
Abstract. Gravitational radiation (GR) from compact relativis-
tic systems with a known energy±momentum tensor (EMT) and
GR from two masses elliptically orbiting their common center
of inertia are considered. In the ultrarelativistic limit, the GR
spectrum of a charge rotating in a uniform magnetic field, a
Coulomb field, a magnetic moment field, and a combination of
the last two fields differs by a factor of 4pGm 2C 2=e 2 (C being
of the order of the charge Lorentz factor) from its electromag-
netic radiation (EMR) spectrum. This factor is independent of
the radiation frequency but does depend on the wave vector
direction and the way the field behaves outside of the orbit.
For a plane wave external field, the proportionality between
the gravitational and electromagnetic radiation spectra is ex-
act, whatever the velocity of the charge. Qualitative estimates
of C are given for a charge moving ultrarelativistically in an
arbitrary field, showing that it is of the order of the ratio of the

nonlocal and local source contributions to the GR. The localiza-
tion of external forces near the orbit violates the proportionality
of the spectra and reduces GR by about the Lorentz factor
squared. The GR spectrum of a rotating relativistic string with
masses at the ends is given, and it is shown that the contributions
by the masses and string are of the same order of magnitude. In
the nonrelativistic limit, the harmonics of GR spectra behave
universally for all the rotating systems considered. A trajectory
method is developed for calculating the GR spectrum. In this
method, the spatial (and hence polarization) components of the
conserved EMT are calculated in the long wavelength approx-
imation from the time component of the EMTs of the constitu-
ent masses of the system. Using this method, the GR spectrum
of two masses moving in elliptic orbits about their common
center of inertia is calculated, as are the relativistic corrections
to it.

1. Introduction

The source of gravitational radiation (GR) in the general
theory of relativity is the conserved total energy±momentum
tensor (EMT) of the system. At the same time, the EMT of
the gravitational field is not an unambiguously defined
quantity [1, 2], which is one of the reasons why the problem
of radiation by gravitational waves is in general so
complicated and far from a definitive solution despite the
considerable efforts of researchers [1].
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For this reason, a detailed study of GR (in the general
case, of gravitational fields) from a simple electrodynamic
system, such as a charged particle moving in an electro-
magnetic field, is of great interest. First, such GR shares
several common features with the GR of a body moving in a
gravitational field. Second, the enormous energy of particles
in accelerators being designed opens up the possibility for
the experimental verification of the ultrarelativistic effects of
the general theory of relativity [3±5]. Equally interesting is
to elucidate what information about the dynamic properties
of a given system is transmitted by its GR, in particular, to
what extent it supersedes the information conveyed by the
electromagnetic radiation (EMR) of the system and under
which conditions GR acquires the known characteristics of
EMR.

As is known from electrodynamics [6, 7], the spectrum of
classical EMRof a charge is totally determined by the Fourier
components of the conserved current density ja�q�:

dEq �
�� ja�q���2 d3q

16p3
; ja�q� � e

�1
ÿ1

dt _xa�t� exp
�ÿiqx�t�� ;

�1:1�

i.e., by its trajectory xa�t�, and is unrelated to the nature of
forces driving the charge along this trajectory.

On the other hand, the spectrum of the classical GR of a
body with mass m moving along a trajectory xa�t� is
determined by Fourier components of the conserved EMT
Tab�q� of the entire system [7, 8]:

dEq � 8pG
�
Tab�q�T ab��q� ÿ 1

2

��T a
a �q�

��2� d3q

16p3
: �1:2�

BecauseTab�q� is the sum of the EMTof the body in question,

tab�q� � m

�1
ÿ1

dt _xa�t� _xb�t� exp
�ÿiqx�t�� ; �1:3�

and the EMT of the force field responsible for moving the
body along the given trajectory, the GR spectrum depends
essentially on the nature of this field. An exception is the case
of a nonrelativistically moving body (or bodies) forming a
closed system together with the force field. Then GR
becomes quadrupole-like, whatever the nature of the forces
acting on the body, and is described by the well-known
formulas [6]

dEq
dt
� G

4p

�
1

4
�D���i j ninj�2 � 1

2
D
��� 2
i j ÿD

���
i jD
���
iknjnk

�
dO ;

�1:4�
dE
dt
� G

5
D
��� 2
i j ; Di j �

�
t00�x; q 0�

�
xixj ÿ 1

3
r 2di j

�
d3x ;

containing the quadrupole moment Di j of the moving mass
distribution; here, n � q=q 0. On the other hand, in the general
relativistic case, the GR spectrum gives an idea of the
dynamic properties of its source, and this fact is of consider-
able interest.

In Section 2, we consider the GR of a body with mass m
and charge e driven by electromagnetic forces in a uniform
magnetic field, in the Coulomb field of a heavy center, and in
a plane-wave field with circular or linear polarizations [9].
Although the GR spectrum in each of these cases has specific
features, it coincides with the spectrum j ja�q�j2 of EMR in the
relativistic limit up to the replacement of the squared charge

e 2 by the quantity 4pGm 2G 2, where G is proportional to the
effective Lorentz factor of the moving body and essentially
depends on the character of the external field. In this limit, the
radiation wave vector q is pinned to the plane of the body
motion, forming a small angle a9gÿ1 5 1 with it, and the
radiation frequency is g 3 times higher than the fundamental
frequency o, q 0 � jqj � g 3o. Hence, at g4 1, in the effective
range of frequencies and angles of radiation, we have the
relation

8pG
�
Tmn�q�T mn��q� ÿ 1

2

��T m
m �q�

��2� � 4pGm 2G 2

e 2

�� jm�q���2 :
�1:5�

Because any external electromagnetic field looks like a
plane wave in the rest frame of a relativistically moving body,
relation (1.5) can be expected to be exact rather than
approximate for the GR spectrum of a body with mass m
and charge e moving in a plane electromagnetic wave field.
Indeed (as is shown in Section 2.3 below), the following strict
relation holds for theGR spectrum in the case of suchmotion:

Tmn�q�T mn��q� ÿ 1

2

��T m
m �q�

��2 � m 2G 2

2e 2

�� jm�q���2 ;
�1:6�

G � m�q?
mqÿ

� g� cot
y
2
;

where m� is the effective mass of the charge equal to its mean
kinetic energy in the system of coordinates where it is at rest
on average, q3 and q? are parallel and perpendicular
components of the radiation wave vector q with respect to
the momentum of the wave k, qÿ � q 0 ÿ q3, and y is the angle
between q and k. The effective Lorentz factor g� and the
velocity v� are defined by the relation m� � mg� �
m�1ÿ v 2� �ÿ1=2.

The value of G in the case of ultrarelativistic motion in a
circularly polarized wave for the aforementioned high GR
frequencies tends to the Lorentz factor g because, with the
plane of the motion orthogonal to the vector k, the angle y
differs from p=2 by no more than gÿ1 and the effective mass
coincides with the body constant kinetic energy in the system
under consideration.

For ultrarelativistic motion in a linearly polarized wave,
the quantity G is given by formula (1.6) as before; the
ultrarelativism only bounds the range of effective angles y
from below: 2 arccot

���
2
p

4y4 p. G remains y-dependent
because, as the charge moves along the figure-eight trajec-
tory lying in the plane containing the vector k, the angle
between its velocity v and the vector k takes all values between
y0 � arctan �2 ���

2
p

=v�� and p four times (see [6]). In the
ultrarelativistic limit, this range of angles widens
(y0 ! 2 arccot

���
2
p

at v� ! 1) and restricts the effective
radiation angle y because radiation becomes pinned to the
direction of velocity.

We emphasize that the value of G�y� does not coincide
with the Lorentz factor of the body at a point where its
velocity vmakes the angle ywith the vector k for the following
reason. Although GR is emitted by an ultrarelativistically
moving charged body along its velocity vector, it is formed in
the region of the order of the trajectory mean curvature
radius, whereas EMR is emitted in the ultrarelativistic limit
along the velocity vector of the charge and is formed at the
segment of the trajectory g times smaller than the local
curvature radius.
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The extended region where GR forms is preserved even in
the case of ultrarelativistic motion of the body because
emission of GR by a local source (the EMT of the body tmn)
is accompanied by the emission of GR from an extended
source (the EMT ymn of the external and proper electromag-
netic fields). The latter mechanism consists of emission of a
virtual photon by a local source (the current jm), giving rise to
a real graviton due to gravitational interaction with a
quantum of the external electromagnetic field. In the
ultrarelativistic limit, the frequency of the virtual photon is
g 3 times the fundamental frequency o (defined by the
curvature radius r of the trajectory, o � c=r) and its `mass'
is of the order of g 3=2o, i.e., is small compared with the
frequency. For this reason, such a photon is emitted almost as
a real one, in the direction of the charge velocity vector, and is
formed at a small segment �� c=go� of the charge trajectory,
but its gravitational interaction with a quantum of the
external field occurs along a length of the order of that
quantum wavelength �� c=o�. Evidently, the graviton
energy and momentum actually coincide with those of the
virtual photon, but the probability of the appearance of the
graviton depends on the state of the external field over the
graviton formation length. The extension of the range of GR
formation from � c=og to � c=o results in G differing from
the Lorentz factor g at the moment of photon emission and in
its dependence on the external field structure. Also important
is the fact that the two abovemechanisms ofGR are coherent.
As the charge moves in a plane-wave field, their interference
leads to the suppression of GR at the angle y � p, although
EMR is not forbidden at this angle.

On the other hand, G�y� diverges as yÿ1 at y! 0 and
leads to the logarithmic singuliarity dy=y in the GR
spectrum due to a finite and nonzero current density at the
point y � 0. The appearance of this singularity is related to
the fact that as y! 0, the leading role in the emission of
gravitons is played by the second, nonlocal mechanism. Its
amplitude is the sum of two amplitudes proportional to the
propagators �q� k�ÿ2 of the virtual photons present in the
source of gravitons, i.e., the EMT of the field of these
photons and the plane electromagnetic wave. As y! 0, the
photon propagators become infinite because �q� k�ÿ2 �
��2oq 0�ÿ1�1ÿ cos y�ÿ1 � �1=oq 0y 2, while the remaining
factor of the transverse EMT components tends to zero as y
(the electromagnetic field of the photons and the field of the
plane electromagnetic wave propagating in the same direction
again constitute a plane electromagnetic wave, which, as is
well known, cannot be a source of gravitons because its EMT
has no transverse components [6]). As a result, the amplitude
and therefore G diverge like yÿ1 as y! 0.

Because the current density at y � 0 differs from zero only
for the fundamental frequency q 0 � o, the singularity of the
GR spectrum at this point may be due to the subnormal mass
�� oy� of virtual photons and therefore the very large region
�� 1=oy� of formation of GR emitted at such small angles.

Such enhancement of the nonlocal mechanism also occurs
in the GR process of a charge moving in a constant uniform
magnetic field (Section 3) if the field remains uniform over a
length lmuch greater than the radiation wavelength l, i.e., at
l4 l. In this case, the external field is characterized by the
wave vector ka such that jkj � lÿ1 and k 0 � 0, and hence the
virtual photons emitted by the current ja have a very small
mass j�q� k�2j � q 0lÿ1. If l � 1,Tmn�q� has a pole at q 2 � 0.
Then the GR spectrum can be represented as an expansion in
powers of q 2=o2 (o is the angular frequency in a circular

orbit):

Tmn�q�T mn��q� ÿ 1

2

��T m
m �q�

��2
�
�
o2

q 2

�2

aÿ2 � o2

q 2
aÿ1 � a0 � . . . ; �1:7�

where the leading term is proportional to the EMR spectrum,

aÿ2 � 2m 2g 2q 2
?

e 2o2

�� jm�q���2 : �1:8�

The proportionality coefficient actually coincides with the
corresponding coefficient in (1.6) for the circularly polarized
wave. Indeed, the coefficient in (1.6) follows from (1.7) and
(1.8) by the replacement q! q� k, where ka is the wave
vector with the components k3 � k 0 � o, k1 � k2 � 0:

2m 2g 2o2q 2
?

e 2q 4
! m 2g 2q 2

?
2e 2q 2ÿ

: �1:9�

For finite l4 l, formula (1.7) acquires dependence on the
falloff of the magnetic field at distances� l. For example, for
a Gaussian falloff of the field in the motion plane
H�x� � H0 exp �ÿx 2

?=l
2�, qÿ4 in the first term in (1.7) should

be replaced by pl 2=16q 2
? because the field is characterized in

this case by the wave vector k1; 2 � lÿ1, k3 � k 0 � 0. Then the
second term vanishes.

Formulas (1.6), (1.7), and (1.8) clearly demonstrate the
differences between the GR spectra for different electromag-
netic force fields driving a massive charge in the same orbit.
Thus, the formation of the GR of a massive charge moving in
the external electromagnetic field is greatly promoted by the
nonlocal mechanism with the participation of virtual
photons. In certain cases (movement in a plane-wave or
constant uniform field, ultrarelativistic motion), this mechan-
ism leads to proportionality between the GR and EMR
spectra, with the proportionality coefficient carrying infor-
mation about the nonlocal mechanism and the form of the
external field.

Such a relation between the GR and EMR spectra
disappears if the external electromagnetic field is replaced by
a local force field.We show this with the example of theGRof
a body elastically colliding with very massive but small balls
arrayed circumferentially at regular intervals such that the
resulting motion of the body in the limit of a large number of
balls is a uniform circular motion (or motion along a ring-like
trough).

In electrodynamics, the current density conservation
ensures that its invariant square determining the EMR
spectrum can be expressed through transverse current
components in the system of coordinates with the 3-axis
along the wave vector q, q 0 � jqj:�� ja�q���2 � �� j 01�q 0���2 � �� j 02�q 0���2 : �1:10�

Similarly, the EMT conservation allows expressing invariant
(1.2) determining the GR spectrum in terms of the EMT
transverse components in the system of coordinates with the
3-axis along q:

Tab�q�T ab��q� ÿ 1

2

��T a
a �q�

��2
� 1

2

��T 011�q 0� ÿ T 022�q 0�
��2 � 2

��T 012�q 0���2 : �1:11�
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The use of transverse (polarization) EMT components
substantially facilitates the description of a GR system and,
specifically, the estimation of contributions by the field and
matter components of the EMT. For example, it follows from
expression (3.5) for the EMT of the field and formula (3.4)
(Section 3.1) that by the order of magnitude, the space
components of the field EMT are

yik�q� � F l j ; �1:12�
where j � j�qÿ kef�, and F is the external field strength in the
formation region of the radiated photon. The length l is
determined by the photon propagator:��qÿ k�2 ÿ ie

�ÿ1
ef
� 1

jqjjkjef
� l

jqj ; �1:13�

i.e., it is the photon path length in the field before the photon±
graviton conversion. For g4 1, relation (1.5) is due to the
contribution from the field EMT, and the estimated relative
amplitude of the conversion (as we refer to G hereafter) is

G � eFl

mc 2
: �1:14�

We first consider trajectories with a turning angle of the
order of 1 or greater (including finite trajectories), for which
the curvature radius determined by the motion law
eF � mv 2g=r does not exceed the field size. If the field varies
appreciably at distances much greater than r, then l4 r and
G � gl=r4 g. Such a situation occurs for the GR of a charge
moving in a uniform magnetic field extending far beyond the
orbit (see Section 2.2). For a field changing considerably at
distances of the order of the orbit radius (circular motion in a
Coulomb field, see Section 2.4, a magnetic moment field, or a
combination of these two fields; see Sections 3.1 and 3.2),
G � g4 1. Finally, for a field extending along the trajectory
as far as lk0 r but having the small transverse size l?5 r (as
in modern cyclic accelerators), G � gl=r5 g, where
l � �l?r�1=2 5 r [see a remark to this effect in Section 3.2 and
formula (3.31)]. With this in mind, we cannot agree with the
authors of [4] that the GR intensity in existing and projected
accelerators can be estimated from the formula for the EMR
intensity with the squared charge e 2=4p substituted by
Gm 2g 2; the small factor l?=rmust be taken into account.

We next consider trajectories with a small rotation angle
Dj9 1, i.e., infinite trajectories in a field of small extension
compared with the curvature radius. Using the motion law
eF � mvgDj=Dt and l � vDt, we obtain G � gDj9g in
accordance with (1.14). This estimate is valid at
gÿ1 9Dj9 1. If Dj9gÿ1, the following consideration
should be borne in mind. Formula (1.5) relates GR to the
EMR produced by the current components transverse to q at
q 2 � 0. But a contribution to (1.12) also comes from off-shell
current components unrelated to particle acceleration. They
are a factor of 1=Dj larger than the acceleration-related
components and have components orthogonal to q that are
� 1=gDj times the transverse components responsible for
EMR. Consequently, an additional factor 1=gDj appears in
the above estimate at Dj5 gÿ1 5 1. Thus, at Dj9 1,

G � gDj
�
1� 1

gDj

�
� 1� gDj : �1:15�

In Section 3, we consider the GR spectrum of a charge
rotating in the equatorial plane of amagneticmoment field and
show that in the relativistic limit, it coincides with the GR
spectrum of a charge rotating in a Coulomb field if the

parameter eM=r of the charge±field interaction is replaced
with ÿee 0. Moreover, the GR spectrum of a charge rotating
ultrarelativistically in the combined Coulomb and magnetic
moment field is describedby the same formulawith the quantity
in the left-hand side of inequality (3.29) as the interaction
parameter. In other words, the GR spectrum is in all cases
characterized by the conversion amplitude G � g [11].

To elucidate the dependence of GR on the field EMT
spatial distribution, we considered the GR spectrum of a
relativistic string with point masses at the ends and showed
that in the relativistic limit, the contributions from the string
and the masses are of the same order of magnitude even
though the string energy is by the order of magnitude g times
higher than the mass energy.

It has been shown that the GR spectrum of a closed
system consisting of a point mass rotating in a central field, in
the nonrelativistic approximation when theGRwavelength is
much greater than the system size, has a universal character:
the leading term of each GR harmonic is independent of the
nature of the central field and for all harmonics with n5 2,
the contribution of the field EMT is nÿ 1 times smaller than
that of the mass EMT [11].

The trajectory method for calculating nonrelativistic
corrections to GR from a weakly relativistic system is
described in Section 4. The method is based on a differential
equation relating the spatial components of a conserved EMT
to its temporal component. For such systems, the spatial
EMT components are small compared with the temporal one.
Due to this, the differential equation allows finding them
from the temporal component of the matter EMT for a given
trajectory, with subsequent adjustment by including the
relativistic corrections and taking account of the temporal
component of the field EMT. This method was used to find
relativistic corrections for all GR harmonics of two masses
elliptically orbiting their common center of inertia.

Finally, Section 5 focuses on the GR spectra of an
ultrarelativistic charge passing in the equatorial plane of a
Coulomb field or a magnetic moment field, with the
deflection angle assumed small, w9gÿ1 5 1. It was shown
that the spectra coincide in the effective wave vector region
despite somewhat different trajectories and are characterized
by a conversion amplitude dependent on the wave vector
direction and the deflection angle.

The requirement of ultrarelativism may be relaxed to
relativism to obtain a more general expression for the
electromagnetic current squared; it is not segregated from
the GR spectrum, however, but may serve to evaluate it to the
order of magnitude.

Notation. Greek letters a, b, m, n, ... take values 1, 2, 3, 0
and Latin letters i, j, k, l, ... take values 1, 2, 3. We use the
metric gab � diag �1; 1; 1;ÿ1�, Heaviside units for the charge
and electromagnetic field and the speed of light c � 1, except
when relativism has to be emphasized and in Section 4.

2. Gravitational radiation
from simple electromagnetic systems

2.1 Energy±momentum tensor conservation
and the gravitational radiation spectrum
of a body moving in a ring-like trough
We consider the trough as a system of verymassive small balls
with a mass M much bigger than the mass m of the elastic
body colliding with them and EMTs in the form (1.3) with m

1096 A I Nikishov, V I Ritus Physics ±Uspekhi 53 (11)



replaced withM. It is easy to see that the spatial components
of these tensors are smaller by a factor of the order of M=mg
than the corresponding EMT components of the moving
body. Therefore, they can be neglected in the limit
�M=mg� ! 1 and the spatial components of tensor (1.3)
can be used as the EMT spatial components of the whole
system, i.e., Ti j�q� � ti j�q�. The remaining four components
of the tensor Tmn can be found from the four conservation
laws:

q mTmn�q� � 0 ; n � 1; 2; 3; 0 : �2:1�
Then

T0 j�q� � ÿ q i

q 0
ti j�q� ; T00�q� � q iq j

q 0 2
ti j�q� : �2:2�

For uniform motion with the speed v � or on a circle of
radius r in the 1, 2 plane, the following spatial components are
nonzero:

t11; 22�q� � mv 2g
2

X
n

2pd�q 0 ÿ no�

�
�
Jn � 1

2
Jn�2 exp �ÿi2j� � 1

2
Jnÿ2 exp �i2j�

�
exp �ÿinj� ;

t12�q� � mv 2g
4i

X
n

2pd�q 0 ÿ no�
�2:3�

� �Jnÿ2 exp �i2j� ÿ Jn�2 exp �ÿi2j�
�
exp �ÿinj� ;

where Jn � Jn�z� is the Bessel function, z � q?r � jnjv sin y,
y, j are polar and azimuthal angles of the vector q, and the
sum is taken over integer n0 0. Hence and from formula
(2.2), the expression for the GR spectrum is

Tmn�q�T mn��q� ÿ 1

2

��T m
m �q�

��2
� t
X
n

2pd�q 0 ÿ no� m
2v 4g 2

4

�
J 2
n�2 � J 2

nÿ2

ÿ sin2 y�J 2
n�2 � J 2

nÿ2 � JnJn�2 � JnJnÿ2�

� 1

2
sin4 y

�
Jn � 1

2
Jn�2 � 1

2
Jnÿ2

�2�
: �2:4�

It is essentially different from the EMR spectrum of a charge
moving circumferentially:�� jm�q���2 � t

X
n

2pd�q 0 ÿ no� e 2�cot2 yJ 2
n � v 2J 0 2n

�
: �2:5�

The difference persists in the ultrarelativistic limit g4 1,
where z � n � g 3 and a � �yÿ p=2� � gÿ1 are effective and
the square brackets in Eqns (2.4) and (2.5) become

�. . .�GR � 8

��
a 2 � 1

2g 2

�2

J 2
n � a 2J 0 2n

�
;

�. . .�EMR � a 2J 2
n � J 0 2n ;

and instead of Jn and J 0n, their asymptotic representations in
terms of the Airy function F�y� should be used:

Jn�z� � 1

p

�
2

n

�1=3

F�y� ; J 0n�z� � ÿ
1

p

�
2

n

�2=3

F 0�y� ;

y �
�
n

2

�2=3�
1ÿ z 2

n 2

�
:

�2:6�

It is easy to see that relation (1.5) is not satisfied; in viewing it
as an order-of-magnitude relation, we should take G � 1 and
not G � g, as it would be for a system with a nonlocal EMT.

In the nonrelativistic limit, the sum in (2.4) contains only
the quadrupole terms n � �2. According to (1.2), the n � 2
term gives rise to the GR intensity

dE
dt
� Gm 2v 4o2

8p

�
dO �1� 6 cos2 y� cos4 y� � 8

5
Gm 2v 4o2 ;

�2:7�

accounting for 1=4 theGR intensity of the same body orbiting
in a force field with the extended EMT (see [6], par. 110).

This means that for a nonrelativistic system with the force
field having an extended EMT, the contributions of local and
nonlocal channels to the GR amplitude coincide and hence
the total amplitude is twice that of the local channel and the
corresponding intensities differ by a factor of 4. We demon-
strate this in Section 2.4 by direct calculation using the
example of the GR of a charge held on a circular orbit by
the Coulomb center.

Unlike (1.6), the differential distribution in (2.4) and (2.7)
does not vanish at y � p.

It is appropriate to use formulas (2.2) and write the
conserved EMT T ab in the coordinate representation as the
sum T ab�x� � t ab�x� � t ab�x� of the point-mass EMT

t ab�x� � m

�
dt _x a�t� _x b�t� dÿxÿ x�t�� ; �2:8�

and the tensor t ab�x� that has zero spatial and nonzero mixed
and temporal components:

t i j�x� � 0 ; i; j � 1; 2; 3 ;

t 0b�x� � ÿ 1

2
m

�
dt �xb�t� sgn ÿx 0 ÿ x 0�t�� d�xÿ x�t��

� d b
0

1

2
m

�
dt
��x 0 ÿ x 0�t��� �x i�t� qid

ÿ
xÿ x�t�� ; �2:9�

b � 1; 2; 3; 0 :

We note that the tensor t ab�x�, unlike (2.8), contains only the
spatial d-function in the integrand and lacks the temporal
one.

The tensor t ab�x� differs from zero only at points x � x�t�
of the mass trajectory where the mass undergoes acceleration
�x�t� 6� 0. In this sense, the tensor t ab is local, but its values at
these points depend on the time x 0. However, the divergence
of this tensor

q
qx a t ab�x� � ÿm

�
dt �x b�t� dÿxÿ x�t�� �2:10�

is entirely local. It has the same value (but the opposite sign)
as density of the force accelerating the mass, i.e.,

q
qx a t ab�x� � m

�
dt �xb�t� dÿxÿ x�t�� : �2:11�

These two divergences compensate each other, demonstrating
the conservation of T ab�x� in the coordinate representation.

It would be possible to give the tensor tab a physical
interpretation and to call it the trough EMT if force (2.11)
acting on the massm from the trough could be related, e.g., to
the trough elastic properties and the change in its energy in a
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certain effective volume near the contact with the mass. The
variation of the energy in a volume moving along the trough
together the with the mass would be an additional extended
source of GR.

In the present review, much attention is given to the force
field holding the mass on the orbit and to the corresponding
EMT.

2.2 Gravitational radiation by a charge moving
on a circle in a constant uniform magnetic field
The source of the GR of a charge moving in an electro-
magnetic field is the conserved tensor Tmn � tmn � ymn consist-
ing of the EMT tmn of point-like charge (1.3) and the EMT ymn
of the external �jab� and proper � fab� electromagnetic fields
[6, 8]:

ymn � ÿFmlF
l
n ÿ

1

4
gmnFabF

ab ;
�2:12�

Fab � jab � fab :

The terms of the tensor fab, quadratic in ymn, can be omitted
because we disregard the action of the proper field of the
charge on itself. At the quantum level, this corresponds to
neglecting radiative corrections. In this approximation, the
tensor Tmn is strictly conserved and the expression for the
Lorentz force contains only the external (with respect to the
charge) field jab, rather than jab � fab.

For the external fields considered below, the terms of ymn
quadratic in jab are not a source of GR and can be omitted.
We therefore use the following equation for the Fourier
transform ymn�q�:

ymn�q� � ÿ
�

d4k

�2p�4
�
jma�k� f an�qÿ k� � jna�k� f am�qÿ k�

� 1

2
gmnjab�k� f ab�qÿ k�

�
; �2:13�

where the proper field can be expressed, in accordance with
the Maxwell equation, in terms of the current density:

fab�q� � i

q 2

�
qa jb�q� ÿ qb ja�q�

�
: �2:14�

For a constant uniform magnetic field H directed along
the 3-axis, only the following components are nonzero:

j12�k� � ÿj21�k� � H�2p�4d�k� : �2:15�

For a chargemoving along a circular trajectory in such a field,

x1�t� � r sinOt ; x2�t� � r cosOt ; �2:16�
x3 � 0 ; x 0�t� � gt ;

with the eigenfrequency O � og fixed by the field
�O � eH=m� and the spatial components of tmn given in
(2.3). The nonzero spatial components of the tensor ymn are
defined by the formulas

y11�q� � y22�q� � ÿy33�q� � iH

q 2

�
q1 j2�q� ÿ q2 j1�q�

�
;

y13�q� � iH

q 2
q3 j2�q� ; y23�q� � ÿ iH

q 2
q3 j1�q� ;

�2:17�

in terms of the spatial current density components

j1�q� � i j2�q��ev
X
n

2pd�q 0ÿ no� Jn�1�z� exp
�ÿi�n� 1�j� :

�2:18�
The remainingmixed and temporal components of tmn and ymn
can be found from the same formulas (1.3) and (2.13)±(2.15);
on the other hand, the corresponding components of the
conserved tensor Tmn can be reconstructed from its spatial
components by formulas (2.2). Both ways lead to the same
result (1.7) for the GR spectrum.

Conversion of the photon propagator to infinity implies
a cascade process: first, the current emits a real photon,
which then turns into a graviton as it moves in a constant
field [12±14]. Interestingly, the constant field transfers the
zero 4-momentum to the graviton.

Because a real magnetic field sooner or later loses
uniformity, it may be assumed that its sources do not
contribute to the Fourier components of the EMT being
considered. If such a field decreases at distances � l4 l �
2poÿ1, e.g., like H�x� � H exp �ÿx 2

?=l
2� or H�x� �

H exp �ÿjx3j=l �, then the factor 1=q 2 in formulas (2.17) for
yik is replaced by i

���
p
p

l=4q? or il=2jq3j, which leads to the
corresponding substitution in expression (1.7) for the spectrum.

2.3 Gravitational radiation by a charge moving
in the field of a plane electromagnetic wave
The GR of a charge in an external plane-wave field originates
from the same sources tmn and ymn, with the contribution of the
latter mediated through a virtual photon of the proper field of
the charge in order that the graviton be real.

We first consider the GR of a charge in the field of a
circularly polarized wave

jab�x� � ÿj �1�ab sin �kx� � j �2�ab cos �kx� ; �2:19�
j �i�ab � kaa

i
b ÿ kba

i
a ; a i

aa
ja � a 2di j ; kaa

ia � k 2 � 0 :

We choose a system of coordinates where the charge is on the
average at rest and the wave propagates along the 3-axis with
the wave vector k1 � k2 � 0, k3 � k 0 � o and with the
potential amplitudes a i

a � ad i
a. Then the trajectory of the

charge is a circle in the plane x3 � const, along which it
moveswith the speed v � x, x � ea=m�,m� � �m 2 � e 2a 2�1=2,
and a phase as in (2.16) if x3 � p=o is chosen instead of
x3 � 0. Therefore, the components of tmn are the same as in
(2.3) but with the phase factor p � exp �ÿiq3p=o�. To these,
we add the mixed and temporal components

t 01 � it 02 � mvg
X
n

2pd�q 0 ÿ no� Jn�1 exp
�ÿi�n� 1�j� ;

t00 � mg
X
n

2pd�q 0 ÿ no� Jn exp �ÿinj� ;
�2:20�

which must be accompanied by the same factor p.
Because the Fourier components of the field reduce to two

d-functions,

jab�q� � �2p�4
i

2

�
Fab d�qÿ k� ÿ F �ab d�q� k�� ;

�2:21�
Fab � j �1�ab ÿ ij �2�ab ;

the tensor ymn�q� can easily be found in terms of the current
components ja�q� k�, which differ from the components of
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the current for the motion in (2.16) by the factor
exp �ÿi�q3 � o�p=o� � ÿp. The omission of the phase factor
p common for tensors tmn and ymn results in

y11 � ÿy22 � mv 2

4
g
X
n

2pd�q 0 ÿ no�

�
��

q?
vqÿ

Jnÿ1 ÿ Jnÿ2

�
exp

�ÿi�nÿ 2�j�
�
�
q?
vqÿ

Jn�1 ÿ Jn�2

�
exp

�ÿi�n� 2�j�� ;
y12 � mv 2g

4i

X
n

2pd�q 0 ÿ no�

�
��

q?
vqÿ

Jnÿ1 ÿ Jnÿ2

�
exp

�ÿi�nÿ 2�j�
ÿ
�
q?
vqÿ

Jn�1 ÿ Jn�2

�
exp

�ÿi�n� 2�j�� ;
�2:22�

y13 � y 0
1 �

mv 2g
8

X
n

2pd�q 0 ÿ no�

�
��

2
q3 ÿ o
vqÿ

Jnÿ1 ÿ q?
qÿ
�Jnÿ2 ÿ Jn�

�
exp

�ÿi�nÿ 1�j�
�
�
2
q3 � o
vqÿ

Jn�1 ÿ q?
qÿ
�Jn�2 ÿ Jn�

�
exp

�ÿi�n� 1�j�� ;
y23 � y 0

2 �
mv 2g
8i

X
n

2pd�q 0 ÿ no��

�
��

2
q3 ÿ o
vqÿ

Jnÿ1 ÿ q?
qÿ
�Jnÿ2 ÿ Jn�

�
exp

�ÿi�nÿ 1�j�
ÿ
�
2
q3 � o
vqÿ

Jn�1 ÿ q?
qÿ
�Jn�2 ÿ Jn�

�
exp

�ÿi�n� 1�j�� ;
y33 � y 0

3 � y00 � mv 2g
2

X
n

2pd�q 0 ÿ no�

� q 0 � q3 ÿ q 0vÿ2

qÿ
Jn exp �ÿinj� :

Here, qÿ � q 0 ÿ q3; the Bessel functions depend on z � q?r.
Calculation of the GR spectrum from formulas (2.3),

(2.19), and (2.22) gives

TmnT
mn� ÿ 1

2
jT m

m j2

� t
X
n

2pd�q 0 ÿ no� m
2g 2q 2

?
2q 2ÿ

�
q 2
3

q 2
?
J 2
n � v 2J 0 2n

�
: �2:23�

A comparison with the EMR spectrum (2.5) of a charge
moving in a circular orbit shows that the GR and EMR
spectra are related by simple equation (1.6) with the
proportionality coefficient independent of the radiation
frequency q 0 or the harmonic number (see also [10]).

We now turn to theGRof a charge in the field of a linearly
polarized wave:

jab�x� � ÿFab sin �kx� ; Fab � kaab ÿ kbaa ; �2:24�
k 2 � ak � 0 :

In a coordinate system where the charge is on the average at
rest and the wave vector is directed along the 3-axis,
k1 � k2 � 0, k3 � k 0 � o, the charge has a figure-eight
trajectory lying in the plane of the wave vector k and the
amplitude of the electric field E � oa. The trajectory is

described by equations

x1�t� � ÿ x
o

sinO�t ; x2�t� � 0 ;
�2:25�

x3�t� � x 2

8o
sin 2O�t ; x 0�t� � g�t�

x 2

8o
sin 2O�t ;

where

O� � og� ; g� �
m�
m

; x � ea

m�
;

m� � �m 2 � �1=2�e 2a 2�1=2 is the effective mass of the charge
equal to its mean kinetic energy in the system of interest.

Then the nonzero components of the EMT of the charge
are

t11�q� � m�x 2
X
s

2pd�q 0 ÿ so�A2�sab� ;

t13�q� � ÿm�x 3

4

X
s

2pd�q 0 ÿ so��2A3 ÿ A1� ;

t33�q� � m�x 4

16

X
s

2pd�q 0 ÿ so��4A4 ÿ 4A2 � A0� ;
�2:26�

t 01 �q� � ÿm�x
X
s

2pd�q 0 ÿ so�
��

1ÿ x 2

4

�
A1 � x 2

2
A3

�
;

t 03 �q� �
m�x 2

4

X
s

2pd�q 0 ÿ so�

�
�
x 2A4 � �2ÿ x 2�A2 ÿ

�
1ÿ x 2

4

�
A0

�
;

t00�q� � m�
X
s

2pd�q 0 ÿ so�

�
�
x 4

4
A4 � x 2

�
1ÿ x 2

4

�
A2 �

�
1ÿ x 2

4

�2

A0

�
:

Here,

An�sab� � 1

2p

� p

ÿp
dj cosn j exp

�
i�a sinjÿ b sin 2jÿ sj��

�2:27�
are the functions introduced in [15], with arguments
a � ÿxq1=o and b � x 2qÿ=8o.

With the Fourier components of the field now equal to

jab�q� � �2p�4
i

2
Fab
�
d�qÿ k� ÿ d�q� k�� ; �2:28�

formulas (2.13) and (2.14) give the field EMT

y11�q� � ÿy22�q� � a

4

�
j1 � j1 ÿ q1

qÿ
� jÿ � jÿ�

�
;

y12�q� � ÿ aq2
4qÿ
� jÿ � jÿ� ;

y13�q� � y 0
1 �q� �

a

4qÿ

��q 0 ÿ k 0� j3 ÿ �q3 ÿ k3� j 0

� �q 0 � k 0� j3 ÿ �q3 � k3� j 0
�
; �2:29�

y23�q� � y 0
2 �q� � ÿ

aq2
4qÿ
� j1 � j1� ;

y33�q� � y 0
3 �q� � y00�q� � a

4qÿ

�
q1� j 0 � j3 � j 0 � j3�

ÿ �q 0 ÿ k 0 � q3 ÿ k3� j1 ÿ �q 0 � k 0 � q3 � k3� j1
�
:
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Here, ja are the Fourier components of the current density;
the first of the two identical symbols in the brackets depends
on qÿ k and the second on q� k. The expressions for these
components differ from those for ja�q� by the replacement of
the functions An�s� with An�s� 1�:

j1�q� k� � ÿex
X
s

2pd�q 0 ÿ so�A1�s� 1; ab� ;

j3�q� k� � ex 2

4

X
s

2pd�q 0 ÿ so�

� �2A2�s� 1; ab� ÿ A0�s� 1; ab�� ; �2:30�
j 0�q� k� � e

X
s

2pd�q 0 ÿ so�

�
��

1ÿ x 2

4

�
A0�s� 1; ab� � x 2

2
A2�s� 1; ab�

�
:

Forming the conserved EMT Tmn�q�, we obtain an expression
for the GR spectrum in the form

Tmn�q�T mn��q� ÿ 1

2

��T m
m �q�

��2
� t
X
s

2pd�q 0ÿ so� m
2q 2
?

2q 2ÿ

�ÿA2
0� x 2�A2

1ÿ A0A2�
�
; �2:31�

where x � ea=m and An � An�sab�. The following relations
for the functions An were used in this derivation:

�sÿ 2b�A0 ÿ aA1 � 4bA2 � 0 ; �2:32�
An�sÿ 1� ÿ An�s� 1�

� 2

n� 1

�
4bAn�3�s�ÿ aAn�2�s� � �sÿ 2b�An�1�s�

�
; �2:33�

An�sÿ 1� � An�s� 1� � 2An�1�s� : �2:34�

Spectrum (2.31) is related to the EMR spectrum of a charge in
a linearly polarized wave�� jm�q���2 � t

X
s

2pd�q 0 ÿ so� e
2

g 2�

�ÿA2
0 � x 2�A2

1 ÿ A0A2�
�

�2:35�
by expression (1.6).

Therefore, the GR and EMR spectra of a charge in a
plane-wave field differ only in the radiation frequency-
independent coefficient

4pGm 2

e 2
g 2� cot

2 y
2

�2:36�

[here, the factor 8pG omitted in (2.23) and (2.31) is taken into
account; see (1.2)]. Even though relation (1.6) was already
discussed in the Introduction, it should be remembered that it
arises from the joint action of the local and nonlocal GR
mechanisms. As a result, the final answer depends on ja�q�,
whereas ymn�q� depended on ja�q� k�. In the ultrarelativistic
limit, the nonlocal mechanism becomes dominant. This can
be illustrated by the example of formula (2.31). If only the
field source ymn is taken instead of Tmn in the left-hand side,
then �y m

m � 0�
ymn�q�ymn��q� � t

X
s

2pd�q 0 ÿ so�

�m 2

�
ÿ x 2

2� x 2
A0A2 � q 2

?
2q 2ÿ

x 2�A2
1 ÿ A0A2�

�
; �2:37�

i.e., expressions (2.31 and (2.37) differ essentially in the first
terms. But in the ultrarelativistic case, when x4 1, the main
contribution to the integral for An in (2.27) comes from the
saddle point j � c, where

cosc
���
x4 1
� ÿ q1���

2
p

qÿ

(see [15]).With the azimuthal angle pinned to 0 or p, it follows
that q1 � �q?. Therefore, A2� cos2 cA0 � �q 2

?=2q
2
ÿ�A0, and

Eqn (2.37) becomes (2.31), where the relevant asymptotic
expressions should naturally be used for the functionsA2

0 and
A2

1 ÿ A0A2 (see [15, 16]).
We note that formulas (2.23) and (2.31) allow passing to

the limit of an infinitely heavy charge mass; in this case, they
describe the angular distribution of GR produced when a
plane electromagnetic wave is incident on a fixed Coulomb
center:

TmnT
mn� ÿ 1

2
jT m

m j2
���
m!1

� t
X
n��1

2pd�q 0 ÿ no� e
2a 2

8
cot2

y
2

1� cos2 y ;
1ÿ sin2 y cos2 j ;

�
�2:38�

where the top and bottom lines respectively refer to circular
and linear polarizations. This result is consistent with [17].

2.4 Gravitational radiation by a charge rotating
in the field of a Coulomb center
We consider the motion of a charge e on a circle (2.16) in the
Coulomb gravitational field of a fixed charge e 0. This field,
unlike themagnetic and plane-wave fields, has the continuous
wave vector spectrum

jab�k� � ÿi
e 0

k 2
�kad 0

b ÿ kbd
0
a �2pd�k 0� : �2:39�

Using the causal proper time representations for the propa-
gators kÿ2 and �qÿ k�ÿ2 in integral (2.13), it is possible to
perform the Gaussian integration over k and over one of the
proper times. The tensor ymn is then represented as an integral
over the dimensionless variable u (the ratio of one of the
proper times to their sum):

ymn�q� � ÿ iee 0

8pjqj
� 1

0

du

�1
ÿ1

dt exp �i f �amn ;
�2:40�

f � ÿqax a�t� � u
ÿ
qx�t� � jqjr� :

The following expressions can be obtained for the compo-
nents amn:

ai j �
�
�1ÿ u��q2di j ÿ 2qiqj�

� �1ÿ 2u� jqj
r
�di j qxÿ qixj ÿ qjxi�

� u
q2

r 2
�2xixj ÿ di j r 2� � i

2jqj
r 3

xixj

�
_x 0

� q 0

�
qi _xj � qj _xi ÿ di jq _x� jqj

r
�xi _xj � xj _xi�

�
; �2:41�
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a 0
i �

�
�1ÿ 2u�

�
q2 � jqj

r
qx

�
� i
jqj
r

�
_xi

� u
jqj
r

q _xxi ÿ �1ÿ u�q _xqi ; �2:42�

a00 �
�
�1ÿ 2u�

�
q2 � jqj

r
qx

�
� 2i

jqj
r

�
_x 0 ÿ q 0q _x :

�2:43�

We note that aii � a00 by virtue of the tracelessness of the
EMT of the electromagnetic field. The circular motion is
described by coordinates (2.16).

It follows that amn are polynomials of degree no higher
than second in the coordinates x1; 2�t� with coefficients that
are quadratic in the components qa and depend linearly on u
and the velocities _x1; 2�t�, _x 0�t�, where t is the proper time of
the charge e. The dependence on the velocities _x1; 2, _x 0 arises
from the use of formula (2.14) for the proper field and
expression (1.1) for the current. The integral over t in (2.40)
can be represented as a series over Bessel functions with the
argument z1 � �1ÿ u�z, z � q?r. The product of charges is
eliminated by using the equation of motion mvgo �
ÿee 0=4pr 2.

Besides the EMT ymn�q� of the external and proper fields,
the conserved EMT of the entire system contains the EMT
tmn�q� of the charge e [see (2.3), (2.20)] and the EMT tmn�q� of
the Coulomb center with vanishing spatial and nonvanishing
mixed and temporal components of the n � �1 harmonics:

t 01 �q� � it 02 �q� � ÿmvg�1ÿ v 2 ÿ iv� exp �iv� 2pd�q 0 � o� ;

t00�q� � ÿmvgq?
2o

�1ÿ v 2 ÿ iv� exp �iv��
�2:44�

� �exp �ÿij� 2pd�q 0 ÿ o� ÿ exp �ij� 2pd�q 0 � o�� :
The divergence of this tensor iqat ab�q� coincides with the
force density exerted on the fixed charge e 0 by the charge e
rotating around it. Its nontrivial components are

f 1�q� � i f 2�q� � �imvgo�1ÿ v 2 ÿ iv� exp �iv� 2pd�q 0 � o� ;

f 0�q� � 0 :
�2:45�

At the same time, the divergence iq at ba �q� of the EMT tab�q�
of the charge emoving in a circle coincides with the density of
the force g b�q� acting on this charge. Its nontrivial compo-
nents are

g 1�q� � ig 2�q� � �imvgo
X
n

2pd�q 0 ÿ no�

� Jn�1�z� exp
�ÿi�n� 1�j� ; �2:46�

g 0�q� � 0 :

We recall that z � q?r � jnjv sin y, and y and j are the polar
and azimuthal angles of the vector q.

We postpone the discussion of the relation between the
forces f b�q�, g b�q� and the divergence iq ay b

a �q� of the EMT
of the Coulomb and proper fields until the next section.

In this section, unlike in the previous ones where the GR
spectrum was calculated from the invariant product of EMT
components [see (1.2)], we find the spectrum as the sum of
squares of two independent polarization amplitudes denoted
as T��q� and T��q�. Indeed, writing the invariant expression

for the spectrum in a reference frame where the wave vector q
is directed along the 3-axis, labeling the tensor components in
this system with a prime, and using the conservation law
q aTab�q� � q 0 aT 0ab�q 0� � 0 and the equality q 2 � q 0 2 � 0, we
obtain

Tab�q�T ab��q� ÿ 1

2

��T a
a �q�

��2
� 1

2

��T 011�q 0� ÿ T 022�q 0�
��2 � 2

��T 012�q 0���2 : �2:47�

The expressions

T��q� � T 011�q 0� ÿ T 022�q 0� ; T��q� � T 012�q 0� ; �2:48�

where the three spatial EMT components in the right-hand
sides can again be expressed in terms of Ti j�q�, are the two
transverse components describing the GR of a system with
independent polarizations.

Almost all systems considered in this review have an axial
symmetry, meaning that the angular GR distribution in a
spherical system with the polar axis coincident with the
symmetry axis must be independent of the azimuthal angle
j of the vector q. By choosing the vector q in the 1, 3 plane and
denoting its polar angle by y, we have the following relations
in such systems:

T 011 ÿ T 022 � T11 cos
2 yÿ 2T13 sin y cos y� T33 sin

2 yÿ T22 ;

�2:49�
T 012 � T12 cos yÿ T32 sin y : �2:50�

Transverse components of the total EMT are represented
by the sums TA � yA � tA, A � �;�, of transverse compo-
nents of the field and material body EMTs. The EMT of the
Coulomb center makes no contribution to the transverse
components of the total EMT because it lacks space
components.

Using formula (2.40) for the transverse components yi j�q�
of the field EMT and formulas (2.49) and (2.50) relating the
transverse components of the tensor to its spatial compo-
nents, we obtain the following expressions for the two
transverse components yA�q�, A � �;� (see also [18]):

yA�q� �
X
n

2pd�q 0 ÿ no�

�mgv 2

� 1

0

du exp �izu��aAJn�z1� � bAJ
0
n�z1�

�
; �2:51�

a� � z 2

z 21
�1� cos2 y� ÿ �izuÿ 1�

�
n 2

z 21
�1� cos2 y� ÿ cos2 y

�
;

�2:52�
b� �

1

z1
�1� cos2 y��izuÿ z 2 ÿ 1� ; �2:53�

a� � in

�
ÿ 1

2
v 2 � 1

z 21
�z 2 � 1ÿ izu�

�
cos y ; �2:54�

b� �
in

z1
�izuÿ 1ÿ v 2� cos y : �2:55�

Here, z1 � �1ÿ u�z, z � jnjv sin y, and z � jqjr � jnjv.
Peters's remark cited under (5.25) in Section 5.1 can be useful
in verifying expressions (2.52)±(2.55).
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The transverse components of the EMT of mass m are

t��q� �
X
n

2pd�q 0 ÿ no�mgv 2
��

n 2

z 2
ÿ 1� n 2

z 2
cos2 y

�
Jn�z�

ÿ 1

z
�1� cos2 y� J 0n�z�

�
; �2:56�

t��q� �
X
n

2pd�q 0 ÿ no�mgv 2
in

z

�
1

z
Jn�z� ÿ J 0n�z�

�
cos y :

�2:57�
It follows from the above expressions for yA and tA that the
GR spectrum determined by the invariant 1=2 jT�j2 � 2jT�j2,
TA � yA � tA is very complicated. Therefore, we consider it
here only in the nonrelativistic and ultrarelativistic limits.

We define the amplitude TAn�q� of the nth harmonic by
the relation

TA�q� �
X
n

2pd�q 0 ÿ no�TAn�q� ; �2:58�
TAn�q� � yAn�q� � tAn�q� :

It is then possible to show that in the nonrelativistic
approximation, when z5 1,

y�n�q� � mgv 2

z

16
�1ÿ 3 cos2 y� ; n � 1 ;

z nÿ2�1� cos2 y�
2 n�nÿ 1�! ; n5 2 ;

8>><>>: �2:59�

y�n�q� � mgv 2

iz

16
cos y ; n � 1 ;

ÿ iz nÿ2 cos y
2 n�nÿ 1�! ; n5 2 :

8>>><>>>: �2:60�

For the analogous amplitudes of a material body,

t�n�q� � mgv 2
ÿ z

8
�3ÿ cos2 y� ; n � 1 ;

znÿ2�1� cos2 y�
2 n�nÿ 2�! ; n5 2 ;

8>><>>: �2:61�

t�n�q� � mgv 2

iz

8
cos y ; n � 1 ;

ÿ iz nÿ2 cos y
2 n�nÿ 2�! ; n5 2 :

8>>><>>>: �2:62�

The coefficientmgv 2, which is here equal tomv 2, is kept in the
relativistic form only for the convenience of comparing the
approximate formulas and relativistic ones, (2.51), (2.56), and
(2.57). Evidently, for the quadrupole and higher harmonics,
the contribution of the field EMT is nÿ 1 times smaller than
that of the mass EMT.We emphasize that for the quadrupole
harmonic, which is the leading one in the nonrelativistic
approximation, the field and matter contributions are
identical.

We give the differential and total GR intensities for the
first and second harmonics in the nonrelativistic limit:�
TmnT

mn� ÿ 1

2
jT m

m j2
�

n�1; v!0

� t 2pd�q 0 ÿ o� 9

64
m 2v 6 sin2 y

�
1ÿ 2

3
sin2 y� 1

72
sin4 y

�
;

�2:63�

dE
dt

����
n�1; v!0

� 5

28
Gm 2o2v 6 ; �2:64�

�
TmnT

mn� ÿ 1

2
jT m

m j2
�

n�2; v!0

� t 2pd�q 0 ÿ 2o�m 2v 4

�
1ÿ sin2 y� 1

8
sin4 y

�
; �2:65�

dE
dt

����
n�2; v!0

� 32

5
Gm 2o2v 4 : �2:66�

As expected, the last two formulas for quadrupole radiation
define the leading contribution and coincide with the known
results given by the Einstein formula (see [6], par. 110). They
are 4 times larger than the differential and total GR intensities
of a body with the localized EMT [see (2.7)].

In the ultrarelativistic limit, the leading contribution
comes from the pure field source ymn, and hence

1

2
jT�j2 � 2jT�j2

���
v!1
� 1

2
jy�j2 � 2jy�j2

���
v!1

� t
X
n

2pd�q 0 ÿ no� m
2

2p2

�
2

n

�2=3

�
�
ÿF 2 � g 2

�
2

n

�2=3

�yF 2 � F 0 2�
�
: �2:67�

Here, we used asymptotic expressions (2.6) for the Bessel
functions with z1 � n � g 3 4 1 and the effective values of the
integration variable u � nÿ1 � gÿ3. We note that the con-
tribution by the local tensor tmn and the interference contribu-
tion are g 2 and g times smaller than the field contribution
(2.67). Because the expression for j ja�q�j2 in the same limit
differs from (2.67) by the replacement m 2 ! 2e 2=g 2, the
relation between the GR and EMR spectra is defined by
formula (1.5) withG � g. This result is consistent with the one
in [18].

2.5 On the conservation of the EMT
The well-known EMT of mass m in formula (1.3) has
components (2.3) and (2.20) in the case of uniform circular
motion. Less known is the EMT of a Coulomb center at rest,
whose components enter (2.44). Therefore, we here propose
its derivation, which is conveniently performed by finding a
force that acts on the charge e 0 in the center from a circularly
moving charge e.

Evidently, the Fourier transform of this force density can
be represented by the integral

f�q� �
�
d4x exp �ÿiqx�e 0E�x�d�x� ; �2:68�

where e 0 is the charge of a heavy Coulomb center located at
x � 0, and E�x� is the electric field strength created by the
moving charge e at the point x a � �x; t�. Representing the
field E�x� by the Fourier integral with components

fi 0�k� � i

k 2

�
ki j0�k� ÿ k0 ji�k�

�
; i � 1; 2 ; �2:69�

[cf. (2.14)], we express the nonzero components of the vector
f�q� as

f i�q� � ie 0
�

d3k

�2p�3
ki j0 ÿ q0 ji

k2 ÿ q 2
0

; i � 1; 2 ; �2:70�
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where after the integration over the x-space, the zeroth
component of the 4-vector ka becomes equal to q0. Using
representation (1.1) for the current ja�k� and the proper time
representation for the propagator �k2 ÿ q 2

0 �ÿ1 allows inte-
grating over both k and the proper time of the virtual photon.
As a result, f�q� turns out to be an integral over only the
proper time of the charge e:

f�q� � iee 0

4p

�1
ÿ1

dt exp
ÿ
iq 0gt� ijqjr�� q 0 _x

r
� g
� jqj
r 2
� i

r 3

�
x

�
:

�2:71�

The use of motion law (2.16) leads to representation (2.45)
for f.

Because f�q�must be the divergence of the corresponding
EMT tab�q�, it follows that

f b�q� � iq at b
a �q� : �2:72�

For b � 1; 2, the right-hand side of (2.72) reduces to a single
term iq 0t b

0 �q�, which allows finding the mixed components
t b
0 �q� � ÿt 0

b �q� [see (2.44)]. For b � 0, the left-hand side of
(2.72) is zero, while the right-hand side contains three terms,
two of which are already known. Hence, there is a possibility
of finding the third term iq 0t 0

0 �q�, i.e., the time component
t 0
0 �q� � ÿt00�q� [see (2.44)].

By calculating the divergence of the field tensor yab in
(2.40)±(2.43), it can be shown that

iq ay b
a �q� � ÿf b�q� ÿ g b�q� : �2:73�

This means that the EMT Tab � yab � tab � tab of the whole
system is conserved.

3. Gravitational radiation from systems
with a more complicated force field

3.1 Gravitational radiation
by a charge rotating in a magnetic moment field
We consider the circular motion of a charge in the equatorial
plane of the field

H � 3r�MMr� ÿMMr 2

4pr 5
� HH�MMHH� 1

4pr
�3:1�

produced by a magnetic moment M. According to the
equation of motion

mv 2g � eoMo

4pcr
; �3:2�

the projectionMo of themagnetic moment on the direction of
the charge angular velocity vector must have the same sign as
the charge: eMo � jeMj > 0.

Using the Fourier components

jab�k� � ÿ
MMk

k 2
eabg0k g2pd�k 0� �3:3�

of field (3.1) and the Fourier components of the charge proper
field

fab�q� � i

q 2

�
qa jb�q� ÿ qb ja�q�

�
; �3:4�

it is easy to construct the components of the field EMT

ymn�q� � ÿ
�

d4k

�2p�4
�
jma�k� f an�qÿ k� � jna�k� f am�qÿ k�

� 1

2
gmnjab�k� f ab�qÿ k�

�
�3:5�

by omitting quadratic combinations jj and f f on the
grounds outlined in Section 2. It is convenient to perform
the integration over wave vectors k of the external field using
causal proper time representations for the propagators kÿ2

and �qÿ k�ÿ2 and the representation

ja�q� � e

�1
ÿ1

dt _xa�t� exp
�
ÿiqx�t�

�
�3:6�

for the current density ja�qÿ k�. Then ymn�q� is given by

ymn�q� � eMo

8pjqj
� 1

0

du

�1
ÿ1

dt exp �i f �amn ; �3:7�

where f � ÿqax a�t� � u�qx�t� � jqjr�, u � t�s� t�ÿ1, with s
and t being the proper times of the quanta of the external and
proper fields, and amn are second or lower-order polynomials
in coordinates x1; 2�t� or velocities _x1; 2�t�.

Using formulas (2.49), (2.50), and (3.7), we obtain the two
transverse components of the field EMT as

yA�q� �
X
n

2pd�q 0 ÿ no�mgv 2

�
� 1

0

du exp �izu��aAJn�z1� � bAJ
0
n�z1�

�
: �3:8�

Here, the subscript A is either � or �, and the coefficients aA
and bA are

a� � 3

2
�1ÿ izu� sin2 yÿ

�
n 2

z 21
ÿ 1

2

��
2z 2u�1ÿ u� cos2 y

� �izuÿ 1��1� cos2 y�� ; �3:9�

b� �
1

z1

�
2z 2u�1ÿ u� cos2 y� �izuÿ 1��1� cos2 y��
� i sin y

�
iz�1ÿ u� ÿ zu�i� zu� cos2 y� ; �3:10�

a� � n

2z1
�ÿz 2u 2 � izÿ 2izu� sin y cos y

ÿ in

z 21

�
1

2
z 2u�1ÿ u��1� cos2 y� � izuÿ 1

�
cos y ; �3:11�

b� �
in

z1

�
1

2
z 2u�1ÿ u��1� cos2 y� � izuÿ 1

�
cos y ; �3:12�

z1 � �1ÿ u�z ; z � jnjv sin y ; z � jqjr � jnjv : �3:13�
To obtain the transverse components T� and T� of the

total EMT, it is necessary to add the transverse components
of the material body EMT to (3.8):

t��q� �
X
n

2pd�q 0 ÿ no�mgv 2
��

n 2

z 2
ÿ 1� n 2

z 2
cos2 y

�
Jn�z�

ÿ 1

z
�1� cos2 y� J 0n�z�

�
; �3:14�

t��q� �
X
n

2pd�q 0 ÿ no�mgv 2
in

z

�
1

z
Jn�z� ÿ J 0n�z�

�
cos y :

�3:15�
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These expressions follow from the formulas (2.3) and (2.48)±
(2.50) in Section 2.

In the nonrelativistic limit, when jnjv5 1, the arguments
of the Bessel functions and the parameter z are small: z1 � z �
z5 1. Physically, this condition implies the smallness of orbit
dimensions compared with the radiation wavelength. Expan-
sion of the Bessel functions allows expressing the integrals
defining the field EMT as� 1

0

du exp �izu��a�Jn � b�J
0
n�

�
z

16
�1ÿ 3 cos2 y� ; n � 1 ;

z nÿ2�1� cos2 y�
2 n�nÿ 1�! ; n5 2 ;

8><>: �3:16�

� 1

0

du exp �izu��a�Jn � b�J
0
n�

�
iz

16
cos y ; n � 1 ;

ÿ iz nÿ2 cos y
2 n�nÿ 1�! ; n5 2 :

8>><>>: �3:17�

For analogous quantities (3.14) and (3.15) in the EMT of the
material body, we have�

n 2

z 2
ÿ 1� n 2

z 2
cos2 y

�
Jn ÿ 1

z
�1� cos2 y�J 0n

�
ÿ z

8
�3ÿ cos2 y� ; n � 1 ;

z nÿ2�1� cos2 y�
2 n�nÿ 2�! ; n5 2 ;

8><>: �3:18�

in

z
cos y

�
1

z
Jn ÿ J 0n

�
�

iz

8
cos y ; n � 1 ;

ÿ iznÿ2 cos y
2 n�nÿ 2�! ; n5 2 :

8>><>>: �3:19�

We note that for harmonics with n5 2, the contribution from
the field EMT is nÿ 1 times smaller than from the bodyEMT.

Finally, for the GR spectrum in the nonrelativistic
approximation, we have

1

2
jT�j2 � 2jT�j2

���
n�1; v5 1

� t2pd�q 0 ÿ o� 9

64
m 2v 6 sin2 y

�
1ÿ 2

3
sin2 y� 1

72
sin4 y

�
;

�3:20�
1

2
jT�j2 � 2jT�j2

���
n5 2; nv5 1

� t2pd�q 0 ÿ no�m 2v 4
�

nznÿ2

2 nÿ1�nÿ 1�!
�2

�
�
1ÿ sin2 y� 1

8
sin4 y

�
: �3:21�

As expected, the largest contribution comes from the second
harmonic; it coincides with the value given by the Einstein
formula.

In the ultrarelativistic limit, when g4 1, the most
important harmonics and angles in the GR spectrum are
those for which n � z1 � z � z � g 3, a � yÿ p=2 � gÿ1 and
the effective values u � gÿ3. Then integrals (3.16) and (3.17)

become� 1

0

du exp �izu��a�Jn � b�J
0
n� � ÿiJ 0n�z� ; �3:22�� 1

0

du exp �izu��a�Jn � b�J
0
n� � ÿ

1

2
Jn�z� cos y ; �3:23�

where the asymptotic representations in terms of the Airy
function should be used for Jn�z� and J 0n�z�:

Jn�z� � 1

p

�
2

n

�1=3

F�y� ; J 0n�z� � ÿ
1

p

�
2

n

�2=3

F 0�y� ;
�3:24�

F�y� �
�1
0

dt cos

�
yt� t 3

3

�
; y �

�
n

2

�2=3�
1ÿ z 2

n 2

�
:

Expressions (3.18) and (3.19) for the EMT of a material body
in the limit under consideration are�

n 2

z 2
ÿ 1� n 2

z 2
cos2 y

�
Jn ÿ 1

z
�1� cos2 y�J 0n

� 2

�
cos2 y� 1

2g 2

�
Jn�z� ; �3:25�

in

z
cos y

�
1

z
Jn ÿ J 0n

�
� ÿi cos y J 0n�z� : �3:26�

Evidently, the transverse components of the body EMT are a
factor of g smaller than those of the field EMT and can be
neglected. The GR spectrum in the ultrarelatvistic limit is
then given by

1

2
jT�j2 � 2jT�j2

���
g4 1

� t
X
n

2pd�q 0 ÿ no� 1
2
m 2g 2�a 2J 2

n � J 0 2n �

� m 2g 2

2e 2

�� jm�q���2 : �3:27�

Therefore, theGR andEMR spectra for the system of interest
are related in the ultrarelativistic limit by Eqn (1.5) with
G � g.

3.2 Gravitational radiation by a charge rotating
in the field of a charged center with a magnetic moment
The equation of motion for a charge e in a circle orbit of
radius r, speed v, and angular frequency o in the equatorial
plane of the center carrying a charge e 0 and a magnetic
moment MM has the form

mgv 2 � 1

4pr

�
ÿee 0 � eMoo

c

�
: �3:28�

For such an orbit to exist, it is necessary that

ÿee 0 � eMoo
c

> 0 : �3:29�

The conserved EMT of the whole system consists of the
EMT tab of the material body, the field EMT yM

ab propor-
tional to the magnetic moment, and the field EMT yC

ab
proportional to the Coulomb field. The transverse compo-
nents of the first two tensors are given by formulas (3.14),
(3.15), and (3.8). The transverse components of EMT yC

�;�
were presented in Section 2 for the purely Coulomb problem.
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In the present problem with the two external fields acting
simultaneously, the coefficients mgv 2 in components (3.8)
and (2.51) must be respectively replaced with the coefficients

eMoo
4pcr

� kMmgv 2 ; ÿ ee 0

4pr
� kCmgv 2 ;

the field EMT is given by the sum kMyM
A � kCyC

A .
It can be shown that in the nonrelativistic limit, the

integrals� 1

0

du exp �izu� �aAJn � bAJ
0
n

�
for any n coincide with (3.16) and (3.17); in other words, they
are given by the right-hand sides of these formulas. For the
effective values of n and y in the ultrarelativistic limit, they
coincide with (3.22) and (3.23).

Hence, the components yM
A �q� and yC

A �q� are identical in
both nonrelativistic and ultrarelativistic limits. Then

kMyM
A �q�� kCyC

A �q�� yM
A �q� � yC

A �q�

because kM� kC� 1 by virtue of equation of motion (3.28).
This means that the GR spectrum of a charge rotating in this
composite field is given by formulas (3.20) and (3.21) in the
nonrelativistic region and by (3.27) in the ultrarelativistic
region. We note that in the intermediate domain where the
velocity of the charge is neither too low nor too close to 1, the
transverse components yM

A �q� and yC
A �q� are quite different

and the GR spectrum is sensitive to the character of the field
in which the charge moves.

One of themain reasons for undertaking the present study
was a desire to elucidate those properties of the field that are
most important in determining the conversion amplitude G.
Because it defines the proportionality factor between two
invariants [see (1.5)], G itself must be an integral invariant of
the system. In all four electromagnetic systems considered in
Sections 2 and 3 with the same charge orbits but different
fields (circular motion in the field of a circularly polarized
wave, a magnetic moment field, a Coulomb field, and a
combination of the last two fields), the conversion amplitude
G is the same and equal to g.

It appears that for a circular trajectory, G is given by such
a simple formula because the field has no inherent scale
length. Indeed, if we consider the GR spectrum of a charge
in a circular orbit in a screened Coulomb field with the
potential �e 0=4pr� exp �ÿZr�, then at g4 1 the leading terms
(in this limit) in the transverse components yA�q� of the field
EMT differ from (3.8) by the factor

C � Zr
1� Zr

exp �Zr�K1�Zr� ; �3:30�

where K1�x� is the Macdonald function. Then G � Cg. The
coefficient C�Zr� decreases monotonically from 1 to 0 as Zr
increases, and behaves like �p=2Zr�1=2 at Zr4 1. The deriva-
tion of formula (3.30) assumes that Zr5 g 3=2, g4 1 which
means that it applies to the case Zr4 1.

The square-root dependence of the conversion amplitude
on the intrinsic scale length Zÿ1 of the field at Zr4 1 is easy to
understand bearing in mind that G is proportional to the
length l of the conversion region [see (1.14)]. In fact, at g4 1,
the region in which photons are converted into gravitons
extends along a line tangent to the charge orbit between the
point of tangency to the circle of radius r and the point at
which that tangent intersects another circle of the radius

r� Zÿ1 (where both the field and the conversion are
considerably weaker); i.e., the conversion region length is

l � ��r� Zÿ1�2 ÿ r 2
�1=2���

Zr4 1
� r

�
2

Zr

�1=2

: �3:31�

We note that the finite relativistic motion of a charge in a
Coulomb field can be treated classically if the classical radius
of the orbit

r � ÿ ee 0

4pmv 2g

����
g4 1

� ÿ ee 0

4pmc 2g

is larger than �h=p, that is, if the Coulomb center charge
exceeds 137. On the other hand, if je 0=ej > 170, then the
Coulomb field produces pairs and screens itself [19].

We also note that for g4 1, the charge orbits at a speed
close to the speed of light, and hence the conversion region
formed by its field outside the orbit moves with a super-
luminal speed.

As shown in Section 2 of [9], the contribution of the
transverse components of the EMT of a material body to GR
at g4 1 is of the same order as the contribution of the current
to EMR if Gm 2 is replaced with e 2=4p. Then, to the order of
magnitude, G determines the ratio of the transverse compo-
nents y� and y� of yab to the transverse components t� and t�
of the tensor tab. It is interesting to elucidate how this ratio (or
G) depends on the spatial distribution of the tensor yab�x�.
For this, we consider GR from a nonelectromagnetic system
in which the tensor yab�x� is confined to a line joining a
material particle to the center of rotation.

3.3 Gravitational radiation from a relativistic string
with masses at the ends
A relativistic string with masses at the ends [20] is not an
electromagnetic system. It can be viewed as a realistic model
of a system of two bodies connected by a force field confined
to the line joining them. In this case, GR is emitted not only
from local sources (the point masses) but also from an
extended source, the string. It is interesting to compare the
contributions to GR from the two kinds of sources, especially
in the ultrarelativistic limit where the string energy is
approximately g times the energy of the masses at its ends.

The system in question is described by the action

S � ÿm
� t2

t1
dt
� s2�t�

s1�t�
ds
�� _xx 0�2 ÿ _x 2x 0 2

�1=2
ÿ
X2
i� 1

mi

� t2

t1
dt

(
ÿ
�
dxa
ÿ
t; si�t�

�
dt

�2)1=2

; �3:32�

where m is a constant characterizing the string tension, m1

and m2 are the masses at the string ends, and x a�t; s� is the
4-vector that parameterizes the world surface of the string.
The dot and the prime respectively denote partial derivatives
with respect to t and s.

We choose an evolution parameter t coincident with time
t � x 0�t; s�. In this case, action (3.32) takes the form

S �
� t2

t1

dt

�� s2

s1
dsLstr ÿ

X2
i�1

mi

��������������
1ÿ _x 2

i

q �
;

�3:33�
Lstr� ÿm

�����������������������������������������
x 0 2�1ÿ _x 2�� � _xx 0�2

q
; x � x�t; s� ; xi � x�t; si� :
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The Euler equation describing the string motion is obtained
by varying the action S:

q
qt

�
qLstr
q _x

�
� q
qs

�
qLstr

qx 0

�
� 0 : �3:34�

The equations of motion for the masses at the string ends
coincide with the boundary conditions

m1
d

dt

_x1��������������
1ÿ _x 2

1

q � ÿ qLstr

qx 0
; s � s1 ;

�3:35�

m2
d

dt

_x2��������������
1ÿ _x 2

2

q � qLstr

qx 0
; s � s2 :

These equations have a particular solution

x 1�t; s� � s sinot ; x 2�t; s� � s cosot ; �3:36�
x 3�t; s� � 0 ; x 0�t; s� � t � t

that describes the motion of the string as a straight segment
rotating with the angular velocityo. In (3.36), the parameter t
is chosen to be the coordinate time, while s is the distance
between the point of interest on the string and the center of
rotation (with an appropriate sign). Because

mi
d

dt

_xi��������������
1ÿ _x 2

i

p � ÿ mio2si�������������������
1ÿ s 2

i o2
p �sinot; cosot; 0� ;

�3:37�
� qLstr

qx 0

����
s1 ;s2

� �m
�������������������
1ÿ s 2

i o2

q
�sinot; cosot; 0� ;

it follows from the boundary conditions that

sio � �mio
2m
�

��������������������������
1�

�
mio
2m

�2
s

9 0 : �3:38�

Here and hereinafter, the top and bottom signs correspond to
i � 1 and i � 2. Because

vi � �sio ; i � 1; 2 �3:39�

is the velocity of the mass mi, the string tension m can be
expressed via the mass and velocity of any of the masses:

m
o
� mivig 2i ; gi � �1ÿ v 2i �ÿ1=2 : �3:40�

The system EMT is made up of the EMT tmn of the masses
at the ends of the string and the EMT of the string itself [21]:

ymn�x� � m
�
dt ds

�� _xx 0�2 ÿ _x 2x 0 2
�ÿ1=2dÿxÿ x�t; s��

� �x 0 2 _xm _xn � _x 2x 0mx
0
n ÿ �x 0 _x�� _xmx

0
n � _xnx

0
m�
	
: �3:41�

This expression can be simplified by imposing the gauge
condition x 0a _x a � 0. Then

ymn�x� � m
�
dt ds

�
ÿ x 0 2

_x 2

�1=2

d
ÿ
xÿ x�t; s��

�
�

_xm _xn � _x 2

x 0 2
x 0mx

0
n

�
: �3:42�

Using (3.36) and (3.38), we obtain the energy density and
the energy of the string:

y00�x� � m
� s2

s1

ds

�1ÿ o2s 2�1=2
d
ÿ
xÿ x�t; s�� ; �3:43�

E str �
�
d3x y00�x� � m

o

� v2
ÿv1

dx

�1ÿ x 2�1=2

� m
o
�arcsin v2 � arcsin v1� �

X2
i�1

mi vi g 2i arcsin vi : �3:44�

In the last expression, Eqn (3.40) relating the tension and the
velocity vi at the end of the string loaded with mi is used.
Interestingly, in the ultrarelativistic motion of at least one of
the ends, the string energy E str is pg=2 times the energy
Emass � m1g1 �m2g2 of the masses at its ends.

We now pass from (3.41) to the Fourier components and
use them and formulas (2.48)±(2.50) to construct the
transverse components yA�q� describing GR from the string:

y��q� �
X
n

2pd�q 0 ÿ no�

� m
o

� v2
ÿv1

dx

�1ÿ x 2�1=2
(��

n 2

z 2
ÿ 1

2

�
�1� cos2 y�

ÿ
�
x 2 ÿ 1

2

�
sin2 y

�
Jn�z� ÿ �1� cos2 y� 1

z
J 0n�z�

)
; �3:45�

y��q� �
X
n

2pd�q 0 ÿ no�

� m
o

i cos y
� v2
ÿv1

dx

�1ÿ x 2�1=2
n

z

�
1

z
Jn�z� ÿ J 0n�z�

�
: �3:46�

Here, z � jnjx sin y, x � os is the velocity at the point of the
string with the coordinate s.

We note that the string EMT can be represented by the
sum of two terms corresponding to the two halves of the
string, i.e., to intervals s1 4s < 0 and 0 < s4s2. Specifi-
cally,

yA�q� � yA�q; ÿv1� � yA�q; v2� ; �3:47�
yA�q;�v1; 2� �

X
n

2pd�q 0 ÿ no� yAn�q;�v1; 2� :

Here, the first and the second terms are the contributions to
the integral over x from the segments ÿv1 4 x < 0 and
0 < x4 v2.

When the masses are equal, m1 � m2, their velocities are
also equal: v1 � v2. In this case, the relation

yAn�q; v� � �ÿ1�n yAn�q; ÿv� �3:48�
leads to the interference betweenGR from the opposite halves
of the string; as a result, the amplitudes yAn�q� of odd
harmonics vanish, while even harmonics have twice the
amplitude emitted by each half. Similar interference occurs
in GR of the system of two masses at the ends of the string.
The transverse components of the EMT in this system consist
of the sum of components

tA�q� � tA�q; ÿv� � tA�q; v� �3:49�
defined by formulas (3.14) and (3.15) with the opposite signs
of v.

We also note that the sum tA�q; v� � yA�q; v� is the GR
amplitude with polarization A of an independent object, a
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string of length r with one end fixed �s � 0� and the other
loaded with amassm �s � r� and rotating about the fixed one
at the angular velocity o.

Such an object arises naturally in considering a string with
masses m1 and m2, one of which is much heavier than the
other. For example, if the mass m1 tends to infinity, its
distance r1 � ÿs1 from the fixed point s � 0 and velocity
v1 � ÿs1o tend to zero:

s1o � m1o
2m
ÿ

���������������������������
1�

�
m1o
2m

�2
s

� ÿ m
m1o

! 0 ; m1 !1 :

�3:50�
We show in what follows [see (3.51) and (3.52) with mv 2

replaced with m1v
2
1 � m 2=m1o2 ! 0] that the heavier mass

does not emit GR, and it is possible to consider a string with
one end fixed at the point s � 0. For such a string, the sum
tA�q; v2� � yA�q; v2� stands for the GR amplitude with
polarization A.

We now analyze the behavior of yA�q; v� in the nonrela-
tivistic and ultrarelativistic limits. For nv5 1, the expansion
of the Bessel functions in (3.45) and (3.46) leads to

y�n�q; v� �
mv 3

16
�1ÿ 3 cos2 y� sin y ; n � 1 ;

mv n�n sin y� nÿ2
2 n�nÿ 1�! �1� cos2 y� ; n5 2 ;

8>><>>: �3:51�

y�n�q; v� �
i
mv 3

16
sin y cos y ; n � 1 ;

ÿi mv
n�n sin y� nÿ2
2 n�nÿ 1�! cos y ; n5 2 :

8>><>>:
�3:52�

These expressions are identical to the nonrelativistic harmo-
nics of the transverse components of the field EMT in the
systems considered in Sections 2 and 3.

The coincidence is not accidental. It can be shown that the
conserved tensor Tab�q� satisfies the equation

qi qj
q2

qqk qql
Ti j�q� � 2qi

q
qql

Tik�q�

� 2qi
q
qqk

Til�q� � 2Tkl�q�

� ÿq 0 2

�
d3x exp �ÿiqx� xkxlT 00�x; q 0� : �3:53�

For a closed nonrelativistic system, we can approximately
set T 00�x; q 0� � t 00�x; q 0� in the right-hand side of this
equation. Assuming that the system consists of a single
point mass moving in a force field, we seek a solution of the
resulting equation in the form

Ti j�q� � ti j�q� �m

�
dt exp �iq 0t� f �qx���xixj � �xjxi� � . . . ;

�3:54�

where the dots denote terms of type (5.26) (see below) that we
do not need. For the function f �z�, we then have the equation
and the solution

z f 0�z� � f �z� � 1

2
exp �ÿiz� ; f �z� � 1ÿ exp �ÿiz�

2iz
: �3:55�

Expanding f �z� into a power series in z and assuming the
motion to be circular, we arrive at a nonrelativistic expression
for all harmonics Ti j�q�. Their transverse components are
presented in Section 2 [see also (3.51) and (3.52)].

For g4 1, the most essential values of the variables in
formulas (3.45) and (3.46) are n � z � g 3, vÿ jxj � gÿ2, and
a � p=2ÿ y � gÿ1. Carrying out the relevant expansions and
using (2.6), we obtain

y�n�q; v� � 2mg
pn

�1
1

dx

x 1=2
F 00�y� ; �3:56�

y�n�q; v� � i
mga
2p

�
2

n

�2=3 �1
1

dx

x 1=2
F 0�y� ;

�3:57�

y �
�

n

2g 3

�2=3

�x� g 2a 2� :

These ultrarelstivistic transverse components of the string
EMT turn out to be of the same order of magnitude as the
transverse components of the EMT of the material body at
the string end [cf. (3.14), (3.15) and (3.24), (3.26) with (3.56)
and (3.57)].

The reason why the GR from a string at g4 1 is of the
same order as the GR of the mass at its end is as follows. The
condition vÿ jxj � gÿ2 implies that radiation is emitted from
small segments near the string ends moving at velocities x
such that the corresponding Lorentz factor g�x� �
�1ÿ x 2�ÿ1=2 is of the order of g. Although the energy of the
string is more than g times that of the mass, it is distributed
over the string such that the energy propagating through the
space with a Lorentz factor of the order of g constitutes only a
fraction gÿ1 of the total energy of the string:

m
o
�arcsin vÿ arcsin v 0�

���
g 0�g4 1

� m
o

�
1

g 0
ÿ 1

g

�
� m

o
gÿ1 ; �3:58�

i.e., it is precisely of the same order ofmagnitude as the energy
of the mass at the end of the string [see (3.44)].

3.4 Gravitational radiation from a string
with unloaded ends
Before proceeding to the limit m1; 2 � 0 (or v1; 2 � 1), we
rewrite Eqns (3.45) and (3.46) with m1 � m2 � m in the form

y� �
X
n

2pd�q 0 ÿ no� m
o

� v
ÿv

dx

�1ÿ x 2�1=2

�
�
1

4
�1� cos2 y��Jn�2�z� � Jnÿ2�z�

�
ÿ sin2 y

�
x 2 ÿ 1

2

�
Jn�z�

�
; �3:59�

y� �
X
n

2pd�q 0 ÿ no� m
o

i

4
cos y

�
� v
ÿv

dx

�1ÿ x 2�1=2
�
Jn�2�z� ÿ Jnÿ2�z�

�
: �3:60�

Now, we can pass to the limit v � 1 and integrate the Bessel
functions with the aid of formula 7.7.2 (11) fromRef. [22].We
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thus obtain

y� �
X
k

2pd�q 0 ÿ 2ko� pm
2o

�
J 2
k�1�x� � J 2

kÿ1�x�

ÿ 1

2
sin2 y

�
Jk�1�x� � Jkÿ1�x�

�2�

�
X
k

2pd�q 0 ÿ 2ko� pm
o

�
cot2 y J 2

k �x� � J 0 2k �x�
o
; �3:61�

y� �
X
k

2pd�q 0 ÿ 2ko� ipm cos y
4o

�
J 2
k�1�x� ÿ J 2

kÿ1�x�
�

�
X
k

2pd�q 0 ÿ 2ko�
�
ÿ ipm

o

�
cot y Jk�x� J 0k�x� ; �3:62�

x � k sin y :

The GR spectrum is given by the combination

1

2
jy�j2 � 2jy�j2 � t

X
k

2pd�q 0 ÿ 2ko�
�
pm
o

�2

�
�
1

2

�
cot2 y J 2

k �x� � J 0 2k �x�
�2 � 2 cot2 y J 2

k �x� J 0 2k �x�
�
:

�3:63�

The energy emitted for time t4oÿ1 is

E � t 4pGm 2
X1
k� 1

k 2

�
dO f. . .g ; �3:64�

where f. . .g is the expression in braces in (3.63).
We consider the behavior of the terms in this series at

k4 1. In this case, the Airy functions may be used instead of
the Bessel functions [see (3.24)]. Bearing in mind that the
leading contribution comes from cos y � �2=k�1=3, we have

k 2

�
dO f. . .g

� 8

p3k

�1
0

dy

y 1=2

�
y 2F 4�y� � F 0 4�y� � 6yF 2�y�F 0 2�y�� :

�3:65�
Series (3.64) hence diverges logarithmically. This divergence
is likely to disappear when quantum effects essential for the
emission of higher-order harmonics are taken into considera-
tion.

3.5 Polarization amplitudes in the b 2-approximation
The relativistic transverse amplitudes T��q� and T��q� of the
GR found in the previous sections in three casesÐa string
with the loaded ends, a charge in a magnetic moment field,
and a charge in a Coulomb fieldÐare considerably different.
But the leading terms of their harmonics in all three cases
coincide in the nonrelativistic approximation at b � v=c5 1
(see the discussion in Sections 2.4, 3.1, and 3.3). These
relativistic amplitudes allow just as well finding the next
terms of expansion in powers of the small parameter b for
all harmonics.

In all three cases, we consider the expansion in b of the
main, second harmonic that makes the largest contribution to
the amplitudes T� and T� at b5 1, keeping the terms up to
the second order of smallness. We define the amplitude

TAn�q� of the nth harmonic by the relation

TA�q� �
X
n

2pd�q 0 ÿ no�TAn�q� ; �3:66�
TAn�q� � tAn�q� � yAn�q� ; A � �;� ;

and present the expressions for the material tA2 and field yA2
constituents of the second harmonic. Naturally, tA2�q� are
identical on all three cases:

t�2�q� � 1

2
mv 2g

�
1ÿ 1

2
sin2 yÿ b 2 sin2 y

�
;

�3:67�
t�2�q� � ÿi 1

4
mv 2g cos y

�
1ÿ b 2 sin2 y

�
:

Conversely, the field constituents yA2�q� are different, but
only in the terms of the order of b 2.

For a string with a mass,

y str
�2�q� �

1

2
mv 2g

��
1� 2

3
b 2

��
1ÿ 1

2
sin2 y

�
ÿ 1

3
b 2 sin2 y cos2 y

�
;

�3:68�
y str
�2�q� � ÿi

1

4
mv 2g cos y

�
1� 2

3
b 2 ÿ 1

3
b 2 sin2 y

�
:

For a charge in a magnetic moment field,

yM
�2�q� �

1

2
mv 2g

�
1ÿ 1

2
sin2 yÿ 1

3
b 2 sin2 y cos2 y

�
;

yM
�2�q� � ÿi

1

4
mv 2g cos y

�
1ÿ 1

3
b 2 sin2 y

�
:

�3:69�

For a charge in a Coulomb field,

yC
�2�q� �

1

2
mv 2g

��
1ÿ 4

3
b 2

��
1ÿ 1

2
sin2 y

�
ÿ 1

3
b 2 sin2 y cos2 y

�
;

�3:70�
yC
�2�q� � ÿi

1

4
mv 2g cos y

�
1ÿ 4

3
b 2 ÿ 1

3
b 2 sin2 y

�
:

For the sum TA2�q�, we then have

T�2�q� � 1

2
mv 2g

�
�1� db 2��1� cos2 y�

ÿ b 2 sin2 y
�
1� 1

3
cos2 y

��
;

�3:71�
T�2�q� � ÿi 1

2
mv 2g cos y

�
1� db 2 ÿ 2

3
b 2 sin2 y

�
;

with the parameter d � 1=3, 0, ÿ2=3 for the three cases.
The above expressions exhibit the following important

properties:
(1) The relativistic correction being excluded, i.e., b � 0,

the field components coincide with the material ones:

yA2�q� � tA2�q� ; A � �;� : �3:72�

(2) The expressions do not contain terms linear in b; they
are expansions in b 2 if we also recall that g � 1� �1=2�b 2 too.
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(3) The correction db 2, different in all three cases, can be
taken out of the braces in Eqn (3.71) and made an additional
component of the Lorentz factor g such that TA2�q� assumes
the form

T�2�q� � 1

2
mv 2�g� db 2�

�
�
1� cos2 yÿ b 2 sin2 y

�
1� 1

3
cos2 y

��
;
�3:73�

T�2�q� � ÿi 1
2
mv 2�g� db 2� cos y

�
1ÿ 2

3
b 2 sin2 y

�
:

Hence, for the three cases considered, the transverse compo-
nents TA2�q� of the EMT have identical angular dependences
but different amplitudes. The difference is due to the terms
db 2 of the same order as the nonrelativistic kinetic energy
�1=2�b 2 of the mass in units ofmc 2. Therefore, it is related to
the nonlocal properties of the force field holding the mass on
the orbit and may be of interest from the experimental
standpoint. Also of interest in this context is the GR of
masses orbiting their common center. Such a motion can be
experienced by clots of darkmatter, and their GRmight be an
important source of information about these objects.

4. Gravitational radiation
from masses moving in elliptical orbits

4.1 Movement in the Kepler orbits
We consider theGRof two pointmassesm1 andm2 moving in
Kepler orbits around their common center of attraction
located in the common focus of each ellipse. By choosing the
Cartesian coordinate system with axes 1, 2 in the plane of
motion and the origin at the common focus, we can describe
the motion of the mass m1 by the coordinates

x1 � m2

m1 �m2
r cosc ; x2 � m2

m1 �m2
r sinc ; �4:1�

and the motion of the mass m2 by the coordinates

x1 � ÿ
m1

m1 �m2
r cosc ; x2 � ÿ

m1

m1 �m2
r sinc : �4:2�

Here, c is the angle between the direction to the mass m1 and
the axis 1 directed from the focus to m1 as it comes closest to
m2; r is the distance between the masses dependent on the
angle c,

r � p

1� e cosc
; p � a�1ÿ e 2� : �4:3�

The orbits are fully determined by the parameter p, the
eccentricity e, and the mass ratio m1=m2. Therefore, if
m1 > m2, the heavy m1 and light m2 respectively move along
the small and large ellipses, while the point with the
coordinates

r1 � r cosc ; r2 � r sinc ; �4:4�

moves along an even larger ellipse (see Fig. 1 for m1 � 2m2

and e � 1=2). All three ellipses have the same eccentricity e
and their large semiaxes are equal to

m2

m1 �m2
a ;

m1

m1 �m2
a ; a : �4:5�

The angular velocity of the orbitingmasses is described by the
equation

_c � A�1� e cosc�2 ; A �
��������������������������
G�m1 �m2�

p 3

s
; �4:6�

having the solution

At � 2

�1ÿ e 2�3=2
arctan

� ������������
1ÿ e

1� e

r
tan

c
2

�

ÿ e sinc
�1ÿ e 2��1� e cosc� : �4:7�

In specific cases e � 0 (circle) and e � 1 (parabola, p is finite
and equal to 2rmin), we have

At � c ; 2At � tan
c
2
� 1

3
tan3

c
2
: �4:8�

For elliptical orbits, the period T and the fundamental
frequency o are given by the equation

T � 2p
o
� 2p

��������������������������
a 3

G�m1 �m2�

s
; �4:9�

which corresponds to Kepler's third law stating that the ratio
of the squares of the orbital periods of any two planets around
the Sun is proportional to the cubes of their major semiaxes.

As follows from (4.7), the relation between time t and the
angle c is rather complicated if e 6� 0. Instead of c, Lagrange
introduced a variable u related to c by the expressions

cosc � cos uÿ e

1ÿ e cos u
; sinc �

�������������
1ÿ e 2
p

sin u

1ÿ e cos u
: �4:10�

The inverse relation between u and c is described by the
same equations with the substitutions u$ c, e$ ÿe. Then
the time t is related to the distance r and the variable u by the
formulas

ot � uÿ e sin u ; r � a�1ÿ e cos u� : �4:11�
Hence,

r1 � a�cos uÿ e� ; r2 � a
�������������
1ÿ e 2
p

sin u : �4:12�

The dimensionless variables t � ot, c, and u were formerly
referred to as main, true, and eccentric anomalies. The time t
and the angle c increase monotonically as u increases; all
anomalies coincide at points divisible by p: t � c � u � kp.

m2

m2

m2

m1 m1

m1

Figure 1. Elliptical motion trajectories of heavy m1 and light m2 masses

around a common attracting center. Positions of the masses in periastron,

apastron, and for the angle c lying between 0 and p=2.
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The introduction of the variable u into the description of
planetary motion resulted in the appearance of Bessel
functions.

The functions r1 and r2 describing the elliptical motion,
harmonic in u but not in t, are represented by the Fourier
series in harmonic functions of time:

sin u �
X1
n�1

2

ne
Jn�ne� sin nt ;

cos u � ÿ 1

2
e�

X1
n�1

2

n
J 0n�ne� cos nt :

It is assumed in these formulas that the masses m1 and m2

orbit counterclockwise. To consider clockwise motion, we
must change the sign of time t in Eqns (4.6)±(4.8), which is
equivalent to changing the sign of u in Eqns (4.10)±(4.12).

4.2 The trajectory method
for calculating gravitational radiation amplitudes
It is known that gravitational radiation is produced by the
transverse components of the EMT of the masses m1 and m2

and the force field that hold them on the orbits. The conserved
EMT satisfies the equation

qi qj Ti j�q� � q 0 2

c 2
T00�q� ; �4:13�

in which q � �q; q 0� is the wave vector and the frequency,
temporarily considered independent, and all the components
of Tab�q� have the dimensions erg s. However, we proceed
from the equation derived by differentiating both sides of
(4.13) with respect to the components qk and ql of the wave
vector:

q2

qqk qql
qi qj Ti j�q� � q 0 2

c 2
q2

qqk qql
T00�q� : �4:14�

Our main approximation consists in replacing the compo-
nent T00�q� of the total EMT in the right-hand side of
(4.14) by the component t00�q� of the EMT of the masses
m1 and m2 in the nonrelativistic approximation. We first
take t00�q� in the lowest-order approximation and then
make it more exact by introducing the first relativistic
correction into t00. Finally, we try to add the component
y00�q� of the force field EMT to t00�q�, also in the
nonrelativistic limit. The contributions of individual
masses to t00 being additive, we keep only one of them for
simplicity. Replacing T00�q� with

t00�q� � mc 2
�
dt exp

�
iq 0tÿ iqx�t�� ; �4:15�

we obtain

q 0 2

c 2
q2

qqk qql
t00�q� � ÿq 0 2m

�
dt exp

�
iq 0tÿ iqx�t��xk�t�xl�t�

�4:16�

in the right-hand side. We now seek the solution Ti j�q� of
Eqn (4.14) with the approximate right-hand side (4.16) by the
substitution

Ti j�q� � ti j�q� �m

�
dt exp �iq 0t� f �qx���xixj � xi�xj� ; �4:17�

where

ti j�q� � m

�
dt exp

�
iq 0tÿ iqx�t�� _xi�t� _xj�t� �4:18�

are the transverse components of the EMT of the mass m in
the nonrelativistic approximation and f �z� is the sought
function. The second term in Eqn (4.17) can be called the
spatial part yi j�q� of the force field EMT accelerating themass
m. It is easy to show that the contributions ti j�q� and yi j�q�
coincide in the nonrelativistic approximation.

With the above expressions, the left-hand side of
Eqn (4.14) can be represented as

m

�
dt exp �iq 0t�

n
exp �ÿiqx��2 _xk _xl ÿ 2i�qx�� _xkxl � xk _xl�

ÿ xkxl�q _x�2�� 2xkxl�q�x���qx� f 00�qx� � 2 f 0�qx��
� 2��xkxl � xk�xl�

��qx� f 0�qx� � f �qx��o : �4:19�

We now require the function f �z� to satisfy

z f 0�z� � f �z� � 1

2
exp �ÿiz� : �4:20�

In this case,

z f 00�z� � 2 f 0�z� � ÿ i

2
exp �ÿiz� : �4:21�

Then the left-hand side of (4.14) becomes

m

�
dt exp �iq 0tÿ iqx��2 _xk _xl ÿ 2i� _xkxl � xk _xl�q _x

ÿ xkxl�q _x�2 ÿ ixkxl q�x� �xkxl � xk�xl
�

� m

�
dt exp �iq 0t� d2

dt 2
ÿ
xkxl exp �ÿiqx�

�
: �4:22�

Hence, if the test function f �z� satisfies (4.20), Eqn (4.14) with
the approximate right-hand side (4.16) reduces to the relation
between the Fourier transform of the function
gkl�t; q� � xk�t�xl�t� exp �ÿiqx�t�� and the Fourier transform
of its second derivative with respect to t:

m

�
dt exp �iq 0t� d2

dt 2
ÿ
xkxl exp �ÿiqx�

�
� ÿq 0 2m

�
dt exp �iq 0t�xkxl exp �ÿiqx� : �4:23�

Relation (4.23) between the Fourier transform of the function
g�t� and its second derivative g 00�t� requires that the
conditions stipulated by Fikhtengol'ts (see [23], Vol. 3,
Pt. 717) be satisfied. In our case, they are satisfied if the
function g�t� exp �ÿet 2� with an infinitesimal parameter e is
considered instead of the periodic function g�t�. Then this
function remains periodic and simultaneously satisfies
Eqn (4.23) over a time interval much longer than the period
of g�t� but shorter than 1=

��
e
p

.
If the function

f �z� � 1ÿ exp �ÿiz�
2iz

�4:24�

is used as the solution of Eqn (4.20), then the tensor Ti j�q�
defined by formula (4.17) is an exact solution of Eqn (4.14)
with the approximate right-hand side (4.16).
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For the two masses m1 and m2, this tensor becomes

Ti j�q� �
�
dt exp �iq 0t�

n
m1

�
exp �ÿiqx� _xi _xj

� f �qx���xixj � xi�xj�
�

�m2

�
exp �ÿiqn� _xi _xj � f �qn���xixj � xi�xj�

�o
: �4:25�

Assuming the size of a radiation source to be small compared
with the wavelength, we expand exp �ÿiqx� and exp �ÿiqn� in
a Taylor series and use the relation of the coordinates xi; xi to
the coordinates ri [see (4.1), (4.2), and (4.4)]. Then

Ti j�q� � m
�
dt exp �iq 0t�

X1
n� 0

1

2

�
2�n� 1� _ri _rj � �ri rj � ri �rj

�
� �ÿiqr�

n

�n� 1�! Cn ; �4:26�

where m � m1m2�m1 �m2�ÿ1 is the reduced mass and

Cn �
�

m2

m1 �m2

�n�1
� �ÿ1�n

�
m1

m1 �m2

�n�1
; �4:27�

and hence

C0 � 1 ; C1 � m2 ÿm1

m1 �m2
; C2 � m 3

2 �m 3
1

�m1 �m2�3
: �4:28�

Hereafter, we restrict ourselves to the first three terms of the
series in (4.26).

We introduce the dimensionless tensors QA�t; e�, A � i j;
i j k; i j kl; . . . ; periodically dependent on the dimensionless
time t � ot and symmetric in the first two indices i j as well as
in the remaining two or more indices:

2 _ri _rj � �ri rj � ri �rj � v 2Qi j�t; e� ;
�4 _ri _rj � �ri rj � ri �rj�rk � av 2Qi j k�t; e� ; �4:29�
�6 _ri _rj � �ri rj � ri �rj�rk rl � a 2v 2Qi j kl�t; e� ; . . . :

Here, v � ao is the characteristic velocity on the elliptical
orbit. Then

Ti j�q�� 1

2
mv 2

�
dt exp �iq 0t�

�
Qi j�t; e�ÿ i

1

2
C1aqkQi j k�t; e�

ÿ 1

6
C2a

2qkqlQi j kl�t; e� � . . .

�
: �4:30�

Expanding QA�t; e� as a Fourier series in cos nt or sin nt
depending on the even or odd number of twos in A and
denoting the Fourier coefficients by FA�n; e�,

QA�t; e� �
X
n5 0

FA�n; e� cos nt
sin nt

� �
;

�4:31�
FA�n; e� � 1

p

� p

ÿp
dtQA�t; e� cos nt

sin nt

� �
;

we obtain

Ti j�q� � 1

2
mv 2

X
n5 0

pd�q 0 ÿ no�

�
�
Fi j

1
i

� �
ÿ i

1

2
C1 aqkFi j k

1
i

� �
ÿ 1

6
C2a

2qkqlFi j kl
1
i

� �
� . . .

�
�4:32�

after integration over t. Here,

FA�n; e� 1
i

� �
means thatFA�n; e�with an even and odd number of twos inA
is respectively multiplied by 1 and i. It is assumed in formula
(4.32) that q 0 > 0 and that themasses orbit counterclockwise.
To consider clockwise motion, it is necessary to change the
sign of t in the functions QA�t; e�. In accordance with
expansion (4.31), this results in a change of sign in front of
the Fourier coefficients FA�n; e� with an odd number of twos
in A.

Because jqj � q 0=c for gravitons, aqk � nbek, where
b � v=c and ek are the components of the unit vector e along
the graviton wave vector q:

e1 � sin y cosj ; e2 � sin y sinj ; e3 � cos y : �4:33�

We recall that Eqn (4.32) contains only the first two
components of this vector.

Hence, Eqn (4.32) is the expansion of Ti j�q� in powers of
the nonrelativistic effective velocity b � v=c5 1 originating
from the expansion in the wave vector.

Because the EMT is real in the x-space, its Fourier
transform must satisfy the condition

Ti j�q� � T �i j�ÿq� : �4:34�

Expression (4.32) obtained for q 0 > 0 automatically satisfies
this condition if the expression for the time integral�

dt exp �iq 0t� cos nt
sin nt

� �
� pd�q 0 ÿ no� 1

i

� �
� pd�q 0 � no� 1

ÿi
� �

; n5 0 ; �4:35�

contains not only the first term but also the second one, valid
at q 0 < 0. Keeping both terms is equivalent to replacing the
sum over positive n5 0 in (4.32) with the sum over all integers
n00. Such equivalence ensues from the even (odd) depen-
dence on n of the functions PA�n� with an even (odd) number
of twos in A.

Therefore, denoting the expression in braces in (4.32) by
Gi j�n; aq�, it is possible to represent Ti j�q� in two different
forms:

Ti j�q� � 1

2
mv 2

X
n00

pd�q 0 ÿ no�Gi j�n; aq�

� 1

2
mv 2

X
n5 0

p
�
d�q 0 ÿ no�Gi j�n; aq�

� d�q 0 � no�G �i j�n;ÿaq�
�
; �4:36�

suitable for any sign of q 0 and satisfying (4.34). However,
only the physically interesting case of q 0 > 0 is considered in
what follows.

4.3 Radiation spectrum and angular distribution
The radiation spectrum and angular distribution are defined
by the formula

dEq � 8pG
c 2

�
1

2

��T��q���2 � 2
��T��q���2� d3q

16p 3
; �4:37�
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where the components T� and T� are related to the
components T11, T22, and T12 as

T� � �sin2 jÿ cos2 y cos2 j�T11

ÿ2 sinj cosj�1� cos2 y�T12� �cos2 jÿ cos2 y sin2 j�T22 ;

T� � cos y sinj cosj�T11ÿ T22� ÿ cos y�cos2 jÿ sin2 j�T12 :

�4:38�

We represent these components in a form analogous to (4.36):

TA�q� � 1

2
mv 2

X
n>0

pd�q 0 ÿ no�GA�n; aq� ; A � �;� :

Then

dEq � t
G�mv 2�2
16pc 2

�
X
n>0

d�q 0 ÿ no�
�
1

2

��G��n���2 � 2
��G��n���2� d3q : �4:39�

Here, t is the radiation time that must be much greater than
the period T � 2p=o. In this case, dEq=t are the spectral and
angular distribution of the mean radiation power.

Simple but cumbersome calculations give the following
result for the angular distribution of the nth harmonic:

1

2

��G��n���2 � 2
��G��n���2 � 1

2
jG11j2�1ÿ e 21 �2

� 1

2
jG22j2�1ÿ e 22 �2 � 2jG12j2�1ÿ e 21 ��1ÿ e 22 �

�ReG11G
�
22�e 21 e 22 ÿ e 23 � ÿ 2ReG11G

�
12e1e2�1ÿ e 21 �

ÿ 2ReG22G
�
12e1e2�1ÿ e 22 � : �4:40�

We recall that the tensorGi j is defined by the expression in the
braces in (4.32), which depends on six independent dimen-
sionless quantities: the harmonic number n, the eccentricity e,
the mass ratio m1=m2, the velocity b � v=c, and the angles y
and j. In angular distribution (4.40), the six bilinear
combinations formed from three complex components of
Gi j are, for i j � 11, 22, and 12,��Gi j�n; b�

��2 � F 2
i j � C1bne2Fi jFi j 2

� 1

4
C 2

1 b
2
n �e 21F 2

i j 1 � e 22F
2
i j 2� ÿ

1

3
C2b

2
n Fi j�e 21Fi j 11 � e 22Fi j 22� :

�4:41�
Here and hereinafter, bn � nb, the plus sign in front of the
second term corresponds to the indices i j � 11 or 22, and the
minus sign corresponds to i j � 12.

ReG11�n; b�G �22�n; b�

� F11F22 � 1

2
C1bne2�F112F22 � F11F222�

� 1

4
C 2

1 b
2
n �e 21F111F221 � e 22F112F222�

ÿ 1

6
C2b

2
n

�
e 21 �F1111F22 � F11F2211�

� e 22 �F1122F22 � F11F2222�
�
: �4:42�

For ii � 11 or 22,

ReGii�n; b�G �12�n; b� �
1

2
C1bne1�FiiF121 ÿ Fii1F12�

� 1

4
C 2

1 b
2
n e1e2�Fii1F122 � Fii2F121�

ÿ 1

3
C2b

2
n e1e2�FiiF1212 � Fii12F12� : �4:43�

If F22, F22k, and F22kl in the expression for ReG11G
�
22 are

substituted by F11, F11k, and F11kl, the expression turns into
jG11j2 as expected. A similar substitution of F11, F11k, and
F11kl by F22, F22k, and F22kl converts this expression into
jG22j2.

4.4 Angular distribution asymmetry
in the case m1 6� m2, e 6� 0
In the case wherem1 > m2 and e 6� 0, the 1-axis extends from
the common focus toward the large ellipse along which the
smaller mass m2 moves. In this case, the angular distribution
of radiation is asymmetric with respect to both the 2-axis
direction and the opposite direction. For the azimuthal angles
j � �p=2, with e1 � 0 and e2 � � sin y, it follows from
(4.40)±(4.43) that

1

2
jG�j2 � 2jG�j2 � 1

2
jG11j2 � 1

2
jG22j2 cos4 y

� 2jG12j2 cos2 yÿ 2ReG11G
�
22 cos

2 y : �4:44�

In the bilinear combinations of the tensorGi j, the terms linear
in C1b have different signs for the angles j � �p=2 whereas
the other terms remain unaltered. Therefore, the difference
between the angular distributions for the angles j � �p=2 is
nonzero:�

1

2
jG�j2 � 2jG�j2

�
j�p=2

ÿ
�
1

2
jG�j2 � 2jG�j2

�
j�ÿp=2

� C1bn sin y
�
F11F112 � F22F222 cos

4 y

ÿ 2�F11F222 � F22F112 � 2F12F122� cos2 y
�
: �4:45�

This remarkable relativistic effect (the parameter
bn � nb � nv=c contains the speed of light) occurs because
atm1 > m2 and e 6� 0, themasses have the highest velocities in
the region where they come closest to each other (i.e., near the
periastron), such that GR actually forms in this region. At the
chosen counterclockwise direction of the mass motion, the
velocity of the heavier massm1 in periastron is directed along
the 2-axis, and the velocity of the light one m2, opposite to it.
Because the velocity and kinetic energy of the light mass are
m1=m2 times those of the heavy one, the total GR from the
two-mass system is largely due to the lighter mass; it is formed
in the region where the twomasses come closest to each other,
and the overall intensity is higher in the direction of the light
mass velocity.

It follows from the discussion below formula (4.32) that
the Fourier coefficients FA�n; e� with an odd number of twos
in A change sign if the masses moving counterclockwise turn
in the opposite direction. In this case, the difference between
the angular distributions for the angles j � �p=2 [see (4.45)]
also changes sign because the velocity of the lighter mass in
the region where it comes closest to its heavy counterpart is
directed along the 2-axis, and not opposite to it.
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We note that the asymmetry disappears in the case of two
equal masses because C1 � 0, and also in the case of zero
eccentricity e � 0. In the latter case, the coefficients Fi j differ
from zero only for the quadrupole harmonic n � 2, and
coefficients Fi j k, only for the n � 1 and n � 3 harmonics.

4.5 The spectrum as a polar angle function.
Integral spectrum
Integration of the angular distribution of the nth harmonic
(4.40) over j gives the distribution of its radiation intensity
with respect to the angle y:� p

ÿp
dj
�
1

2

��G��n���2 � 2
��G��n���2�

� 1

2
I1�F 2

11 � F 2
22� � 2I2F

2
12 � I3F11F22

� 1

4
C 2

1 b
2
n

�
1

2
I4�F 2

111 � F 2
222� �

1

2
I5�F 2

112 � F 2
221�

� 2I6�F 2
121 � F 2

122� � I7�F111F221 � F112F222�
ÿ 2I8�F111F112 � F112F121 � F221F122 � F222F121�

�

ÿ 1

3
C2b

2
n

�
1

2
I4�F11F1111 � F22F2222�

� 1

2
I5�F11F1122 � F22F2211� � 2I6�F12F1211 � F12F1222�

� 1

2
I7�F1111F22 � F11F2211 � F1122F22 � F11F2222�

ÿ 2I8�F11F1212 � F1112F12 � F22F1212 � F2212F12�
�
: �4:46�

While the Fourier coefficients FA�n; e� depend on the
harmonic number n and the eccentricity e, their y-depen-
dence is contained in the even-degree polynomials Ir�s� in
s � sin y:

I1�s� � 2p
�
1ÿ s 2 � 3

8
s 4
�
;

I2�s� � 2p
�
1ÿ s 2 � 1

8
s 4
�
;

I3�s� � 2p
�
ÿ1� s 2 � 1

8
s 4
�
;

I4�s� � 2p
�
1

2
s 2 ÿ 3

4
s 4 � 5

16
s 6
�
;

�4:47�

I5�s� � 2p
�
1

2
s 2 ÿ 1

4
s 4 � 1

16
s 6
�
;

I6�s� � 2p
�
1

2
s 2 ÿ 1

2
s 4 � 1

16
s 6
�
;

I7�s� � 2p
�
ÿ 1

2
s 2 � 1

2
s 4 � 1

16
s 6
�
;

I8�s� � 2p
�
1

8
s 4 ÿ 1

16
s 6
�
:

We note that the angular distribution of the relativistic
correction is determined by five 6th-order polynomials in s
vanishing at y � 0 and p, whereas the angular distribution of
the leading, nonrelativistic terms depends on three 4th-order

polynomials differing from zero at these points. In other
words, the relativistic correction does not affect radiation
intensity at y � 0 and p. Also worthy of note is the
interesting symmetry of the expressions in the two square
brackets of the relativistic correction. The function in the
second square brackets composed of type-Fi jFmnkl terms
turns into the function in the first brackets if the last index
of the four-index coefficient in each of its terms is removed
and made the third index of the two-index coefficient, i.e., if
Fi jFmnkl is replaced with Fi j lFmnk. Clearly, the inversion
Fi j lFmnk ! Fi jFmnkl changes the function in the first square
brackets to the function in the second.

The remaining integration over the angle y yields�
dO
�
1

2

��G��n���2 � 2
��G��n���2�

� 16p
15

�
F 2
11 � F 2

22 � 3F 2
12 ÿ F11F22

� 1

28
C 2

1 b
2
n

�
F 2
111 � F 2

222 � 3�F 2
112 � F 2

221�

� 5�F 2
121 � F 2

122� ÿ F111F221 ÿ F112F222

ÿ 2�F112F121 � F111F122 � F222F121 � F221F122�
�

ÿ 1

21
C2b

2
n

�
F11F1111 � F22F2222

� 3�F11F1122 � F22F2211� � 5F12�F1211 � F1222�

ÿ 1

2
�F1111F22 � F11F2211 � F1122F22 � F11F2222�

ÿ 2�F11F1212 � F1112F12 � F22F1212 � F2212F12�
��
: �4:48�

Certainly, this spectrum preserves the aforementioned per-
mutation symmetry of expressions in the two square brackets
of the relativistic correction.

Using this expression in formula (4.39) and carrying out
the remaining integration over q 2 dq gives the total energy E
emitted during time t,

E � t
G�mv 2�2o2

15c 5

X1
n>0

n 2

. . .

� �
; �4:49�

and the radiation power P � E=t. Here, the curly brackets
contain the same expression as is enclosed in the braces in
Eqn (4.48).

If only the first four terms are kept in the braces, the
equation for the nth harmonic power

P�n� � G�mv 2�2o2

15c 5
n 2�F 2

11 � F 2
22 � 3F 2

12 ÿ F11F22� �4:50�

exactly coincides withP�n� obtained in [24] [formulas (19) and
(20)]. In comparing, it must be kept in mind that
4Jn�ne� � F11 � F22, n 6� 0. The Fourier coefficients
FA�n; e�, A � i j, i j k, i j kl, and their main properties are
presented in the Appendix.

Peters and Mathews [24] draw attention to the fact that
the mean radiation power P�n� summed over all harmonics is
a steeply growing function of e as e! 1 (see formula (16) in
[24]). As a matter of fact, the limit e! 1 at a constant a is
nonphysical. In this case, the maximum and minimum speeds
of each mass on elliptical orbits respectively tend to1 and 0.
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For the mass m2, for example,

vmax � m1

m1 �m2

����������������������������������������
G�m1 �m2��1� e�

a�1ÿ e�

s �����
e!1

!1 ;

�4:51�

vmin � m1

m1 �m2

����������������������������������������
G�m1 �m2��1ÿ e�

a�1� e�

s �����
e!1

! 0 :

To avoid conflict with the theory of relativity, the transition
to the limit e! 1 must be performed at a constant
p � a�1ÿ e 2�. In this case, the ellipse turns into a parabola,
the mean power hPi tends to zero (because T!1), and the
total radiation energy for time T is finite, being actually equal
to

E � 64p
5

�
Gm 2

p

��
v�
c

�5�
1� e 2

73

24
� e 4

37

96

�
; �4:52�

and tending to the finite energy

E � 170p
3

�
Gm 2

p

��
v�
c

�5

; v� �
��������������������������
G�m1 �m2�

p

s
�4:53�

emitted from both parabolic orbits of the masses m1 and m2.
Here, v� is the effective orbital velocity, and the maximum
velocity does not exceed 2v�. Evidently, the nonrelativistic
consideration is valid for v�5 c. At v� � c, the parameter
p � G�m1 �m2�=c 2 becomes twice the gravitational
(Schwarzschild) radius of the two-mass system, and the
emitted energy E is two orders of magnitude higher than the
interaction energy of the two masses. We note that at e! 1
and finite p, the fundamental frequency o tends to zero,
whereas the maximum angular frequency _cmax remains finite,
and their ratio

_cmax

o
�

�����������������
1� e

�1ÿ e�3
s

determines a maximum in the harmonic distribution over n.

4.6 The improved trajectory method
As mentioned in Section 4.2, Eqn (4.32) is the expansion of
Ti j�q� in powers of the nonrelativistic velocity b � v=c5 1
and, at the same time, in powers of the wave vector q. But
keeping terms of the order of b 2 in the braces of (4.32), we
should refine the approximate expression (4.16) used on the
right-hand side of Eqn (4.14). We replace t00�q� by its exact
expression

t00�q� � mc 2
�
dt exp

�
iq 0tÿ iqx�t�� g�t� ; �4:54�

in which, however, we keep only the lower-order term in the
expansion of the Lorentz factor g�t�:

g�t� � 1� 1

2
b 2�t� : �4:55�

This operation modifies the right-hand side of (4.14), which
takes form (4.16) with the g-factor in the integrand,

q 0 2

c 2
q2

qqk qql
t00�q�

� ÿq 0 2m

�
dt exp

�
iq 0tÿ iqx�t��g�t�xk�t�xl�t� ; �4:56�

and the solution of (4.14) for Ti j�q� becomes

Ti j�q� � m

�
dt exp �iq 0t�

�
g _xi _xj exp �ÿiqx�

�
�
1

2
g��xixj � xi�xj� � _g� _xixj � xi _xj�

�
exp �ÿiqx� ÿ 1

�ÿiqx�

� �gxixj
exp �ÿiqx� ÿ 1� iqx

�ÿiqx�2
�

�4:57�

[cf. (4.17) and (4.18)]. Indeed, Eqn (4.14) for such a
tensor with the modified right-hand side (4.56) reduces to
the relation between the Fourier transform of the
function g�t�xk�t�xl�t� exp �ÿiqx�t�� and the Fourier trans-
form of its second derivative with respect to t regardless of
whether the approximate (4.55) or exact [cf. (4.23)] value of
the g-factor is used.

Again using the smallness of the ratio of the radiative
system dimensions to the wavelength, i.e., the smallness of qx,
we can represent the expression in the curly brackets with up
to the terms of the order of v 2b 2. Then

Ti j�q� � 1

2
m

�
dt exp �iq 0t�

�
�

d2

dt 2
�gxixj� ÿ 1

2
iqx�4 _xi _xj � �xixj � xi�xj�

ÿ 1

6
�qx�2�6 _xi _xj � �xixj � xi�xj�

�
: �4:58�

As expected, the g-factor occurs only in the part independent
of the wave vector q since the q-dependent terms are of the
orders v 2b and v 2b 2. As a result, the tensor Ti j�q� for a two-
mass system is represented in form (4.32) with Fi j replaced by
~Fi j,

~Fi j�n; e� � Fi j�n; e� � 1

2
C2b

2fi j�n; e� ; �4:59�

where b � v=c � ao=c5 1 and the Fourier coefficient is

fi j�n; e� � ÿ n 2

p

� p

ÿp
dt

ri rj� _r 21 � _r 22 �
a 2v 2

cos nt
sin nt

� �
: �4:60�

The explicit expressions for all the Fourier coefficients and
their properties are presented in the Appendix. Using them,
we can write the explicit expressions for polarization
amplitudes

TAn�q� � 1

4
mv 2GA�n; q� ; A � �;� ;

of the nth harmonic obtained by the trajectory method in the
b 2 approximation without considering the y00 component of
the force field EMT. In the particular case where e � 0 and
m2 5m1, with C2 � 1, we have the second harmonic
amplitudes

T trj
�2�q�

� 1

2
mv 2g

�
1� cos2 yÿ b 2 sin2 y

�
1� 1

3
cos2 y

��
exp �2ij� ;

T trj
�2�q� � ÿi

1

2
mv 2g cos y

�
1ÿ 2

3
b 2 sin2 y

�
exp �2ij�

�4:61�
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[cf. (3.73), where j � 0]. These amplitudes coincide with the
GR amplitudes of a charge in a magnetic moment field. It
appears that the nonlocal properties of this field manifest
themselves, by virtue of its strong falloff, in the GR
amplitudes in the terms of a higher order than b 2.

We next discuss the replacement ofFi j with ~Fi j in the terms
bilinear in Fi j, such as those in Eqns (4.41), (4.42), (4.46),
(4.48) and (4.49). This substitution means that

F 2
i j ! F 2

i j � C2b
2Fi j fi j ;

�4:62�
F11F22 ! F11F22 � 1

2
C2b

2�F11 f22 � F22 f11� :

The above expressions contain additional terms of the order
of b 2 linear in fi j�n; e�. The replacement of (4.59) is not
needed in the terms linear in Fi j but bilinear in the Fourier
coefficients (such as Fi jFA, A � mnk;mnkl ) contained in
expressions (4.41)±(4.43), (4.45), (4.46), (4.48), and (4.49)
because it would lead to excess accuracy, i.e., the appearance
of order-b 3 and b 4 terms.

To summarize, the trajectory method permits finding the
transverse GR amplitudes with terms � b 2 using only the
t00�q� component of the mass EMT. It is known, however,
from three examples of the mass motion along the same
circumference but under the action of different force fields
that these fields are responsible for different order-b 2

additions to the Lorentz factor determining the amplitudes
of the transverse components T� and T� [see (3.73)]. Because
g is the kinetic energy of the mass in units ofmc 2, an addition
of the same order as the nonrelativistic kinetic energy �1=2�b 2

may be regarded as the effective energy of a force field
contributing to GR. An example of taking this energy into
account by the trajectory method for a massive string is given
below using both the component t00�q� and the component
y00�q� of the force field EMT in the right-hand side of
Eqn (4.14)

4.7 An example of taking the force field energy
into account
We apply the trajectory method to the calculation of GR by a
string of length rwith one end fixed and the other loaded with
a mass m. We then add the component y00�q; v� of the string
EMT to the t00�q� component of the mass EMT [using the
same notation as in (3.47)]. According to Section 3.3,

y00�q; v� � m
�
dt exp �iq 0t�

�
� r

0

ds�������������������������
1ÿ �os=c�2

q exp
�ÿiqx�t; s��

� mv 2g 2

b

�
dt exp �iq 0t�

� arcsin b

0

da exp

�
ÿi sin a

b
qr�t�

�
:

�4:63�
The last formula is derived by passing from the variable s to
the dimensionless variable a,

s � sin a
b

r ; �4:64�

such that the exponent in the integral over a takes the form

ÿiqx�t; s� � ÿi sin a
b

qr�t� ; �4:65�

where r1 � r cosot and r2 � r sinot are the coordinates of the
mass-loaded end of the string. We also used relation (3.40)
between the string tension and the velocity v � or of its end,
assuming the string rotates counterclockwise.

The additional term in the right-hand side of (4.14) takes
the form

q 0 2

c 2
q2

qqk qql
y00�q; v� � ÿq 0 2mbg 2

�
dt exp �iq 0t�

�
� arcsinb

0

da
�
sin a
b

�2

exp

�
ÿi sin a

b
qr

�
rk�t� rl�t� : �4:66�

Up to now, no assumptions have been made regarding the
magnitude of the velocity, i.e., the parameter b � v=c.

We use the trajectory method to calculate the radiation
amplitudes T��q� and T��q� in the nonrelativistic approx-
imation, taking account of order-b 2 relativistic corrections.
We consider Eqn (4.66) in this approximation. Because
qr � b, keeping the first three terms in the expansion of the
exponential and the calculating the respective integrals over a,� arcsin b

0

da
�
sin a
b

�k

� b
k� 1

�
1� k� 1

2�k� 3� b
2 � . . .

�
;

k � 2; 3; 4 ;

leads to the following expression for additional term (4.66):

q 0 2

c 2
q2

qqk qql
y 00�q; v�

� ÿq 0 2mb 2g 2
1

3

�
dt exp �iq 0t� rk�t� rl�t�

�
�
1� 3

10
b 2 ÿ i

3

4
qr� 3

10
�qr�2

�
: �4:67�

Its comparison with the main expression in the right-hand
side of Eqn (4.14), including the t 00�q� component,

q 0 2

c 2
q2

qqk qql
t 00�q�

� ÿq 0 2mg
�
dt exp �iq 0t� rk�t� rl�t�

�
1ÿ iqrÿ 1

2
�qr�2

�
;

�4:68�

shows that expression (4.67) is �1=3�b 2 times Eqn (4.68). In
other words, it is obtained with an excess accuracy, which
implies that g � 1 and all bracketed terms except 1 can be
omitted. Because the addition to amplitudes (4.61) (obtained
by the trajectorymethod with the use of the t 00�q� component
of the matter EMT alone) is equivalent to replacing the
Lorentz factor g in these amplitudes with the factor
g� �1=3�b 2, we have

g! g� 1

3
b 2 � 1� 1

2
b 2 � 1

3
b 2 � 1� 5

6
b 2 : �4:69�

As a result, the amplitudes exactly coincide with the string
amplitudes in (3.73), d � 1=3. The addition of �1=3�b 2 to
g � 1� �1=2�b 2, i.e., to the kinetic energy of the mass in units
of mc 2, plays the role of the effective energy of the force field
involved in GR.

The relativistic GR amplitudes considered previously for
three cases (strings, a charge in a magnetic moment field, and
a charge in a Coulomb field) in the b 2-approximation differed
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only by the order-b 2 terms added to the Lorentz factor
g � 1� �1=2�b 2:

T�2�q� � 1

2
mv 2�g� db 2�

�
�
1� cos2 yÿ b 2 sin2 y

�
1� 1

3
cos2 y

��
;

�4:70�
T�2�q� � ÿi 1

2
mv 2�g� db 2� cos y

�
1ÿ 2

3
b 2 sin2 y

�
;

i.e., by the respective values of the parameter d: 1=3, 0, and
ÿ2=3. This means that the nonlocality of different force fields
driving a point mass along the same trajectory is poorly
manifested in the amplitudes T� and T� (only in the terms
� b 2). At the same time, they have a similar local action on
the particle, as is revealed by the trajectory method where
only the local component t 00�q� of the matter EMT is taken
into account and the total EMT is kept.

Thus, the trajectory method allows finding the leading
terms of the amplitudes T��q� and T��q� of all harmonics.
For a quadrupole-like harmonic, relativistic corrections� b 2

reflect both local and nonlocal effects of the force field. The
former are derived exactly by the trajectory method, and the
latter require the y 00 component of the force field EMT to be
used in the right-hand side of Eqn (4.14).

For a motion along elliptical trajectories, this method
allows finding the amplitudes T� and T� for all harmonics in
the b 2-approximation using the t00 component of the mass
EMT in the right-hand side of Eqn (4.14); nonlocal effects of
the force field are taken into account, as in the case of circular
orbits, in the form of order-b 2 additions to the leading
Fourier coefficients Fi j�n; e�, unrelated to the graviton wave
vector q.

5. Gravitational radiation
by a charge passing through a Coulomb field
and a magnetic moment field

5.1 The passage of a charge through a Coulomb field
The trajectory followed by a charge e as it passes a Coulomb
center with the charge e 0 is a planar curve that can be
described by the parametric equations

x1�x� � r�x� cosj�x� ; x2�x� � r�x� sinj�x� ;
�5:1�

t�x� � b

�1ÿ gÿ2�1=2
�
sinh x� K

g 2
x
�
;

where r is the distance between the charge and the center, j is
the angle of deflection from the symmetry axis (1-axis), and t
is the time:

r�x� � a� b cosh x ;
�5:2�

j�x� � 1

�1ÿ n 2�1=2
arcsin

�1ÿ K 2�1=2 sinh x
cosh x� K

:

These formulas are derived by themethod described in [6] (see
par. 39).

The charge motion is characterized by three independent
parameters: the dimensional impact parameter b, the dimen-
sionless Lorentz factor g of the charge at infinity, and the

dimensionless ratio

n � a
Mc

; �5:3�

equal to the ratio of the product of charges a � ee 0=4p to the
particle angular momentumM times the speed of light; all the
remaining parameters are their functions:

a � n

�1ÿ gÿ2�1=2
b ; b � b

�
1� n 2

g 2 ÿ 1

�1=2

; K � a

b
: �5:4�

We consider the case of repulsion, n > 0. The extension to the
case of attraction is rather simple. The final Eqn (5.31) holds
for either sign of n.

The scattering angle is given by

w � pÿ �j�1� ÿ j�ÿ1�� � pÿ 2

�1ÿ n 2�1=2
arccos K : �5:5�

We first consider the EMR spectrum of the charge. We
characterize the direction of the wave vector q by the angle d it
makes with the �1; 2� plane and the angle c between the �q; 3�
plane and the 2-axis:

q � jqj�cos d sinc ; cos d cosc ; sin d� : �5:6�

Using the conditions q aja�q� � 0 of current conservation and
q 2 � 0, we then have the EMR spectrum�� ja�q���2� �1ÿ cos2 d sin2 c� j j1j2� �1ÿ cos2 d cos2 c� j j2j2

ÿ 2 cos2 d sinc coscRe j1 j
�
2 : �5:7�

The current density components are defined by the integrals

j1�q� � eb

�1
ÿ1

dx exp
�ÿi f�x��

�
�
sinh x cosj�x� ÿ

�
1ÿ K 2

1ÿ n 2

�1=2

sinj�x�
�
; �5:8�

j2�q� � eb

�1
ÿ1

dx exp
�ÿi f�x��

�
�
sinh x sinj�x� �

�
1ÿ K 2

1ÿ n 2

�1=2

cosj�x�
�
; �5:9�

f �x� � q1r�x� cosj�x� � q2r�x� sinj�x�

ÿ q 0b�1ÿ gÿ2�ÿ1=2
�
sinh x� K

g 2
x
�
: �5:10�

It what follows, we confine ourselves to the ultrarelativis-
tic case g4 1 and require that the parameter n be of the order
of gÿ1 or smaller, i.e.,

n9
1

g
5 1 : �5:11�

Then K � n5 1, and up to the terms of the fourth order of
smallness in the parameters that occur in condition (5.11), we
have�

1ÿ K 2

1ÿ n 2

�1=2

� 1 ; b � b :
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Moreover, both the scattering angle w and the effective values
of the angles d and c are small:

w � 2n ; jdj; jcj � 1

g
5 1 : �5:12�

The relevant expansion in formulas (5.1) and (5.8)±(5.10)
leads to

x1�x� � b
�
1� n cosh xÿ 1

2
n 2 sinh x arcsin �tanh x� � . . .

�
;

�5:13�
x2�x� � b

�
sinh xÿ 1

2
n 2 sinh x� 1

2
n 2 arcsin �tanh x� � . . .

�
;

j1 � ebnS ; j2 � ebC ; �5:14��� ja�q���2 � e 2b 2
�
n 2jS j2 � �d 2 � c 2�jC j2 ÿ 2ncRe �SC ��� ;

�5:15�
where

�S;C � �
�1
ÿ1

dx �sinh x; cosh x� exp �ÿi f �x�� ; �5:16�

f �x� � Zÿ z sinh x� w cosh x� s arcsin �tanh x� ; �5:17�

Z � bq 0c ; z � 1

2
bq 0

�
d 2 � c 2 � n 2 � 1

g 2

�
;
�5:18�

w � bq 0nc ; s � 1

2
bq 0n 2 :

We note that j ja�q�j2 is an odd function of c. This follows
from the fact that a change in the sign of c and the complex
conjugation result in reversing the sign of S�c�, leaving C�c�
unaltered:

S ��ÿc� � ÿS�c� ; C ��ÿc� � C�c� ;

which in turn follows from the property
f �x;c� � ÿf �ÿx;ÿc�. The evenness of the square of the
current in c implies the equality of the EMR intensities
emitted along the initial and final directions.

Because the charge deflection angle w is so small that the
conditions (5.11) and (5.12) are satisfied, the Coulomb field
effectively acts on the charge only over a distance of the order
of the impact parameter b � b. Consequently, x � 1 are
effective [see (5.1), (5.2), (5.13)]. It then follows from (5.17)
that z, w, s � 1 in the integrals S and C are effective and,
accordingly, q 0 � bÿ1g 2 (cf. par. 77 in [6]).

The integrals S and C cannot be expressed through the
known special functions. However, at the deflection angle
w5 gÿ1,

S � 2i exp �ÿiZ�K1�z� ; C � 2i
w

z
exp �ÿiZ�K1�z� ;

w5 gÿ1 5 1 : �5:19�

In this case, the EMR spectrum is given by the equation�� ja�q���2 � 4e 2n 2b 2K 2
1 �z�

�
1ÿ 4c 2

g 2�d 2 � c 2 � 1=g 2�2
�
; �5:20�

and the total energy emitted during the passage is

EEM �
�
d3q

16p3
�� ja�q���2 � pe 4e 0 2g 2

4�4p�3m 2b 3
; �5:21�

in agreement with the equation in Problem 1 of par. 73
in [6].

We now turn to the calculation of the GR spectrum. It is
determined by two transverse components of the total EMT,
which can be very simply expressed through the EMT
components in a coordinate system K 0 whose 30-axis lies in
the same direction as q [see (2.47), (2.48)]. The transition toK 0

from the coordinate system K under consideration, where the
trajectory lies in the plane �1; 2� symmetrically with respect to
the 1-axis and the radiation wave vector is characterized by
the angles d and c [see (5.6)], can be accomplished through
two spatial rotations. One is the rotation K! K 00 about the
3-axis by c, which puts q in the �3 � 300; 200� plane of the
intermediate coordinate system K 00. The other is the rotation
K 00 ! K 0 about the 100-axis through the angle y � p=2ÿ d,
such that the vector q lies along the 30-axis of the K 0 system.
The expression of the EMT components T 0i j�q 0� entering
(2.47) and (2.48) in the K 0 system in terms of the components
Ti j�q� in K yields

T��q� � �cos2 cÿ sin2 d sin2 c�T11

ÿ2 sinc cosc�1� sin2 d�T12� �sin2 cÿ sin2 d cos2 c�T22

� 2 sin d cos d�sincT13 � coscT23� ÿ cos2 dT33 ; �5:22�
T��q� � sin d sinc cosc�T11 ÿ T22�
� sin d�cos2 cÿ sin2 c�T12 ÿ cos d�coscT13 ÿ sincT23� :

�5:23�

Formulas (1.3), (2.13), (2.39), and (2.40) in Sections 1 and
2 are used to construct the spatial components Ti j � ti j � yi j.
Then

ti j�q� � m

�1
ÿ1

dx x 0i x
0
j �t 0 2 ÿ x 0 2�ÿ1=2 exp �ÿi f �x�� ; �5:24�

i; j � 1; 2 ;

yi j�q� � ÿiajqj
�1
ÿ1

dx exp
�ÿi f �x��

�
� 1

0

du exp
�
iu
ÿ
qx� jqjr��

�
�
xix

0
j � xjx

0
i

2r
� t 0

xixj
r 2

�
u� i

jqjr
��
� . . . ; �5:25�

where the prime denotes the derivative with respect to x. The
dots in (5.25) denote the terms of the form

�qibj � qjbi�A ; di jB ; �5:26�

where A and B are rotation-invariant functions that depend
on q and the vectors e1 and e2 characterizing the charge
trajectory as a whole, the direction of its axis of symmetry,
and the tangent to the trajectory's apex; b is one of the vectors
q, e1, e2.

In the case of theK! K 0 rotation, the terms in (5.26) turn
into

�q 0i b 0j � q 0j b
0
i �A ; di jB �5:27�

and transverse EMT components (2.48) make no contribu-
tion because q 01 � q 02 � 0. Therefore, neither the terms in
(5.26) nor the components T13, T23, T33 have to be
calculated, as was first observed in [25].

To further analyze the ultrarelativistic case [to be precise,
(5.11)], we introduce the relevant expressions for the
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components ti j and yi j, i; j � 1; 2:

t11 � an
�1
ÿ1

dx tanh x sinh x exp
�ÿi f �x�� ;

�5:28�
t12 � aS ; t22 � a

n
C ;

y11 � an
�1
ÿ1

dx tanh x exp
�ÿxÿ i f �x�� ;

y12 � 1

2
a
�1
ÿ1

dx exp
�ÿxÿ i f �x�� ; �5:29�

y22 � a
�1
ÿ1

dx sinh x exp
�ÿxÿ i f �x�� :

Here, f �x� is given by (5.17) and the relationmgbn � a is used.
It can be seen that the components yi j are of the order of ti j
with the exception of y22 � nt22 5 t22. For the components
Ti j, we obtain

T11 � anS ; T12 � 1

2
a�S� C� ; T22 � a

n
C : �5:30�

Substituting these components in (5.22) and (5.23), omitting
all the terms containing T13, T23, and T33, and taking into
account that d and c are small angles [see (5.12)], we find the
GR spectrum

8pG
�
1

2
jT�j2 � 2jT�j2

�
� 4pGm 2g 2

e 2
��nÿ c�2 � d 2

��� ja�q���2 :
�5:31�

Here, the j ja�q�j2 spectrum is given by formula (5.15).
Therefore, when an ultrarelativistic charge transverses a

Coulomb field and the deflection angle is w9gÿ1, the GR
spectrum is proportional to the EMR spectrum, while the
conversion amplitude

G � g
��nÿ c�2 � d 2

�1=2
; �5:32�

depends on the direction of the wave vector and the orbital
parameters.

We note that G exhibits no symmetry as c changes
monotonically from the maximum at c � ÿn to the mini-
mum at c � n, meaning that GR emitted along the initial
charge direction is more intense than that emitted along the
final direction of the charge for both attraction and repulsion
(Fig. 2). The reason may be that EMR emitted along the
initial direction is converted into gravitons over a greater
length than EMR emitted along the final direction of the
charge.

Because n and the effective values of the angles c, d are
constrained by conditions (5.11) and (5.12), it follows that
G � 1, in agreement with (1.15) (see the Introduction).

While the proportionality of the GR and EMR spectra is
due to ultrarelativism, the decrease in G to G � 1 can be
attributed to the reduction of the region where GR forms to
the region in which EMR is produced. As a result, both GR
sources, the local EMT tab of the material body and the
nonlocal EMT yab of the proper and external electromagnetic
fields, make contributions of the same order of magnitude.

For n5 gÿ1 5 1, substituting expression (5.20) in (5.31)
gives the GR spectrum found in this approximation in [26]. In
formula (17.20) ofRef. [26], the direction of vector q is defined
by the angles y and j:

q � jqj�sin y cosj; cos y; sin y sinj� ;

rather than by c and d [see (5.6)], but the smallness of all
angles, except j, simplifies the relations: c � y cosj,
d � y sinj. Integration of the spectrum over the wave vector
q gives the total GR energy EG differing from EEM in (5.21) by
the factor 4pGm 2=e 2 as previously noted in [27].

In the foregoing, we assumed the charge motion to be
ultrarelativistic, i.e., g4 1. In a more general but still
relativistic case, when the velocity of motion is not small and
gÿ 10 1, the factor j ja�q�j2 is not separated from the
expression for the GR spectrum [see (1.5)]. Nevertheless, in
this case too, the EMR spectrum may be of interest both in
and of itself and as a tool for the assessment of GR.

Most calculations can be made as described before, but
the parameters K and n are significantly different even if they
remain of the same order of magnitude: K � n=v, where
v � v1 is the charge velocity at infinity. The coordinates
x1; 2�x�, unlike (5.13), now depend on three rather than two
parameters:

x1�x� � b

�
1� K cosh xÿ 1

2
n 2 sinh x arcsin �tanh x� � . . .

�
;

x2�x� � b

�
sinh xÿ 1

2
K 2 sinh x� 1

2
n 2 arcsin �tanh x� � . . .

�
:

�5:33�

The current density squared contains two Macdonald
functions instead of one in (5.20):�� ja�q���2 � 4e 2a 2

��
1ÿ sin2 y cos2 j

g 2�1ÿ v cos y�2
�
K 2

1 �z�

� 1

g 4v 2

�
2

1ÿ v cos yÿ 1ÿ 1

g 2�1ÿ v cos y�2
�
K 2

0 �z�
�
:

�5:34�

The argument z of theMacdonald functions and the direction
n of the wave vector are given by

z � bq 0

v
�1ÿ v cos y� ;

�5:35�
n � q

q 0
� �sin y cosj ; cos y ; sin y sinj� :

The EMR spectrum defined by formula (1.1) permits
integrating over the frequency q 0 � jqj. The arising angular

1

2

200
w � 2n

0 Trajectory of the attracting charge

Trajectory of the repulsing charge

Figure 2. The trajectory of a charge in a Coulomb field of attraction and

repulsion with identical impact parameters illustrating formula (5.32).
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distribution of EMR has the form

dE EM
n

dO
� e 2a 2

4p � 32
�
v

b

�3�
3

�1ÿ v cos y�3
�
1ÿ sin2 y cos2 j

g 2�1ÿ v cos y�2
�

� 1

g 4v 2

�
2

�1ÿ v cos y�4 ÿ
1

�1ÿ v cos y�3 ÿ
1

g 2�1ÿ v cos y�5
�)

:

�5:36�

The invariance of the square of the current density under the
reflection j! pÿ j implies the identity between the EMR
spectra emitted along the initial and final directions of the
charge motion. Integration over the angles yields the total
radiation energy

E EM � pe 4e 0 2g 2

4�4p�3m 2b 3v

�
1� 1

3g 2

�
; �5:37�

which can be found in a problem in [6, par. 73]. However,
unlike Ref. [6], we use Heaviside units in which the charge e is
related to eG inGaussian units by the equality e � ������

4p
p

eG, let
the impact parameter be denoted by b, and assume the speed
of light c � 1.

With the known square of the current density, it is possible
to estimate the GR of the charge passing the Coulomb center
by formula

dEq � A2
�� ja�q���2 d3q

16p3
: �5:38�

Here, A is the photon-to-graviton conversion amplitude over
the entire photon path. It can be found by integrating the
conversion amplitude at the dx segment of the photon path,

dA �
���������
4pG
p

c 2
E?�x� dx ; �5:39�

where E?�x� is the field transverse to the photon wave vector
at the point with coordinate x along the photon path.

For a photon emitted at a minimal distance b from the
Coulomb field, we have

A �
���������
4pG
p

c 2
e 0

4pb
: �5:40�

We express A in terms of the deflection angle w � 2K5 1
using the relations

e 0

4pb
� pcn

e
; n � v

c
K � v

2c
w :

Then

A �
����������������
4pGm 2

e 2

r �
v

c

�2

gw : �5:41�

5.2 The passage of a charge
through a magnetic moment field
We consider a charge passing through the field of a magnetic
moment in the equatorial plane. The charge motion is
characterized by the same parameters b and g as the motion
of a charge in a Coulomb field. The role of the dimensionless

interaction parameter n � a=Mc is played by the parameter

n � ÿ eM

4pMbc
; �5:42�

where M is the magnetic moment directed along axis 3.
Solutions of the equations of motion are sought by iterations
over this parameter, which is assumed to be small. In the
zeroth approximation, a particle moves parallel to the 2-axis.
Two iterations yield

x1�x� � b
�
1� n cosh xÿ 3

2
n 2 sinh x arcsin �tanh x� � . . .

�
;

x2�x� � b
�
sinh x� 1

2
n 2 arcsin �tanh x� � . . .

�
;

t�x� � b

�1ÿ gÿ2�1=2
�
1� 1

2
n 2
�
sinh x� . . . ;

�5:43�

r�x� � b�cosh x� n� . . .� :

At small n, the deflection angle is given by w � 2n [cf.
(5.12)]. Although solutions (5.43) of the equations of motion
differ from (5.13) and (5.1) by terms of the order of n 2, the
function f �x� � qax

a�x� coincides with (5.17) over the
effective range of q if condition (5.11) is satisfied. In the
prefactors of the expressions for j1, j2 for the electromagnetic
current and t11, t12, t22 for the material body EMT, the
second-order terms in n, gÿ1 can be neglected. Therefore,
j ja�q�j2 and ti j are the same as in (5.15) and (5.28).
Calculations show that the transverse components y� and
y� of the field EMT coincide with those made up of
components (5.29) in the Coulomb case. In other words, the
GR spectrum of a charge passing through amagneticmoment
field is given, under the condition n9gÿ1 5 1, by the same
formula (5.31) as the GR spectrum of a charge traversing a
Coulomb field.

In a more general case of relativistic motion of the charge,
when gÿ 10 1 and the parameter n is still small, n5 1, the
time coordinate t�x� in (5.43) differs from t�x� for a Coulomb
field by the absence of the term �K=g 2�x [see (5.1)]. As a result,
the squared current density becomes

�� ja�q���2 � 4e 2b 2n 2
�
1ÿ sin2 y cos2 j

g 2�1ÿ v cos y�2
�
K 2

1 �z� ; �5:44�

where z and n are the same as in (5.35).
The integration of the EMR spectrum defined by (1.1)

over the frequency q 0 leads to the angular distribution

dE EM
n

dO
� 3e 4M 2v

32�4p�3m 2b 5g 2

�
1

�1ÿ v cos y�3 ÿ
sin2 y cos2 j

g 2�1ÿ v cos y�5
�
:

�5:45�

Integration of this distribution over the angles gives the total
energy emitted by a charge as it passes through a magnetic
moment field,

E EM � pe 4M 2g 2v

4�4p�3m 2b 5
: �5:46�

This expression is to be compared with energy (5.37) emitted
by a charge in a Coulomb field under the same conditions.

For g4 1, the difference from the Coulomb case dis-
appears, with �eM=b�2 corresponding to �ee 0�2.
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The intensity of GR by a charge passing through a
magnetic moment field is estimated as in the Coulomb case,
i.e., EMR spectrum (1.1) is multiplied by the square of the
respective photon-to-graviton conversion amplitude. This
amplitude is defined by the same formula (5.39) containing
the H?�x� component of the magnetic field instead of the
electric one. As a result,

A �
����������������
4pGm 2

e 2

r �
v

c

�2

gw ;

where w is the scattering angle. This expression coincides with
(5.41) and is defined to an order of magnitude by the root
factor. Hence, the passage of a relativistic charge through the
fields being considered is not accompanied by the enhance-
ment of GR [27].

6. Discussion

In the electromagnetic systems considered in Sections 2 and 3,
the charge motion is caused by external fields with a nonlocal
EMT ymn making substantial contributions to GR of the
system. Therefore, the classical GR of the system, unlike its
EMR, may be a source of information about its internal
structure. Moreover, for ultrarelativistic systems, the con-
tribution from a nonlocal source ymn is greater than that from
a local one by the factor g 2 and the GR spectrum at g4 1 is
proportional to the EMR spectrum. An argument in favor of
the universal character of this relation is the quasi-plane-wave
nature of the external field in the rest frame of an ultra-
relativistic charge. For a plane-wave field, relation (5.1) is
exact, irrespective of the velocity of the charge, as shown in [9]
for a linearly or circularly polarizedmonochromatic field; this
seems to be the case for a more general plane-wave field as
well.

The proportionality between the GR and EMR spectra
and the order of the quantityG � g at g4 1 are closely related
to the fact that of the two sources of GR, the local EMT tab of
the material body and the nonlocal EMT yab of the proper
and external electromagnetic fields, just the latter becomes
predominant in the ultrarelativistic limit. This means thatGR
is produced as the charge emits a virtual or real photon at a
segment of the trajectory g times smaller than its curvature
radius r. This photon is then converted into a graviton as it
interacts with a quantum of the external field over the path of
the order of l, which is the extension of the external field in the
photon propagation direction.

When the field EMT dominates over the EMT of the
material body, the current j�qÿ kef� entering (1.12) is almost
on the mass shell and the conversion amplitude G is given by
(1.14). If the EMTs of the field and the material body are of
the same order, this estimate of G remains true if the
components of the currents j�qÿ kef� and j�q� transverse
to q are comparable in magnitude. But if the transverse
components of the current j�qÿ kef� are much greater than
those of j�q�, as is the case when the trajectory of the charge
is almost a straight line through the field �w5 gÿ1 5 1�, then
G � 1 [see (1.15)].

The use of spatial components of the conserved current
and conserved EMT for the description of GR and EMR
spectra is convenient not only for the assessment of contribu-
tions of the field and matter EMT constituents to the GR
spectrum. The polarization amplitudes formed by the spatial
components directly determine theGR and EMR spectra and

their computation significantly facilitates evaluating these
spectra [see (1.10), (1.11)].

We emphasize that because of the nonconservation of the
tensors tmn and ymn taken separately, their contributions toGR
in the relativistically invariant form can hardly be considered
self-contained. For example, the quantity tmnt

mn� ÿ �1=2�jt mm j2
is negative for the charge motion in a circular orbit [28]. But if
the mixed and temporal components of the total EMTTmn are
expressed via its spatial component with the aid of the
conservation law (see formula (10.4.14) in [8]), the terms of
GR intensity quadratic in the spatial components ti j make a
positive contribution of the material tensor, those quadratic
in yi j make a positive contribution of the field tensor, and the
terms bilinear in ti j and ykl determine the interference
contribution.

From this standpoint, formula (2.4) defines the force field-
independent contribution of the material body tensor moving
uniformly in a circle. In the ultrarelativistic limit and the
effective region of q, this contribution, similar to EMR, forms
over a trajectory segment smaller than the local curvature
radius r; it is described for this segment by the asymptotic
equations in Section 2.1. For the contact forces considered in
Section 2.1, GR is determined by the contribution from the
matter tensor alone.

For the electromagnetic systems considered in Sections 2,
3, and 5, the contribution of the tensor yi j to theGR spectrum
is comparable with that of ti j; at g4 1, it is g 2 times greater
than the latter and is proportional to the EMR spectrum.

The dependence of the amplitude G on characteristics of
the force field, the wave vector direction, and the motion
parameters of a massive particle, especially its Lorentz factor,
is governed by the behavior of both the charge proper field
and the external field over a relatively large region. For w5 1,
the position of photon emission is not localized, which makes
it difficult to account quantitatively for the conversion of
photons into gravitons. However, the knowledge of the
qualitative behavior of G is quite enough to assess the GR
spectrum because the properties of the EMR j ja�q�j2 spec-
trum are regarded as known.

For nonelectromagnetic systems, it is interesting to
qualitatively compare the transverse components y�, y� and
t�, t�. The contributions of these components to the GR for a
rotating mass-loaded relativistic string turned out to be of the
same order, although the string energy is pg=2 times the
energy of the masses at its ends.

We note that the contribution of the EMT of a material
body to GR in a circular motion is described by the exact
expression (2.4). For a body in arbitrary ultrarelativistic
motion, the contribution of its EMT to GR in the effective
region of q is estimated as

8pG
�
1

2
jt�j2 � 2jt�j2

�
� 4pGm 2

e 2

�� ja�q���2 : �6:1�

For a circular motion, the lower-order harmonics in this
estimate have an additional factor g 2 in the right-hand side,
radiation is formed over the entire orbit, and order-of-unity
radiation angles are effective. Therefore, the transition from
the components ji and ti j to the transverse components is not
accompanied by a g- and g 2-fold reduction, as is the case with
the components in the effective range of q.

The present results are equally applicable to a bunch of
charged particles whose size is small compared with the
radiation wavelength, and hence radiation at this wavelength
is coherent. Because the wavelength of the main radiation by
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an individual particle is g 3 times shorter than the wavelength
of the first harmonic, the bunch emits radiation coherently in
the lower-order harmonics and incoherently in the harmonics
with n � g 3.

A system of two masses moving in elliptical orbits about
their common center of inertia may be an essential compact
object of dark matter. The GR of such a system is a valuable
source of information about its structure. The trajectory
method described in Section 4 for calculating the transverse
components of the conserved EMT of a two-mass system is
based on the approximate knowledge of its time components.
Using this generalization of the Einstein method for the
calculation of quadrupole radiation permits determining the
polarization amplitudes of all GR harmonics in the long-
wave approximation and corrections to them due to the
relativistic motion of masses and the force field outside the
orbit.

We are delighted to have the opportunity to publish this
article in the issue dedicated to the memory of V L Ginzburg.
It may be thought that he would have found Section 4 the
most interesting. With this in mind, we preserved the explicit
notation c for the speed of light, as he used to do in his papers.
Also, he might have remarked that we should introduce the
lower-order relativistic corrections into elliptical trajectories
too. We do know, Vitaly Lazarevich, where and how such
corrections may appear, but not all of them at once.

The work was supported by the RFBR grant No. 08-02-
01118.

7. Appendix.
Fourier coefficients FA�n; e� and fi j�n; e�
All Fourier coefficients are expressed through the Bessel
functions Jn�ne� and their combinations

Sns�ne� � Jnÿs�ne� ÿ Jn�s�ne� ;
Cns�ne� � Jnÿs�ne� � Jn�s�ne� ;

where n is the harmonic number and s � 1, 2, 3, 4. These
functions have the following properties:

(1) Sns�ne� � 0 at n � 0, s5 0, Cns�ne� � 0 at n � 0,
s5 1, but C00�0� � 2;

(2) Cns�ne� are even and Sns�ne� are odd functions of n;
(3) under the change of sign e, Sns�ÿne� � �ÿ1�nÿsSns�ne�

and Cns�ÿne� � �ÿ1�nÿsCns�ne�.
F11 � ÿn�Sn2 ÿ 2eSn1� ;
F12 � ÿ

�������������
1ÿ e 2
p

n�Cn2 ÿ 2Jn� ;
F22 � �1ÿ e 2� nSn2 :

f11 � ÿn 2

�
�1ÿ e 2��Cn2 ÿ eCn1� ÿ 1

n
Sn2

�
;

f12 � ÿ
�������������
1ÿ e 2
p

n 2

��
1ÿ 1

2
e 2
�
Sn2 ÿ eSn1 ÿ 1

n
Cn2

�
;

f22 � �1ÿ e 2� n 2

�
Cn2 ÿ eCn1 ÿ 1

n
Sn2

�
:

F111 � ÿ2n
�
1

4
Sn3 ÿ eSn2 �

�
1

4
� e 2

�
Sn1

�
;

F112 � 2
�������������
1ÿ e 2
p

�eSn2 � Sn1� ÿ F222 ;

F121 � 2
�������������
1ÿ e 2
p

�eSn2 ÿ Sn1� ÿ F222 ;

F122 � 2�eCn2 ÿ Cn1� ÿ F111 ;

F221 � 2
�
eCn2 � �1ÿ 2e 2�Cn1

�ÿ F111 ;

F222 � 1

2
�1ÿ e 2�3=2n�Cn3 ÿ Cn1� :

F1111 � ÿn
�
1

4
Sn4 ÿ 3

2
eSn3 �

�
1

2
� 3e 2

�
Sn2

ÿ e

�
3

2
� 2e 2

�
Sn1

�
;

F1112 � ÿ
�������������
1ÿ e 2
p

n

�
1

4
Cn4 ÿ 3

4
eCn3 ÿ 1

2
Cn2

� e�3ÿ 2e 2�Cn1

�
;

F1211 � ÿ
�������������
1ÿ e 2
p

n

�
1

4
Cn4 ÿ 3

2
eCn3 � �1� 3e 2�Cn2

ÿ e

�
15

4
ÿ e 2

�
Cn1

�
;

F1122 � �1ÿ e 2�
�
4Jn � n

�
1

4
Sn4 ÿ 3

2
Sn2 � 2eSn1

��
;

F1212 � �1ÿ e 2�
�
ÿ2Jn � n

�
1

4
Sn4 ÿ 3

4
eSn3 � 5

4
eSn1

��
;

F2211 � �1ÿ e 2�
�
4Jn � n

�
1

4
Sn4 ÿ 3

2
eSn3

� 3

�
1

2
� e 2

�
Sn2 ÿ 11

2
eSn1

��
;

F1222 � �1ÿ e 2�3=2n
�
1

4
Cn4 ÿ Cn2 � 3

2
Jn

�
;

F2212 � �1ÿ e 2�3=2n
�
1

4
Cn4 ÿ 3

4
eCn3 � 1

2
Cn2

�
;

F2222 � ÿ�1ÿ e 2�2n
�
1

4
Sn4 ÿ 1

2
Sn2

�
:

Fourier coefficients FA�n; e� are either even or odd functions
of n,

FA�ÿn; e� � �FA�n; e� ;

depending on the even or odd number of twos in the
combined index A. When the sign of e is changed, FA�n; e�
behave as even (odd) functions e depending on the evenness
(oddness) of the sum of n and the number of indices in A, i.e.,

FA�n;ÿe� � �ÿ1�nFA�n; e� for A � i j; i j kl ;

FA�n;ÿe� � �ÿ1�n�1FA�n; e� for A � i j k :

This means that the coefficients Fi j�n; e� and Fi j kl�n; e� are
expanded in even powers of e,

FA�n; e� � a0 � a2e
2 � a4e

4 � . . . ;

if n is even, and in odd powers of e,

FA�n; e� � a1e� a3e
3 � . . . ;

if n is odd. In contrast, the coefficients Fi j k�n; e� are expanded
in even powers of e if n is odd and in odd powers of e if n is
even.
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For e � 0, the following coefficients are nonzero:

F11�n� � f11�n� � ÿ2dn2 ; F1111�n� � ÿdn2 ÿ dn4 ;

F12�n� � f12�n� � ÿ2dn2 ; F1112�n� � dn2 ÿ dn4 ;

F22�n� � f22�n� � 2dn2 : F1211�n� � ÿ2dn2 ÿ dn4 ;

F111�n� � ÿ 1

2
dn1 ÿ 3

2
dn3 ; F1122�n� � 4dn0 ÿ 3dn2 � dn4 ;

F112�n� � 5

2
dn1 ÿ 3

2
dn3 ; F1212�n� � ÿ2dn0 � dn4 ;

F121�n� � ÿ 3

2
dn1 ÿ 3

2
dn3 ; F2211�n� � 4dn0 � 3dn2 � dn4 ;

F122�n� � ÿ 3

2
dn1 � 3

2
dn3 ; F1222�n� � ÿ2dn2 � dn4 ;

F221�n� � 5

2
dn1 � 3

2
dn3 ; F2212�n� � dn2 � dn4 ;

F222�n� � ÿ 1

2
dn1 � 3

2
dn3 : F2222�n� � dn2 ÿ dn4 :
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