
Abstract. This review introduces most of the concepts used in
the study of chaotic phenomena in nonlinear systems and has as
its objective to summarize the current understanding of results
from the theory of chaotic dynamical systems and to describe
the original ideas underlying the study of deterministic chaos.
The presentation relies on informal analysis, with abstract
mathematical ideas visualized geometrically or by examples
from physics. Hyperbolic dynamics, homoclinic trajectories
and tangencies, wild hyperbolic sets, and different types of
attractors which appear in dynamical systems are considered.
The key aspects of ergodic theory are discussed, and the basic
statistical properties of chaotic dynamical systems are de-
scribed. The fundamental difference between stochastic dy-
namics and deterministic chaos is explained. The review
concludes with an investigation of the possibility of studying

complex systems on the basis of the analysis of registered
signals, i.e., the generated time series.

Preface

The outstanding 20th-century physicist and Full Member of
the Russian Academy of Sciences Vitaly Lazarevich Ginz-
burg passed away on November 8, 2009. In his work
dedicated to the development perspectives of modern phy-
sics, the ideas of nonequilibrium processes, solitons, and
strange attractors were always given particular attention.
V L Ginzburg repeatedly stressed that these ideas are related
to both fundamental and practically important problems.
This is what he wrote back in 1982 [1]: ``This domain (it can be
referred to as nonlinear physics) occupies an increasingly more
prominent place, and such is, one can hardly doubt, the tendency
of the development of physics nowadays.'' Twenty years later,
in 2003, he also mentioned the importance of nonlinear
phenomena and chaos in his Nobel lecture. In particular,
Vitaly Lazarevich identified the question of entropy growth,
irreversibility, and the time arrow, which are also considered
in the theory of chaotic dynamical systems, as one of three
`outstanding' problems in physics.

This avenue of inquiry has come to the forefront over the
last decades. Many new scientific journals have appeared, a
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large number of conferences are held each year, and
laboratories or departments of nonlinear dynamics are now
created in almost all universities around the world. The
successful development of the physics of nonlinear phenom-
ena was also embodied in new approaches to a broad variety
of applied problemsÐ from information processing and
financial analysis to arrhythmology and neurodynamics.

This review is dedicated to the memory of Academician
V L Ginzburg.

1. Introduction

The dynamical approach to the description of systems of very
different origins has been known since the time of Newton.
This approach underlies the analysis of most classical
phenomena in physics and other natural sciences: one first
constructs an appropriate mathematical model expressed in
terms of dynamical equations and then, in one way or
another, studies their solutions which, in principle, can be
verified against experimental data. The development of these
ideas and the expectation that the state of the model at any
instant of time should be unambiguously defined by initial
conditions have led researchers to the concept of the
dynamical system.

Notwithstanding the fact that any dynamical system is a
certain mathematical abstraction, this paradigm proved to be
a rather productive tool for describing many real-world
phenomena. The greatest success in this area was achieved
over the first third of the 20th century when the theory of
oscillations of two-dimensional systems was developed.
Subsequent efforts of researchers were aimed at studying
how to generalize this theory to multidimensional systems.
However, despite numerous discoveries in this area, the real
degree of complexity in such systems was not appreciated
until the 1960s.

The situation changed radically after S Smale's work [2, 3]
on the foundations of hyperbolic theory. Research along this
line of inquiry uncovered the great diversity in nonlinear
system dynamics and led to one of the most significant
discoveries of the 20th centuryÐdynamical chaos. U-systems
[4±6] (called later the Anosov systems) were introduced,
separatrix loop bifurcations causing a complex behavior
[7, 8] were described, and billiard models representing
simplified models of statistical physics [9, 10] were studied.

At that time, however, these ideas did not enjoy wide
recognition because the examples which were built carried a
manifestly abstract character, and it was not obvious whether
these constructions have some relation to reality.Moreover, a
viewpoint was broadly disseminated that chaotic phenomena
inherent in physical systems have a transient character and
chaos should degenerate to regular motion on a long time
lapse.

This viewpoint persisted up to the middle of the 1970sÐ
when there was success in connecting the mathematical ideas
of the theory of dynamical systems with a physical model
related to fluid dynamicsÐ the celebrated Lorenz system (see
Ref. [11]). The systematic study of dynamical chaos has been
pursued since then. 1

A classical example of chaos is provided by gambling,
which is specifically studied by the probability theory.

Gambling, however, represents a nondeterministic process.
Here, an element of randomness is admitted. The theory of
chaotic systems utilizes methods of the probability theory, yet
it does not make up a part of it. Chaos should be defined as a
particular random process observed in dynamical systems
which are not affected by noise or any random forces. It is for
this reason that the theory of chaos is considered as a part of
the theory of dynamical systems.

For systems of statistical mechanics with a large number
N of degrees of freedom, which are in equilibrium, the
particle configuration does not obey any dynamical laws,
and particles have a limit distribution as N!1. Such
systems are in a state of spatial disorder. One of the basic
achievements of chaos theory is the establishment of the fact
that time in dynamics plays the same role as the number of
degrees of freedom in statistical mechanics. In other words,
the deterministic chaos is described as dynamical disorder.

In conservative systems, whose dynamical chaos nature
was covered in-depth in the recent review [13], the phase
volume is preserved. This implies that the Liouville theorem
holds true. This fundamental property predefines the
character of evolution and provides a key for explaining
chaos in conservative systems. In dissipative systems, the
phase volume contracts because of dissipation. The principal
distinction of dissipative systems from the conservative ones
is manifested through the occurrence of attracting sets in their
phase space, the attractors, which do not exist in conservative
systems.

The term `attractor' can easily be explained through the
example of a pendulum in a viscous medium. Assume the
pendulum is at the lower point of stable equilibrium (at a
stable stationary point). Being slightly perturbed, it will make
damped oscillations around its equilibrium state. In this
sense, the equilibrium state of the pendulum will be attract-
ing, i.e., serve as an attractor, which apparently has a zero
measure. Likewise, one can get an idea of attractors that
correspond to periodic (limit cycle) or quasiperiodic (invar-
iant tori) motion. Formalization of these ideas leads to the
modern concept of the attractor.

When system's parameters are varied, the attractors
change, too. However, they may undergo a qualitative
modification at certain values of parameters. For example, a
stable focus may turn into a limit cycle. Such parameter
values are called bifurcational, while the modification proper
is termed the bifurcation. The onset of chaotic behavior in a
dynamical system as a result of one sequence of bifurcations
or another is customarily referred to as a picture or scenario
of chaos development.

Where does the boundary lie between the regular, but
complex, dynamics and chaos? The system's stability against
small perturbations may provide a criterion. If such stability
is absent, the deterministic description loses its sense on large
time intervals and it becomes necessary to resort to statistical
methods. Such an approach led to diagnosing the chaotic
behavior of a system through its sensitive dependence on
initial conditions, and also to utilizing Lyapunov exponents
and entropy as criteria of dynamical chaos.

The dynamics of dissipative systems are in a certain sense
more diverse than those of conservative ones. Such invariant
sets as stable and unstable stationary points and limit cycles,
multidimensional attracting tori which correspond to a stable
quasiperiodic behavior with incommensurate frequencies, the
mathematical image of chaotic oscillationsÐ the strange
attractor, and some others pertain to dissipative systems.

1 The history of the origin of the dynamical chaos concept and the

development of theoretical views on this phenomenon are detailed in the

remarkable monograph [12].
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The strange attractor constitutes a certain set of the
`complex structure' in the phase space, such that almost all
trajectories from some neighborhood of this set are attracted
to it, while on the set itself the motion has an exponentially
unstable character. This combination of global contraction
with local instability requires that the attractor no longer be
smooth as, for instance, the torus; it is foliated in a particular
way and represents a Cantor set in some section.

The main idea of Ref. [14] (see also Refs [11, 15]), which
for the first time introduced the notion of the strange attractor
and proved its existence, was that such subsets of phase space
are indispensable in paving the way to the solution of the
turbulence problem. Although this approach did not succeed
to the full extent (see Refs [16, 17]), paper [14] served as a
stimulus to the development of the theory of chaotic
dynamical systems and its applications.

This review is devoted to the description of chaotic
phenomena occurring primarily in dissipative systems. Its
outline is as follows. Section 2 introduces the main concepts
from the basic theory, gives a definition of chaos, and presents
attractors of different types. Sections 3 and 4 deal with
hyperbolic sets, Smale's horseshoe, homoclinic tangencies,
and related exotic phenomenaÐO-explosions and wild
hyperbolic sets. The statistical properties of dynamical
systems, explored in the framework of ergodic theory, are
considered in Sections 5±7.

In order to explore the properties of complex systems,
including for this experimental methods, an approach based
on the analysis of signals produced by the system is widely
used. It becomes especially relevant when a mathematical
description of the process at hand is practically impossible,
but its certain representative quantity is still available for
observations. The analysis of such an approach makes up the
content of Section 8. Section 9 explains the principal
distinction between stochastic dynamics and deterministic
chaos.

The concept of deterministic chaos is based on ideas
elaborated in such fields of modern mathematics as differ-
ential dynamics, measure theory, functional analysis, the
theory of singularities, topology, and others. Unfortunately,
most concepts from these domains are now excessively
formalized and occasionally their physical sense is lost under
the veil of abstract reasoning, terminology, and theorems.
Recognizing such a state of affairs, this review proposes a
basically qualitative presentation of the theory of chaotic
dynamical systems, in which the dominant part of formal
ideas is accompanied by illustrative examples.

2. Dynamical systems and chaos

Generally speaking, the notion of what is currently called
chaos has been known in mathematics from the beginning of
the 20th century. Since the time of Henri PoincareÂ it has
become apparent that when the complex behavior of
dynamical systems is studied, the common approach consist-
ing in the analytical computation of individual trajectories of
differential equations fails to work. For this reason, the main
task of the theory lies in exploring stability, studying the role
of invariant manifolds, analyzing the geometrical structure of
trajectories, searching for invariant measures, computing
invariant characteristics, and so on. Although this approach
does not allow explicit representation of solutions, it permits
one to qualitatively describe many important peculiarities of
dynamical systems, including their chaotic behavior. The

term qualitative theory is therefore frequently used in the
literature.

2.1 General concepts
The subject of the study of the qualitative theory is primarily
the localized systems described by a set of ordinary differ-
ential equations

_x � v�x; a� ; �1�

where x�t� � fx1; x2; . . . ; xng is a set of dynamical variables,
t is the time, v � fv1; v2; . . . ; vng is the vector function of a
given smoothness r (i.e., of class Cr), defined in some domain
M �Rn, v : M!Rn, and a is a parameter (or a set of
parameters). M is commonly referred to as the phase space
of system (1).

The function v gives birth to the flow F t : M!Rn, where
F t�x� is a differentiable function defined for values of t from
the interval T �R, such that for all x 2M and t 2 T the
following relationship holds true:

d

dt
F t

����
t�t
� vÿF t�x�� :

Notice that F t possesses group properties: F 0 is the identity
operator, and F t1�t2 � F t1�F t2� � F t1 � F t2 . Consequently,
the flow F t defines the function v uniquely.

The flow F t is sometimes referred to as a shift transforma-
tion because it transfers the system from the state it occupied
at the initial instant to the state at any other instant of time.
One can readily understand that F s at s � ÿt has a mutually
inverse function of the same smoothness class Cr, i.e., the
system is reversible in time.

The system of equations (1) can geometrically be inter-
preted as a vector field in which the vector v is assigned to each
point x 2M. The solution x�t� � F t�x�0�� then represents a
curve tangent to this vector field at each point. Accordingly,
the word combinations `system of ordinary differential
equations' and `vector field' are frequently used as syno-
nyms. System of equations (1) is called autonomous if the
vector field v does not contain explicit dependence on time.

Differential equations satisfy the fundamental theorem of
local existence and uniqueness of solutions (see, for example,
book [18] for details). Provided the initial state x�0� � x0 2 D
of system (1) is specified, F t�x0� : T!Rn defines the phase
trajectory, or phase curve, of the differential equation (1).
Because of solution uniqueness, there exists a unique phase
curve for each initial condition x0 and any smooth vector field
v. This specifically implies that trajectories defined by system
(1) cannot intersect.

If time t takes a discrete set of values, the respective
dynamical system is referred to as a cascade. For such a
system, the following notation is more conventional:
f : M!M,

xn�1 � f �xn� ; �2�

which defines a map. In this case, the sequence x1 � f �x0�,
x2 � f � f �x0�� � f 2�x0� � f � f; . . . , i.e., xkf g1k�0 will be its
trajectory. The cascade f n which is Cr-smooth together with
its inverse is called the diffeomorphism.

In some cases, the flow F t admits the existence of global
section P, i.e., a hypersurface of dimension nÿ 1, which is
intersected by phase trajectories transversely (without tan-
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gency). In this case, the study of the behavior of an original
system can be reduced to the analysis of the map F : P! P,
which is called the PoincareÂ map. The inverse operation, from
the PoincareÂ map to the flow, is called suspension.

One of the key notions pertaining to the dynamical system
analysis is that of roughness or structural stability, introduced
by A A Andronov and L S Pontryagin [19]. The vector field v
of a dynamical system is said to be rough (or structurally
stable) if some neighborhood U of field v exists, such that for
any vector field v 0 from this neighborhood the phase portrait
does not differ qualitatively from that defined by the field v.
Correspondingly, a property of a dynamical system is rough if
it is preserved under small perturbations of the system.

A crucial role in the origin of chaos in dissipative
dynamical systems belongs to limit cyclesÐ the closed phase
trajectories that correspond to a periodic behavior.

Let g � x�t� be a limit cycle, and S be the section surface
which is intersected by the cycle at point p. Select some
neighborhood U � S of this point (Fig. 1) and consider the
first return of trajectory that issued out of the point q 2 U
located close to p. In that case, one may determine the
PoincareÂ map F : U! S which maps the point q into
q 0 � j�q� on the surface S.

Obviously, this map can be written in the coordinate
representation as y 0 � L̂y� g�y� in some vicinity of point p,
where L̂ is the matrix with elements qji=qykj y�p. The
linearized map then takes the form y 0 � L̂y. The matrix L̂ is
called the monodromy matrix 2; its eigenvalues are said to be
multipliers. The multipliers can be both real and complex
quantities.

The eigenvector defining an invariant direction corre-
sponds to each eigenvalue of L̂. One such eigenvector is
always aligned with the trajectory. The respective multiplier
is therefore equal to one.

When a phase trajectory in the vicinity of the limit cycle
makes a single turn (see Fig. 1), the perturbation related to
each eigenvector is multiplied by the respective multiplier.
Thus, the limit cycle will be stable if all the multipliers save
one (bearing the responsibility for the displacement along the
trajectory) lie on the complex plane inside the unit circle, i.e.,
for jajj < 1. If, however, the multipliers satisfy the condition
jajj > 1, the cycle will be absolutely unstable.

Generally, a part of the multipliers lies inside the circle,
while the other part stays outside it. Such limit cycles are
called saddle. An inherent feature of a saddle limit cycle is the
presence of stable �W s� and unstable �W u�manifolds, whose
characteristic property is that, if the initial point of trajectory

x0 2W s �x0 2W u�, then for t!1 (respectively, for
t! ÿ1) the phase trajectories will tend to g (Fig. 2). The
presence of saddle type cycles is a key ingredient of chaotic
dynamical systems.

2.2 Attractors
The basic feature of dissipative systems is the contraction of
their phase volume: according to dynamical equations, the
volume initially occupied by a cloud of phase points decreases
with time. Formally, such property is expressed through the
inequality div v < 0. In this case, as t!1 all the phase
trajectories will converge to some subset A �M of zero (in
phase space) volume, which is referred to as the attractor of
the dynamical system.

Currently, there are several definitions of the attractor,
which seemingly cannot be reduced to each other (see reviews
[20±23]). The geometrical definition of attractor is as follows.
A compact subset A of the phase space M is said to be an
attractor if it satisfies the following conditions [23]:

(1)A is invariant with respect to the flow of the dynamical
system;

(2) there exists a neighborhood U that contracts to A
under the flow action;

(3) A cannot be decomposed into two or more noninter-
secting invariant subsets.

The invariance of attractor A with respect to the flow
implies that F tA � A, i.e., once on the attractor we stay there
as t!1. From the second condition it follows thatA is such
a subset of the set U, A � U �M, for which, as t!1,
F tU! A holds. In fact, one is dealing here with the
attraction basin of attractor A, i.e., with the set of initial
points x0 2 U, such that the phase trajectories issuing out of
these points converge as t!1 to the attractor A. The third
condition serves to exclude the attractors composed of several
separate components.

According to this definition, stable equilibrium positions,
limit cycles, and tori are attractors; they are called regular, or
simple.

2.3 Chaos
There are several ways of introducing the notion of chaos.
The most widespread and frequently used definition, pro-
posed in Ref. [25], exploits the property of extreme
(exponentially strong) sensitivity of the system to initial
conditions or external actions. This seems quite natural
because the main manifestation of dynamical chaos is
expressed in terms of the exponential divergence of close
trajectories.

S

U

q

p

g

j�q�

Figure 1. The PoincareÂ map in the vicinity of the limit cycle.

Wu

W s

Figure 2. StableW s and unstableW u manifolds of the saddle limit cycle.

2 The term monodromy originates frommono (one) and drom (circle), i.e.,

the monodromy matrix is that obtained through a single cycle run.
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And yet, exponential instability alone is insufficient to
define the notion of chaos. It is necessary that the condition of
transitivity be obeyed and that there exist some regularity
called the density of periodic orbits (i.e., cycles). The
condition of transitivity is often replaced by a stronger
condition of topological mixing.

Let M be a metric space. The map f : M!M is called
chaotic [25] if (a) f is unstable with respect to initial
conditions, (b) f is topologically transitive, and (c) the cycles
of map f are dense in the spaceM.

The map f is said to be unstable with respect to initial
conditions if a quantity d (constant of instability) exists, such
that for some point x 2M and e > 0 there exists a point
y 2M satisfying the conditions dist �x; y� < e and
dist � f n�x�; f n�y��5d at n 2N, where dist � ; � denotes the
distance. The geometrical interpretation of these relation-
ships is shown in Fig. 3. It is noteworthy that the constant d is
independent of x or eÐit is defined only by the properties of
the system under consideration.

Further, map f is called transitive if, for any two open sets
U andV, an integer number n exists, such that f n�U� \ V 6�1.
The informal sense of the transitivity property is demon-
strated in Fig. 4. Notice that, as known from the theory of
metric spaces, the transitivity is equivalent to the existence of
a dense trajectory.

Finally, the property of density of periodic trajectories
implies that, in any vicinity of any point in the spaceM, there
exist at least one and hence infinitely many periodic
trajectories.

Thus, a chaotic system must possess three important
properties: (1) unpredictability (exponential instability);
(2) indecomposability (transitivity), and (3) some regularity
(the density of cycles). However, not long ago it was found
[26] that the condition of sensitive dependence on initial
conditions is redundant in the definition given above.
Consequently, if a map is continuous and possesses the
transitivity property, while the cycles are dense, it exhibits
sensitive dependence on the initial conditions. Somewhat
later it was revealed [27] that in the definition of chaoticity

neither the transitivity nor the density of cycles follows from
the other two conditions. Arguably, a transformation defined
on a compact set can be referred to as chaotic if it exhibits a
sensitive dependence on initial conditions and has dense
cycles.

Very recently the authors of paper [28] proposed a
definition of the dynamical system chaoticity, which involves
the requirement of trajectory complexity in addition to the
sensitive dependence on initial conditions. Here, the complex-
ity means the absence of recurrence in a certain sense. It was
then shown that, from the definition of system's chaoticity
based on the instability with respect to the initial conditions,
transitivity and the density of cycles [25], follow the definition
proposed by the authors of Ref. [28].

We remark that one can also approach the definition of
chaos from a physical viewpoint by resorting to the notions of
entropy and dimension (see Section 9).

3. Hyperbolic dynamics

Hyperbolic sets furnish a good example for gaining insight
into the `internal structure' of dynamical systems exhibiting a
chaotic behavior. The attractive feature of hyperbolic sets lies
also in the fact that studying them allows one to understand
the global behavior of trajectories through the analysis of
their local properties.

3.1 Hyperbolic sets
The construction of hyperbolic sets is based on a very simple
idea: the tangent space S of a dynamical system is structured
so that it is composed of three subspaces: the stable E s,
unstable E u, and neutral E 0. In other words, here one is
dealing with such a linear vector space S of vectors of
infinitesimal perturbations, where arbitrary perturbation
vector can be expanded into a linear combination of vectors
belonging to the subspaces E s, Eu, and E 0. The subspaces E s

and E u are defined by the fact that close trajectories
exponentially converge: those corresponding to E s as
t!1, and those corresponding to E u as t! ÿ1. In the
subspace E 0, vectors are contracted or stretched more slowly
than exponentially. Similar dynamics of trajectories of
dynamical systems follows from this behavior of equations
in variations.

Consider a system with discrete time which is defined
through the map (diffeomorphism) (2), and a compact
invariant set L �M, i.e., f �L� � L. For such transforma-
tions, the hyperbolicity is introduced as follows [29, 30] (see
also Refs [22, 31, 32] and the literature cited therein). Let each
iteration f n be a smooth one in the neighborhood of x 2M.
Then there exists the differential qfxn of the diffeomorphism f
of the maps of tangent space Sxn into the tangent space Sf �xn�.
The trajectory xn is called hyperbolic if there exist subspaces
E s
f k�x� and E u

f k�x� of the tangent space Sf k�x�, 04 k <1 such
that Sf k�x� � E s

f k�x� � E u
f k�x� and the following conditions are

satisfied:

(a) qff k�x��E s
f k�x�� � E s

f k�1�x�, qff k�x��Eu
f k�x�� � E u

f k�1�x�;
(b) jjqff k�x�ejj4 cjjejj, e 2 E s

f k�x�, jjqff k�x�ejj5 cÿ1jjejj,
e 2 Eu

f k�x�, where 0 < c < 1 is a constant;

(c) dist �E s
f k�x�;E

u
f k�x��5 const, 0 < k <1.

The decomposability of the tangent space S implies that
any vector v can uniquely be represented as v � v s � vu,
where v s 2 E s and vu 2 E u. From relations (a) it follows that
the subspaces Eu and E s are invariant, and condition (b)

y

e x

d

f n�x�

f n�y�

Figure 3. Geometrical interpretation of instability with respect to initial

conditions.

U

V

f n�U�

Figure 4. Elucidation of a transitivity property.
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implies hyperbolicity. Finally, inequality (c) points to the
properties of Eu and E s.

The concept of hyperbolicity is naturally introduced for
flows, too.

A set L is called hyperbolic if it is closed and is composed
of trajectories that satisfy the hyperbolicity conditions. If
estimates (b) worsen along the trajectory (with an increase in
the number of iterations), i.e., the degree of contraction and
extension in subspaces Eu and E s varies from point to point,
then such sets are referred to as nonuniformly hyperbolic.
Dynamical systems with uniform hyperbolicity of all trajec-
tories are said to be the Anosov systems [32].

One of key results in this area, which is also important for
applications, is the Hadamard±Perron theorem, or the
theorem about local manifolds. According to it, a hyperbolic
trajectory g possesses local stable W s and unstable W u

manifolds (Fig. 5a). The phase curves of a dynamical system
exponentially diverge on the manifoldWu, and exponentially
converge on the manifoldW s. In a section, such a hyperbolic
trajectory corresponds to a hyperbolic (saddle) point H
(Fig. 5b).

Establishing the hyperbolicity of a set under study is, as a
rule, very difficult. In applications, the so-called cone
condition (see Ref. [31] and references cited therein) turns
out to be very convenient to test the hyperbolicity property. In
particular, the hyperbolic nature of Smale±Williams and
Plykin attractors in physically realizable systems [33±35] (see
Section 5.2) was substantiated with its assistance, and the
proof of existence of the well-known Lorenz attractor was
also found [36, 37] (see Section 5.3).

3.2 The Smale horseshoe
One of the remarkable examples of hyperbolic sets is Smale's
horseshoe. The modern theory of a chaotic dynamical system
began by exploring this sample (see Refs [38, 39] about it). At
the present time, the horseshoe is well studied; we shall
therefore describe only basic elements of its construction
using the example of the reversible map of a plane, which
can be considered as a PoincareÂ map for a certain three-
dimensional flow.

Consider a unit square on the plane S � �0; 1� � �0; 1�. Let
us introduce a map f : S!R2 which acts so that
f �S� \ S � O 1

d forms two rectangular strips, Q1 and Q2, and
that the horizontal boundaries AB and DC also transform
into horizontal ones (Fig. 6). Two horizontal strips
Bi � f ÿ1�Qi�, i � 1; 2, are the pre-images of stripsQ1 andQ2.

This construction corresponds to a stretching of the
original square with a certain coefficient a along the vertical

direction, contraction in the horizontal direction with
coefficient b, and folding the resulting rectangle into a
horseshoe so that the bent part stays outside of S. The next
iteration of the map f �Qi� leads to the appearance of the set
O 2

d � S \ f �S� \ f 2�S� composed of four narrower vertical
strips (see Fig. 6). The inverse iterations give four horizontal
stripsO 2

r � S \ f ÿ1�S� \ f ÿ2�S�. On completingm iterations,
one gets the sets

Om
d �

\m
k�0

f k�S� ; Om
r �

\m
k�0

f ÿk�S�

composed of 2m vertical and horizontal strips, respectively.
Therefore, the limit sets O1d and O1r will include an
uncountable set of lines that represent a product of a Cantor
set by an interval. The construction described here can
obviously be varied in different ways.

It can readily be seen from the construction of the
horseshoe that most points leave the square S in the course
of iterations.Moreover, almost all points are not contained in
the image f k�S�. Those points p that always stay in S form a
nontrivial invariant subset

O � � p j f k� p� 2 S;ÿ1 < k <1g

� O1d
\

O1r �
\�1

k�ÿ1
f k�S� ;

which has a zero measure and complex topological structure.
This set is called the Smale horseshoe; however, as remarked
by D V Anosov [32], it is not this set that looks like a
horseshoe, but rather the set f �S � used in the construction
procedure.

As is known, the set O contains infinite families of saddle
cycles with various periods, some dense trajectory, and an
uncountable set of nonperiodic motions. Therefore, the
presence of the horseshoe is usually treated as a manifesta-
tion of certain chaotic properties by the system.

The Smale horseshoe can coexist with attractors. How-
ever, the set itself is not attracting. As an outcome, dynamical
systems containing a horseshoe in their phase space may
demonstrate a transient (sometimes very long) chaotic
behavior which ends with the convergence of trajectory to a
certain stable cycle or stationary point. A characteristic
example is given by the well-known Duffing equation for a

H
w s

wu

b

g

a

W s

Wu

Figure 5.Hyperbolic trajectory g and hyperbolic fixed pointH.
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Figure 6. Smale's horseshoe.
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certain set of parameters [40] (for more details about this
system, see Ref. [41]).

From the existence of the horseshoe one can draw an
unexpected conclusion which is of utmost importance for
physical applications: the presence of horseshoe type complex
sets of zero measure in the phase space, which are commonly
neglected in the analysis, might have a dramatic effect on the
dynamical system behavior (see Section 6). The discussion of
these questions by the example of a wide spectrum of
phenomena can be found in a recent monograph by
GM Zaslavskii [42].

The Smale horseshoe occurs rather often in physical
systems, for instance, in the celestial mechanics [43] (see
also Ref. [44]), as a result of transversal intersection of
manifolds in the Van der Pol [45] and Duffing [40]
equations, in a model of a bouncing ball [46], and some
others (see Refs [30, 47]). These results revealed all the
complexity of the dynamics inherent in the systems which
seem very simple at first glance.

4. Homoclinic structures

Invariant sets in the vicinity of homoclinic and heteroclinic
trajectories also belong to hyperbolic sets. Such trajectories,
discovered by PoincareÂ when studying the N-body problem
(see Ref. [48]), occur in both conservative and dissipative
systems. At present, their analysis is an independent field of
nonlinear dynamics [49].

4.1 Homoclinic trajectories
In order to get a general idea about the behavior of systems
featuring homoclinic and heteroclinic structures, let us
consider, for simplicity, a three-dimensional �n � 3� dynami-
cal system (1). Assume that this system possesses a saddle
limit cycle g with stable W s and unstable Wu manifolds.
Suppose that g has a doubly asymptotic trajectory
G �W s \W u, i.e., G! g as t! �1. A part of such a
structure is displayed in Fig. 7. If the manifolds W s and W u

intersect along G transversely (Fig. 7a), it is said that a rough
homoclinic trajectory G emerges. When there is tangency of
the manifolds along the curve G [i.e., the homoclinic tangency
(Fig. 7b)], the homoclinic trajectory G0 is called nonrough
(structurally unstable).

It is well known that from the existence of a single
homoclinic trajectory follows the existence of an infinite
number of them (see Ref. [12] for a visual explanation of this
phenomenon). A part of a similar structure in the case of
transversal intersection is shown in Fig. 8a. In the PoincareÂ
map, the closed hyperbolic trajectory (a saddle cycle) g
corresponds to the hyperbolic point H. The manifolds of
this point are one-dimensional and correspond to the stable

w s�H� and unstablew u�H� branches of separatrices (Fig. 8b).
The intersection of w s and wu implies the presence of a
transversal homoclinic point q0. Its trajectory is defined as
the infinite set of intersections: Q � fqig1i�ÿ1, qi�1 � f �qi�.

The homoclinic points are connected by loops which are
mapped into each other through f. Since the loops embrace
equal areas, and stable and unstable manifolds have no self-
intersections, these loops expand more and more with
iterations of the map. As a consequence, one obtains a lattice
formed by branches of a separatrix in the phase space
(Fig. 8b). In the physical literature such regions are called
stochastic layers or homoclinic tangles.

Consider a set U consisting of such intersections and the
pointH, and also of neighborhoodsU0;U1; . . . ;Uk which are
selected in the following way. Let U0 be the neighborhood of
homoclinic point q, which also includes points f k�q� except
for some finite number of them. The remaining points of the
homoclinic lattice are covered by the mutually disjoint
neighborhoods U1; . . . ;Uk. It can then be shown [44] (see
also Ref. [50]) that for any neighborhood V of the set U there
exists a system of neighborhoods Ui � V, i � 0; 1; 2; . . . ; for
which

L �
\1

i�ÿ1
f i

 [k
j�1

Uj

!

is a hyperbolic invariant set. This means that the set L is
composed of such hyperbolic points y which stay in the
neighborhood V subject to iterations of map f k�y�,
ÿ1 < k <1. With decreasing V, the set L tends to U.

Homoclinic points (trajectories) can be considered as a
particular case of heteroclinic points (trajectories) which
occur at the intersection of stable and unstable branches of
separatrices (manifolds) of different hyperbolic points. The
results analogous to those obtained for homoclinic points
(trajectories) [31, 49] are valid for them, too.

4.2 Horseshoes in homoclinic structures
The Smale horseshoe is closely related to homoclinic and
heteroclinic tangles. This relationship is vividly demonstrated
by the following construction. Consider a small neighbor-
hood U of hyperbolic point H. The iterations of map f will
ensure that there exist m, n such that q 2 f k�U � for k5m,
and q 2 f ÿl�U � for l5 n. This implies that the domain U is
stretched along the unstable direction wu forming a strip
S � f m�U � which includes the homoclinic point q. On the
other hand, a certain neighborhood B around the stable
direction w s and point q is mapped into the domain U,
B � f ÿn�U � (Fig. 9), by inverse iterations. Consequently,
the bent horseshoe-like strip S � f m�n�B� intersecting B will
be the image of strip B after n�m iterations.

W u

W sg

G

a

W u

W s

g

G0

b

Figure 7. (a) Rough G, and (b) nonrough G0 homoclinic trajectories of the

saddle cycle g.
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Figure 8. (a) Invariant manifolds in the vicinity of hyperbolic cycle, and

(b) a respective PoincareÂ map (b).
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Subsequent iterations lead to even stronger stretching and
new intersections B \ f l�B�. This structure is analogous to
construction of the Smale horseshoe (see Fig. 6), but this time,
instead of starting from the square S, one is dealing with the
curvilinear rectangle B. We thus arrive at a very important
result first obtained by Birkhoff [51, 52] and later rigorously
justified by Smale [2]: if a diffeomorphism f :Rn!Rn

possesses a fixed hyperbolic point H and transversal homo-
clinic point q, then a horseshoe exists in any small neighbor-
hood ofH for a certain iteration of map f. The inverse is also
true: if horseshoes are present in dynamical systems, there is
also a homoclinic structure.

An important corollary follows from the Smale±
Birkhoff result: the presence of a transversal homoclinic
point entails positive entropy of the dynamical system
(see Section 7.2). The inverse statement for maps of the plane
[53] and flows [32] is valid, too. This, among other things,
implies that, for the system to behave chaotically, it is
sufficient that horseshoes be born (see Section 9). It should,
however, be borne in mind that a chaotic set may turn out to
be nonattracting.

Among dynamical systems possessing homoclinic struc-
tures an important place belongs to those containing a loop of
the equilibrium state of the `saddle±focus' type in their phase
space (Fig. 10a). The systems with homoclinic loops are
nonrough. Having been perturbed, the loops split, which
may bring about very complex dynamics.

An analysis of systems with double-asymptotic trajec-
tories of the `saddle±focus' type was first conducted by
L P Shil'nikov [7, 49, 54]. Shil'nikov revealed that there are
Smale horseshoes in the whole neighborhood of the values of
the parameter for which the saddle±focus loop is observed.
Moreover, there exist here systems with homoclinic tangen-
cies (see Section 4.3) and systems which have a countable set
of stable cycles. 3

Consider next a three-dimensional vector field that has a
stationary point O at the coordinate origin with a single
positive eigenvalue r > 0 and two complex-conjugate ones,
l1;2 � Z� iz. This means that the stationary point has the
structure of a saddle-focus with a two-dimensional locally
stable manifoldW s and a one-dimensional unstable manifold
W u. Assume that the separatrices of the saddle form a
homoclinic loop G (Fig. 10a). The Shil'nikov theorem asserts
that if r > jZj, then the perturbed vector field has invariant

hyperbolic sets, and the PoincareÂ map has a countable set of
horseshoes. In this case, an infinite set of saddle limit cycles
exists in any neighborhood of loop G.

The emergence of a horseshoe from a saddle±focus loop
can easily be understood from the following geometrical
construction. Consider the neighborhood U of point O in
the form of a cylinder which is defined as the intersection of
two surfaces S0 and S1 (Fig. 10b). The stable manifold W s

divides this neighborhood into two parts, U� and U nU�.
We will denote the intersection point of the unstable manifold
W u with the surface S0 as p, and the intersection point with
the surface S1 as q. If the neighborhood U� is sufficiently
small, then a map c : S0 ! S1 exists which establishes
correspondence for any point on S0 with a certain point on
S1 (Fig. 10b). Specifically, this map transforms the domain
D � S0 into a `thick' logarithmic spiral D1 � S1 with its
center at the point q, i.e., c�D� � D1. Put differently, the
horizontal strips onD are mapped onto the strips lying inside
the two spirals belonging to S1, which twist around the point
q, while the point q itself is the image of the intersection line of
D andW s.

Since the flow from q to p is not degenerate, there exists a
diffeomorphism j of the neighborhood Q of point q into the
neighborhood P of point p, j : Q! P. In this case, the
domain D1 is mapped into some domain D2 on the surface
S0 and j�q� � p. Thus, the map of the first return can be
expressed as j�c�. The action of this map consists in
transforming the original domain D into a spiraling strip D1

which is thenmapped intoD2 and superimposed onD in some
way (Fig. 10b). As an outcome, j�c�D�� \D represents a set
which is analogous to the Smale horseshoe by construction.

B

S

q

w s

wu

H

U

Figure 9. The emergence of a horseshoe from the homoclinic structure.
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Figure 10. (a) Saddle±focus, and (b) the birth of a horseshoe.

3 As remarked by I M Ovsyannikov, one of L P Shil'nikov disciples, the

saddle±focus is inexhaustible, in the same way as an electron.

1264 A Loskutov Physics ±Uspekhi 53 (12)



A more complete consideration and rigorous analysis of
the construction described here is offered in the monograph
[49] (see also the literature cited therein). Other research work
[55, 56] provides examples of the systems of differential
equations which allow physical interpretation, for which
Shil'nikov's results permit direct verification.

4.3 Homoclinic tangencies and wild hyperbolic sets
Dynamical systems with homoclinic tangencies of stable and
unstable manifolds of saddle cycles, mentioned in Section 4.1,
can manifest a number of new unexpected features and, as a
consequence, be characterized by an additional complexity of
their trajectories. This hinges on the so-called nonisolated
character of tangencies, which is rooted in the fact that
systems with homoclinic tangencies are dense in the space of
dynamical systems and form whole regions, called the New-
house domains.

The homoclinic tangencies were first described inRefs [56,
57] (see also Refs [22, 58]), which studied basic bifurcations
pertaining to the existence of a nonrough homoclinic curve
and leading to a complex behavior.

Let the saddle cycle g be such that its stable W s and
unstableW u manifolds have tangency along some homoclinic
curve G0 (Fig. 7b). Depending on the geometry and the signs
of the cycle multipliers, such a system may allow several
different types of homoclinic tangencies. A part of them can
be reduced to each other, but irreducible combinations can
only be of three distinct classes [58]. For each of them, the
structure of the set D of trajectories in a small neighborhood
of nonrough curve G0 can be qualitatively different.

Consider a PoincareÂ map in the neighborhood of cycle g.
Assume that f �x; a� is a volume-contracting one-parametric
family of smooth diffeomorphisms of plane R2, which has a
hyperbolic fixed point H with eigenvalues r and s,
0 < jrj < 1 < jsj, jrsj 6� 1. Suppose next that at a � 0 the
family f �x; a� has a nonrough homoclinic trajectory Q 0 at
points of which the stable w s�H� and unstable wu�H�
manifolds have a quadratic tangency, i.e., w s � x in local
coordinates, while w u is expressed as aÿ x 2 (or a� x 2).

If the unstable branch wu�H� approaches the stable one
w s�H� so that the tangency occurs from `below' (Fig. 11a, b),
then such a structure is referred to as a tangency of the first
class. In this case, the set D includes the homoclinic trajectory
Q 0 and the pointH. Diffeomorphismswith this tangency type
are of interest thanks to the fact that in the parameter space
they correspond to the boundaries that separate the regions
containing systems with a simple behavior of trajectories
from those with systems exhibiting chaotic behavior. When
passing through such a boundary, complex dynamics emerges
immediately, i.e., in an explosive way, which gave the
phenomenon its nameÐO-explosion. This dynamics was
discovered in Refs [60, 61] (see also Ref. [62]) and were
thoroughly explored in Refs [63±66].

If the separatrix branch approaches from `above', as
shown in Fig. 11c, the tangency of the second class takes
place. The set D in such systems has a nonuniform hyperbolic
structure, i.e., all trajectories except forQ 0 are hyperbolic.

When the diffeomorphism f �x; a� is such that segments of
the curvesw u�H� andw s�H� are tangent, as shown inFig. 12a,
then such tangencies belong to the third class. In this case, the
set D contains nontrivial hyperbolic subsets and, conse-
quently, systems of that type exhibit chaotic dynamics. It
turns out that the tangencies of the third class exist in the
neighborhood of any system with a homoclinic tangency.

The onset of complex dynamics in such systems follows
from the following qualitative analysis [21]. Suppose the
homoclinic tangency occur at a � 0 (Fig. 12a). Consider a
rectangular domainU that contains a point of tangency q0 of
stable w s�H� and unstable wu�H� manifolds on its boundary
(Fig. 13a). Iterations of map f lead to the result that the point
f k�q0� belongs to w s�H� for some k. It is then easy to see that
subsequent iterations f i�k�U� for sufficiently large i will lead
to an intersection with U and the birth of a horseshoe
(Fig. 13b).

As shown in Refs [57, 58], a horseshoe does not occur for
some other tangencies prior to the appearance of transversal
homoclinic points under the action of perturbations. This
finding is clarified in Fig. 11 which shows the evolution of a
semineighborhood of homoclinic tangency under the action
of map f.

When the family f �x; a� is perturbed, the tangencies
may disappear, while intersections of manifolds may
appear, causing a qualitative transformation of the diffeo-
morphism behavior. Namely, if a > 0, the tangencies are
absent (Fig. 12b), and horseshoes disappear for subsequent
map iterations. However, one can readily envisage that for a
that is sufficiently small and positive, i.e., just before the
instant of tangency, a very complex structure will be present
in the system. For a < 0, the map has a transversal
homoclinic point close to f k�q0� and, as a consequence, a
horseshoe.

a b c

Figure 11. (a, b) Homoclinic tangencies of the first, and (c) second classes.
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Figure 12. Transformation of manifolds of diffeomorphism f �x; a� in R2.
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Figure 13. Birth of a horseshoe from a homoclinic tangency.
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Although the systems considered here exhibit a high
degree of complexity, effects of an even more delicate nature
may show their worth in the situation above. They are related
to the birth of so-called wild hyperbolic sets first described by
Newhouse [67±69]. The name is carried by uniformly
hyperbolic sets whose stable and unstable manifolds have a
quadratic tangency which cannot be removed by small
smooth perturbations. More precisely, individual homocli-
nic tangencies can be eliminated by gently `wiggling' the
system, but one cannot get rid of all them in this way because
new tangencies inevitably occur.

This is a rather unexpected result. It contradicts, in a
certain sense, the common view that even if a tangency takes
place at some point, it should disappear subject to perturba-
tions because of structural instability (see Fig. 12). Notably,
this naive viewpoint is incorrect. In this case, for general map
families f �x; a� there exist intervals where the values of the
parameter a, for which f �x; a� has homoclinic tangencies, are
dense.

In order to understand in which sense the particular types
of tangencies possess `stability', consider a hyperbolic
invariant set L on a plane, which is defined through the
diffeomorphism f �x; a�. From the example of the Smale
horseshoe in Section 3.2 it follows that stable and unstable
manifolds of this set look like a product of a Cantor set by an
interval. Assume that a quadratic tangency of stable w s�L�
and unstable w u�L� manifolds takes place. In its neighbor-
hood w s�L� and w u�L� are the Cantor sets of horizontal
intervals and parabolas (Fig. 14). Let us denote the curve
passing through the vertices of parabolas as L. The Cantor
sets Ks � w s�L� \ L and Ku � wu�L� \ L exist on it. If there
is a point q0 � Ks \ Ku, it will be the point of tangency for
manifolds w s�L� and w u�L�.

In order to establish whether Ks and Ku intersect, the
author of Ref. [67] used the metric characteristics of a
Cantor setÐ its `thickness' d�K �. This quantity for a
Cantor set on an interval characterizes the ratio of the
length of parts removed in the process of construction to
that of the remaining parts. As proven in Ref. [66], if K1 and
K2 are the Cantor sets satisfying the inequality
d�K1� d�K2� > 1, then (under some additional conditions)
K1 \ K2 6�1. This implies that the problem of proving the
existence of tangencies that do not disappear subject to
perturbations can be reduced to constructing Cantor sets of

finite thicknesses. It is precisely the existence of such sets
that was proven in Ref. [67].

Later on, when adapting this approach to dynamical
systems, it was proven in Ref. [69] that open domains exist in
the space of smooth dynamical systems, domains in which
systems with homoclinic tangencies are dense. They are
called Newhouse domains. The invariant hyperbolic sets
near L, which contain tangencies, are said to be wild
hyperbolic sets.

The dynamics of systems with homoclinic tangencies are
extremely complex. Indeed, it was proven in Ref. [68] (see also
Ref. [70]) that systems possessing infinitely many stable cycles
are dense in Newhouse domains. A countable set of saddle,
stable, and absolutely unstable cycles was discovered in
systems from Newhouse domains with heteroclinic tangen-
cies [71]. Moreover, such systems may simultaneously have a
countable set of stable and unstable invariant tori which co-
exist with a countable set of saddle, stable, and absolutely
unstable cycles [72].

In the research performed in Ref. [73] it was found that
both homoclinic tangencies and cycles of an arbitrarily high
degeneracy order may appear in systems with homoclinic
tangencies subject to smooth perturbations. The degeneracy
is linked to the fact that one of the multipliers becomes equal
to�1 (orÿ1), and some or all Lyapunov values come to zero.
One of the ensuing fundamental implications, which had an
essential impact on nonlinear dynamics as a whole, is the
impossibility of getting a full qualitative description ofmodels
with complex behavior in the framework of a finite-para-
metric family of dynamical systems [70, 74, 75]. In addition, a
number of dynamical properties that seemed exotic earlier
are, on the contrary, typical for systems with homoclinic
tangencies [76, 77].

Thus, nonrough homoclinic trajectories are never found
to be isolated. Moreover, if homoclinic tangencies occur in
deterministic systems, they prove to be a source of additional
dynamical complexity and entail essential transformations of
the behavior of systems.

Notwithstanding their abstract character, homoclinic
tangencies and Newhouse domains have been found in
many systems, including physical ones. For example, they
are encountered in families of two-dimensional maps that
demonstrate transition to chaos through period doubling
[73], in systems of Lorenz [78] and Duffing [22] types, in the
destruction of quasiperiodic motion [79, 80], in systems
containing the homoclinic loop of the `saddle±focus' type
[54, 81, 82] (see Fig. 10]), and in some others.

The most complete information on homoclinic tangen-
cies, Newhouse domains, and related phenomena is presented
in the paper collection [59] and monograph [83].

4.4 Symbolic dynamics
The construction of the horseshoe proposed by Smale to
prove the hyperbolicity in the neighborhood of rough
homoclinic trajectory turns out to be insufficiently univer-
sal. In particular, it cannot be adapted to a broad class of
Hamiltonian systems. Moreover, using this approach one
does not succeed in substantiating the Birkhoff hypothesis
[52] (known as the PoincareÂ ±Birkhoff problem) which asserts
that a two-dimensional area-preserving diffeomorphism
contains a countable set of periodic orbits in any neighbor-
hood of the closure of a homoclinic trajectory.

In due time Birkhoff conjectured that, in order to prove
this statement, one may apply methods of so-called symbolic

L

w s�L�

w u�L�

Figure 14. Tangency of manifolds of a Cantor set.

1266 A Loskutov Physics ±Uspekhi 53 (12)



dynamics, where, instead of system's trajectory, one con-
siders the sequence corresponding to the phase space regions
visited by this trajectory. In this case, each trajectory is
coded with the help of some finite or countable alphabet by
an infinite sequence. In other words, the original trajectory
turns out to be associated with a shift in space of the
sequences obtained. Despite its somewhat uncommon
character, this approach proved to be rather productive
and facilitated proofs of a number of important conjectures
related, for example, to the hyperbolicity of dynamical
systems, the complexity of dynamics in the three-body
problem, and some others [44].

Shil'nikov [84] succeeded in obtaining the full solution to
the PoincareÂ ±Birkhoff problem. In his proof he made use of
precisely the possibility of coding trajectories from the
neighborhood of the homoclinic curve. It is hard to imagine
how this complex dynamics could be described analytically
using traditional approaches.

The simplest example of a symbolic system is furnished by
the so-called Bernoulli topological scheme in two symbols.
Consider some set X whose elements are sequences
a � aif g1i�ÿ1 infinite to both sides and composed of only
two symbols, 0 and 1. If one introduces metrics d�a; b� �P1

m�ÿ1 dm2ÿjmj, where dm � 0 at am � bm and dm � 1 for
am 6� bm, thenX will be a compact. Let us now define the map
g : X ! X as a shift by one symbol, i.e., g�a� � b, where
bn � an�1. The map constructed in this way, which can be
called the shift map, will satisfy the definition of chaoticity
(see Section 2.3).

Now it is possible to prove that a one-to-one correspon-
dence j exist between the Smale horseshoe O and the set X ,
such that the sequence b � j� f � p�� is obtained from the
sequence a � j�p� through a one-symbol shift: bk � ak�1.
Indeed, j� p� � fakg1k�ÿ1, where f k� p� 2 Bak . This implies
that the point p lies inO only if the relationship f 2 B1 [ B2 is
valid for all k (see Fig. 6). Since f k�1� p� � f k� f � p��, then
j� f � p��will follow fromj�x�with the help of the superscript
shift.

Thus, we get that j � f jO � g � j. Hence, a topological
conjunction exists between f jO and g. In other words, from
the relationship f jO � jÿ1 � g � j one arrives at f kjO �
jÿ1 � gk � j. Consequently, there exists a transformation j
of trajectories of f on O to trajectories of g on X .

More elaborate constructions are applied in order to
analyze a system with homoclinic and heteroclinic trajec-
tories with the help of the symbolic approach (see Refs [22, 31,
44]). The monograph [85] presents the basic principles of
symbolic dynamics.

5. Chaotic attractors of dynamical systems

The constructions described above point to the existence of
hyperbolic sets and to the complex behavior of dynamical
systems under rather general assumptions. In the general
case, however, these results does not imply that typical
trajectories are asymptotically chaotic, because attractors
will always present in the phase space of systems given the
dissipation processes. If these are the regular attractors
mentioned in Section 2.2, the complex dynamics pertaining
to the presence of above-described hyperbolic sets will be a
transient process and in the long run the behavior of such
systems will be stationary, periodic, or quasiperiodic. The
chaotic behavior of dissipative systems is assured by the
presence of a nontrivial subset in their phase spaceÐ the

strange attractor. The possibility of its existence was first
proven in Ref. [14].

5.1 Strange and chaotic attractors
An attractor of a dynamical system is called strange if it is
different from a finite union of smooth submanifolds of the
space M [11, 23]. It should be remembered that the (smooth)
submanifold of space M is such a subset W in the space M 0

(M 0 �M), which locally resembles a part of space M 0 and
has a unique tangent at each point. In this way, one
emphasizes in the definition of strange attractor precisely
its nonsmooth structure: it is a Cantor set (i.e., a fractal) in
a certain section. This property and the exponential
instability of trajectories on the attractor motivated label-
ing it `strange' in Ref. [14]: the birth of such a set in smooth
dynamical systems was indeed conceived of as quite
extraordinary.4

Strange attractors possess a certain degree of hyperboli-
city, but this hyperbolicity has another form than the uniform
hyperbolicity described in Section 3. Such attractors are
indeed sets of a complex structure, yet they cannot be studied
in detail in the framework of hyperbolic theory (this issue is
considered at length, for instance, in the review [87]). Never-
theless, the examples of just hyperbolic attractors of dynami-
cal systems (see Section 5.2), which correspond to uniform
hyperbolicity, are well known.

Analytical results pertaining to the existence of strange
attractors are relatively rare. For example, it is agreed that
chaotic systemswith a countable number of strange attractors
can be dense in the Newhouse domains in the case of saddle±
focus [88]. Moreover, it can be anticipated that, in the
neighborhood of a family of diffeomorphisms, which has a
homoclinic tangency of the stable and unstablemanifolds of a
hyperbolic point, subsets of systems can exist which have no
stable cycles but possess strange attractors.

Many statements have been proven for a family of
diffeomorphisms of arbitrary dimensions [89±92]. The main
result obtained here reads as follows. Let fa be a family of
diffeomorphisms of manifold M, dimM5 2, that has a
homoclinic tangency at a � ~a. Then, a set A �R exists such
that fa possesses a strange attractor for each a 2 A and
A
T �~aÿ e; ~a� e� has a positive Lebesgue measure for all

e > 0.
Nowadays, the notion of a `strange attractor' has gained a

collective senseÐby using it one tries to emphasize the
chaotic character of the system under study. It is commonly
assumed that a dynamical system possesses a strange
attractor if in its phase space there is a limit set composed of
chaotic trajectories. The chaotic behavior in this case can be
ensured by various criteria: the homoclinicity, presence of
positive Lyapunov exponents, continuous character of
spectrum, bifurcations of period doubling, and so on (see
Ref. [28] and references cited therein). Therefore, this notion
is more a paradigm than a characteristic of a mathematical
object.

It is, in addition, known that there exist strange
nonchaotic attractors [93], i.e., attractors which exhibit a
fractal structure and yet the system incorporating them does
not manifest chaos in any sense. Therefore, the broad usage
of the notion `strange attractor' turns out to be not always
justified.

4 According to one of the authors of this term, D Ruelle, the `strange'

attractors look actually strange [86].
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If the structure of the attractor in a chaotic system is not
known, as not infrequently is the case in numerical and
experimental research, it is more relevant to term such
attractors chaotic, accenting just the complex motion of the
trajectories. This does not contradict the fact that chaotic
attractors can be hyperbolic attracting sets, possess a
transversal homoclinic trajectory, and so on.

Strict mathematical results have been obtained primarily
for attractors having hyperbolicity properties. They include
hyperbolic attractors and quasihyperbolic type attractors
which are sometimes referred to as stochastic.

5.2 Hyperbolic attractors
The set L is said to be a hyperbolic attractor of a dynamical
system if L is a closed topologically transitive hyperbolic
set and there exists a neighborhood U � L, such that
L � Tn5 0 f n�U�. A hyperbolic attractor constitutes a
structurally stable (rough) set. This means that small
perturbations cannot lead to qualitative modifications in
both the attractor and the behavior of the system as a whole.
Dynamical systems with a hyperbolic type of attractor serve
as models of structurally stable systems with most distinct
chaotic properties [21, 50, 87].

The hyperbolic attractors discovered thus far are few in
number; therefore, each example carries the name of the
author who constructed it. Well-known attractors of that
type include the Smale±Williams solenoid (see, for example,
Refs [3, 21, 30, 31, 87]) and the Plykin attractor [22, 31, 87,
94, 95].

Attractors that, by their properties, are close to hyperbolic
type include the Belykh attractor [29, 96, 97] and the Lozi one
[21, 29, 98, 99]. In order to describe such attractors one uses a
widened notion of hyperbolicity, which goes outside the class
of smooth invertible maps, because such attractors exist in
dynamical systems with singularities [97, 100±102].

Note that neither Lorenz [13, 103] nor HeÂ non [13, 104]
attractors belong to the hyperbolic type: the Lorenz attractor
is nonrough (see Section 5.3), and transitivity and sensitive
dependence on the initial conditions have been proven for the
HeÂ non attractor [105] (see also Ref. [89]).

Of all the hyperbolic attractors the construction of the
Smale±Williams solenoid is topologically the simplest. The
attractor is obtained through mapping a toroidal region into
itself in the space of three or more dimensions.

Let D be a solid torus, i.e., a filled two-dimensional
torus. Let us cut and unbend it, so as to obtain a cylinder.
We then stretch it strongly and compress it along the radius.
The result will be a structure that resembles a thick cord
with a circular cross section. Fold then the cord into a two-
turn hoop, glue its ends, and place it into the original solid
torus D. As a result, one gets the domain D 0 lying in D
(Fig. 15a). At the next step, such a transformation is applied
to the domain D 0, thereby transforming D 0 into the domain

D 00 lying in D 0, and so on.5 It should be noted that in the
course of construction the cross-section area contracts more
than twofold, i.e., the total volume diminishes. In a section,
the construction represents a hierarchy of structures, shown
in Fig. 15b.

The above-described construction can formally be written
as follows. The toroidal domain is a three-dimensional
structure T � S 1 �D 2, where S 1 is a unit circle, and D 2 is a
unit disk in R2. Then, the transformation

f : T! T; f �x; y;j� �
�
1

k
x� 1

2
cosj;

1

k
y� 1

2
sinj; 2j

�
;

�3�

where the parameter k > 2 stands for the degree of torus
contraction in the direction of its `thickness', defines the
solenoid as a subset of T �R3. Consider a section of domain
T by a two-dimensional plane. We then obtain two disks with
radius 1=k. It is obvious therewith that f 2�T� � f �T�.

When the map (3) is subjected to iterations, the picture is
repeated on smaller and smaller scales (Fig. 15b). As a result,
the set f m�T� in a section will be composed of 2m disks. As
m!1, one gets the Smale±Williams attractor, which is
hyperbolic. It is constructed so that stretching in one
direction and compression in the other one are uniform.

Another well-known hyperbolic attractor was con-
structed in Ref. [94]. It is obtained through applying a special
mapping to the domain D which is a union of three domains,
D1, D2, and D3, each representing a semicircle from which a
smaller semicircle is cut concentrically, with the sum of the
diameters of semicircles D2 and D3 being smaller than the
diameter of D1. Two semicircles, D2 and D3, are glued along
the diameter to the larger semicircle D1 (Fig. 16a). The map
f : D! D transforms every radius of the partition of domain
D into the radius of the same partition with the help of a
certain contraction. As a result, one gets the pattern shown in
Fig. 16b. By generalizing this construction, it is possible to
build a variety of hyperbolic attractors with different
topological structures (see Ref. [95]).

For a long period of time it was believed that the Smale±
Williams, the Plykin, and other hyperbolic attractors are
artificial mathematical constructions, and that there are no
physically realizable systems which may exhibit them.
However, not long ago the authors of Refs [33, 34]
proposed dynamical systems that contain a set with proper-
ties resembling those of a Smale±Williams type hyperbolic
attractor in their phase space. Moreover, the properties of
such an attractor have been studied experimentally [106]. In
other studies, the possibility of the Plykin attractor occur-
ring in a modified Lorenz model [107] and a neuron model
[108] was demonstrated. The recent Ref. [35] suggested an
example of a nonautonomous system which in a section has

ba

D

D 0

Figure 15. Construction of a Smale±Williams attractor.
5 Such an object is sometimes called the Vietoris±van Dantzig solenoid.

D2 D3

a
D1

bf �D1�

f �D2�

f �D3�

Figure 16. Construction of a Plykin attractor.
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a Plykin type attractor on a plane (see also Ref. [109] and
references cited therein).

It is necessary, however, to remark that many mathema-
ticians do not accept the existence of hyperbolic attractors in
physically realizable systems.

5.3 Stochastic and other attractors
Apparently, the stochastic attractor proposed by Ya G Sinai
[110] can serve as an adequate mathematical image of the
developed chaotic behavior observed in physical systems. In
this case, however, the definition `stochastic' is not associated
with the presence of random external perturbation or noise in
the system. The term is borrowed from probability theory and
relates to the existence of an invariant measure (see Section
7.5).

Any hyperbolic limit set constitutes a stochastic attractor.
For such an attractor, the properties of stretching and
contraction on, respectively, unstable and stable manifolds
are structurally stable, but the geometric picture and the
degree of stretching and contraction might be different at
various points of the attractor. At the same time, such an
attractor does not contain stable trajectories, and they cannot
appear there through small perturbations of the system.

The formal definition of a stochastic attractor relies on the
notion of invariant measure and the mixing property. It
should be reminded that the attractor A is an invariant
closed set which has such a neighborhood U that
Ut � F tU � U and

T
t Ut � A. The attractor A is stochastic

if for any absolutely continuous invariant measure m on U its
shift mt converges as t!1 to the limit invariant measure n
which is independent of m, and the dynamical system
�A; n; fF tg� possesses a mixing property [110].

The well-known example of a stochastic attractor is
Lorenz's attractor, which appears in the famous Lorenz
system for b � 8=3, s � 10, and r � 28 [97], namely

_x � ÿsx� sy; _y � rxÿ xzÿ y; _z � xyÿ bz ;

describing, under certain assumptions, convective motions
in fluid [103], disk dynamos (see Ref. [11]), and some models
of lasers [111], as well. The proof of existence of the Lorenz
attractor relies on fairly elaborate constructions based on
combinations of rigorous mathematical manipulations with
numerical analysis. It was proven in Refs [36, 37] that the
Lorenz attractor is stable, i.e., it is preserved under small
perturbations of parameters, and has a unique SRB
measure (see Section 8.5). These properties imply, in
particular, that the Lorenz attractor is a physically observa-
ble object.

However, by no means do all chaotic attractors
observed in models of real physical systems possess such
`nice' properties. This happens because the chaotic attrac-
tors may contain, within themselves, an infinite set of
saddle cycles (see Section 2.3). In this case, the unstable
manifold of a cycle also belongs to the attractor. Then,
bifurcations pertaining to the tangency with stable and
unstable manifolds bring about the appearance of an infinite
set of stable periodic trajectories, as described in detail in
Section 4.3. Such attractors belong to the quasistochastic type
(i.e., they are so-called quasiattractors) [112, 113]. Weak
perturbations of systems with a quasistochastic attractor
entail complex qualitative transformations in both the
system dynamics and the structure of the attractor itself (see
Ref. [114] for more details on the physical aspects).

The following example is illuminating. Analytical results
of bifurcation theory show that in the Lorenz system with
parameters that are arbitrarily close to the values of b � 8=3,
s � 10:2, r � 30:2 stable limit cycles exist [115, 116]. Yet, thus
far no numerical analysis has succeeded in revealing them.
Moreover, there always exists such a parameter region where,
according to a rigorous theory, stable cycles can occur, and
yet they escape detection by numerical means, whatever the
accuracy of numerical simulations.

It should be noted in closing that the dynamics of
dissipative systems with typical chaotic attractors are in a
certain sense analogous to the dynamics of Hamiltonian
systems in which, in addition to stochastic layers, invariant
Kolmogorov±Arnold±Moser (KAM) tori exist [13].

6. Chaos in physical systems

Physical interest in chaotic phenomena goes back a long way
and was prompted by the need to describe systems with a very
large number of degrees of freedom (for more details see
review [13]). However, it turned out after the discovery of
exponential instability that practically any typical nonlinear
system with more than one degree of freedom may exhibit
chaotic features. In these circumstances, one of the main
questions is that about the measure of chaotic trajectories.

It is also known that in nonlinear systems chaotic
trajectories always neighbor the set of coexisting regular
(not chaotic) orbits, and that the measure of such regular
trajectories might be zero. As follows from the material
presented above, answering the question about the role of
these regular trajectories in dynamics may be far from simple.

6.1 Chaos and strange attractors
When one talks about the physical manifestations of chaos,
such a system behavior is commonly borne in mind when its
chaotic trajectories look indistinguishable from a certain
random process. This assumes a certain correspondence
between solutions of some stochastic equation and determi-
nistic equations. And yet the dynamics of chaotic systems are
not fully random (see Section 9). Despite some paradoxicality
in these statements, the research over the last forty years
indicates that the approach to studying chaos, developed in
the framework of the theory of dynamical systems, has fully
proven its worth.

The basic concept in exploring chaotic systems proves to
be that of roughness, or structural stability [19]. Historically,
the rough chaotic attractors were constructed first. They were
all designed on geometrical premises, without resorting to
model equations describing some real process. From a
physical viewpoint, the rough properties are the most
important, as they are preserved under small perturbations
and are therefore observable. In contrast, the specific feature
of structurally unstable systems lies in the fact that they can be
qualitatively modified under the action of small perturba-
tions. Generally speaking, because of measurement errors,
factors not accounted for, rounding off, and so on, the
derived equations will be therefore adequate only if their
qualitative characteristics are preserved under perturbations.
From a mathematical perspective, structural stability was
thus considered a necessary condition to be adhered to when
designing model systems.

However, the onset of chaoticity is underlain by exponen-
tial instability. Admittedly, for a system to exhibit a chaotic
behavior (i.e., to have a sensitive dependence on initial
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conditions) only the instability is needed, which shows up in
the definition of hyperbolicity. It is by no means necessary
that this instability be the same for all trajectories. Moreover,
the number of unstable directionsmay vary from trajectory to
trajectory. The Lorenz attractor, for example, has such a
structure. Attractors of that type are not destroyed subject to
small perturbations, but their geometric structure may, in
general, undergo some changes. In another situation, because
of the homoclinic tangencies emerging in typical systems, the
chaotic attractors will by necessity contain stable cycles of a
large period with very small attraction basins. This implies
that such attractors are structurally unstable and that their
detailed structure is unobservable. Nevertheless, the property
of exponential instability is of utmost importance, as it allows
the chaotic behavior in a corresponding system to be, in
principle, examined experimentally.

Thus, when describing chaotic systems one relies on a
qualitative approach which, as remarked in the monograph
[22], is in a certain sense analogous to the question as to
whether the length of a rod is a rational or irrational number
(one is only interested in a qualitative property of the rod).

This is what V I Arnold [117] wrote about one of the
chaotic attractors (the HeÂ non attractor [104]) discovered by
numerical simulations in a two-dimensional map: ``The
convergence to a set that locally has the form of the product
of Cantor set and interval that is observed in numerical
experiment does not allow a description in the framework of
accepted definitions of hyperbolicity 6 (it cannot even be ruled
out that attraction basins of long cycles are interspersed in this
set). For that reason, mathematicians do not accept that the
HeÂnon set is hyperbolic. And yet, from the experimentalist's
viewpoint, the motion of a phase point under the action of map
iterations bears a manifestly stochastic character.''

Consequently, in the context of dynamical chaos, the
approach based on the notion of structural stability needs to
be revisited. Namely, when constructing a dynamical system
which describes some physical process it is necessary that only
essential (from one viewpoint or another) properties be
preserved subject to small perturbations. This is qualitatively
different from the conventional concept that demands
preservation of all qualitative characteristics in perturbed
systems. For each concrete case, apparently, one should
specify precisely which perturbations are admissible and
which properties are essential for the system studied.

6.2 Unstable sets and trajectory trapping
It is well known that in a typical case theHamiltonian systems
are nonintegrable and nonergodic [118] but manifest complex
dynamics in the sense that the hierarchy of KAM islands of
stability coexist in their phase space with a chaotic layer
formed by one or several ergodic components (see Refs [13,
22, 42]). This implies, in particular, that, as a whole, the
regular and chaotic dynamics are tightly interlaced. This type
of behavior of Hamiltonian systems, described in many
studies, was also examined experimentally (see Ref. [42] and
references cited therein).

The divided phase space leads to a fairly unexpected
stickiness effect or trajectory trapping effect [119±121],
which is manifested through the fact that a chaotic trajec-
tory, having visited a small neighborhood of KAM islands,
may stay there sufficiently long.

When a phase point resides in a chaotic region far from
the set of KAM tori, it moves randomly. However, if it finds
itself in a domain in the vicinity of such a set, it gets trapped
by its neighborhood. The phase point can travel in the
vicinity of KAM tori for an arbitrarily long, but finite
interval of time during which the system behaves itself in a
regular way. In this case, the exponential decay of correla-
tions characteristic of the system before being trapped in the
basin around KAM tori will be replaced by a power-law type
of decay [122]. At the expiration of the time interval, the
system `re-establishes' its chaotic properties. Then, the whole
sequence is repeated.

Thus, a Hamiltonian system with a divided phase space
exhibits, as a whole, an intermittent dynamical regime:
following chaotic behavior over a long time interval almost
regular dynamics are observed. Such a process, apparently,
has implications for the statistical properties of Hamiltonian
systems.

The phenomenon of stickiness was discovered in explor-
ing numerous problems emerging in the analysis of a number
of physical phenomena. Among them are the kinetic descrip-
tion of many-particle systems, problems of plasma physics,
the problem of particle dynamics in a potential well, and some
others (see Refs [42, 120] and references cited therein).
However, it is not known in a general case whether stickiness
will be observed in systems which comprise a finite or infinite
number of KAM islands [121].

Recently, Ref. [123] has proposed the construction of
curious and highly illustrative families of Hamiltonian
systems containing clearly separated chaotic and regular
components in the phase space. In the simplest case, their
dynamics are governed by a single KAM island and a single
ergodic chaotic component.

Such a behavior is demonstrated by billiards with a
boundary shaped like a mushroom, which is composed of
semicircle S and rectangular base P (Fig. 17). In the
configuration space of such a billiard table, the boundary
between the ergodic and regular components is furnished by
those trajectories in the semicircle S that are tangent to the
circle c of radius r. As is apparent from Fig. 17, the regular
domain consist here of trajectories that do not intersect this
circle, staying inside the semicircle S and never visiting the
baseP. However, the chaotic orbits are bound to get there.

Based on the example of such mushroom billiards it was
recently discovered [124] that the existence of a hierarchy of
stability islands is not necessarily required in order to observe
dynamical stickiness of chaotic trajectories. Moreover, in the
billiard table considered, this process unfolds owing to the
presence of an infinite set of zeromeasure of unstable periodic

6 It was proven later [105] that theHeÂ non attractor is chaotic in the sense of

the definition given in Section 2.3. (Remark by AL.)

S

P
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c

Figure 17. Billiard table with a mushroom-shaped boundary [122].
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trajectories in the chaotic domain. In other words, sets of zero
measure may essentially influence the behavior of the whole
system.

This result seems highly counterintuitive since from the
viewpoint of dynamics it was always assumed that these sets
should not be accounted for and that their presence can be
neglected. Certainly, because of zero measure, they asympto-
tically have no effect on the ergodicity of a dynamical system.
Nevertheless, the stickiness of chaotic trajectories in the
neighborhood of the regular domain boundary occurs just
because of their presence.

There are many other systems (see Ref. [42] and references
cited therein) containing sets of zeromeasure which cannot be
discarded when dynamics are analyzed. One of them is the
Smale horseshoe in the Duffing system at some parameter
values. The appearance of such a set entails an exponential
instability with respect to initial conditions; however, almost
all trajectories leave this set as time progresses and are
attracted to regular attractors. It is noteworthy that the
period of such a transient chaotic process can be however as
long as you like.

The example with a horseshoe in the so-called capture
problem (see Refs [43, 44]) is illuminating, in which a binary
star captures the third one approaching from infinity.7 It
was proven in Ref. [43] that the presence of the horseshoe
makes the capture feasible. One more example is furnished
by the billiards of Sinai [10] and Bunimovich [126]
(`stadium' type billiards). In such billiards, all the trajec-
tories, excluding a set of zero measure, are chaotic. And still
these sets strongly influence the dynamics and long-term
motion characteristics [42].

Thus, all the complexity exhibited by dynamical systems
may consist in the existence of sets which are commonly
neglected. Hence, it follows that the general approach to the
description of chaotic systems calls for a new vision.

7. Ergodic aspects of dynamical chaos

Getting a full description of the chaotic system dynamics
presents (at least at the current stage) an unsolvable problem.
However, another approach exists suggesting that one inquire
only about typical properties of a dynamical system. This
viewpoint, which ignores the treatment of exclusive (rare)
trajectories, is adopted in the ergodic theory or metric theory
of dynamical systems, where the concept of measure is used as
the fundamental idea.

The existence of invariant measures for dynamical
systems, at least of one invariant measure, is ensured by
existence theorems. One of them is the Krylov±Bogoliubov
theorem, according to which at least one invariant measure
always exists for dynamical systems with a compact phase
space. In other cases, the existence of invariant measures
follows from dynamical laws.

The ergodic theory is now enjoying a period of rapid
development thanks to the possibility of using it in various
applications (see, for example, Refs [29, 127] and references
cited therein). With the help of characteristics considered in
this theory, such as the dimension, entropy, Lyapunov
exponents, and some others, one can obtain more complete
information on the properties of systems under study,

discriminate between deterministic and stochastic signals,
and assess the depth of chaoticity.

Some important properties of dynamical systems consid-
ered by the ergodic theory, for example, the fulfillment of the
central limit theorem, exponential decay of correlations, and
the Bernoulli and K-properties, lie at the heart of the modern
idea of deterministic chaos. In Sections 7.1±7.5, we shall
describe those concepts which are especially useful in
applications.

7.1 Lyapunov exponents
As is known, the dynamics of system (1) in the vicinity of a
stationary point can be studied by analyzing the eigenva-
lues of a linearization matrix. To analyze motions in the
vicinity of periodic motion, one employs multipliers.
Generally, the (characteristic) Lyapunov exponents are
used to explore the behavior in the vicinity of an arbitrary
trajectory.

Geometrically, the Lyapunov exponents characterize the
degree of stretching and contraction in the system along,
respectively, stable and unstable directions (see Fig. 5). Let
x�t� be a typical phase trajectory of system (1), and x1�t� a
trajectory close to it, i.e., x1�t� � x�t� � x�t�. Consider the
function

X
ÿ
x�0�� � lim

t!1
1

t
ln

��x�t�����x�0��� ;
which is defined for the vectors x�0� of an initial displacement
such that jx�0�j � e, where e! 0. Then, depending on the
direction of vector x�0�, the function X�x�0�� will assume a
finite set of values flig, i � 1; 2; . . . ; n. These values are said to
be Lyapunov exponents (see, for example, Refs [41, 128, 129]
and references cited therein). The set of all possible Lyapunov
exponents is called the Lyapunov spectrum.

The theory of Lyapunov exponents got its strict founda-
tion after the proof of the well-known multiplicative ergodic
theorem [130±132], which ensures their existence for almost
any x 2M.

The Lyapunov exponents are universal invariant char-
acteristics allowing one to judge certain properties of
dynamical systems. As follows from the geometrical repre-
sentation, in particular, the Lyapunov exponents serve as a
measure of chaoticity: if some of them are positive, the
behavior of a dynamical system is chaotic.

The number of characteristic exponents is equal to the
dimension n of the phase space of the dynamical system, and
they can be sorted in a descending order: l1 5l2 5 . . . 5ln.
For systems of differential equations (1), one of the Lyapunov
exponents, corresponding to the displacement along the
trajectory which does not end in a stationary point, is always
equal to zero. For Hamiltonian systems, the exponents
exhibit the following symmetry: lj � ÿl2kÿj�1, where k is
the number of degrees of freedom in the system. Conse-
quently, at least two exponents are zero for Hamiltonian
systems. In the case of fully integrable systems, all the
exponents take zero values.

The sum of all Lyapunov exponents equals the average
value of the divergence of the vector field governing the
system dynamics:

lim
t!1

1

t

� t

0

div _x dt �
Xn
j�1

lj :7 This well-known problem pertains to the question of final motion in the

three-body problem (for information see the fundamental monograph

[125]).
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As is well known, the relative variation of the phase volume is
determined by the sign of the divergence. Consequently, it is
readily seen that

P
j lj � 0 for Hamiltonian systems, while

for dissipative ones
P

j lj < 0.
The Lyapunov exponents also carry information on the

dimension of the strange attractor of a dynamical system (see
Section 7.3). The quantity

DL � j�
Xj
i�1

li
jlj�1j ;

where j is determined from the conditions
l1 � l2 � � � � � lj > 0 and l1 � l2 � � � � � lj�1 < 0, is called
the Lyapunov dimension, or Kaplan±Yorke dimension, from
the names of authors who proposed at their time the
hypothesis on the connection of fractal dimension and
characteristic exponents. The value of DL provides the
upper bound for the Hausdorff dimension of the attractor
[133, 134].

Since the Lyapunov exponents determine the degree of
instability, they turn out to be connected in a natural way to
the entropy of the dynamical system.

7.2 Entropy
Each dynamical system can be characterized by a certain
quantity (sometimes infinite) which is called entropy. The
related circumstance, difficult to anticipate, is that if the
entropy is positive, the system also possesses some other,
rather strong, statistical properties. Moreover, for two-
dimensional diffeomorphisms such dynamical complexity is
ensured by the existence of horseshoes in the phase space [31]
(see Section 3).

The entropy is in a certain sense the measure of a system's
order (or disorder). At present, in describing this property in
one context or another, one uses a large number of
characteristics also referred to as `entropy'. For instance, the
entropy H in the information theory is introduced for a
system that can be in states xi with probabilities pi � p�xi�
via Shannon's formula

H � ÿ
X
i

pi log pi : �4�

In a similar way, one may define the metric entropy of a
dynamical system, or the Kolmogorov±Sinai entropy. This
concept enabled strict formulation of the absolute criterion of
chaoticity as themotionwith positivemetric entropy, which is
Lyapunov unstable.

From the relations for the entropy it follows that this
quantity serves as ameasure of the exponential divergence (or
convergence) of trajectories of a dynamical system. This fact
on its own was known long ago, but the entropy approach
offered the possibility of exploring the behavior of complex
systems in a new way [135].

Suppose that the dynamical system is defined through
the map xn�1 � f �xn� on a compact set A. Let the partition
of set A into the finite number of measurable subsets Ai be
defined. We shall denote the set of points mapped into Ai

by the transformation f k as f ÿk�Ai�. Without writing out
all the partitions created by such an inverse map, we
present the general case: at the mth step, the partition
into A

�m�
i1 i2...im

� Ai1 \ f ÿ1�Ai2� \ f ÿ2�Ai3� \ . . . \ f ÿ�mÿ1��Aim�
consist of points from the set Ai1 , which at the next mÿ 1
steps will subsequently fall in Ai2 ;Ai3 ; . . . ;Aim .

Let us calculate the entropy for each partition using the
formula which is analogous to Shannon's:

H �m� � ÿ
X

i1i2...im

p�Ai1i2 ...im� log p�Ai1i2:::im� :

With the notation e � maxi diamAi, the entropy of a
dynamical system will be expressed as

K � lim
e!0

lim
m!1

ÿ
H �m�1� ÿH �m�� � lim

e!0
lim
m!1

1

m
H �m� : �5�

In other words, the entropy is defined as the asymptotic
increment of uncertainty for the partitioning of an infinitely
small diameter. Notice that this definition is never used in
practice. Instead, the common approach is that the entropy is
estimated with the help of Lyapunov exponents [see Eqn (8)]
or one calculates a quantity K2 approximating it, which is
introduced in the following manner.

Consider the ReÂ nyi entropy

Hq � 1

1ÿ q
log

�X
i

p
q
i

�
: �6�

It is easy to show that Shannon's entropy (4) is a particular
case of the ReÂ nyi entropy for q! 1. Using this quantity, it is
also possible to introduce the generalized dimension Dq (see
Section 7.3) and quantity Kq, which is called the generalized
entropy and characterizes the degree of disorder of a
dynamical system in the most general way. Specifically, if
one substitutes Hq for H in the definition of entropy K [see
Eqn (5)], the result is

Kq � lim
e!0

lim
m!1

ÿ
H �m�1�q ÿH �m�q

� � lim
e!0

lim
m!1

1

m
H �m�q :

One of the most important properties pertaining to the
quantity Kq can be written as a sequence of inequalities

K � K1 4K2 4 . . . 4Kqÿ1 4Kq 4 . . . ; �7�

where K is the Kolmogorov±Sinai entropy. Correspondingly,
the Kolmogorov±Sinai entropy can be estimated from above
if Ki, i � 2; 3; . . . are found (see Section 7.3). In turn, the
Kolmogorov±Sinai entropy is expressed through the Lyapu-
nov exponents in the following way [132]:

K1 �
�
M

X
li�0

li�x� dm : �8�

In a number of cases, expression (8) can be simplified. If f is a
differentiable map of a finite-dimensional manifold, and m is
the ergodic probability measure for the dynamical system,
then K1 4

P
li>0 li [128, 132]. The equality in the last

expression takes place when only the chaotic component of
motion is considered, i.e., if m is the Sinai±Ruelle±Bowen
measure [128] (see Section 7.5).

The value of entropy does not depend on the partitioning
of the phase space. Moreover, if two dynamical systems have
equal entropies, their statistical laws of motion coincide, too
[136, 137].

7.3 Dimensional characteristics
The generalized dimension Dq is defined as

Dq � lim
e!0
ÿHq�e�

ln e
;
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where e is the characteristic size of the cells of phase space
subdivision. Let us explain the sense of generalized dimension
Dq for various q. If q � 0, then p

q
i � 1. The quantity obtained

is called the fractal dimension, or the set capacity. In some
cases, D0 is also called the Hausdorff dimension. This is
related to the fact that, although there are exceptions, the
values of the capacity andHausdorff dimension are very close
for typical attractors (which are encountered in numerical
simulations and physical experiments).

If q � 1, the numerator and denominator in relation (6)
become zero, since

P
pi � 1. However, it can easily be shown

then that

D1 � lim
e!0

P
pi ln pi
ln e

:

Since the relationship
P

pi ln pi defines the entropy, the
quantity D1 describes how the amount of information about
the set under consideration increases when e! 0. The
quantity D1 is therefore called the information dimension.

If q � 2, then one finds

D2 � lim
e!0

ln
P

p 2
i

ln e
;

where p 2
i is the probability that there are at least two points

residing in the ith cell. Consequently, the value of D2 is
determined through binary correlations in the probability
distribution, and therefore D2 is called the correlation
dimension.

For q � 3; 4; . . . the dimensionsD3;D4; . . . are linked with
correlations of a higher order. They give additional informa-
tion about the structure of the sets under consideration.
Moreover, the generalized dimension Dq for q!1 was
defined [138].

Notice that the entropy and dimension are in a certain
sense the independent invariants. For instance, in the case of
quasiperiodic dynamics with a large number of incommensur-
able frequencies (i.e., a torus of high dimension), the entropy
equals zero. But, for example, for saw-tooth one-dimensional
map xn�1 � lxn �mod 1�, where l4 1, the entropy can be
fairly large. It is therefore necessary to be in a position to
calculate both these characteristics, when exploring real
systems.

7.4 Estimates of entropy and dimension
In order to evaluate the generalized quantities, the concept of
generalized correlation integral is introduced as follows:

Cq�e� �
�X

i

p
q
i

�1=�qÿ1�
:

Because ÿ lnC
�m�
q �e� � H

�m�
q �e�, Cq is just a redesignation of

Hq. Therefore, the connections with other generalized
quantities are preserved. The generalized correlation integral
is convenient because it allows an essential simplification in
the case of q � 2:

C2�e� � C�e� � 1

N 2

X
i

Si�e� ;

where Si is the number of points within the cell i, andN is the
number of sequence elements. The quantity C2 is referred to
as the correlation integral. The algorithm of computing it is

well developed (see Refs [41, 139, 140] and references cited
therein).

Let us return to the method of determining the general-
ized dimension Dq and entropy Kq. The relationship
ÿ lnC

�m�
q �e� � H

�m�
q �e� mentioned above allows the general-

ized quantities to be expressed in terms of the generalized
correlation integral:

Dq � lim
e!0
ÿHq�e�

ln e
� lim

e!0

lnC
�m�
q �e�
ln e

;

Kq � lim
e!0

lim
m!1mÿ1H �m�q � lim

e!0
lim
m!1ÿ

lnC
�m�
q �e�
m

:

Based on the above-given formulas, one may obtain that for
small e and sufficiently large m the relation lnC

�m�
q �e� '

Dq ln eÿ Kqw� const holds true, where w � �mÿ 1�t is the
so-called reconstruction window width. Hence, in addition to
the estimate of Dq one may get, by fixing the scale e and
exploring the dependence on w, an estimate of the generalized
entropy Kq of the dynamical system.

It was proposed inRefs [141, 142] that there exists another
scheme of computing the K2-entropy, which relies on the
representation of Kq as the limit of difference H

�m�1�
q ÿH

�m�
q

for e! 0 and m!1:

K2 � lim
e!0

lim
m!1K

�m�
2 �e�; K

�m�
2 � 1

kt
ln

C �m��e�
C �m�k��e� :

Here, C �m��e� is the correlation integral C
�m�
2 �e�. The

dependence of K
�m�
2 on the embedding dimension m can be

approximated with the least square procedure through the
following relationship:

K
�m�
2 �e� � K2�e� � b

mc
;

where b and c are some positive values.
Thus, in the case of small fixed e the entropy K2 is defined

as the limit of K
�m�
2 for m!1.

7.5 Statistical properties of dynamical systems
Adynamical system is chaotic if its behavior possesses certain
properties characteristic of random processes which are the
subject of probability theory. In this section, we present the
hierarchy of chaotic properties of dynamical systems [143,
144]. Each subsequent property will be stronger than the
preceding one.

I. The existence of an invariant measure [30, 31, 145, 146].
Sufficiently general theorems on the existence of invariant
measure were proven for dynamical systems with a compact
phase space. For Hamiltonian systems, the existence theorem
follows from the Liouville theorem. For dissipative systems,
the invariant measure frequently turns out to be on the
attractor.

The important part of this avenue of research is the
proof of the existence of so-called physically observable
measures, or SRB (Sinai±Ruelle±Bowen) measures intro-
duced in the 1970s [147±150] (see also Ref. [151]). The
presence of the SRB measure in the system signifies that
there exists such an invariant measure defined on the
attractor that almost all trajectories localized in the vicinity
of the attractor turn out to be uniformly distributed with
respect to it. In this case, the time average of any continuous
function will coincide with its space average, which is just
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defined by the invariant measure. Hence follows the
nameÐ the physically observable measure.

It is well known that strange attractors do not yield to
analytical description in an overwhelming majority of
casesÐ they can be studied only numerically. The impor-
tance of the SRB measure consists in the fact that, from its
existence, it follows that images of strange (chaotic) attractors
obtained with the help of computers correspond to the actual
attractors.

A hyperbolic attractor has an SRB measure. For nonuni-
form hyperbolic attractors, such measures were also con-
structed for the family of HeÂ non maps [152], Lorenz
equations [36, 37], and other dynamical systems (see
Ref. [151]).

One of the important corollaries that follows from the
existence of invariant measure in conservative systems is the
famous PoincareÂ return theorem [127], according to which
the system returns to the neighborhood of its initial state
infinitely many times, excluding the set of initial conditions
of zero measure. In its day, this result prompted the
formulation of the Zermelo paradox in statistical mechanics
[153], which was proposed as an objection against Boltz-
mann's H-theorem for the gas kinetic equation [154]. A gas
of particles, which can be considered as a compact
Hamiltonian system, should return to the domain where it
was initially. For example, if the gas occupied half of some
volume, then after a certain period of time all its particles
would gather there again. Such an event contradicts
Boltzmann's H-theorem, which argues that a system com-
posed of a large number of colliding particles irreversibly
tends to the equilibrium state.

The solution to this paradox given by Boltzmann [155]
relies on two basic issues: the extremely small probability of
returns, and coarse-graining of the distribution function. For
systems of interest in statistical mechanics, the return time is
extremely long, so that the probability of returns is negligibly
small. The procedure of coarse-graining of the particle
distribution function does not make provision for such rare
events, which makes the relaxation to equilibrium irrever-
sible.

Although such an explanation seems rather plausible, it
remains unclear how the coarse-graining occurs in the
original system because the process of coarse-graining is
ambiguous, while the system itself remains unchanged.
Discussions of the questions raised can be found in Refs [13,
42, 156, 157].

II. If the measure is already constructed, then it is natural
to inquire about ergodic properties of the system with respect
to this measure [144, 146]. According to the Birkhoff±
Khinchin ergodic theorem (see, for example, Refs [29, 127]),
the existence of the invariant measure ensures the possibility
of time averaging almost everywhere, i.e., the existence of
time-averaged quantities.

III. Mixing [13, 29±31, 127, 144, 146]. The transformation
F t : M!M is called mixing if, for any two functions h and g,
the relation

lim
t!1

�
M

h�F tx� g�x� dm �
�
M

h�x� dm
�
M

g�x� dm

holds true, i.e., past a sufficiently long time interval the
functions h�F tx� and g�x� will be statistically independent.
The expression

�
h�F tx� g�x� dm is called a time correlation

function. The existence of mixing in the system entails

irreversibility and the unpredictability of dynamics (see
Ref. [13]).

IV.K-property (quasiregular, as proposedbyANKolmo-
gorov, or the Kolmogorov property, according to modern
terminology) [29, 127, 135]. If a dynamical system represents a
K-system, its entropy is positive. Such a division of dynamical
systems into K-systems and deterministic transformations
with zero entropy formalizes the very important idea about
stochastic and deterministic systems considered in statistical
physics (see also Section 9).

V. The Bernoulli property [126, 135]. The behavior of a
dynamical system looks the more stochastic, the better it is
described by a sequence of independent random variables. If
coding a dynamical system into the regular stationary process
(see Section 4.4) represents such a sequence, the system is
called the Bernoulli system.

VI. Fulfillment of the conditions of the central limit
theorem [85, 144].

Let f : M!M be some map of the space M into itself.
For a given function g, consider time fluctuations (around its
average), namely

1

n

Xn
k�1

g
ÿ
f k�x��ÿ �g ;

where �g � �M g�x� dm�x�. The fulfillment of the central limit
theorem means that there exists s � s�g� such that

lim
n!1 m

(
x : s

���
n
p �

1

n

Xn
k�1

g
ÿ
f k�x��ÿ �g

�
< a

)

� 1������
2p
p

� a

ÿ1
exp

�
ÿ u 2

2

�
du :

The sense of this relationship is that the sequence of values
g� f k�x�� generated by the dynamical system f is described by
the standard normal distribution function, while time
fluctuations do not tend to any limit but have the Gauss
limiting distribution.

This property is inherent in hyperbolic dynamical systems
and scattering billiards.

VII. Exponential decay of correlations [145]. In applica-
tions, it is not only establishing the presence ofmixing (see III)
that is important, but also estimation of the rate of
convergence to the limit. If for a function g with zero mean,
�g � 0, there exist numbers C > 0 and 0 < q < 1 such that���� �

M

g
ÿ
f k�x�� g�x� dm����4C�g� q jkj ;

then g possesses the property of exponential decay of
correlations.

8. Reconstruction of dynamical systems

As already mentioned, notwithstanding the intensive devel-
opment of the dynamical system's theory and the availability
of fairly powerful theoretical apparatuses, getting an ade-
quate description of chaotic processes presents a far from
simple problem, if it is solvable at all. Moreover, the majority
of complex systems considered in natural sciences do not yield
to treatment in the framework of model (1) since the
derivation of equations from the first principles is not always
possible. Because of this, the study of systems, especially in
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experimental research, frequently proceeds through proces-
sing the recorded signals generated by the system. For
example, in arrhythmology one uses electrocardiograms as
such signals, and in seismology the records of Earth crust
displacements, in meteorology the observational data, in
financial analyses the rates of securities, and so on [158±
162]. Commonly, such a signal is called the observable, and
the method of signal processing is known as the reconstruc-
tion of dynamical systems [139, 163].

The observable comprises the sequence of values taken by
some variable (or variables) recorded continuously or in some
time intervals. Often the notion of `time series' is used instead
of `observable'. It is clear that the availability of only a time
series instead of a full solution of equations strongly limits our
knowledge of the system being studied. This imposes strong
limitation on feasible reconstructions.

A scalar time series fxigNi�1 is an array of N numbers
representing the values of some dynamical variable x�t�
measured with a constant time step ti � t0 � �iÿ 1�t:
xi � x�ti�, i � 1; . . . ;N.

The contemporary analysis of time series is based on the
idea [163] that one can get a satisfactory geometrical picture
of a strange attractor if, instead of original variables
showing up in system (1), so-called delay vectors zi �
fxi; xi�1; . . . ; xi�mÿ1g are utilized. This approach to the
analysis of time series was first mathematically verified in
the work by F Takens [165].

8.1 Elements of the Takens theory
Let the dynamical system F t�x� with the phase space M be
defined. The quantities forming the time series are the values
of some function of state, x�t�, of this dynamical system on
the manifold W d from M: xi � h�x�ti�� � h�F ti�x0��. Con-
sider the construction of delay vectors given the time step t.
Obviously, the equalities xi�1 � F t�xi�, xi�2 � F 2t�xi�; . . . ;
xi�mÿ1 � F �mÿ1�t�xi� hold true for state vectors x�ti� � xi.
Hence, the components of delay vectors z satisfy the following
relations

xi � h�xi� � F0�xi� ;
xi�1 � h�xi�1� � h

ÿ
F t�xi�

� � F1�xi� ;
xi�2 � h�xi�2� � h

ÿ
F 2t�xi�

� � F2�xi� ;
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ;

xi�mÿ1 � h�xi�mÿ1� � h
ÿ
F �mÿ1�t�xi�

� � Fmÿ1�xi� :

Since all components of vector zi � fxi; xi�1; . . . ; xi�mÿ1g can
be connected to one and the same state xi of the dynamical
system, a vector function L that maps vectors xi 2W d into
vectors of m-dimensional Euclidean space Rm exists:

zi � L�xi�, xi 2Wd, zi 2Rm.

This reasoning makes up the essence of the Takens
theorem [164] which asserts that the typical property of map
L for m5 2d� 1 is the embedding of W d into Rm. In other
words, the imageW d in Rm [V d � L�W d�] does not have self-
intersections. In this case, the function L is differentiable and
possesses the inverse differentiable function Lÿ1 defined on
V d : W d � Lÿ1�V d�. Then, a dynamical system can be
defined on V d because xi � Lÿ1�zi� and xi�1 � F t�xi�:

zi�1 � L�xi�1� � L
ÿ
F tÿLÿ1�zi��� � C�zi� ; zi 2 V d ;

where C : V d ! V d. It is easy to see that if the last
component in this expression is kept, one obtains a compo-
nent-wise variant of the time series presentation:
xi � G�xiÿ1; . . . ; xiÿm�. This relation can be used to solve the
forecast problem, since one only needs to know m.

Thus, we have two transformations, F andC, viz.

xi�1 � F t�xi� � F�xi� ; x 2Wd ;

zi�1 � C�zi� ; z 2 V d :

Since z � L�x�, these are different representations of the same
map. Consequently, the characteristics invariant with respect
to nondegenerate substitution should coincide for both
systems.

Therefore, the attractor dimension, the entropy of a
dynamical system, and some other invariant characteristics
can be retrieved from the measured values.

In the applied analysis of time series one distinguishes two
main tasks: that of identification, and that of forecast.

8.2 Identification problem
The identification problem in the analysis of observables
aims at studying the question of the parameters of the
system that has generated the given time seriesÐ the
correlation dimension, entropy, Lyapunov exponents, and
others (see Section 7).

Since the entropy is the measure characterizing the degree
of disorder in the system, it turns out to be related in a natural
way to the notion of predictability. This notion may imply (a)
how the initial information about the system is lost with time
as a consequence of initial error growth, and (b) how the
difference between the real and perturbed trajectories grows
in time.

The entropy K is related to the first treatmentÐ it
determines the time of predictable behavior of a dynamical
system:

TK � 1

K
log

1

e
;

where e is the relative error of data on its state. It should be
noted that the dependence on e is only a logarithmic one. The
second treatment is related to the notion of Lyapunov
exponents. In this case, one can also introduce the predict-
ability horizon:

Tl � 1

lmax
log

1

e
;

where lmax is the maximum Lyapunov exponent. Both
estimates agree to an order of magnitude. In practice,
however, the predictability time is estimated from the
simplified formulas TK � Kÿ1 and Tl � lÿ1max.

8.3 Forecast problem
Apparently, the forecast problem is one of the oldest in the
analysis of time series. It came into being long before the
inception of the theory of dynamical systems and was related
to the forecast problem in the theory of stochastic processes.

The forecast problem aims to predict, based on observa-
tional data, the future values of measured characteristics of
the object under study, i.e., make a forecast for a certain time
interval. At the current stage, several different forecast
methods are being developed and rigorously justified.
However, they all fall into two main categories: local and
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global. This subdivision takes into account the domain of
definition of the parameters of the approximating function
which evaluates the next value of the time series in a recurrent
way, based on the several preceding ones [139].

In the historical context, the global methods were
developed first. It was proposed to use autoregression,
running mean, and other tools based on statistical analysis.
Later on, new practical techniques were suggested in the
framework of nonlinear dynamics:
� singular spectral analysis (SSA) [166, 167];
� local approximation (LA) [168];
� the SSA-LA combination [169].
The SSAmethod has a rigorous mathematical foundation

and is largely used to determine principal components of time
series, and also for noise filtration [166, 170]. Original forecast
algorithms that are based on this method also exist [167].

The local methods of forecast, based on LA, have an
advantage over the other methods in tasks related to the
forecast of irregular series [171, 172]. The application of LA
does not require a priori information about the system
generating the time series, so that there is no need to
construct a specific model which would describe the
dynamics of the series under study (see Ref. [41]).

With the progress in nonlinear dynamics it turned out
that the forecast problem is essentially more involved and
frequently does not fit to the schemes proposed by the
theory. In particular, the length of the series being analyzed
should be sufficiently large, while the noise component
should be small enough. One of effective approaches,
which allows one to overcome these difficulties and explore
noisy and relatively short series, is based on the SSA-LA
method [169].

These important topics, however, involve a different
range of problems, namely, that of reconstruction of
dynamical systems by their time series. Their description is,
therefore, outside the scope of the current review. The main
results pertaining to the questions touched on in this section
are elaborated in studies [41, 139, 158, 173±176] (see also the
references cited therein).

9. Randomness and chaos

The statistical properties of deterministic systems (see
Section 7.5) reflect the stochastic character of their
dynamics. For such systems, however, their future is
uniquely determined by their evolution operator and given
initial conditions. A question naturally arises: in which sense
may a dynamical system possess stochastic (or statistical)
properties?

Sometimes the view is expressed that chaos and random-
ness are the collective concepts characterizing one and the
same phenomenon of unpredictability. However, such a view
is in principle incorrect, because chaotic and stochastic
systems have deep distinctions. The Takens theory (see
Section 8.1) allows one to tell apart a dynamical process
from a purely stochastic, i.e., nondeterministic, one. This
aspect proves to be very important for applications because it
enables the nature of a signal obtained experimentally to be
established.

9.1 Finite-dimensional and infinite-dimensional observables
The sequence of measurements x̂ � fxngNn�0 is called determi-
nistically generated if the following conditions take place
[165, 177, 178]:

(a) there exist a finite-dimensional dynamical system f,
point y0, and function f such that for all n � 0; 1; 2; . . . the
equality f� f n�y0�� � xn holds;

(b) the distance dist� f kx; f kx 0�4const exp�lk� dist�x; x 0�,
i.e., the maximum Lyapunov exponent (see Section 7.1) is
bounded for f ;

(c) the function f is Lipschitz continuous, i.e.,
jf�x�ÿf�x 0�j4Ljxÿ x 0j for a certain L called the Lipschitz
constant.

Let us introduce the space B of all observables as the set
x̂ � fx0; x1; x2; . . .g,P1n�0 jxnj=2 n <1. With a proper norm,
the space B will be a complete normalized linear space. We
define a dynamical system in B by the shift map x̂ 7! f x̂,
where f x̂ � �x1; x2; x3; . . .�. We then obtain a universal
dynamical system generating any bounded sequence of
observations.

Consider the limit setA�x̂� and limit capacityD0�A� of the
observable. They can easily be introduced if one considers an
arbitrary sequence x̂ as an initial state of the universal
dynamical system in the space B. If D0�A� <1, then a
finite-dimensional dynamical system corresponds to the
given observable. If, in addition, the entropy and maximum
Lyapunov exponent are bounded, the process under con-
sideration is deterministically generated.

Thus, the analysis of the observed signal can answer the
principal question of the finite dimensionality and determi-
nistic character of the process under study. However, this
does not exhaust the significance of this approach.

9.2 To the definition of chaos and randomness
Based on the concepts of entropy and dimension, the
chaotic dynamics can be defined differently with respect
to Section 2.3. Such an approach was proposed by Takens in
Ref. [165] (see also Ref. [179]). In a certain sense this
definition is physically better grounded because it relies on
more common notions.

Consider the sequence fxngn5 0 which is obtained through
measurements of some stationary process or represents the
values of the dynamical variable of system (1), recorded at
certain discrete instants of time n. For this sequence, the
entropy may take one of three admissible values: H � 0,
0 < H <1, orH!1.

If the system is a dynamical one with a compact space of
states, the value H!1 for it should be excluded. This case
takes place if the system evolves in a stochastic (random)
way. When 0 < H <1, the system is referred to as
possessing chaotic behavior. Consequently, the dynamic
system is chaotic if there exists some subset O in its state
space such that any trajectory that starts in O has a positive
entropy. Finally, the system dynamics for H � 0 are regular.

Thus, this definition of chaos differs from the others
through the fact that it additionally considers stochastic
dynamics. However, it includes therewith two common
elements: stationary, periodic, and quasiperiodic dynamics
are not chaotic; the system with chaos shows sensitive
dependence on its initial conditions. This latter statement
follows from formula (8) which connects the entropy and
exponential instability (see Section 2.3).

10. Conclusions

The development of the theory of dynamical systems in the
second half of the 20th century led to extremely important
consequences, not only in theoretical physics and mathe-
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matics, but also in natural sciences as a wholeÐ the discovery
of dynamical chaos and issues connected to it. It turned out
that numerous nonlinear systems, despite their fully determi-
nistic character, i.e., the absence of noise, stochastic perturba-
tions, and so on, can demonstrate behavior similar to that of
random processes. By this means, the emerging statistics of
system's behavior are exclusively defined by the specifics of
dynamics. Although premises of this ideology were formu-
lated more than one hundred years ago in the work of
A M Lyapunov and H PoincareÂ , the main discoveries and
comprehension of this phenomenon took place in the 1960s±
1980s.

It is worth noting that the classical analytical tools, such
as series of perturbation theory, asymptotic methods, and
some others turned out to be useless for studying chaotic
systems. For instance, the Smale horseshoe, which in a certain
sense prompted the modern research of chaotic phenomena,
cannot be described by relations in the mathematical style of
the 19th century. In order to create and analyze such
constructions, essentially new methods had to be designed.
Their development led to important discoveries in the theory
of dynamical systems.

The main goal of this review is the description of various
approaches that assist the analysis of nonlinear chaotic
dynamical systems. Understandably enough, many lines of
inquiry were left out of our consideration. In particular, we
barely touched such broad topics as the chaos onset scenarios,
dynamics of one-dimensional maps, spacetime chaos and
turbulence, holomorphic dynamics and fractal sets, and
others. However, some of them are described in the papers,
manuals, and monographs listed in the References.

Themain achievements of the theory of chaotic dynamical
systems can briefly be summarized as follows.

It was proven that even very simple systems (such, as for
example, the Lorenz system) may exhibit random properties.
This drastically changed the idea of randomness, which was
previously conceived of as occurring exclusively in systems
with a large number of degrees of freedom.

Based on the analysis of billiards significant progress was
reached in understanding the roots of randomness in a gas of
hard spheres and, as a consequence, in substantiating the
Boltzmann ergodic hypothesis.

With the help of the theory of chaotic dynamical systems,
a partial success was in getting solution to the problem of the
origin of irreversibility in reversible, deterministic equations
of motion.

It was proven that chaos may evolve along universal
routes, independent of the nature of the system. This out-
standing discovery, backed also by experimental research, has
led to the development of the renormalization group method
in the theory of dynamical systems.

It was found that randomness may derive from both
internal properties and outside factors. Moreover, exploring
time series of observable quantities one can always distin-
guish the random, stochastic behavior of systems from the
deterministic chaos, and in this way judge on the finite
dimensionality of the process under study.

Themethods developed for the time series analysis made it
possible to use in practice the results of the theory of
dynamical systems in order to calculate such characteristics
as the entropy, Lyapunov exponents, and dimension. This
enables, based on only experimental data, defining the
predictability horizon for the process under study and, in
some cases, predicting the subsequent system's evolution.

This line of inquiry is continuously gaining in popularity in
such applied sciences as financial analysis and medicine.

Finally, one cannot avoid mentioning the esthetic attrac-
tiveness of the results obtained. Thanks to books published by
BMandelbrot [180], andH-O Peitgen and PRichter [181], the
computer images of fractal sets, strange attractors, and their
attraction basins have uncovered the artistic side of the chaos
theory. As noted by D Ruelle, this is the field of research
where new harmonies will be found [182].

The world of chaos and the theory of dynamical systems is
fascinating indeed, and, having once uncovered it, one stays
forever enchanted by its beauty.

The author is indebted to V B Braginsky and A R Dzha-
noev for their fruitful discussions, and also to the anonymous
reviewer for valuable comments that helped improve this
review.
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