
Abstract. The oscillating electric dipole field induced by laser
light at the probe tip of the near-field microscope is shown to
allow a higher resolution compared to the conventional optical
microscope.

1. Introduction

The invention of various types of probe microscopes has
provided researchers with new nanometer-resolution tools
for probingmolecules on a surface [1]. The probeÐ the key to
the concept Ð is a thin needle made either of metal (as in
tunneling microscopes, where the current between the needle
and the substrate is measured) or of an optically transparent
insulating material (as in the scanning near-field optical
microscopes, SNOMs [2], which use light to excite molecules
on the surface).

It is well known that conventional and electron micro-
scopes (respectively using light and electrons as a `probe')
cannot resolve two objects separated by less than the
wavelength of light l and the de Broglie electron wave-
length. That light-based SNOMs discern objects only a few
hundredths of l apart seems quite bizarre from the standpoint
of traditional wave microscopy. The present article gives an
undergraduate-oriented explanation of why the SNOM has a
resolving power tens of times exceeding that of its optical
counterparts.

Qualitatively, the answer is simple and is well illustrated in
Fig. 1. Light, e.g., from a blue laser is directed via a light guide
to a quartz needle coated by metal everywhere except the tip,
the tip diameter being less than the wavelength of light. The
polarization thereby induced in the free tip oscillates at the
laser frequency and produces an alternating electromagnetic

field outside the needle, a complex superposition of electric
and magnetic multipoles. Of these, as we show in Section 4,
the alternating electric field of the induced dipole is strongest
near the tip. Because this field decreases with r as 1=r 3,
molecules far away from the needle are excited by it much
less than those located near it, in the so-called near zone, a
region whose size is much less than the wavelength of the light
passing through the needle.

The excited molecules of the substrate fluoresce, and
their radiation is detected by a photomultiplier tube (PMT).
Because the fluorescence intensity of a molecule is propor-
tional to the molecule excitation probability and because
this probability is greatest for molecules in the near zone,
precisely these molecules contribute most to the fluores-
cence signal; the fluorescence from molecules outside the
near zone is lost in the photoreceiver noise. In Fig. 1, the
arrows directed to the PMT are given different thicknesses
to illustrate that molecules fluoresce with different intensi-
ties due to their different excitation energies. When moving
the needle along the surface under study, the fluorescence
signal at any moment is mainly due to the molecules that
are precisely beneath the needle, i.e., in the near zone, at this
moment. Hence, moving the tip along the surface of the
sample means scanning the surface with a resolution better
than the exciting wavelength. In what follows, we take a
closer look at the physics behind this phenomenon.
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Figure 1. Principle of near-field microscope.



2. Near and far zones

The first thing we need to do is to estimate the distribution of
the electromagnetic field in the SNOM. This is a rather
complex mathematical physics problem; it is solvable for
some specific probe models, but as regards the explanation
of the resolving power of the SNOM, a certain simplifying
assumption can be made and, in addition, the existence of
characteristic scales and of the associated small parameters
can be used.

The schematic diagram in Fig. 2 shows the radiating
region V of size L, which models the probe tip; the exciting
light wave; and the near and far (relative to V) wave zones
with their respective characteristic scales. The region V
features the oscillating charge density r and the current
density j, both induced by the exciting laser radiation and
acting together as a source of the electromagnetic field for the
exterior of region V. In near-field spectroscopy, the terms
near and far are very naturally used for the fields respectively
dominating in the near and far zones.

The assumption mentioned above is that in the region
filled with the molecules under study, the probe and light-
guide boundary effects can be neglected and the electromag-
netic field can therefore be calculated using the well-known
vacuum expressions for the retarded potentials due to the
charges and currents in V. In the Lorentz gauge, the
corresponding expressions for the scalar and vector poten-
tials are [3]
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and the meaning of
the radius vectors is made clear in Fig. 3.

The electric andmagnetic vectors are to be found from the
well-known field±potential relations
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The expressions for the fields we derive below are the
leading terms in their expansion in the small parameters
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According to Fig. 2, these inequalities are satisfied for the
near zone and even more so for the far zone. The correspond-
ing expressions are obtained by expanding the integrands in
Eqn (1) in the respective small parameters
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The meaning of the second parameter can be clarified by
introducing the retardation time tr � r=c (for a signal
traveling from region V to the point of observation) and the
self-retardation time t 0r � r 0=c (the retardation time difference
for signals coming from different points in V).

With o denoting the frequency of the light exciting
molecules on the surface (which is also the oscillation
frequency of the charge density r and current density j),
conditions (3a) can be written in the equivalent form

r 0

r
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The small value of the second parameter implies that the self-
retardation is small compared to the light wave period.

3. Small-parameter expansion of the potentials

We consider the two functions in the integrand in the
expression for the scalar potential. Expanding them to the
first order in small parameters (3a) and (3b), we obtain
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where t� tÿ r=c � tÿ tr and n � r=r is the unit vector. It is
clear that
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is indeed linear in the small parameter. Substituting expan-
sions (4) in the formula for the scalar potential yields
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With the term proportional to the product of the two small
parameters neglected, this becomes

j�r; t� � jm�r; t� � jd�r; t� � jrad�r; t� ; �6�

where
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Figure 2. Radiating volume, near zone, and far zone (schematic).
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is the Coulomb potential of the total charge of the system,
e�t�. In our case, region V is electrically neutral, and hence
this charge is zero. The second term,

jd�r; t� �
1

r 2

�
V

�r 0n� r�r 0; t� dV 0 �
ÿ
d�t� n�
r 2

; �6b�

is the potential of the total dipole of the system, d�t�. Finally,
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is the scalar potential of the radiation.
The expansion of the scalar potential in powers of the

small parameter L=r is the multipole expansion, jm and jd

being the monopole and dipole potentials none of which
vanishes even for a static charge distribution r�r 0� in regionV.
The radiation potential jrad is linear in the small parameter
t 0ro; jrad is due to the alternating dipole moment.

We take the vector potential to be given by the first
nonvanishing term in the expansion of the integrand in
powers of small parameters (3a) and (3b):
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where the coordinate ri indicates the location of charges in V.
The scalar and vector potentials are related by the simple
formulas
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It follows that expanding retarded potentials (1) in powers of
small parameters (3) results in the potentials expressed in
terms of the electric dipole moment of region V in the first
nonvanishing approximation.

4. Far and near fields

Having obtained rather simple formulas (6) and (7) for the
scalar and vector potentials, we can substitute them in
Eqns (2) to find the electric and magnetic fields. The
procedure is as follows.

First, substituting Eqn (7) in the magnetic field expression
and noting that the operator H differentiates d�t�with respect
to time and multiplies it by ÿn=c, i.e.,
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q
qt
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we arrive at the following expression for the magnetic field:
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We note than one of the terms here decreases with r as 1=r and
the other as 1=r 2.

Next, we substitute potentials (6) in the expression for the
scalar potential gradient to obtain

ÿ HHjd � ÿ
HH �nd�
r 2

� 2n �nd�
r 3

;

ÿ HHjrad � ÿ
HH�n _d�
cr
� n �n _d�

cr 2
: �11�

Using the vector analysis identity HH�ab� � �aHH� b� �a�HHb���
�bHH� a � �b�HHa�� [4], we write the gradients of the scalar
products in Eqns (11) as
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With Eqn (12) substituted in Eqn (11), the potential gradients
can be written as
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Noting that jm � 0 and
�� _dn� n�� ÿ _d� n� _dn�, we express the

scalar potential gradient as
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According to Eqn (8),
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which, when added to Eqn (14), yields the electric vector
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with the terms decreasing with distance as 1=r, 1=r 2, and 1=r 3.
Equations (10) and (16) determine the magnetic and

electric fields generated by the charge and currents in region
V at distances larger than the size of the region. Because the
fields differ in the rate of decrease with the distance from V,
the electric and magnetic fields can be expressed as the sum of
two components:

E�r; t� � EF�r; t� � EN�r; t� ;
B�r; t� � BF�r; t� � BN�r; t� ; �17�

where the electric and magnetic fields
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that decrease as 1=r are called the far fields, and their
counterparts
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decrease faster than 1=r and are called the near fields. These
are precisely the near field mentioned in the Introduction in
qualitatively explaining the higher resolving power of near-
field microscopes compared with conventional optical micro-
scopes. The far field is proportional to the second derivative
of the system dipole moment. The 1=r 2 part of the near field is
due to the first derivative and vanishes in the static case. The
1=r 3 electric dipole field does not vanish even in the static
( _d � 0) case. As we see in what follows, it is the alternating
1=r 3 field that crucially determines the high resolving power
of the SNOM.

We next find which fields cause the flow of electrons from
the region V and are therefore responsible for the radiation
from the tip of the needle. The far-field vectors EF�r; t� and
BF�r; t� and the unit vector n constitute a right-handed triple
of pairwise orthogonal vectors as shown in Fig. 4.

The Poynting vector of the far field has the form
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4p
�EFBF� � c
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which, when used to calculate the energy flux through a
sphere around L, yields the well-known formula
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The far field is the light that emanates from the needle. This
radiation forms the image in the usual microscope and plays
the role of beams in geometric optics. The far field does not
allow overcoming the diffraction limit, which restricts the
resolution of the usual microscope. The high resolution of
SNOMs is due to the near field.

Because the electric and magnetic vectors of the near field
decrease at least as 1=r 2, it follows that the Poynting vector of
the field decreases as 1=r 4, and hence the integral over the
surface surrounding region V tends to zero as 1=r 2 with the
distance from this region. This means that the near field does
not take part in energy transfer from the regionV. However, it
plays a major role in exciting molecules near the SNOM
probe.

To see that this is indeed the case, we compare the
magnitudes of the electric vectors of the near and far fields
in the near zone, that is, near the probe. Because
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they are easily estimated to be
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Noting the near-zone inequality l4 r, we see that the near
field is substantially less than the far field in the near zone:

EN

EF
/ l 2

4p2r 2
4 1 : �24�

It follows from Eqn (23) that the electric field in the near zone
(that is, the near field) is in fact the field of a dipole oscillating
at an optical frequency.

5. How are nanoobjects resolved
in the microscope?

The common geometric-optics-based microscope uses the
light propagating from the object (i.e., the far field) to form
the image. The electric field of this light cannot be localized in
a spatial region of a size less than the photon wavelength. The
simplest way to show this is to use the uncertainty relation
px > h for the position andmomentum of a photon, which, in
view of p � �hk � h=l, yields the well-known resolution
condition

x

l
> 1 �25�

of conventional microscopy. Although this condition is
derived using the Heisenberg uncertainty relation, it does
not contain the Planck constant and is therefore nonquantum
and equally well applicable to the classical light of geometric
optics. The near-field microscope presents a totally different
situation.

We return to Fig. 1, in which the probe is located at the
distance from the surface of the sample less than its emitted
wavelength. According to Eqn (25), the spot of light coming
from the probe has a diameter not less than the wavelength,
and hence, as can be seen from Fig. 1, covers a large number
of molecules. We consider the absorption coefficient for a
molecule excited by the electromagnetic field. The rate of
excitation of a molecule by light is given by

k � 2

�
pE

�h

�2 g
D 2 � g 2

�26�

(see, e.g., Eqn (7.42) in book [5]). Here, p is the dipole moment
of the molecular transition, E is the vector of the electric field
strength acting on the molecule, D is the difference between
the frequency of the radiation from the probe and the
resonance frequency of the molecule, and 2g is the absorp-
tion line half-width of the molecule. The total electric field
consists of a near field and a far field, i.e., E � EF � EN.
Because the near field decreases as 1=r 3, it is essentially zero
for molecules in the far zone, and hence E � EF and the
absorption coefficient for molecules at the periphery of the
lightspot is given by

kF � 2

�
pEF

�h

�2 g
D 2 � g 2

: �27�

In the near zone, i e., in the center of the light spot, besides a
large increase in themagnitude of the far field, the near field is

y

n

BF

EF

�d

Figure 4. Illustration of how the far-field vector and the unit vector n are

arranged with respect to each other.
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added to it, whose strength is by Eqn (24) much larger than
that of the far field in the near zone, i.e., EN 4EF. The light
absorption coefficient of a molecule in the near zone can
therefore be expressed as

kN � 2

�
p�EN � EF�

�h

�2 g
D 2 � g 2

4 kF : �28�

It then follows that in the near zone, with a spatial size less
than the radiation wavelength, molecules absorb electromag-
netic radiation much more effectively than their far zone
counterparts. On the other hand, the higher the absorption is,
the stronger the fluorescence of light-excited molecules.
Therefore, in a setup with substrate molecules excited by a
probe, the photomultiplier shown in Fig. 1 detects fluores-
cence only frommolecules in the near zone, not from those in
the far zone, even though all of them are covered by the light
spot as seen in Fig. 1. It is for this reason that the resolving
power of the SNOM is tens of times higher than that of
conventional optical microscopes. Actual SNOMs have a
spatial resolution about l=40.

Acknowledgements. I thank N A Popov and B L Voronov for
their critical reading of the manuscript. This work was
supported by the Russian Foundation for Basic Research
(grant Nos 08-07-00371, 07-02-00181, and 07-02-00547).

References

1. Binning G et al. Phys. Rev. Lett. 49 57 (1982)

2. Pohl D W, Denk W, Lanz M Appl. Phys. Lett. 44 651 (1984)

3. Landau L D, Lifshitz E M Teoriya Polya (The Classical Theory of

Fields) (Moscow: Fizmatgiz, 1962) [Translated into English (Ox-

ford: Pergamon Press, 1983)]

4. Tamm I E Osnovy Teorii Elektrichestva (Fundamentals of the

Theory of Electricity) (Moscow: Nauka, 1966) [Translated into

English (Moscow: Mir Publ., 1979)]

5. Osad'ko I S Selektivnaya Spektroskopiya Odinochnykh Molekul

(Selective Spectroscopy of Single Molecules) (Moscow: Fizmatlit,

2000) [Translated into English (Berlin: Springer, 2003)]

January 2010 The near-éeld microscope as a tool for studying nanoparticles 81


	1. Introduction
	2. Near and far zones
	3. Small-parameter expansion of the potentials
	4. Far and near fields
	5. How are nanoobjects resolved in the microscope?
	 References

