exchange in the nonlinear
regime

In this section we will describe the effect of the nonlinear
properties of the coupled pendulums or oscillators on the
irreversible energy exchange between them. This effect, being
described in the general case by equations (2), strengthenswith
an increase in the initial momentum imparted to pendulum 1,
which is proportional to _j1�0�. In general, the nonlinearity
enlarges that part of the initial vibrational energy that is
retained asymptotically in pendulum 1 (cf. Fig. 1b for
_j1�0� � 0:61 rad sÿ1 with Fig. 3a for _j1�0� � 7:42 rad sÿ1,
when the rest of the parameters in Fig. 3a are the same as in
Fig. 1b). But the parametric system under consideration
possesses the effective separatrix which detaches two modes
with the intensive andweakened energy exchanges.As one can
see in Fig. 3, the relatively small change in the initial
momentum imparted to pendulum 1 (from _j1�0� �
7:42 rad sÿ1 in Fig. 3a to _j1�0� � 8:19 rad sÿ1 in Fig. 3c)
results in an apparent change from an almost complete to a
relativelyweak exchange of vibrational energy. The separatrix
mode (shown in Fig. 3b for _j1�0� � 7:93 rad sÿ1) detaches the
two modes with different degrees of completeness of the
energy exchange. In the energy transfer mode shown in
Fig. 3c, pendulum 2 at t � 10 s finds itself in the whirling
mode. In this mode, the reverse energy flow to pendulum 1 is
suppressed and the irreversible character of energy transfer is
correspondingly enhanced. A similar transition between the
two modes of targeted energy transfer, determined by the
existence of the separatrix, is known in passive nonlinear
systems in which the nonlinearity substantially affects both
the rate and completeness of the energy transfer (see Refs [19±
21, 28±30]). Our results demonstrate that nonlinearities of the
coupled elements can substantially influence the targeted
energy transfer in active (parametric) systems as well.

5. Conclusion

Thus, we presented a novel principle of `trapping' of the
vibrational energy. This principle is based on the profound
analogy between the irreversible transfer of the vibrational
energy in a classical parametric system and nonadiabatic
quantum Landau±Zener tunneling. We demonstrated analy-
tically and numerically that in a system of twoweakly coupled
pendulums or oscillators an efficient irreversible transfer of
vibrational energy from one subsystem to another occurs

under the condition that the coupled subsystems pass
adiabatically slow through the internal resonance. Nonlinear
effects can enhance the irreversible character of vibrational
energy transfer between the subsystems. The revealed
phenomena open up the possibility of designing fundamen-
tally new types of energy traps for the dynamic protection of
various mechanical systems. Our simulations also show that
the complex evolution equations describing the Landau±
Zener quantum transition can give a quantitative prediction
for the part of the imparted initial vibrational energy that is
retained asymptotically in the `protected' mechanical sub-
system. This means that the regularities of quantum Landau±
Zener tunneling can also be experimentally studied with the
employment of classical systems.
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