
Abstract. Three possible settings are considered for the question
of two interacting charged conducting balls: (1) both balls are
kept at constant and equal potentials; (2) one ball is charged and
isolated, the other is kept at a constant potential with the same
sign as the first, and (3) both balls are like charged and isolated.
It is shown that fundamentally different problems generally
arise here: whereas in the first case the balls always repel, in
the second and third cases fairly wide ranges of radius and
charge ratios can always be found in which the balls attract
each other at close distances. These ranges are identified in the
paper. The results are presented of experiments that demon-
strate both the repulsion and attraction of like-charged balls.
Theory and experiment show satisfactory agreement, both
qualitatively and quantitatively.

1. Introduction

The study of the interaction between two charged conduct-
ing balls (spheres) has both applied significance [the
interaction of charged water drops in the atmosphere (see,
for example, Refs [1±3])] and obvious scientific-methodolo-
gical importance. In particular, the interaction question for
two isolated charged conducting balls was thoroughly
considered in Ref. [4]. However, it often actually occurs
that the balls (or one of them) are connected to a voltage
source during the interaction. Experiments (the correspond-
ing results are given in Section 5) showed that in such open
ball systems paradoxical (at first glance) effects arose. For

example, we repeatedly observed the effect where the like-
charged balls which first repelled each other then, upon
increasing the potential of one of the balls, began to attract
each other, contrary to the expectation that they would be
repelled even stronger because the charge of the ball
connected to the voltage source also increased while
keeping its sign. This and some other effects are interesting
not only theoretically, but also practically, because infor-
mation on the interaction between charged particles is
important in technology applications. It is necessary to
understand and describe the effects. This is what the
present work is devoted to.

Below we shall consider three types of problems concern-
ing the interaction between two charged balls: (1) the balls are
connected to the same voltage source and have equal
potentials which are kept constant; (2) one ball is connected
to a voltage source and the other is isolated and has a charge
with the same sign, and (3) both balls are like-charged and
isolated. As was mentioned, the last case was considered in
Ref. [4]; however, a combined consideration of all the three
cases has revealed new features of the interaction. It was also
found that the asymptotic case of interacting balls with
strongly different radii at a short distance between them
corresponds to the case of ball interaction with an infinite
conducting plane, which is of high application importance
[5, 6]. The data obtained in the experiments performed
satisfactorily agree with theoretical results.

2. Balls with equal potentials

First, let us consider the case of ideal conducting balls (or
thin-walled conducting spheres) with equal potentials kept
constant due to their connection to the same external voltage
source (Fig. 1, switches K1 and K2 are closed).

If the ball potentials are kept constant, then the expression
for the potential energy of ball interaction can be written in
the form [7]

W � 1

2
�c11j 2

1 � 2c12j1j2 � c22j 2
2 � ; �1�
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where c11, c12, and c22 are the capacity factors, andj1; 2 are the
ball potentials. The expressions for the capacity factors are as
follows [7]

c11 � 1

k
R1R2 sinh b

X1
n� 1

�
R2 sinh nb� R1 sinh �nÿ 1�b�ÿ1 ;

c12 � ÿR1R2 sinh b
kl

X1
n� 1

�sinh nb�ÿ1 ; k � 1

4pe0
; �2�

c22 � 1

k
R1R2 sinh b

X1
n� 1

�
R1 sinh nb� R2 sinh �nÿ 1�b�ÿ1 :

Here, e0 is the electrodynamic constant, and the parameter b
is related to the separation l between ball centers by the
formula

cosh b � l 2 ÿ R 2
1 ÿ R 2

2

2R1R2
: �3�

If the balls are kept at equal potentials by an external voltage
source �j1 � j2 � U �, then we have

W�l � � U 2

2
�c11 � 2c12 � c22� : �4�

The ball interaction force can be found from the expression

Fl�l � � qW�l �
ql

: �5�

Aswas shown [7], in this case of an open system the derivative
should be taken with the sign `�'.

It is convenient to write out all the parameters in a
dimensionless form and express the force in units of the
maximum force calculated in the Coulomb approxima-
tionÐ that is, under the assumption that the ball charges
reside in their centers, so that all electrical image effects may
be neglected. The maximum force is calculated from the balls'
touch condition:

FCm � U 2R1R2

k�R1 � R2�2
: �6�

Then we obtain for the force of ball interaction:

Fx�x� � FCm
�R1 � R2�2
2R1R2

�c 011 � 2c 012 � c 022� ;
�7�

x � l

R1 � R2
:

Here, all the parameters with the dimension of length are
expressed in units of R1 � R2, and the primes denote the
derivative with respect to x.

The energy and force were calculated on a computer
using Mathcad software. In the computations, 200 terms
were retained in sums (2), and in checking computations
their number was up to 400. Twice the number of summands
does not change the first three significant figures in the
calculated results. As expected, at all values of the para-
meters and all distances between the balls the force is
repulsive, falling with the distance between the balls. The
maximum repulsive force (in the units of FCm) is shown in
Fig. 2 versus the ratio of ball radii. The maximum force
realized with similar balls equals 0:296FCm (hereinafter, the
numerical results are given within the accuracy of �1 in the
last digit). This is a self-similar resultÐ that is, the factor
0.296 depends on neither the ball radii nor the charges. In
what follows, the self-similarity will be comprehended just in
this meaning.

Let us separately consider an important case of similar
balls of radius R with equal potentials, which permits an
analytical solution. Then, j1 � �j2 � �U and we find

W � U 2�c11 � c12� : �8�

Making allowance for the capacity factors given above, we
may write

W � U 2R

k
sinhb

X1
n� 1

�ÿ1� jn
sinh nb

: �9�

Here, jn � n� 1 if the potentials have the same sign, and
jn � 0 in the case of opposite signs. The parameter b is related
here to the separation x between the ball centers by the
relationship

cosh b � l

2R
� x :

+ÿ

U

R2
R1

l

q2

K2K1

q1

Figure 1. Schematic diagram of the experiment on interaction between

charged balls. Different positions of switches K1 and K2 correspond to

different cases of ball interaction considered in the present paper.
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Figure 2. The maximum repulsive force versus the ball radius ratio in the

case of equal potentials.
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The force acting on each ball is given by

Fx � qW
ql
� U 2R

k

qW
qb

qb
ql
:

By calculating the derivatives we shall find the final expres-
sion for the force in units of FCm:

Fx�x� � 2FCm

X1
n� 1

h
�ÿ1� jn�coth bÿ n coth nb��sinh nb�ÿ1

i
:

�10�
In Ref. [4], the asymptotics of the series on the right-hand

side of expression (10) for x! 1 �b5 1� was found
analytically. In the case of equal-sign potentials, the asymp-
totic value is ln 2=6 � 0:116. Then, the maximum force equals
0:232FCm. A numerical calculation in this case yields the high-
accuracy asymptotic value of 0.148 [4]; for the force we
obtain, respectively, 0:296FCm.

For potentials of opposite signs, the asymptotic behavior
of the series for approaching balls is expressed as
ÿ1=�2�xÿ 1��, xÿ 15 1 [4]. Correspondingly, the attraction
force increases for approaching balls by the asymptotic law

Fx�x� � ÿ FCm

xÿ 1
; xÿ 15 1 : �11�

This result can also be considered as self-similar.
If the balls are maintained at equal potentials, and electric

induction effects are substantial, then their charges are the
following [7, 8]:

q1i � U�c11 � c12� ; q2i � U�c22 � c12� : �12�

In accordance with formulas (8), (9), for similar balls this
yields

qi � UR

k

�
sinhb

X1
n� 1

�ÿ1�n�1
sinh nb

�
: �13�

The asymptotics of the expression in parenthesis entering into
formula (13) as x! 1 �b5 1� was found in Ref. [4]. The
asymptotic value is ln 2 (the sum of an alternating harmonic
series). Thus, being charged from the same voltage source,
each contacting ball acquires the charge

qi � UR

k
ln 2 � 0:693

UR

k
; �14�

i.e., approximately 0.693 of the charge it would acquire if it
were charged from the source individually at a large distance
from the other ball [8]. This result is also self-similar. If we
consider real ball charges [14] and calculate a maximum ball-
interaction force in the Coulomb approximation (the charges
reside at the ball centers):

FCi � kq 2
i

4R 2
; �15�

then the actual force (10) at short distances between the balls
is equal to

Fx�1:001� � 0:296

�ln 2�2 FCi � 0:616FCi : �16�

For the force we obtained the same value as that found in
Ref. [4] for the case of isolated balls with the charges qi.

Returning to the case of balls with different radii, if we
calculate the ball charges by formulas (12) in units of UR1=k,
UR2=k and plot the charge value versus the ratio of ball radii,
then we shall obtain the curvesmarked in Fig. 3 as 1 (a smaller
ball) and 2 (a larger ball) [8]. It is clear now why the
interaction force for those balls substantially differing in
radii tends to zero (see Fig. 2)Ð the charge of the smaller
ball tends to zero (see Fig. 3). Nevertheless, the situation is not
so simple. In Ref. [6], the interaction problem was considered
for a conducting ball and an infinite plane when they touch
each other and are connected to a voltage source. Notably,
the ball charge

q1i � 1

k
1:64R 2

1E0 �17�

was found, where E0 is the electric field strength produced by
the uniformly charged infinite plane. An infinite plane can be
approximately substituted by a ball with very large radius
R2 4R1, and formula (17) can then be transformed into

q1i� 1:64R 2
1

q2i

R 2
2

� 1:64
UR2

k

�
R 2

1

R 2
2

�
� 1:64

UR1

k

�
R1

R2

�
: �18�

To obtain this result in the framework of the question of the
interaction between two balls, we revert to the first formula in
Eqn (12), introduce the notation g � R1=R2, and expand the
expressions for c11, c12 in a power series, first, of g and,
second, of b. In the formula for c12, we take l � R1 � R2.
Then, we arrive at

kc11

� R1 sinh b
X1
n� 1

�
1

sinh nb
ÿ g
�
cosh b
sinh nb

ÿ coth nb
sinh b
sinh nb

��
;

kc12 � ÿR1�1ÿ g� sinh b
X1
n� 1

1

sinh nb
:

Furthermore, at short distances between the balls, b5 1,
assuming cosh b � 1, sinh b � b, sinh nb � nb, coth nb �
1=nb, after simple transformations we find

k�c11 � c12� � R1g
X1
n� 1

1

n 2
� R1

�
R1

R2

�
p2

6
� 1:645R1

�
R1

R2

�
:
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Figure 3.The ball charges versus the radii ratio: (1) for a smaller ball, (2) for

a bigger ball, and (3) the factor f [see formula (19)] calculated for various

ratios of ball radii.
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Now, taking into account ball charges (12), we obtain the last
expression in Eqn (18).

For the appropriate computer calculations with an
arbitrary ratio of radii, the first formula in Eqn (12) was
written out in the form

q1i � f
UR1

k

�
R1

R2

�
; f � k

R1

�
R2

R1

�
�c11 � c12� : �19�

Here, the capacity factors were calculated by formulas (2) at
l � 1:001�R1 � R2�, which corresponds to almost contacting
balls. The resulting tabulated coefficient f for various ratios
of ball radii is shown by curve 3 in Fig. 3.

Thus, in the common charging of balls of considerably
different sizes, residing closely to each other, the smaller ball
acquires the charge that is proportional to its radius squared,
the strength of the field produced by the larger ball on its
surface, and the coefficient f that varies in the range
ln 24 f �R1=R2�4 p2=6, depending on the ratio of radii.

3. Interaction between balls
when the charge of one ball
and the potential of the other are preassigned

Let us consider a situation where a conducting ball of radius
R1 is isolated and has the charge Q1 > 0, whereas the other
conducting ball of radius R2 connected by a conductor to the
positive pole of a voltage source has the potential U2 relative
to infinity. The distance between the ball centers is
l5R1 � R2 (in Fig. 1, the key K2 is closed, and K1 is open).

In order to find the force of ball interaction we can first
write out their potential energy in the form

W � 1

2
�Q1j1 � q2U2� : �20�

Now, we express the potential of the first ball in terms of its
charge, and the charge of the other ball in terms of its
potential. For this purpose we write [7]

Q1 � c11j1 � c12U2 ; U2 � s22q2 � s12Q1 : �21�

Hence follows

j1 �
Q1

c11
ÿU2c12

c11
; q2 � U2

s22
ÿQ1s12

s22
: �22�

Here, sik are the so-called potential coefficients. Since the
capacity coefficients can be explicitly expressed, we may
express the potential coefficients in terms of capacity
coefficients [7]:

s11 � c22

c11c22 ÿ c 212
; s12 � ÿ c12

c11c22 ÿ c 212
; s22 � s11c11

c22
:

�23�
Let us write out the potential energy in units of WCm �
Q1U2R2=�R1 � R2� in the form

W�l � �WCm

2b

��
1

a1c11
ÿ c12
c11

�
�
�
a1
s22
ÿ s12
s22

��
;

�24�
a1 � U2�R1 � R2�

kQ1
; b � R2

R1 � R2
:

Here, all the quantities with the dimension of length are
measured in units of R1 � R2. The interaction force will be

calculated by the formula

Fl�l � � 1

2

�
ÿQ1

qj1

ql
�U2

qq2
ql

�
: �25�

Then, in view of formulas (21) and (22), we obtain in the
dimensionless variables that

Fx�x� � FCm

2b

��
c 011
a1c 211

� c 012c11 ÿ c 011c12
c 211

�
ÿ
�
a1s 022
s 222
� s 012s22 ÿ s 022s12

s 222

��
; �26�

FCm � Q1U2R2

�R1 � R2�2
:

Primes stand for the derivatives with respect to
x � l=�R1 � R2�.

First, let us consider the case of similar balls with R1 �
R2 � R, which at a short distance �x! 1� have equal
potentials U2 and equal charges q2i � Q1 � ln 2U2R=k.
Next, the parameter a1 � 2= ln 2 � 2:89. In this case, the
force calculation by Eqn (26) in Mathcad with 200 terms
retained in the sums yields the force which is repulsive over all
the range of definition x > 1. The force reaches a maximum
for approaching balls �x! 1�, which is Fx�1:001� �
0:426FCm. If this force is expressed in units of the maximum
force calculated in the Coulomb approximation with the real
charge q2i, then we again arrive at the self-similar result of
Ref. [4]:

Fx�1:001� � 0:426

ln 2

kQ1q2i

�R1 � R2�2
� 0:616FCi :

This finding allows one to consider this solution as a self-
similar one as well.

The interaction force between two similar balls remains
repulsive in character over the whole range of definition x5 1
only under the condition 2:56 < a1 < 3:28 (that is, when the
ball potentials are equal or close at short distances between
the balls); if the condition fails, a domain of ball attraction
arises near the point of balls' contact.

Consider now the calculated results for balls with different
radii. Assume, for example, R2=R1 � 2. It turns out in this
case that at relatively small a1 < 5:11, and short distances
between the balls there is a domain in which the force is
attractive (Fig. 4, curve 4, a1 � 3). For 5:11 < a1 < 7:44, the
force is repulsive over the whole range of definition. It takes
the maximum value of 0:541FCm when the balls are close to
each other and have equal potentials. This occurs at a1 � 6:12
[the potential of the first ball was calculated by formula (22)].
The appropriate dependence of the force on the separation
between the ball centers is illustrated by curve 2 in Fig. 4 (the
curve 1 corresponds to the Coulomb law 1=x 2). For
a1 > 7:44, the domain of attractive force arises again (curve
5, a1 � 25) near the point of balls' contact.

In Fig. 5 plotted at a semi-logarithmic scale, the parameter
domains are marked in which the ball interaction force has a
repulsive character over the whole range of definition x5 1.
Domain 1 corresponds to a1 and the case where the charge of
one ball and the potential of the other are preassigned. Curve
3 in Fig. 4 is appropriate to the boundary value of the
parameter a1 � 5:11, which corresponds to the lower bound
of the domain 1 in Fig. 5. In this case, the force near the point

1070 V A Saranin, V V Mayer Physics ±Uspekhi 53 (10)



of balls' contact x � 1 is close to zero; it reaches themaximum
equal to 0:469FCm at x � 1:08.

4. Isolated balls with preassigned charges

In this case, the balls are preliminarily charged to certain
quantities q1 > 0, q2 > 0, and both switches in Fig. 1 are
open. The potential energy and ball interaction force are
calculated under this conditions by the formulas [4]

W�x� � kq1q2
R1 � R2

a 2
2 c11 ÿ 2a2c12 � c22

2a2�c11c22 ÿ c 212�
� kq1q2

R1 � R2
V�x� ;
�27�

a2 � q2
q1
;

Fx�x� � ÿFCm
qV�x�
qx

; FCm � kq1q2

�R1 � R2�2
: �28�

If the balls are similar,R1 � R2, and equally charged, q1 � q2,
we have a self-similar result for their repulsive force, and at
short distances between the balls [4] we find Fx�1:001� �
0:616FCm. The calculation of the force according to formulas

(28) shows that the force remains repulsive over the whole
range of definition x5 1 only for 1=1:24 < q2=q1 < 1:24. At
other ratios of ball charges, a domain of attraction arises at
short distances between the balls.

In the case of balls with different radii, the situation is
similar to that given in Sections 2 and 3: at equal or close ball
potentials near the point of balls' contact the force is repulsive
over the whole range of definition. For example, at
R2=R1 � 2 the potentials near the point of balls' contact
�x � 1:001� are equal within an accuracy of up to three
significant figures at q2=q1 � 3:47, and the repulsive force is
Fx�1:001� � 0:633, reducing with an increase in the distance
between the balls. Here, the ball potentials were controlled by
the formulas

j1 � s11q1 � s12q2 ; j2 � s22q2 � s12q1 : �29�
In Fig. 5, the domain of parameters 2 is shaded, in which the
ball interaction force has a repulsive character over the whole
range of its definition x5 1. Note that this domain has not
been mentioned in Ref. [4].

The existence of such domains (1 and 2 in Fig. 5) can be
explained physically as follows: if the charge of one ball is
relatively small, the determining role belongs to the interac-
tion of the greater charge with its own image in the more
weakly charged ball. This interaction is attractive; thus, the
top and bottom parts of the plane �a � q2=q1, R1=R2� are
domains of attraction. It is this circumstance that explains
ball attraction upon increasing the potential (charge) on one
of the balls mentioned in the Introduction.

In Fig. 6, the maximum repulsive force is depicted for
equal potentials of balls near the point of their contact versus
the radii ratio. Curve 1 corresponds to one isolated ball
having a charge and the other being maintained at a constant
potential (this case was considered in Section 3). Curve 2
corresponds to isolated charged balls. The fact that at greater
ratios of their radii the distinction between these cases
vanishes is clear: at a greater ratio R2=R1 (and smaller
R1=R2), the bigger ball being connected to a voltage source
acquires a charge close toU2R2=k [8] (recall that atR2 � R1 it
acquires a charge of only 0:693U2R2=k). Moreover, if the
interaction force is measured in units of

FCi � kq1iq2i

�R1 � R2�2
;

0
10ÿ1

100

101

a1;2

0.2 0.4 0.6 0.8 R1=R2

1

2

Figure 5.The parameter domains are shaded in which the interaction force

has a repulsive character at short distances between the balls. Domain 1

�a1� corresponds to the case where the bigger ball is connected to a voltage

source, while the smaller one is isolated and has a certain charge. Domain 2

�a2� corresponds to the case where both balls have certain charges and are

isolated.

0 0.2 0.4 0.6 0.8 R1=R2

Fm=FCm

0.5

0.4

0.8

0.7
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2
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Figure 6. The maximum repulsive force at equal potentials of the balls

versus the ratio of their radii, when one ball is charged and isolated and the

other ball has a constant potential (curve 1), or when both balls are

charged and isolated (curve 2). The limiting case of infinitesimal ratio of

ball radii corresponds to ball interaction with an infinite plane [6].
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Figure 4. The calculated interaction force for two balls of different radii at

various values of the parameter a1. Curve 1 corresponds to the Coulomb

law 1=x 2; curves 2, 3, 4, and 5 refer to a1 � 6:12, a1 � 5:11, a1 � 3, and

a1 � 25, respectively.
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where q1i � U�c11 � c12� and q2i � U�c22 � c12� are the
charges acquired by the balls from the voltage source (here,
the capacity factors should be calculated at the point of ball
contact; in the calculations we took x � 1:001), then both the
curve in Fig. 2 and curve 1 in Fig. 6 would coincide with curve
2 in Fig. 6.

The maximum Coulomb force for R1 5R2 can be
represented in the form

FCm � kq1q2

�R1 � R2�2
� q1

kq2

R 2
2 �1� R1=R2�2

� q1E2 ; �30�

where E2 � kq2=R
2
2 is the field strength on the surface of the

bigger ball in the ideal case of an absence of the electric image
effects. In Ref. [6], it was established that a touching
conducting ball and an infinite conducting plane connected
to a voltage source interact with force Fx � 0:832qE0, where
E0 is the electric field strength near the uniformly charged
plane, and q is the charge acquired by the ball. From Fig. 6
one can see that at small R1=R2, i.e., when the radius of one
ball is much greater than that of the other ball and the bigger
ball can actually be substituted by a plane, both the curves
asymptotically approach 0.832 (in particular, at
R1=R2 � 0:01 the calculations yield Fx � 0:826q1E2).

5. Experiments

Aphotograph of the experimental setup is displayed in Fig. 7.
A principal element of the setup is the electrostatic dynam-
ometer constituting the physical pendulum whose plumb
possesses an electric charge. The installation involves, in
addition to the dynamometer, a high-voltage power supply
and a conducting ball installed on an isolating pole capable of
moving in the plane of pendulum oscillations in the
horizontal and vertical directions. The dynamometer itself
comprises the foam ball 1 covered by aluminum foil,
polyethylene rod 2 connected to the ball, steel pivot pin 3
with bearings from glass beads, polyethylene holder 4, pointer
5, and scale 6. The electrostatic dynamometer is mounted on

the ebonite rod 7. The guide plate 8 made from plexiglass,
over which the ebonite pillar 9 moves, is placed on the table
under the dynamometer. The lower part of the pillar has a slit
providing its vertical motion. At the end of the pillar, the steel
nickel-plated ball 10 is fixed and connected to a terminal of
the high-voltage source with a wire enclosed in a high-voltage
insulating sheath. The other terminal of the source is
grounded. The parameters of the electrostatic dynamometer
are as follows: the distance from the center of mass of the
moving system to its axis of rotation is CO � a � 12:2 mm,
the distance from the ball center to the axis of rotation is
b � 56:0 mm, the distance from the axis of rotation to the
scale is c � 100mm, and the pendulummass ism � 0:76 g (see
Fig. 8). The equilibrium condition for the moving system of
the dynamometer (pendulum) with an axis of rotation is the
equality between the moments of force:

Fb cos g � mga sin g ;

hence, the horizontal force acting on the dynamometer ball is

F � mga

b
tan g �

�
mga

bc

�
z � Kz ; �31�

where K is the dynamometer sensitivity for a millimeter scale,
K � 0:016mNmmÿ1. At a distance of 2m from the setup, just
against the dynamometer, a digital camera was placed for
obtaining a sharp image of the balls and millimeter scale
divisions. A transistor converter with voltage multiplication
was used as the high-voltage source which provided an
adjustable potential difference in the limits from 0 to 50 kV.
The voltage was measured by a high-voltage voltmeter
comprising a microammeter with a limit of 60 mA, and a
resistor r1 � 400 MO connected to it in series. In addition to
the microammeter, an M-838 multimeter was utilized, which
operated in the voltmeter mode with an internal resistance of
1 MO. The internal resistance of the high-voltage source was
measured by the method of two loads with the resistances
r1 � 400 MO and r2 � 200 MO. High voltage was also
obtained from a power supply (see Fig. 7) with included
digital voltmeter which provided an adjustable potential
difference in the limits from 0 to 30 kV. The standard

7 6 5

4

2 3

1

8

9

10

Figure 7. The experimental setup: (1) the foam ball covered by aluminum

foil, (2) the polyethylene rod, (3) the steel pivot pin, (4) the polyethylene

holder, (5) the pointer, (6) the scale, (7) the ebonite rod, (8) the guide plate,

(9) the ebonite pillar, (10) the steel nickel-plated ball connected to a pole of

the high-voltage source.
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Figure 8. A schematics of an electrostatic dynamometer. (For the

calculation of the force acting on a movable ball in equilibrium.)
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voltmeter of this unit was tested by the high-voltagemeter; the
reading coincidence was satisfactory within the accuracy of
two significant figures.

In the experiments, the force of electrostatic interaction
was studied for two conducting balls, which were charged by
touching a pole having certain potential U2, as a function of
the distance l between the ball centers. The radii of the
dynamometer ball and the steel ball were, respectively,
R1 � 8:5 mm and R2 � 13:5 mm.

The experiment was performed in the following way:
(1) the negative pole of the high-voltage source was
grounded, and the positive pole was connected to the steel
ball on the pillar; (2) the voltage was increased to the required
value by adjusting the high-voltage power supply; (3) by
moving the holder over the guide, the steel ball moved closer
to the dynamometer ball, until the distance between their
nontouching surfaces became on the order of or shorter than
1 mm; (4) by moving the holder in the vertical direction, we
adjusted the ball centers to equal heights and this position of
all elements was photographed; (5) the steel ball moved away
stepwise from the dynamometer ball, keeping the horizontal
position of the line connecting their centers, and each step was
photographed; (6) the experiment was finished as the
dynamometer pointer approached the zero position.

The set of photographs obtained were stored in a
computer. The required magnification and scale were
determined. With this aim, the length of the electrostatic
dynamometer scale image was measured on the screen in
arbitrary units (a.u.). For example, if 10 cm � 13:2 a.u., the
scale is M � 7:56 mm a.u.ÿ1. The distance l between the ball
centers was measured in arbitrary units on the screen and
expressed in millimeters by using the scale. The pointer shift
in millimeters was found from the screen image of the
dynamometer scale; then, the force of electrostatic interac-
tion between the balls was calculated by utilizing the known
sensitivity K. These data were used for plotting the force
versus inverse dimensionless distance squared between the
ball centers, x � l=�R1 � R2� (Fig. 9). From the experimental
plot one may conclude that at sufficiently long distances
between the balls the Coulomb law holds true (the straight
line in Fig. 9). If the balls are separated by a short distance,
the force of electrostatic interaction is less than follows from
the Coulomb law for the charges concentrated at the ball
centers.

For qualitative estimates, a certain separation between the
ball centers on the rectilinear part of the plot (see Fig. 9) and
the corresponding value of the interaction force were chosen.
For example, the separation l � 81 mm, which is almost ten
times longer than the radius of the smaller ball, corresponds
to the force F � 0:24 mN measured by the dynamometer.
After the balls, the bigger of which was maintained at the
potential U2 � 15 kV, come into contact in the experiment,
the charge of the smaller ball, as follows from the theory and
from the curve 1 in Fig. 3, equals q1i � 0:564U2R1=k �
7:99 nC for the radii ratio R1=R2 � 8:5=13:5 � 0:629. The
charge of the larger ball connected to the high-voltage source
and, hence, having a constant potential relative to the ground
is q2 � U2R2=k � 22:5 nC at large distances between the
balls. Then, the force of ball interaction calculated by the
Coulomb law in the range of its validity constitutes
F � kq1iq2=l

2 � 0:25 mN, which agrees with the experimen-
tal value within the accuracy of 4%. Thus, the electrostatic
dynamometer measures the electrostatic force of ball interac-
tion with a sufficient accuracy, and the voltmeters also
sufficiently accurately measure the potential of the larger
ball relative to the ground.

To compare the theoretical and experimental results
qualitatively and quantitatively at various operating vol-
tages, the curves of force dependence on the inverse distance
squared were reduced to those in dimensionless variables in
the following way. Instead of the interaction force established
experimentally, we used the ratio F=FCm, where FCm is a
maximum value of the Coulomb force found graphically at
x � 1, assuming the charges of touching balls are concen-
trated at the ball centers (for the curve in Fig. 9 we have
FCm � 3:35 mN). The curves obtained in this way are
demonstrated in Fig. 10, in which the experimental results
processed in the same way at a voltage of 10 kV are also
presented. Straight line 1 corresponds to the Coulomb law of
interaction, and curve 2 is the interaction force calculated by
formula (26) at the experimental parameters R1=R2 � 0:629,
and a1 � U2�R1 � R2�=�kq1i� � 4:59. In this case, one
obtains

FCm � q1iU2R2

�R1 � R2�2
:

It is evident that the experimental results fit the theoretical
curve 2 reasonably well.
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Figure 9. The force of electrostatic interaction versus the parameter

1=x 2 � �R1 � R2�2=l 2. Circles denote experimental data. The voltage is

15 kV. Below the abscissa axis, two distances between the ball centers are

given in millimeters for reference.
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Figure 10. The normalized force of ball interaction versus the inverse
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the Coulomb law, and curve 2 is the calculation by formula (26).
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Attraction of like-charged balls was observed in two cases,
one of which wasmentioned above. Namely, initially the balls
touching each other were charged from a power supply at a
certain voltage, which resulted in the smaller ball deflecting
through a certain angle and being maintained in equilibrium
in this position. Then the larger ball was slightly moved aside,
so that the distance between the balls increased; simulta-
neously, the voltage on the larger ball was raised by
approximately a factor of 1.5 and ball repulsion changed to
attraction and they came into contact. Then, the smaller ball
was again repelled, deflecting in this case through a greater
angle. The second situation with ball attraction was observed
when the charge of a ball, conversely, was reduced. To this
end, the balls were first charged likely, similarly to the first
case. Then, the distance between them was slightly enlarged
and the larger ball was disconnected from the voltage source.
In a short time (on the order of several seconds), repulsion
changed to attraction. The reason was that one ball lost its
charge sooner than the other and their potentials began to
differ substantially. According to the above theory, by
increasing or reducing the charge of one of the balls, we
leave the narrow range of ball repulsion (see Fig. 5), getting
higher or lower to the range of ball attraction.

It should be noted that finite air conductivity may play a
determining role in some experiments. For example, in the
tests described in Ref. [9] with a ball and disk connected to the
same voltage source, ball nonrepulsion from the disk (stiction
to disk) was observed at voltages of up to 10 kV. Probably,
such manifestation of electric image effects occurred due to
weak currents flowing from sharp disk edges, which provided
a potential difference between the ball and disk.

6. Conclusion

The investigation performed shows that the character of ball
interaction in the framework of the three problem statements
considered is different in the general case. If the interacting
balls are connected to the same terminal of a voltage source,
they would always repel each other. In the other two cases
considered (one ball is charged and then isolated, the other
ball is connected to a voltage source; both balls are charged
likely and then isolated), one can always find the range of
parameters in which the balls would be attracted at short
distances. An exception is the case where initially the
potentials of balls separated by a short distance are equal
due to either the choice of parameters or the contact of balls.
In this case, balls removed from each other would always be
repelled (if the charge loss due to air conductivity is
eliminated), the repulsion force would fall with increasing
the distance between the balls and tend to the Coulomb force.
Such a scenario of ball interaction is realized independently of
whether the balls (or one of them) remain connected to the
voltage source or not. This situation was realized experimen-
tally (see Figs 9 and 10). According to the theory and
experiment, the actual force of ball interaction when they
are drawn together is less than the force calculated in the
Coulomb approximation (the point charges at the ball
centers). In particular, this force is jkq1iq2i=�R1 � R2�2,
j < 1 if the balls touch. Here, q1i and q2i are the charges
acquired by the balls. In experiments, this deviation from the
Coulomb law is definitely observed with a sufficiently high
accuracy (see Figs 9 and 10). However, already at the distance
l � 2�R1 � R2� between the ball centers the Coulomb approx-
imation is well fulfilled: an actual force differs from that

calculated in the Coulomb approximation by approximately
6%. With a reduction (increase) in the ratio of ball radii, the
factor j monotonically rises from j � 0:616 (similar balls) to
j � 0:832 in the asymptotic `ball±infinite conducting plane'
case. Here, the asymptotics found for j coincides with the
known solution to the problem upon interaction of a like-
charged ball and plane [6].

On the radius ratio±charge ratio parameter plane, the
domain of repulsive force for like-charged balls occupies a
relatively narrow range (see Fig. 5), which expands with a
reduction in the ratio of radii. Inside this range, the ball
potentials are either equal or close. As soon as the ball
potentials begin to noticeably differ, the force acting on the
balls becomes attractive in character (for example, at
R1=R2 � 0:5 the ball potential difference of 4% is suffi-
cient). This theoretical conclusion is qualitatively confirmed
by experiments.

The authors are grateful toE IVaraksina andABFedorov
for their help in carrying out the experiments.
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