
Abstract. Dense quantum plasmas are ubiquitous in planetary
interiors and in compact astrophysical objects (e.g., the interior
of white dwarf stars, in magnetars, etc.), in semiconductors and
micromechanical systems, as well as in the next-generation
intense laser±solid density plasma interaction experiments and
in quantum X-ray free-electron lasers. In contrast to classical
plasmas, quantum plasmas have extremely high plasma number
densities and low temperatures. Quantum plasmas are com-
posed of electrons, positrons and holes, which are degenerate.
Positrons (holes) have the same (slightly different) mass as
electrons, but opposite charge. The degenerate charged parti-

cles (electrons, positrons, and holes) obey the Fermi±Dirac
statistics. In quantum plasmas, there are new forces associated
with (i) quantum statistical electron and positron pressures,
(ii) electron and positron tunneling through the Bohm poten-
tial, and (iii) electron and positron angular momentum spin.
Inclusion of these quantum forces allows the existence of very
high-frequency dispersive electrostatic and electromagnetic
waves (e.g., in the hard X-ray and gamma-ray regimes) with
extremely short wavelengths. In this review paper, we present
theoretical backgrounds for some important nonlinear aspects
of wave±wave and wave±electron interactions in dense quantum
plasmas. Specifically, we focus on nonlinear electrostatic elec-
tron and ion plasma waves, novel aspects of three-dimensional
quantum electron fluid turbulence, as well as nonlinearly
coupled intense electromagnetic waves and localized plasma
wave structures. Also discussed are the phase-space kinetic
structures and mechanisms that can generate quasistationary
magnetic fields in dense quantum plasmas. The influence of the
external magnetic field and the electron angular momentum
spin on the electromagnetic wave dynamics is discussed. Final-
ly, future perspectives of the nonlinear quantum plasma physics
are highlighted.

1. Introduction

The field of quantum plasma physics has a long and diverse
tradition [1 ± 5], with interest having risen recently [6, 7]
connected with its potential applications in modern technol-
ogy (metallic and semiconductor nanostructures such as
metallic nanoparticles, metal clusters, thin metal films,
spintronics, nanotubes, quantum wells and quantum dots,
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nanoplasmonic devices, quantum X-ray free-electron lasers
etc.). Due to the recent development of ultrafast spectroscopy
techniques, it is now possible to monitor the femtosecond
dynamics of an electron gas confined in metallic plasmas. In
dense quantum plasmas, the number densities of degenerate
electrons and/or positrons are extremely high, and the plasma
particles (mainly electrons and positrons) conform to the
Fermi±Dirac statistics.

The quantum degeneracy effects start playing a significant
role when the de Broglie thermal wavelength lB �
�h=�2pmekBT �1=2 for electrons is similar to or larger than the
average inter-electron distance n

ÿ1=3
e , i.e., when [6, 7]

nel
3
B01 ; �1�

or, equivalently, the temperature T is comparable with or
lower than the electron Fermi temperature TFe � EF=kB,
where the electron Fermi energy is

EF � �h 2

2me
�3p2�2=3n 2=3

e ; �2�

and hence

w � TFe

T
� 1

2
�3p2� 2=3�nel3B�2=301 : �3�

Here, �h is the Planck constant divided by 2p, ne is the electron
number density, me is the rest mass of an electron, and kB is
the Boltzmann constant.

When the temperature approaches the electron Fermi
temperature TFe, it can be shown using the density matrix
formalism [8] that the equilibrium electron distribution
function changes from the Maxwell±Boltzmann distribution
/ exp�ÿE=kBT � to the Fermi±Dirac distribution

/
�

2

�h 3

��
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�
Eÿ m
kBT

�
� 1

�ÿ1
;

where E is the electron kinetic energy and m is the chemical
potential. In a dense Fermi plasma, the Thomas±Fermi
screening radius is given by

lF � VFe���
3
p

ope

; �4�

which is the quantum analogue of the Debye±H�uckel radius.
Here, the electron Fermi speed

VFe �
�
2EF

me

�1=2

� �h

me
�3p2ne�1=3 �5�

is the speed of an electron on the Fermi surface.
A measure of the importance of collisions in a dense

plasma is the quantum coupling parameter, the ratio of the
interaction energy Eint � e 2n

1=3
e to the average kinetic energy

Ekin of electrons, where e is the electron charge. For a classical
plasma, the kinetic energy is kBT, and henceGC � Eint=kBT in
the classical case. In a quantum plasma, Ekin � EF instead,
which gives the quantum coupling parameter [6, 7, 9]

GQ � Eint

EF
� 2

�3p2�2=3
mee

2

�h 2n
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�
�
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(where we omit proportionality constants for the sake of
clarity), which is analogous to the classical coupling
parameter when lF ! lD. The various plasma regimes are
illustrated in Fig. 1, where the straight lines correspond to (i)
the border between the classical and quantum plasmas,
w � 1, (ii) the border between collisionless and collisional
classical plasmas GC � 1, and (iii) the border between
collisionless and collisional quantum plasmas GQ � 1.
In Fig. 1, various experimental and naturally occurring
plasmas are exemplified and the kinetic equations used to
model the plasma in each regime are indicated. The Vlasov
and Wigner equations are used to respectively model
collisionless plasma in the classical and quantum limits,
while `Boltzmann' indicates collisional kinetic models in a
classical plasma. The kinetic models for a collisional
quantum plasma are labeled `Wigner (+coll).' We note
that a quantum plasma becomes collisionless, GQ < 1,
when the mean distance between electrons is of the order of
the Bohr radius a0, i.e., d�1=n

1=3
e < ��3p2�2=3=8p� a0�

0:38a0, where a0 � �h 2=mee
2 � 0:53A

�
. This corresponds to

a number density of the order of ne01:22� 1026 cmÿ3,
which is three orders of magnitude larger than the electron
density in a typical metal; for example, ne � 5:9� 1022 cmÿ3

for gold at room temperature.
Fermi-degenerate matter demonstrates the effect called

Pauli blocking, which strongly reduces the electron±electron
and electron±ion collision rates. Namely, at moderate
temperatures, only electrons within an energy shell with the
thickness kBT near the Fermi surface (where the electron
energy equals EF) can undergo collisions. For these electrons,
the electron±electron collision rate is of the order of kBT=�h,
and the average collision rate is given by this expression times
T=TF. The resulting collision frequency nee divided by the
electron plasma frequency is [7]

nee
ope
� EF

�hop

�
T

TF

�2

� 1

G 1=2
Q

�
T
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�2

: �7�

Hence, nee 5ope when T5TF and GQ > 1, which is relevant
for metallic electrons. For example, at room temperature we
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Figure 1. Schematic plasma diagram in the log10�T �±log�n� plane: IONO:

ionospheric plasma, SPACE: space plasma, CORONA: solar corona,

DISCHA: typical electric discharge, TOK: tokamak/magnetic fusion

experiments, ICF: inertial confinement fusion, MET: metals and metal

clusters, JUP: Jupiter's core, DWARF: white dwarf star. FromRefs [6, 7].
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have nee � 1011 sÿ1, which is much smaller than the typical
collisionless frequency of collective interactions ope �
1016 sÿ1. Also, the typical collision rate for electron±lattice
(ion) collisions nei � 1015 sÿ1 is smaller than ope by one order
of magnitude. Therefore, the collisionless regime seems to be
relevant for free electrons in a metal on a time scale of the
order of a femtosecond. In denser plasmas, such as in stellar
interiors [10 ± 12] and in inertial fusion schemes [13 ± 15], the
relative effects of collisions decrease even further and lead to
increased electron transport and heat conductivity.

More than 60 years ago, Wigner [16] introduced a phase-
space formalism to treat a quantum state of charged particles
in a collisionless quantum system. He defined a quantum
distribution function of phase-space variables f �x; p; t� as

f �x; p; t�� 1

�2p�3N
�1
1
r
�
xÿ �h

2
t; x� �h

2
t; t
�
exp �ÿipt� dt ;

�8�

where N is the number of particles in the system,
xfx1; x2; . . . ; xNg and pf p1; p2; . . . ; pNg are the sets of co-
ordinates and momenta for the particles, t is the time, and
r�x; x 0; t� is the density matrix. The Wigner function is not a
probability density in phase space x, p because it can take
negative values. The Wigner distribution functionWi�x; p; t�,
corresponding to the wave function ci�x; t� can be expressed
as

Wi�x; p; t� � 1

�2p�3N�h

�1
1

dyci

�
xÿ y

2
; t

�
c �i

�
x� y

2
; t

�
� exp

�
ÿ i

py

�h

�
; �9�

and has the property�1
1

dpWi�x; p; t� �
D��ci�x; t�

��2E ; �10�

where the asterisk denotes complex conjugation. The quan-
tum kinetic equation based on the Wigner distribution was
developed by Moyal [17], and is now referred to as the
Wigner±Moyal description for treating statistical effects on
electron plasma waves in a quantum plasma [18].

Analytic investigations of collective interactions between
an ensemble of degenerate electrons in a dense quantum
plasma dates back to the early 1950s. Specifically, Klimonto-
vich and Silin [1] and Bohm and Pines [2 ± 5] presented the
properties of linear electron plasma oscillations (EPOs) in a
dense quantum plasma. In such a plasma, electrons, posi-
trons, and holes are degenerate, while ions are cold and
classical (typically, the ion Fermi speed is much less than the
electron Fermi speed). Accordingly, electrons, positrons, and
holes have a Fermi±Dirac distribution function [19], in
contrast to the Boltzmann±Maxwell distribution function
for charged particles in a classical plasma.

The dispersion relation for high-frequency electron
plasma oscillations in a dense quantum plasma with a fixed
ion background is (see Section 10.2)

1ÿ 4pe 2

me

�
f0�u�

�oÿ ku�2 ÿ ��h 2k 4�=4m 2
e

d3u � 0 ; �11�

which was also obtained in [3] by performing a series of
canonical transformations of the Hamiltonian of the system

of individual electrons interacting via the electrostatic force.
In the zero-temperature limit, we have (see Section 10.2)
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which in the limit �hk=me ! 0 yields

1� 3o 2
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k 2V 2
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log
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oÿ kVFe
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where assume that o is real and o=k > VFe. Here, o is
the wave frequency, k is the wave vector, and ope �
�4pnee 2=me�1=2 is the electron plasma frequency. On the
other hand, for small wavenumbers up to terms containing
k 4, it follows from (12) that

o 2 � o 2
pe �

3

5
k 2V 2

Fe � �1� a� �h 2k 4

4m 2
e

�14�

with a � �48=175�m 2
e V

4
Fe=�h 2o 2

pe � 2:000�a 3
0 n0�1=3, where

a0 � �h 2=mee
2� 53�10ÿ10 cm is the Bohr radius. Equation

(14) shows that the wave dispersion arises due to the finite
width of the electron wave function in a dense Fermi plasma
[7, 20 ± 24].

Furthermore, in the limit of low phase speed o5 kVFe,
the dielectric constant for ion oscillations becomes

E�o; k� � 1� 3o 2
pe

k 2V 2
Fe � 3�h 2k 4=4m 2

e

ÿ o 2
pi

o 2
; �15�

whence E�o; k� � 0 yields the ion oscillation frequency

o � opi

�1�Q�1=2
; �16a�

where opi � �me=mi�1=2ope is the ion plasma frequency, mi is
the ion mass, Q � 3o 2

pe=�k 2V 2
Fe � 3�h 2k 4=4m 2

e �, and a5 1.
For Q4 1, it follows from (16a) that

o � kCFs

�
1� �hk 4

4m 2
e o 2

pe

�1=2

; �16b�

where CFs � �TFe=3mi�1=2 is the speed of sound.
Dispersion properties of electrostatic waves in an unmag-

netized dense quantum plasma with arbitrary electron
degeneracy have been presented in [25, 26]. The permittivity
of a degenerate collisionless plasma in the random-phase
approximation is given in textbooks [27, 28]. Furthermore,
because a pure electromagnetic wave in a nonstreaming
unmagnetized dense plasma does not accompany density
fluctuations, the wave frequency is o � �o 2

pe � k 2c 2�1=2,
where c is the speed of light in the vacuum.The quantum
statistical properties of dense plasmas in the presence of
electromagnetic waves were studied theoretically in [29] and
were considered in textbooks [30, 31], while quantum
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parameter regimes are discussed in [6]. In a magnetized dense
quantum plasma, the external magnetic field significantly
affects the dynamics of degenerate electrons and positrons,
and hence new collective phenomena appear associated with
the electron angular momentum spin [32, 33], the electron
spin magnetic moment [34], and quantized Landau energy
levels [35] of fermions in a strong magnetic field. It turns out
that the thermodynamics and kinetics [36] as well as the
dispersion properties of both electrostatic and electromag-
netic waves [37 ± 43] in a quantum magnetoplasma are
significantly different from those in an unmagnetized quan-
tum plasma.

It was recognized early on that the underlying physics of
nonlinear quantum-like equations can be better understood
by rewriting those equations in the form of hydrodynamical
(or Euler) equations, which essentially represent the evolution
of quantum particle densities and momenta. This was
elegantly done by Madelung [44] and Bohm [2] by introduc-
ing an eikonal representation for the wave function evolution
in the nonstationary Schr�odinger equation. The Madelung
quantum fluid equations for the Pauli equation with the
quantum particle angular momentum spin were derived in
[45 ± 51]. To incorporate relativistic effects into the quantum
fluid formalism, the quantum electron fluid equations were
derived for the Klein±Gordon equation [52] and for the Dirac
equation [53 ± 55]. Extensions for massless spin-1/2 particles
(neutrinos) have also been added to fluid descriptions of the
Weyl equation in [56].

Recently, there has been growing and vibrant interest in
investigating new aspects of quantum plasma physics by
developing nonrelativistic quantum hydrodynamical (QHD)
equations [7, 20, 21, 57] that include the quantum statistical
electron pressure and the quantum force involving tunneling
of degenerate electrons through the Bohm potential [20]. The
Wigner±Poisson (WP) model has also been used to derive a
set of nonrelativistic QHD equations [7, 21] for a dense
electron plasma under the assumption of immobile ions. The
QHD equations are composed of the electron continuity,
electron momentum, and Poisson equations. The quantum
force [7, 20, 21] appears in the nonrelativistic electron
momentum equation through the pressure term, which
requires knowledge of the Wigner distribution for a quantum
mixture of electron wave functions, each characterized by an
occupation probability. Quantum transportmodels similar to
the QHD plasma model have also been used in superfluidity
[58] and superconductivity [59], as well as in the study ofmetal
clusters and nanoparticles, where they are referred to as
nonstationary Thomas±Fermi models [60].

The electrostatic QHD equations are useful for studying
collective interactions (e.g., different types of waves, instabil-
ities, quantum fluid turbulence, and nonlinear structures)
[7, 21, 22, 61 ± 69]. These give rise to high-frequency spin
waves, which can be excited by neutrino beams in supernovae
[40, 70 ± 74]. Furthermore, studies of numerous collective
interactions in dense plasmas are relevant in the context of
(i) intense laser±solid density plasma experiments [13, 14, 76 ±
85]; (ii) the cores of giant planets and the crusts of old stars
[87 ± 89]; (iii) superdense astrophysical objects [90 ± 98] (e.g.,
interiors of white dwarfs andmagnetospheres of neutron stars
and magnetars); (iv) micro- and nano-scale objects (e.g.,
quantum diodes [99 ± 104], quantum dots and nanowires
[105], nanophotonics [106, 107], plasmonics [108], ultra-
small electronic devices [109 ± 111], and metallic nanostruc-
tures [112]); and (v) microplasmas [113] and quantum X-ray

free-electron lasers [114, 115]. Furthermore, we stress that a
Fermi-degenerate dense plasma may also arise when a pellet
of hydrogen is compressed to many times the solid density in
the fast ignition scenario for inertial confinement fusion
[15, 116, 117]. Because of the impressive development in the
field of short-pulse petawatt laser technology, it is highly
likely that such plasma conditions can be achieved by intense
laser-pulse compression using powerful X-ray pulses. Here,
ultrafast X-ray Thomson scattering techniques can be used to
measure the features of laser-enhanced plasma lines, which
will in turn give invaluable information regarding the
equation of state of shock-compressed dense matter.
Recently, spectrally resolved X-ray scattering measurements
[82, 84] were performed in dense plasmas, allowing accurate
measurements of the electron velocity distribution function,
temperature, ionization state, and plasmons in the warm
dense matter regime [118]. This novel technique promises to
access the degenerate, the closely coupled, and the ideal
plasma regimes, making it possible to investigate extremely
dense states of matter, such as the inertial confinement fusion
fuel during compression, reaching super-solid densities.

In this review, we describe the recent theoretical progress
in the area of collective nonlinear interactions in collisionless
dense quantum plasmas. The paper is organized as follows. In
Section 2, we briefly recapitulate the hydrodynamic repre-
sentation of some quantum-like models that appear in
different branches of physics. The governing equations for
nonlinearly interacting electrostatic waves in an unmagne-
tized quantum plasma are derived in Section 3. Section 4
presents numerical studies of nonlinear electron plasma wave
excitations in the form of quantized one-dimensional dark
solitons and quantized two-dimensional vortices. The model
used here is the nonlinear Schr�odinger equation for dispersive
EPOs, coupled to the Poisson equation for the electrostatic
potential. This model is also used for studying 3D quantum
electron fluid turbulence in Section 5, where we find non-
Kolmogorov-type turbulence spectra. In Section 6, we
present recent results concerning the phase-space (kinetic)
turbulence by using the Wigner and Vlasov models for the
electron distribution function. A theoretical model for the
generation of quasistationary magnetic fields in a dense
quantum plasma due to the Weibel instability is presented in
Section 7.1. The magnetization of a dense plasma in the
presence of a large-amplitude electromagnetic wave is
demonstrated in Section 7.2. The dynamics of electromag-
netic waves in a dense magnetoplasma are discussed in
Section 8, where we focus on spin waves propagating
transversally to the magnetic field direction, and develop
nonlinear equations for low-phase speed (in comparison with
the speed of light) electromagnetic waves in a dense quantum
magnetoplasma. Finally, Section 9 highlights our main
results and describes future prospects of quantum plasma
physics research.

2. Fluid representation of quantum-like models

This section is included to show how different types of
quantum-like models can be reformulated in the form of
hydrodynamic equations.

First, we consider the nonstationary nonlinear Schr�odin-
ger equation (NLSE)

i�h
qc
qt
� �h 2

2m
H 2cÿU0

ÿjcj2�c � 0 ; �17�
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where c�r; t� is a macroscopic wave function,m is the particle
mass, and U0

ÿjcj2� is an effective potential. The NLSE also
arises in various physical contexts in the description of
amplitude-modulated nonlinear waves in fluids [119, 120], in
transmission lines [121], in nonlinear optics for ultrafast
communications [122 ± 124], in plasmas [125 ± 130], and in
many other areas of physics [131 ± 133].

We introduce the Madelung transformation [44]

c�r; t� � ���
n
p

exp

�
i
jq

�h

�
; �18�

where n and jq are real, and use (17) to obtain a pair of
quantum hydrodynamic equations composed of the continu-
ity and momentum equations:

qn
qt
� H � �nv� � 0 ; �19�

and

m

�
q
qt
� v � H

�
v � ÿH�U0�n� �UB

�
: �20�

Here, n � n�r; t� � jcj2 corresponds to the local density per
unit length and �hHjq�r; t� � mv. The quantum potential is

UB � ÿ �h 2

2m

H 2 ���
n
p���
n
p : �21�

We note that the quantum particle number density n and
the quantum velocity field v can be respectively written as

n�r; t� � cc � � jcj2 �22�

and

v � �h

2im

�c � Hcÿ cHc ��
jcj2 � ÿ i�h

2m
H
�
ln

�
c
c �

��
; �23�

where the asterisk denotes complex conjugation. The quan-
tum-like velocity given by (23) is a potential field, namely,

H� v � 0 �24�

everywhere in a singly connected region.
We now define the generalized vorticity of the weighted

velocity field as [68]

X� H� ÿjcj2v�
jcj2 � H� v� Hjcj2 � v

jcj2 ; �25�

where the first term in the right-hand side represents the
ordinary vorticity. It is well known [51, 134] that in the
condensate state, all the rotational flow is carried by
quantized vortices (velocity circulation around the core of
each such vortex is quantized). In the absence of quantized
vortices, the first term is zero in view of (24). Then the second
term in (25) determines the generalized vorticity. Various
aspects of quantized vortex dynamics and superfluid turbu-
lence are discussed in [134]. A technique for visualization of
quantized vortices in liquid helium is presented in [135].

Second, the nonlinear Schr�odinger equation can be
generalized by including the trapping potential

Vb�x; y; z� � 1

2
mb�o 2

xx
2 � o 2

y y
2 � o 2

z z
2� ; �26�

which confines identical bosons [136] in the harmonic trap of
an ultracold quantum system. Here,mb is the bosonmass and
ox, oy, and oz are the harmonic frequencies of the bosons
along the x, y, and z directions of a Cartesian coordinate
system. The nonlinear dynamics of Bose±Einstein conden-
sates (BECs) [136, 137] is then governed by the Gross±
Pitaevskii equation [138 ± 140]

i�h
qf�r; t�

qt
� �h 2

2m
H 2c�r; t� ÿ Vbc�r; t�

ÿ Gjcj2�r; t�c�r; t� � 0 ; �27�

where U0�jcj2���4p�h2as=mb�1=2jcj2� Gjcj2 for the BECs.
Here, mb is the mass of the bosons and as is the scattering
length for boson±boson collisions. The BECs are repulsive
(attractive) for G > 0 (G < 0).

Introducing the ansatz c�r; t� � ��������������
nb�r; t�

p
exp �jb�r; t�� in

(27), we obtain the generalized quantum hydrodynamic
equations [141, 142]

qnb
qt
� H � �nbub� � 0 �28�

and

mb
qub
qt
� ÿH

�
Vb �mb

2
u 2
b � Gnb ÿ �h 2

2mb
�����
nb
p H 2 �����

nb
p �

;

�29�

where the particle flux is given by

nb�r; t� ub�r; t� � �h 2

2imb
�c �Hcÿ cHc �� �30�

with ub � ��h=mb�Hjb�r; t�. Equation (29) establishes the
nonrotational nature of the superfluid motion of the BEC.
Equations (29) and (30) can be used to study the linear and
nonlinear properties of BECs.

Next, we consider the dynamics of a single nonrelativistic
Fermi (spin 1=2) particle (a degenerate electron) governed by
the Pauli equation [143, 144]

i�h
qC
qt
� �h 2

2me
H 2Cÿ

�
ie�h

2mec
�A � H� H � A�

� e 2A 2

2mec 2
ÿ efÿ mer � B

�
C � 0 ; �31�

where C�r; t; r� is the wave function of the single particle
species having the spin s � 1=2r , r is the Pauli spin matrices,
A is the vector potential, f is the scalar potential, B � H� A,
and mB � e�h=2mec is the Bohr magneton.

With the Madelung representation for the complex wave
function [145]

C�r; t; r� � s
�������������������
ne�r; t; r�

p
exp

�
iSe�r; t; r�

�h

�
�32�

used in (31), we obtain the quantum magnetohydrodynamic
equations [19, 145]

qne
qt
� H �

�
ne pe
me

�
� 0 �33�
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and�
q
qt
� 1

me
pe � H

�
pe � e

�
Hf� 1

c

qA
qt
ÿ 1

c
ve � �H� A�

�
� �h 2

2me
H
�
H 2 �����

ne
p�����
ne
p

�
� mBH�r � B� ; �34�

where s mimics the spinor through which the electron spin-
1=2 properties are mediated and ne�r; t; r� � CC � represents
the probability density of finding a single electron at some
point with a spin s. We have introduced the generalized
electron momentum pe � HSe ÿ i�hs �Hs� �e=c�A.

We can now express the quantum electron velocity [145]

ve � �h

2me

�C �HCÿCHC ��
jCj2 � i

�h

me
s �Hsÿ e

mec
A ; �35�

the spin density vector

s � �h

2
s �rs ; �36�

and the spin vector transport equation [45]

ds

dt
� e

mec
�s� B� � 1

mene

�
s� q

qxk

�
ne

qs
qxk

��
; �37�

where we use the summation convention for repeated indices,
and introduce the total derivative d= dt � �q=qt� � ve � H.
The electron momentum and electromagnetic fields are
coupled via the Maxwell equations.

Ignoring the electromagnetic fields and the particle spin,
and linearizing (33) and (34), we obtain the frequency of
electron oscillations

og � �hk 2

2me
; �38�

where k is the wave number.
Finally, we consider the interaction of an electron with

both background electrons and singly charged positive ions.
The electron dynamics are governed by [146]

i�h
qc
qt
� �h 2

2me
H 2cÿU

ÿjcj2� � 0 ; �39�

where

U
ÿjcj2� � e 2

�
d3r 0

1

jrÿ r 0j
���c�r 0; t���2 ÿ ni�r 0; t�

�
�40�

is the potential responsible for the interaction of an electron
with background matter, which includes electrons and
positively charged ions with the number density ni�r 0; t�.

The wave function is normalized to the number density of
electrons, ne�r; t� �

��c�r; t���2. We note that Eqn (39) accounts
only for the Coulomb interactions between electrons and
ions, and completely ignores the quantum statistical pressure,
the self-consistent ambipolar field arising from charge
separation, and the electron spin-1/2 effect.

We assume that c�r; t��c0 � c1�r; t�, where jc0j2 � n0
represents the unperturbed electron number density and the
perturbation wave function c1�r; t� for spherically symmetric
oscillations has the form �Ak=r� sin�kr� exp �ÿiot�, with Ak

being a normalization constant. Then the dispersion relation

deduced from (39) is [146]

k 2 � ome

�h

�
1�

�
1ÿ 4

o 2
pe

o 2

�1=2�
: �41�

The interaction between two electrons participating in
spherically symmetric electron oscillations has been consid-
ered in Ref. [146]. This study predicts an effective attraction
between electrons mediated by low-energy [with the minus
sign in Eqn (41)] spherically symmetric oscillations of
electrons in a quantum plasma. We can thus have attracting
degenerate electrons in dense plasmas. The underlying
physics of electron attraction seems to be similar to that of
the Cooper pairing of electrons in superconductors in which
the electrons close to the Fermi level attract each other due to
their interactions with crystal lattice vibrations (phonon
oscillations). The pairs of electrons act more like bosons,
which can condense to the same energy level, contrarily to
single electrons, which are fermions and must obey the Pauli
exclusion principle.

3. Nonlinear equations for unmagnetized
quantum plasmas

In the preceding section, we saw that the quantumMadelung
fluid description predicts a diffraction pattern of a single
electron or positron. However, collective interactions
between an ensemble of degenerate electrons (fermions) in
dense plasmas are responsible for new linear and nonlinear
waves and structures.

The quantum N-body problem is governed by the
Schr�odinger equation for the N-particle wave function
c�q1; q2; . . . ; qN; t�, where qj � �rj; sj� is the coordinate
(space, spin) of particle j. For identical fermions, the
equilibrium N-particle wave function is given by the Slater
determinant [8]

c�q1; q2; . . . ; qN; t�

� 1�����
N!
p

c1�q1; t� c2�q1; t� � � � cN�q1; t�
c1�q2; t� c2�q2; t� � � � cN�q2; t�

..

. ..
. . .

. ..
.

c1�qN; t� c2�qN; t� � � � cN�qN; t�

���������

��������� ; �42�

which is antisymmetric under odd permutations. Hence, c
vanishes if two rows are identical, which is an expression of
the Pauli exclusion principle that two identical fermions
cannot occupy the same state. For example �N � 2�,

c�q1; q2; t� � 1���
2
p �

c1�q1; t�c2�q2; t� ÿ c1�q2; t�c2�q1; t�
�
;

and hence c�q2; q1; t� � ÿc�q1; q2; t� and c�q1; q1; t� � 0.
Due to the Pauli exclusion principle, all electrons together
are not permitted to occupy the lowest energy state, and in the
ultra-cold limit, when all energy states up to the Fermi energy
level are occupied by electrons, there is still a quantum-
statistical pressure determined by the Fermi pressure.

In describing collective electrostatic oscillations in a
plasma, the quantum analogue of the Vlasov±Poisson system
is the Wigner±Poisson system given by

qf
qt
� v � Hf � ÿ iem 3

e

�2p�3�h 4

��
exp

�
ime�vÿ v 0� k

�h

�

�
�
f
�
x� k

2
; t

�
ÿ f

�
xÿ k

2
; t

��
f �x; v 0; t� d3l d3v 0; �43�
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and

H 2f � 4pe
��

f d3vÿ n0

�
; �44�

under the assumption of immobile ions. We note (see
Section 10.1) that the Wigner equation tends to the Vlasov
equation for classical particles (electrons), i.e., as �h! 0:

qf
qt
� v � Hf � ÿ e

me
Hf � qf

qv
: �45�

We now take the moments of Wigner equation (43) and
obtain [up to O��h 2�] the equations for a nonrelativistic
quantum-electron fluid (or the quantum Madelung fluid)
[7, 21], specifically, the electron continuity equation

qne
qt
� H � �neue� � 0 �46�

and the electron momentum equation involving the quantum
statistical pressure and the quantum force

me

�
q
qt
� ue � H

�
ue � eHfÿ 1

ne
HPe � FQ ; �47�

where f is determined from the Poisson equation

H 2f � 4pe�ne ÿ n0� : �48�

For the degenerate Fermi±Dirac-distributed plasma (up
to constants of the order of unity), the quantum statistical
pressure for the electrons applies:

Pe � meV
2
Fen0
3

�
ne
n0

��D�2�=D
; �49�

where D is the number of degrees of freedom in the system.
We note that different expressions for Pe in the nonzero
limit of the electron Fermi temperature were obtained in
[69] and [19].

The quantum force [20] due to electron tunneling through
the Bohm potential is

FQ � �h 2

2me
H
�
H 2 �����

ne
p�����
ne
p

�
� ÿHfB ; �50�

where fB represents the Bohm potential. We note that the
a-term [cf. (14)] does not appear in (50) due to consideration
of terms up toO��h 2� in the expansion parameter, as is also the
case when the mean-field approximation [20] is used in
deriving FQ.

3.1 Nonlinear Schr�odinger±Poisson equations
With the wave function introduced as

c�r; t� �
��������������
ne�r; t�

p
exp

�
i
je�r; t�

�h

�
; �51�

where S is defined according to meue � Hje and ne � jcj2, it
can be shown that the QHD equations [e.g., Eqns (46)±(48)]
are equivalent to the generalized NLS±Poisson system [7, 21]

i�h
qc
qt
� �h 2

2me
H 2c� efcÿmeV

2
Fe

2n 2
0

jcj4=Dc � 0 �52�

and

H 2f � 4pe
ÿjc 2j ÿ n0

�
: �53�

The derivation of (52) requires the electron plasma flow
velocity to be curl-free everywhere in a singly connected
region, except at points where the electron number density
vanishes. This is obviously not valid in general. Similarly to
the quantum-fluid treatment, we should include the general-
ized electron vorticity Xe � H� �jcj2ue�=jcj2, which is non-
vanishing [see the discussions below Eqn (25)]. Equation (52)
captures the two main properties of a quantum plasma, the
quantum statistical pressure (fully nonlinear) and quantum
dispersion effects, and is self-consistently coupled to the
electrostatic potential via Poisson equation (53). We thus
have a nonlocal nonlinear interaction between the electron
density and the electrostatic potential. Furthermore, we note
that the one-dimensional version of Eqn (52) without the f
term has also been used to describe the behavior of a BEC
[147] in the absence of the confining potential.

Linearization of the NLS±Poisson equations yields the
frequency of the EPOs [1, 2, 4, 5]:

ok �
�
o 2

pe � k 2V 2
Fe �

�h 2k 4

4m 2
e

�1=2

: �54�

Two distinct dispersive effects follow from (54): the long-
wavelength regime VFe 4 �hk=2me and the short-wavelength
regime VFe9 �hk=2me; separated by the critical wavenumber
kcr � 2p=lcr � p�h=meVFe � n

ÿ1=3
e .

3.2 Inclusion of ion dynamics
The dynamics of low phase speed (in comparison with the
electron Fermi speed) nonlinear electrostatic ion oscillations
in a quantum electron±ion plasma are governed by the
inertialess electron equation of motion

0 � eHfÿ 1

ne
HPe � FQ ; �55�

the ion continuity equation

qni
qt
� H � �niui� � 0 ; �56�

the ion momentum equation

mini

�
q
qt
� ui � H

�
ui � ÿZinieHf ; �57�

and the Poisson equation

H 2f � 4pe�ne ÿ Zini� ; �58�

where ni is the ion number density, ui is the ion fluid velocity,
and Zi is the ion charge state.

In the quasineutral approximation ni � Zini � n, we can
combine Eqns (55) and (57) to obtain�

q
qt
� ui � H

�
ui � ÿC 2

Fsn0
ni

H
�
Zini
n0

��D�2�=D

� �h 2

2memi
H
�
H 2

���������
Zini
p���������
Zini
p

�
: �59�
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Equations (56) and (59) are the desired set for studying
nonlinear ion waves [61, 62] in a dense quantum plasma.

4. Localized electrostatic excitations

We are now in a position to discuss nonlinear properties and
the dynamics of localized electrostatic excitations in a dense
quantum plasma based on the nonlinear equations derived in
the preceding section.

4.1 Dark solitons and vortices associated with EPOs
In this subsection, we discuss the formation of one-dimen-
sional quantized dark solitons and two-dimensional (2D)
quantized vortices associated with the EPOs in a dense
quantum plasma at nanoscales (of the order of VFe=ope).
We note that the dynamics of dark solitons in the 2D
nonlinear Schr�odinger equation in a defocusing medium
have been studied in [148, 149]. However, for studying the
formation and dynamics of electrostatic nanostructures in a
dense quantum plasma, we use the nonlinear Schr�odinger±
Poisson equations [22]

i
qC
qt
� AH 2C� jCÿ jCj 4=DC � 0 �60�

and

H 2j � jCj2 ÿ 1 ; �61�

where the normalized wave functionC is c=
�����
n0
p

, the normal-
ized j is ef=kBTFe, and the time and space variables are
respectively expressed in units of VFe=ope and �h=kBTFe. We
set A � 4pmee

2=�h 2n
1=3
0 (see Ref. [22]).

System of equations (60) and (61) is supplemented by the
Maxwell equation

qE
qt
� iA

�
CHC � ÿC �HC

�
; �62�

where the electric field is E � ÿHf.
System (60)±(62) has the following conserved integrals:

the number of electrons

N �
�
jCj d3x ; �63�

the electron momentum

P � ÿi
�
C �HC d3x ; �64�

the electron angular momentum

L � ÿi
�
C �r� HCd3x ; �65�

and the total energy

E �
� �
ÿC �AH 2C� jHjj

2

2
� jCj

2�4=DD
2�D

�
d3x : �66�

The conserved quantities are required to check the accuracy
of numerical integration of (60) and (61).

For quasistationary one-dimensional structures moving
with a constant speed v0, localized, solitary wave solutions

can be found by introducing the ansatz C �W�x��
exp �iKxÿ iOt�, where W is a complex-valued function of
x � xÿ v0t, and K and O are a constant wavenumber and
the frequency shift. With the choice K � v0=2A, the coupled
system of equations can be written as

d2W

dx 2
� lW� jW

A
ÿ jW j

4W

A
� 0 �67�

and

d2j

dx 2
� jW j2 ÿ 1 ; �68�

where l � O=Aÿ v 2
0 =4A

2 is an eigenvalue of the system.
From the boundary conditions jW j � 1 and j � 0 at
jxj � 1, we determine l � 1=A and O � 1� v 20 =4A. System
of equations (67) and (68) admits a first integral in the form

H � A

���� dWdx
����2 ÿ 1

2

�
dj
dx

�2

� jW j2 ÿ jW j
6

3

� jjW j2 ÿ jÿ 2

3
� 0 ; �69�

where the boundary conditions jW j � 1 andj � 0 at jxj � 1
have been used.

Figure 2 shows the profiles of jW j2 and j obtained
numerically from (67) and (68) for several values of A,
where W was set to ÿ1 on the left boundary and to �1 on
the right boundary, i.e., the phase shift is 180 degrees between
the two boundaries. The solutions are in the form of dark
solitons, with a localized depletion of the electron density
Ne � jW j2 associated with a localized positive potential.
Larger values of the quantum coupling parameter A give
rise to larger-amplitude and wider dark solitons. The solitons
exhibit localized `shoulders' on both sides of the density
depletion.

Numerical solutions of the time-dependent system of
Eqns (60) and (61) are displayed in Fig. 3, with initial
conditions close (but not equal) to the ones in Fig. 2. Two
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Figure 2. The electron density jW j 2 (upper panel) and electrostatic

potential j (lower panel) associated with a dark soliton supported by

system of equations (67) and (68) for A � 5 (solid lines), A � 1 (dashed

lines), and A � 0:2 (dashed-dotted line). From Ref. [22].
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very clear and long-lived dark solitons are visible, associated
with a positive potential j � 3, in agreement with the
quasistationary solution of Fig. 2 for A � 5. In addition,
there are oscillations and wave turbulence in the time-
dependent solution presented in Fig. 3. Hence, the dark
solitons seem to be robust structures that can withstand
perturbations and turbulence for a considerable time.

For the 2D system, it is possible to find vortex structures
of the form C � c�r� exp �isyÿ iOt�, where r and y are the
polar coordinates defined via x � r cos�y� and y � r sin�y�, O
is a constant frequency shift, and s � 0, �1, �2; . . . for
different excited states (charge states). The index s is also
known as the circulation number [51]. With this ansatz,
Eqns (60) and (61) can be respectively written as�

O� A

�
d2

dr 2
� 1

r

d

dr
ÿ s 2

r 2

�
� jÿ jcj2

�
c � 0 �70�

and�
d2

dr 2
� 1

r

d

dr

�
j � jcj2 ÿ 1 ; �71�

where the boundary conditions c � 1 and j � dc=dr � 0 at
r � 1 determine the constant frequency O � 1. Different
signs of charge state s describe different rotation directions of
the vortex. For s 6� 0, we must have c � 0 at r � 0, and from
symmetry considerations, we have dj=dr � 0 at r � 0.
Figure 4 shows numerical solutions of Eqns (70) and (71) for
different s and for A � 5. Here, the vortex is characterized by
a complete depletion of the electron density at the core of the
vortex, and is associated with a positive electrostatic
potential.

Figure 5 shows time-dependent solutions of Eqns (60) and
(61) in two spatial dimensions for singly charged (s � �1)
vortices with the initial condition given by four vortex-like
structures placed at some distance from each other. The initial
conditions were such that the vortices were organized into
two vortex pairs, with s1 � �1, s2 � ÿ1, s3 � ÿ1, and
s4 � �1, seen in the upper panels of Fig. 5. The vortices in
the pairs have the opposite polarity of the electron fluid
rotation, as seen in the upper right panel in Fig. 5. Interest-
ingly, the `partners' in the vortex pairs attract each other and
propagate together with a constant velocity, and in the
collision and interaction of the vortex pairs (see the second
and third pairs of panels in Fig. 5), the vortices preserve their
identities and change partners, resulting in two new vortex
pairs that propagate obliquely to the original propagation
direction. On the other hand, as shown in Fig. 6, vortices that
are multiply charged (jsjj > 1) are unstable. Here, system of
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Figure 3. The time development of the electron density jW j 2 (left panel)

and electrostatic potential j (right panel) obtained from a simulation of

system of equations (60) and (61). The initial condition is
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equations (60) and (61) was again solved numerically with the
same initial condition as the one in Fig. 5, but with doubly
charged vortices s1 � �2, s2 � ÿ2, s3 � ÿ2, and s4 � �2.
The second row of panels in Fig. 6 reveals that the vortex pairs
preserve their identities for some time, while a quasi one-
dimensional density cavity is formed between the two vortex
pairs. At a later stage, the four vortices dissolve into
complicated nonlinear structures and wave turbulence.
Hence, the nonlinear dynamics are very different between
singly and multiply charged solitons, where only singly
charged vortices are long-lived and keep their identities.
This is in line with previous results for the nonlinear
Schr�odinger equation, where it was noted that vortices with
higher charge states are unstable [249].

4.2 Localized ion wave excitations in quantum plasmas
In their classic paper, Haas et al. [61] developed both small-
and large-amplitude theories for one-dimensional solitary ion
waves in a dense quantum plasma. They found that the
dynamics of small-amplitude solitary waves are governed by
the Korteweg±de Vries (KdV) equation

qU
qt
� 2U

qU
qx
� 1

2

�
1ÿH

8

�
q3U

qx 3
� 0 ; �72�

whereU represents the relative (with respect to n0) ion density
perturbation and the time and space variables are respectively
expressed in units of the ion plasma period oÿ1pi and the
Thomas±Fermi electron radius �kBTFe=4pn0e 2�1=2.

The KdV equation allows both solitary and periodic
(cnoidal) waves [150]. Introducing the wave form U�Z �
xÿMst�, we can write (72) in the stationary frame as

1

2

�
1ÿH

8

�
q2U
qZ 2
ÿMsU�U 2 � C � 0 ; �73�

where Ms is the Mach number and C is a constant of
integration. In the special case where U and its derivatives
tend to zero at�1,C � 0.Multiplying (73) by qU=qZ, we can
integrate the resultant equation once, and express it in the
form of an energy integral [151 ± 153]. The resulting solitary
wave solution of (73) is

U � Um sech2
�

Z
Z0

�
; �74�

where Um � �3Ms=2� and Z0 � �2=Ms�1=2�1ÿH=8�1=2 are
the maximum amplitude and the width of the soliton. We
see that compressive solitary wave solutions are possible if
0 < H < 8.

One-dimensional large-amplitude localized ion wave
excitations are also possible. To demonstrate this, we
assume that the quantum force acting on the electrons
dominates over the quantum statistical pressure, kBTFene 5
��h2=4me� q2ne=qx 2. Hence, the electron density is obtained
from [62]

ef� �h2

2me
�����
ne
p q2

�����
ne
p
qx 2

� 0 : �75�

The electrons are coupled to ions through the space charge
electric field (ÿHf).

The dynamics of singly charged ions are governed by the
ion continuity

qni
qt
� q�niui�

qx
� 0 ; �76�

and ion momentum equation

mi

�
q
qt
� ui

q
qx

�
ui � ÿe qf

qx
; �77�

where ui is the x component of the ion fluid velocity
perturbation. System of equations (75)±(77) is closed by the
Poisson equation

q2f
qx 2
� 4pe�ne ÿ ni� : �78�

We now seek stationary nonlinear ion wave structures
moving with a constant speed u0. Hence, all unknowns
depend on only the variable x � xÿ u0t. With

�����
ne
p � c,

Eqn (75) takes the form

�h 2

2me

q2c

qx 2
� efc � 0 : �79�

Equations (76) and (77) can be integrated once with the
boundary conditions ni � n0 and ui � 0 at x � j1j, and the
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Figure 6. The electron density jCj2 (left panel) and an arrow plot of the

electron current i�CHC � ÿC �HC� (right panel) associated with double
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t � 6:6, and t � 9:9 (from top down).We usedA � 5. The doubly charged

vortices dissolve into nonlinear structures and wave turbulence. From

Ref. [22].
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results can be combined to yield

ni � n0u0��������������������������
u 2
0 ÿ 2ef=mi

q : �80�

Substituting (80) in (78), we obtain

q2f

qx 2
� 4pe

�
c 2 ÿ n0u0��������������������������

u 2
0 ÿ 2ef=mi

q �
: �81�

Equations (79) and (81) are the desired equations for studying
nonlinear ion waves in dense quantum plasmas.

It is convenient to introduce dimensionless quantities in
Eqns (79) and (81), and rewrite them as

q2C
qX 2
� FC

2
� 0 �82�

and

q2F
qX 2
ÿC 2 � M�����������������

Mÿ 2F
p � 0 ; �83�

where we have normalized the space variable as X � kqx, the
electron wave function as C � �����

n0
p

c, and the potential as
F � ef=mic

2
q . Here, cq � opi=kq is the quantum ion wave

speed and kq � �2meope=�h�1=2 is the quantum wavenumber.
The quantum `Mach number' is defined asM � u0=cq.

We note that the coupled equations (82) and (83) admit
the conserved quantity

H � ÿ2
�
qC
qX

�2

� 1

2

�
qF
qX

�2

ÿ FC 2 ÿM
ÿ �������������������

M 2 ÿ 2F
p

ÿM
� � 0 ; �84�

where we use the boundary conditions F � qF=qX �
qC=qX � 0 and C � 1 at jXj � 1. For a symmetric solitary
ion wave structure, we can assume that F � Fmax and
C � Cmax, as well as qC=qX � qF=qX � 0 at X � 0. Hence,
at X � 0, Eqn (84) yields

FmaxC 2
max �M

ÿ ��������������������������
M 2 ÿ 2Fmax

p
ÿM

� � 0 : �85�

In the wave-breaking limit, where M � �2Fmax�1=2, we find
thatÿFmaxC 2

max � 2Fmax � 0, orCmax � 2. Accordingly, the
electron density locally increases to twice the background
density at wave breaking.

In Fig. 7, numerical solutions of Eqns (82) and (83) are
displayed, showing profiles of the electrostatic potential and
electron number densities for different values of M. We see
that both the electrostatic potential and the electron density
have localized and strongly peaked maxima and an oscilla-
tory tail. This is in sharp contrast to the classical (non-
quantum) case, where the ion acoustic solitary waves have a
monotonic profile, which in the small-amplitude limit, where
the system is governed by the KdV equation, assumes a
hyperbolic secant shape. We observe from Fig. 7 that
M � 1:1 is close to the wave breaking limit above which
solitary wave solutions do not exist. Our numerical investi-
gation also suggests that there is a lower limit of M (slightly
lower than 0.75), below which the solitary wave solution
vanishes.

5. Quantum fluid turbulence

The statistical properties of turbulence and its associated
electron transport at nanoscales in quantum plasmas have
been investigated in both two and three dimensions by means
of the coupled NLS and Poisson equations [66, 67]. It has
been found that the nonlinear coupling between the EPOs of
different scale sizes gives rise to small-scale electron density
structures, while the electrostatic potential cascades toward
large scales. The total energy associated with the quantum
electron plasma turbulence nevertheless has a characteristic
non-Kolmogorov-like spectrum. The electron diffusion
caused by the electron fluid turbulence is consistent with the
dynamical evolution of turbulent mode structures.

To investigate the quantum electron fluid turbulence in
three dimensions, we use the nonlinear Schr�odinger±Poisson
equations [21, 22, 67]

i
�������
2H
p qC

qt
�HH 2C� jCÿ jCj4=3C � 0 ; �86�

H 2j � jCj2 ÿ 1 ; �87�
which govern the dynamics of nonlinearly interacting EPOs
of different wavelengths. In Eqns (86) and (87), the wave
function is normalized by

�����
n0
p

, the electrostatic potential by
kBTFe=e, the time t by the electron plasma periodoÿ1pe , and the
space r by the Thomas±Fermi Debye radius VFe=ope. We
have introduced the notation

����
H
p ��hope=

���
2
p

kBTFe.
Studies of the nonlinear mode coupling are aimed at

investigating the multiscale evolution of a decaying 3D
electron fluid turbulence, which is described by Eqns (86)
and (87). All the fluctuations are initialized isotropically (no
mean fields are assumed) with random phases and amplitudes
in Fourier space, and evolve further through the integration
of Eqns (86) and (87) using a fully de-aliased pseudospectral
numerical scheme [154] based on the Fourier spectral
methods. The spatial discretization in our 3D simulations
uses a discrete Fourier representation of turbulent fluctua-
tions. The numerical algorithm used here conserves energy in
terms of the dynamical fluid variables and not due to a
separate energy equation written in a conservative form.
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Figure 7. Profiles of the potentialF (top panel) and the electron densityC 2

(bottom panel) as a function of X, for different values of the Mach

number: M � 1:1 (dashed curves), M � 0:9 (solid curve), and M � 0:75
(dotted curve). From Ref. [62].
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The evolution variables use periodic boundary conditions.
The initial isotropic turbulent spectrum was chosen close to
kÿ2, with random phases in all three directions. The choice of
such a spectrum (or even a spectrum flatter than the kÿ2 one)
treats the turbulent fluctuations on an equal footing and
avoids any influence on the dynamic evolution that may be
due to the initial spectral nonsymmetry. The equations are
advanced in time using a second-order predictor±corrector
scheme. The code is made stable by a proper de-aliasing of
spurious Fourier modes and by choosing a relatively small
time step in the simulations. Our code is massively parallel-
ized using Message Passing Interface (MPI) libraries to
facilitate higher resolution in a 3D computational box, with
a resolution of 1283 grid points.

We study the properties of 3D fluid turbulence,
composed of nonlinearly interacting EPOs, for two specific
physical systems: dense plasmas in the next-generation laser-
based plasma compression (LBPC) schemes [81] and in
superdense astrophysical objects [96 ± 98] (e.g., white
dwarfs). It is expected that in LBPC schemes, the electron
number density may reach 1027 cmÿ3 and beyond. Hence,
we have ope � 1:76� 1018 sÿ1, TF � 1:7� 10ÿ9 erg, �hope �
1:7� 10ÿ9 erg, and H � 1. The Fermi Debye length is
lD � 0:1 A

�
. On the other hand, in the interior of white

dwarfs, we typically have n0 � 1030 cmÿ3, yielding ope �
5:64� 1019 sÿ1, TF � 1:7� 10ÿ7 erg, �hope�5:64�10ÿ8 erg,
H � 0:3, and lD � 0:025 A

�
. The numerical solutions of

Eqns (86) and (87) for H � 1 and H � 0:025 (respectively
corresponding to n0 � 1027 cmÿ3 and n0 � 1030 cmÿ3) are
displayed in Figs 8 and 9, which are the electron number

density and electrostatic (ES) potential distributions in the
�x; y� plane.

Figures 8 and 9 reveal that the electron density distribu-
tion has a tendency to generate smaller-length scale struc-
tures, while the ES potential cascades toward larger scales.
The coexistence of the small and larger scale structures in
turbulence is a ubiquitous feature of various 3D turbulence
systems. For example, in 3D hydrodynamic turbulence, the
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incompressible fluid admits two invariants, the energy and
the mean squared vorticity. The two invariants, under the
action of an external force, cascade simultaneously in
turbulence, thereby leading to a dual cascade phenomenon.
In these processes, the energy cascades toward longer length
scales, while the fluid vorticity transfers spectral power
toward shorter length scales. Usually, a dual cascade is
observed in a driven turbulence simulation, in which certain
modes are excited externally through random turbulent
forces in spectral space. Randomly excited Fourier modes
transfer the spectral energy by preserving the constants of
motion in k-space. On the other hand, in freely decaying
turbulence, the energy contained in large-scale eddies is
transferred to the smaller scales, leading to a statistically
stationary inertial regime associated with the forward
cascades of one of the invariants. Decaying turbulence often
leads to the formation of coherent structures as turbulence
relaxes, thus making the nonlinear interactions rather
inefficient when they are saturated. The power spectrum
exhibits an interesting feature in our 3D electron plasma
system, in contrast to the 3Dhydrodynamic turbulence [155 ±
158]. The spectral slope in the 3D quantum electron fluid
turbulence is close to the Iroshnikov±Kraichnan power law
kÿ3=2 [159, 160], rather than the usualKolmogorov power law
kÿ5=3 [155]. We further find that this scaling is not universal
and is critically determined by the quantum tunneling effect.
For instance, for a higher valueH � 1:0, the spectrum flattens
(see Fig. 9). Physically, the flatness (or deviation from the
kÿ5=3 law) results from the short-wavelength part of the EPO
spectrum, which is controlled by the quantum tunneling effect
associated with the Bohm potential. The peak in the energy
spectrum can be attributed to the higher turbulent power
residing in the EPO potential, which eventually leads to the
generation of larger-scale structures, as the total energy
encompasses both the electrostatic potential and electron
density components. In our dual cascade process, there is a
delicate competition between the EPO dispersions caused by
the statistical pressure law (giving the k 2V 2

F term, which
dominates at longer scales) and the quantum Bohm potential
(giving the �h 2k 4=4m 2

e term, which dominates at shorter scales
with respect to a source). Furthermore, it is interesting to note
that exponents other than kÿ5=3 have also been observed in
numerical simulations [161, 162] of the Charney and 3D
incompressible Navier±Stokes equations. The velocity statis-
tics of quantum turbulence in superfluid 4He was recently
examined in [163], where it was found to be significantly
different from classical turbulence due to the topological
interactions of vortices that are different from those in
classical fluids.

Finally, we estimate the electron diffusion coefficient in
the presence of small and large scale turbulent EPOs in our
quantum plasma. An effective electron diffusion coefficient
caused by the momentum transfer can be calculated from
Deff �

�1
0 hP�r; t�P�r; t� t 0�i dt 0, where P is electron momen-

tum, the angular brackets denote spatial averages, and the
ensemble averages are normalized to unit mass. The effective
electron diffusion coefficient Deff essentially relates the
diffusion processes associated with random translational
motions of electrons in nonlinear plasmonic fields. We
compute Deff in our simulations to measure the turbulent
electron transport that is associated with the turbulent
structures that we have reported herein. It follows that the
effective electron diffusion is lower when the field perturba-
tions are Gaussian. On the other hand, the electron diffusion

rapidly increases, with the eventual formation of longer
length scale structures, as shown in Fig. 10. The electron
diffusion due to large-scale potential distributions in quan-
tum plasmas substantially dominates, as depicted by the solid
curve in Fig. 10. Furthermore, in the steady state, nonlinearly
coupled EPOs form stationary structures, andDeff eventually
saturates. Thus, remarkably, an enhanced electron diffusion
results primarily due to the emergence of large-scale potential
structures in our 3D quantum plasma.

6. Kinetic phase-space structures

In the preceding sections, we discussed the properties of
quantized coherent structures and 3D quantum electron
fluid turbulence based on the coupled Schr�odinger and
Poisson equations. We assumed that nonlinearly interacting
plasma waves are spontaneously created by some known
physical processes (e.g., a beam±plasma instability) in
quantum plasmas.

In classical plasmas, the formation of electrostatic kinetic
phase-space structures basedon theVlasov±Poisson equations
has been well documented [164]. In what follows, we discuss
the quasilinear aspects [165] of the EPOs that are governed by
the Wigner±Poisson system (i.e., a quantum analogue of the
Vlasov±Poisson system). Specifically, we focus on kinetic
phase-space nonlinear structures arising from the trapping of
electrons in a finite-amplitude wave potential and a self-
consistent modification of the electron distribution function
in the presence of nano-kinetic structures.

To study the differences in the nonlinear evolution of the
Wigner and Vlasov equations, we have simulated the well-
known bump-on-tail instability [165], whereby a high-
velocity beam is used to destabilize a Maxwellian equili-
brium. We use the initial condition
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Figure 10. Time evolution of an effective electron diffusion coefficient

associated with a large-scale electrostatic potential and a small-scale

electron density, for H � 0:4, H � 0:1, and H � 0:01. Smaller values of

H correspond to a small effective diffusion coefficient, which characterizes

the presence of small-scale turbulent eddies that suppress the electron

transport. From Ref. [67].
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where d represents random fluctuations of the order of 10ÿ5

that help seed the instability (see Fig. 11). Here,
vth �

������������������
kBTe=me

p
is the electron thermal speed. We use

periodic boundary conditions with the spatial period
L � 40plDe, where lDe � vth=ope is the Debye length. Three
simulations were performed, with different values of the
normalized Planck constant defined as H � �hope=mv

2
th:

H � 0 (Vlasov),H � 1, andH � 2.
To highlight the transient oscillations in velocity space,

we first perturb the above equilibrium with a monochro-
matic wave with klDe � 0:25 (i.e., the wavelength 8plDe).
Figure 11 shows the results of simulations of the Wigner±
Poisson and Vlasov±Poisson systems. In both simulations,
due to the bump-on-tail instability, electrostatic waves
develop nonlinearly and create periodic trapped-particle
islands (electron holes) with the wavenumber k � 0:25lÿ1De .
The theory predicts the formation of velocity-space oscilla-
tions in the Wigner evolution, which should be absent in the
classical (Vlasov) simulations. This is the case with the
results presented in Fig. 12, where the oscillations are
clearly visible.

When the initial excitation is broad-band (i.e., wavenum-
bers 0:054 klDe 4 0:5 are excited), the electron holes start
merging at later times due to the sideband instability [166,
167] (see Fig. 12). At this stage, mode coupling becomes
important and a quasilinear theory is not capable of
describing these effects. As the system evolves toward a
larger spatial wavelength, the evolution becomes progres-
sively more classical, with the appearance of a plateau in the
resonant region. Nevertheless, at opet � 500, the Wigner
solution still displays some oscillatory behavior in velocity
space, which is absent in the Vlasov evolution.
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From the experimental standpoint, recent collective X-ray
scattering observations in warm dense matter [118] revealed a
measurable shift in the plasmon frequency due to quantum
effects. In the nonlinear regime (strong excitations), this effect
could lead to trapping of electrons in the wave potential of
plasmons and the subsequent formation of the kind of phase-
space structures discussed here. Furthermore, we note that
there also exists a theoretical description [168] of quantum-
corrected electron holes based on the perturbative treatment
of the Wigner±Poisson equations.

7. Magnetic fields in quantum plasmas

Magnetic fields can be generated in classical plasmas via
several mechanisms. These include (i) nonparallel density
and temperature gradients (the so-called Biermann battery
[169]), (ii) electron temperature anisotropy (known as the
Weibel instability [170]), (iii) counterstreaming electron
beams [171, 172], and (iv) the ponderomotive forces of
laser beams [173 ± 179].

In what follows, we discuss two possibilities for magnetic
field generation in quantum plasmas.

7.1 Quantum Weibel instability
We first discuss linear and nonlinear aspects [180 ± 183] of the
Weibel instability that is driven by the equilibrium Fermi±
Dirac electron temperature anisotropic distribution function
in a nonrelativistic dense quantum plasma. It is well known
[184] that a dense quantum plasma with an isotropic
equilibrium distribution function does not allow any purely
growing linear modes. This can be verified, for instance, from
the expression for the imaginary part of the transverse
dielectric function, derived in [185], for a fully degenerate
nonrelativistic Fermi plasma. It can be proven (see Eqn (30)
of [186]) that the only exception occurs for extremely small
wavelengths, k > 2kF, where kF is the characteristic Fermi
wave number of the system.However, the wave would then be
superluminal. On the other hand, in a classical Vlasov±
Maxwell plasma containing an anisotropic electron distribu-
tion function, we have a purely growing Weibel instability
[170], giving rise to DC magnetic fields. The electron
temperature anisotropy may occur due to the heating of the
plasma by laser beams [187], where a signature of the Weibel
instability is present as well. In the next generation of intense
laser±solid density plasma experiments, it is likely that
electrons will be degenerate and that the electron tempera-
ture anisotropy may develop due to an anisotropic electron
heating by intense laser beams via resonant absorption,
similarly to the classical case of laser±plasma interaction
[188].

We consider linear transverse waves in a dense quantum
plasma composed of electrons and immobile ions, with
kE � 0, where k is the wave vector and E is the wave electric
field. Following the standard procedure, we then obtain the
general dispersion relation [1, 182, 183] for the transverse
waves of the Wigner±Maxwell system:

o 2 ÿ o 2
pe ÿ k 2c 2 �meo 2

pe

2n0�h

�
dv

�
v 2
x � v 2y

oÿ kvz

�
�
�
f0

�
vx; vy; vz � �hk

2m

�
ÿ f0

�
vx; vy; vz ÿ �hk

2me

��
� 0; �88�

where v � �vx; vy; vz� is the velocity vector and f0�vx; vy; vz� is
the equilibrium Wigner function associated with Fermi

systems. For spin-1=2 particles, the equilibrium pseudo-
distribution function has the form of a Fermi±Dirac func-
tion. Here, we allow the velocity anisotropy and write

f0 � a

exp
n
m=2

��v 2x � v 2y �=KBT? � v 2z =KBTk�ÿ bm
o
� 1

;

�89�
where m is the chemical potential and

a � ÿ n0
Li3=2�ÿ exp �bm��

�
meb
2p

�3=2

� 2

�
me

2p�h

�3

�90�

is the normalization constant. Here, Li3=2 is a polylogarithm
function [189, 190]. Also, b � 1=�KB�T 2

?Tk�1=3�, where T? and
Tk are respectively related to the velocity dispersion in the
direction perpendicular and parallel to the z axis. In the
special case where T? � Tk, the usual Fermi±Dirac equili-
brium is recovered. The chemical potential is obtained by
solving normalization condition (90), which in particular
yields m � EF in the limit of zero temperature, where
EF � �3p2n0�2=3�h2=�2me� is the Fermi energy. Also, the
Fermi±Dirac distribution f̂�k�, where k is the appropriate
wave vector in momentum space, is related to equilibrium
Wigner function (89) by f̂ �k� � �1=2��2p�h=m�3f0�v�, with the
factor 2 coming from spin [191, 192]. However, these previous
works refer to the cases without temperature anisotropy. We
note that it has been suggested in [193] that in laser plasmas,
the Weibel instability is responsible for a further increase in
Tk with time.

Substituting (89) in (90) and integrating over the perpen-
dicular velocity components, we obtain

o 2 ÿ k 2c 2 ÿ o 2
pe

�
1� T?

Tk
WQ

�
� 0 ; �91�

where

WQ � 1

2
���
p
p

HLi3=2�ÿ exp �bm��
�

dn
nÿ x

�
�
Li2

�
ÿ exp

�
ÿ
�
n�H

2

�2

� bm
��

ÿ Li2

�
ÿ exp

�
ÿ
�
nÿH

2

�2

� bm
���

: �92�

In (92), Li2 is the dilogarithm function [189, 190],
H � �hk=�mevk� is a characteristic parameter representing the
quantum diffraction effect, x � o=�kvk�, and n � vz=vk, with
vk � �2KBTk=me�1=2. In the simultaneous limit of a small
quantum diffraction effect (H5 1) and a dilute system
(exp�bm�5 1), it can be shown that WQ ' ÿ1ÿ xZ�x�,
where Z is the standard plasma dispersion function [194]. It
is important that either (88) or (91) reproduces the transverse
dielectric function calculated from the random-phase approx-
imation for a fully degenerate quantum plasma [185] in the
case of an isotropic system. A simple way to verify this
equivalence is to set T? � Tk in (88) and then take the limit
of zero temperature, yielding f0 � 3n0=�4pV 3

Fe� for jvj < VFe

and f0 � 0 otherwise.
We next solve our new dispersion relation (91) for a

set of parameters that are representative of the next-
generation laser±solid density plasma interaction experi-
ments. Normalization condition (90) can also be written as
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ÿLi3=2�ÿ exp�bm�� � �4=3 ���
p
p �� bEF�3=2, which is formally

the same relation that holds for isotropic Fermi±Dirac
equilibria [8]. For a given value of bm times the density, this
relation yields the value of b from which the temperatures T?
andTjj can be calculated ifT?=Tjj is known.We consider only
purely growing modes. It follows from definition (92) that
WQ ! ÿ1 as o � ig! 0 for a finite wavenumber k. From
(91), we then obtain the maximum wavenumber for the
instability as kmax � �ope=c�

����������������������
T?=Tjj ÿ 1

p
. As T?=Tjj ! 1,

the range of unstable wavenumbers shrinks to zero. In
Figs 13 and 14, we use the electron number density
n0 � 1033 mÿ3, which can be obtained in laser-driven com-
pression schemes. The growth rate for different values of
T?=Tjj is displayed in Fig. 13. We see that the maximum
unstable wavenumber is kmax � �ope=c�

����������������������
T?=Tjj ÿ 1

p
, as

predicted, and that the maximum growth rate occurs at
k � kmax=2. Figure 13 also reveals that the maximum growth
rate of the instability is almost linearly proportional to
T?=Tjj ÿ 1. In Fig. 14, we have varied the product bm, which
is ameasure of the degeneracy of the quantum plasma.We see
that for bm larger than 5, the instability reaches a limit value,
which is independent of the temperature, while thermal effects
start playing an important role for bm of the order of unity.

From several numerical solutions of the linear dispersion
relation, an approximate scaling law was deduced [183] for
the instability as gmax=ope � const� n

1=3
0 �T?=Tjj ÿ 1�, where

the constant is approximately 8:5� 10ÿ14 m sÿ1 . Using

n0 � �2meEF=�h 2�3=2
3p2

� 1:67� 1036
�

EF

mec 2

�3=2

;

we have

gmax

ope
� 0:10

�
EF

mec 2

�1=2�
T?
Tjj
ÿ 1

�
�93�

for the maximum growth rate of the Weibel instability in a
degenerate Fermi plasma. This scaling law, where the growth
rate depends on the Fermi energy and the temperature
anisotropy, should be compared with that of a classical
plasma [188, 195], where the growth rate depends on the
thermal energy and the temperature anisotropy.

For a Maxwellian plasma, it has been found in [196] that
the Weibel instability saturates nonlinearly as the magnetic
bounce frequency oc � eB=mec increases to a value compar-
able to the linear growth rate. To assess the nonlinear
behavior of the Weibel instability for a degenerate plasma,
we have carried out a kinetic simulation of the Wigner±
Maxwell system. We have assumed that the quantum
diffraction effect is small, and hence the simulation of the
Wigner equation can be approximated by simulations of the
Vlasov equation by means of an electromagnetic Vlasov
code [197]. As the initial condition for the simulation, we
used distribution function (89). To give a seed for any
instability, the plasma density was perturbed with low-
frequency fluctuations (random numbers). The results are
displayed in Figs 15 and 16 for the parameters bm � 5 and
T?=Tjj � 2 corresponding to the solid lines. Figure 15 shows
the magnetic field components as a function of space and
time. We see that the magnetic field initially increases and
saturates to steady-state magnetic field fluctuations with the
amplitude eB=mecope � 0:008. The maximum amplitude of
the magnetic field over the simulation box as a function of
time is shown in Fig. 16, where we see that the magnetic field
saturates at eB=mecope � 0:0082, while the linear growth rate
of the most unstable mode is gmax=ope � 0:009. Similarly to
the classical Maxwellian plasma case [196], we can thus
estimate the generated magnetic field as

B � mecgmax

e
�94�
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Figure 13. The growth rate for the Weibel instability of a dense fermionic

plasma with n0 � 1033 mÿ3 (ope � 1:8� 1018 sÿ1) and bm � 5, relevant

for the next generation of inertially compressed materials in intense laser±

solid density plasma interaction experiments. The temperature anisotropy

is T?=Tjj � 3 (dashed line), T?=Tjj � 2 (solid line), and T?=Tjj � 1:5
(dotted line), respectively yielding Tjj � 3:9� 106 K, Tjj � 5:2� 106 K,

and Tjj � 6:3� 106 K. From Ref. [183].
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Figure 14. The growth rate for the Weibel instability of a dense fermionic

plasma with n0 � 1033 mÿ3 (ope � 1:8� 1018 sÿ1). The temperature

anisotropy is T?=Tjj � 2. We used bm � 1 (dashed line), bm � 5 (solid

line), and bm � 10 (dotted line), respectively yielding Tjj � 1:6� 107 K,

Tjj � 5:2� 107 K, and Tjj � 2:6� 106 K. From Ref. [183].
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panel) as a function of space and time, for bm � 5 and T?=Tjj � 2. The

magnetic field is normalized by opeme=e. We see a nonlinear saturation

of the magnetic field components at the amplitude � 0:01. From

Ref. [183].
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for a degenerate Fermi plasma. For our parameters, relevant
for intense laser±solid interaction experiments, we thus have
magnetic fields of the order of 105 T (one gigagauss).

7.2 Dense plasma magnetization by an electromagnetic
wave
The second example of dense plasmamagnetization can occur
in the presence of streaming electrons and large amplitude
electromagnetic waves. The nonstationary ponderomotive
force of the electromagnetic wave would then create slowly
varying electric fields and currents, which generate DC
magnetic fields in dense plasmas.

We consider the propagation of an electromagnetic
wave with the electric field E�r; t� � �1=2�E0�x; t��
exp�ÿiot� ikx� � c:c: in an unmagnetized nonrelativistic
dense plasma with immobile ions and streaming electrons
(with the drift velocity uẑ, where u is the magnitude of the
electron drift speed and ẑ is the unit vector along the z axis in a
Cartesian coordinate system; typically, u is much smaller than
the electron Fermi speed). Here, E0�x; t� is the envelope of the
electromagnetic field at the position r and time t, and c:c:
stands for complex conjugate. The frequency o and the wave
vector k � kx̂, where x̂ is the unit vector along the x axis, are
related by [198]

k 2c 2

o 2
� N � 1ÿ o 2

pe

o 2
ÿ k 2u 2o 2

pe

o 2�o 2 ÿ k 2V 2
Fe ÿ O 2

q �
; �95�

where N is the refractive index and Oq � �hk 2=2me.
The electromagnetic wave exerts a ponderomotive force

Fp � Fps � Fpt on the plasma electrons, where the stationary
and nonstationary ponderomotive forces [173] are respec-
tively given by

Fps � Nÿ 1

16p
HjE0j2 �96�

and

Fpt � 1

16p
k

o 2

q
�
o 2�Nÿ 1��

qo
qjE0j2
qt

: �97�

The ponderomotive force pushes the electrons locally, and
creates the slowly varying electric field

Es � ÿHfs ÿ
1

c

qAs

qt
� 1

n0e
Fp ; �98�

where the scalar and vector potentials are

fs � ÿ
Nÿ 1

16pn0e
jE0j2 ; �99�

and

As � ÿ c

16pn0e
k

o 2

q
�
o 2�Nÿ 1��

qo
jE0j2 : �100�

The induced slowly varying magnetic field Bs is then
Bs � H� As. Noting that

q
�
o 2�Nÿ 1��

qo
� 2ok 2u 2o 2

pe

�o 2 ÿ k 2V 2
Fe ÿ O 2

q �2
; �101�

we can express the magnitude of the magnetic field as

jBsj � eck 3u 2jE0j2
2meLo�o 2 ÿ O 2�2 ; �102�

where L is the scale length of the jE0j2 envelope and
O��k 2V 2

Fe � O 2
q �1=2���hk 2=2me��1� 4�3p2n0�2=3=k 2�1=2. We

note from (102) that the magnetic field strength is propor-
tional to u 2 and attains a large value when o � O. The
electron gyrofrequency Oc is

Oc � ejBsj
mec

� k 3V 2
0 u

2o

2L�o 2 ÿ O 2�2 ; �103�

where V0 � ejE0j=meo is the electron quiver velocity in the
electromagnetic field.

8. Dynamics of electromagnetic waves
in dense plasmas

We here consider various electromagnetic (EM) wave modes
and their nonlinear interaction in dense plasmas. As exam-
ples, we discuss spin waves occuring in a magnetized plasma
due to the spin-1/2 effect of electrons and positrons. We also
consider nonlinear interactions between finite-amplitude
electromagnetic and electrostatic waves in dense plasmas.
We focus on the underlying physics of stimulated scattering
instabilities and wave localization due to parametric interac-
tions involving radiation pressure [178].

8.1 Electromagnetic spin waves in magnetized plasmas
In the presence of an external magnetic field, the quantum
description of the linear kinetics of a dense collisionless
plasma is complicated due to quantization of the gyromag-
netic motion and the inclusion of the electron and positron
spin 1=2. In the past, many authors [199 ± 203] investigated
high-frequency conductivity and the longitudinal and trans-
verse dielectric responses in dense magnetized plasmas. The
propagation characteristics of high-frequency electromag-
netic waves in quantum magnetoplasmas are different from
those in a classical magnetoactive plasma [204].
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Figure 16. The maximum of the magnetic field amplitude

B � �B 2
y � B 2

z �1=2 over the simulation box (top panel), and the logarithm

of the magnetic field maximum (bottom panel) as a function of time, for

T?=Tjj � 2 and bm � 5. The magnetic field is normalized by opeme=e.
From the logarithmic slope of the magnetic field in the linear regime, we

find g � D ln�Bmax�=Dt � 0:01op. From Ref. [183].
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Recently, Oraevsky et al. [70] found a new electromag-
netic spin wave whose electric field is parallel to B0 ẑ and
which propagates across ẑ, where ẑ is the unit vector along the
z axis in a Cartesian coordinate system and B0 is the strength
of the ambient magnetic field. The spin wave accompanies the
magnetization current due to spinning electron motion and
the wave frequency is obtained from [70]

k 2
?c

2

o 2
� 1ÿ o 2

pe

o�o� ine� � 2pm 2
B

k 2
?c

2n0
o 2EF

oce

oÿ oce
; �104�

where k? is the normal component of the wave vector
k � k?x̂, x̂ is the unit vector transverse to ẑ, ne is the electron
collision frequency, and EF � mec

2. The third term in the
right-hand side of (104) represents the electron spin-magnetic
resonance at the electron gyrofrequency oce � eB0=mec.

Assuming that k 2
?c

2 � o 2
pe 6� o 2

ce, we obtain from (104)
that

o ' oce

�
1� 2pm 2

Bn0
EF

k 2
?c

2

k 2
?c 2 � o 2

pe�1ÿ ine=o� ÿ o 2
ce

�
:

�105�

For ne 5o � oce, the damping rate of the spin mode is

Imo ' neo 2
pek

2
?c

2m 2
BB

2
0

EFmec 2o 2
ce�k 2

?c 2 � o 2
pe ÿ o 2

ce�2
: �106�

The ponderomotive force of the spin wave can create a
compressional magnetic field perturbation due to an inverse
Cotton±Mouton/Faraday effect [205].

8.2 Nonlinearly coupled EM waves
Finite-amplitude electromagnetic waves in quantum magne-
toplasmas interact nonlinearly among themselves. In this
subsection, we use the generalized Q-MHD equations to
obtain compact nonlinear equations for the electron magne-
tohydrodynamic (EMHD) and Hall-MHD plasmas, and
show how the density, the fluid velocity, and the magnetic
field perturbations are coupled in a nontrivial manner.

The governing nonlinear equations for the electromag-
netic waves in dense magnetoplasmas are the quantum
magnetohydrodynamic equations: the continuity equation

qne; i
qt
� H � �ne; i ue; i� � 0 ; �107�

the electron and ion momentum equations

neme

�
q
qt
� ue � H

�
ue�ÿnee

�
E� 1

c
ue � B

�
ÿHPe � FQe ;

�108�

nimi

�
q
qt
� ui � H

�
ui � Zieni

�
E� 1

c
ui � B

�
; �109�

the Faraday law

cH� E � ÿ qB
qt

; �110�
and the Maxwell equation involving the magnetization spin
current

H� B � 4p
c

�
Jp � Jm

�
� 1

c

qE
qt

; �111�

where the pressure for nonrelativistic degenerate electrons is
given by [206]

Pe�4eB�2me�1=2E 3=2
F

3�2p�2�h2c

�
1� 2

Xnmax

nL�1

�
1ÿ nL�hoce

EF

�3=2�
; �112�

with nL � 0; 1; 2; . . . ; nmax and the value of nmax fixed by the
largest integer nL that satisfies EF ÿ nL�hoce 5 0.

The sum of the quantum Bohm and intrinsic angular
momentum spin forces is

FQe � H
�
H 2 �����

ne
p�����
ne
p

�
ÿ ne m 2

B

kBTFe
HB : �113�

In Eqns (107)±(113), nj is the number density of the
particle species j (j equals e for electrons and i for ions), uj is
the particle fluid velocity, and B � jBj. We introduced the
plasma current density Jp � ÿnee ue � Zi nie ui and the
electron magnetization spin current density Jm � H�M,
where the magnetization for dynamics on a time scale much
slower than the spin precession frequency for an electron
Fermi gas is given byM � �ne m 2

B=kBTFe� B̂ [208].

8.2.1 Nonlinear EMHD. First, we present the generalized
nonlinear EMHD equations for a dense magnetoplasma.
Here, the ions form a neutralizing background. The wave
phenomena in the EMHD plasma occur on a time scale much
shorter than the ion plasma and ion gyroperiods. In
equilibrium, we have

ne0 � Zini0 � n0 : �114�

The relevant nonlinear EMHD equations are

qne
qt
� H � �neue� � 0 ; �115�

with electron momentum equation (108), Faraday's law
(110), and the electron fluid velocity being given by

ue � Jm
ene
ÿ c�H� B�

4pene
� 1

ene

qE
qt

: �116�

We observe that the quantum tunneling and spin forces play
an important role if slight electron density and magnetic
field inhomogeneities occur in a dense plasma. The non-
linear EMHD equations are useful for studying collective
electron dynamics in metallic and semiconductor nanos-
tructures [112].

8.2.2 Nonlinear Hall-MHD. Second, we derive the modified
nonlinear Hall-MHD equations in a dense electron±ion
plasma. The Hall-MHD equations deal with wave phenom-
ena on a time scale larger than the electron gyroperiod. The
relevant nonlinear Hall-MHD equations are the electron and
ion continuity equations, the inertialess electron momentum
equation

E� 1

c
ue � Bÿ HPe

nee
ÿ FQe

nee
� 0 ; �117�

Faraday's law (110), the ion momentum equation

nimi

�
q
qt
� ui � H

�
ui � Zieni

�
E� 1

c
ui � B

�
; �118�
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and the electron fluid velocity given by

ue � ui � Jm
ene
ÿ c�H� B�

4pene
; �119�

where we have neglected the displacement current because the
Hall-MHD plasma deals with electromagnetic waves whose
phase velocity is much smaller than the speed of light in the
vacuum.

We now use (117) to eliminate the electric field from (118),
which yields

nimi
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qt
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�
ui

� Zieni

�
1

c
�ui ÿ ue� � Bÿ HPe

nee
� FQe

nee

�
: �120�

Furthermore, using (119) to eliminate ue from (120), we have

nimi
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qt
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�
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�
ÿ Jm
ene
� c�H� B�
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� Bÿ HPe
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�
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with the quasineutrality condition ne � Zini. Finally, using
(117), we can eliminate E from (108) to obtain

qB
qt
� H�

�
�ui � B� � Jm � B

eZini
ÿ c

4p
�H� B� � B

�
: �122�

The ion continuity equation, Eqns (121) and (122),
together with (118) and the relation Zini1 � ne1, where
ne1; i1 5 ne0; i0, are the desired generalized nonlinear equa-
tions for the low-frequency (in comparison with the electron
gyrofrequency), low phase velocity (in comparison with the
speed of light in the vacuum) waves in a Hall-MHD dense
plasma. They can be used to investigate the multidimensional
linear and nonlinear waves (e.g., magnetosonic solitons
[209]), as well as nanostructures and turbulence [210] in
dense quantum magnetoplasmas.

8.3 Stimulated scattering instabilities
Nonlinear interactions between the high-frequency EM
waves and low-frequency electrostatic waves give rise to
stimulated scattering instabilities in classical plasmas [130,
211 ± 213]. The possibility also exists of exciting plasma waves
by high-frequency EM waves in quantum plasmas due to
parametric instabilities [214]. The governing equations for the
high-frequency electromagnetic waves [64] and the radiation-
pressure-driven modified Langmuir and ion±acoustic oscilla-
tions in an unmagnetized quantum plasma are respectively
given by�
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ÿme
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FeH
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� q 2

e

2memic 2
H 2jAj2 ;
�125�

where A is the vector potential of a high-frequency electro-
magnetic wave and n1 is the electron density perturbation of
low-frequency oscillations (the modified EPOs and ion
waves).

Combining Eqns (123)±(125), we thus simply obtain the
nonlinear dispersion relations
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where OR � �o 2
pe � 3k 2V 2

Fe=5� �h 2k 4=4m 2
e �1=2 and OB �

�k 2C 2
Fs � �h 2k 4=memi�1=2.

Equations (126) and (127) allow the stimulated Raman,
stimulated Brillouin, and modulational instabilities of the
electromagnetic pump (with the amplitude A0 and the
frequency o0 � �k 2

0 c
2 � o 2

pe�1=2) in dense quantum plasmas.
We have setD� � �2o0�oÿ kVg � d�, whereVg � c 2k0=o0

is the group velocity of the EM pump wave frequency and
d � k 2c 2=2o0 is the small frequency shift arising from the
nonlinear interaction of the pump with the electrostatic
perturbations �o; k� in our quantum plasma. For stimulated
Raman and Brillouin scatterings, the EM pump wave is
respectively scattered on the resonant electron plasma wave
and resonant ion wave, while for the modulational instability,
the electron and ion plasma oscillations are off-resonant, as
are the EM sidebands.

For three-wave decay interactions, we suppose that
Dÿ � 0 and D� 6� 0. Thus, we ignore D� in (126) and (127).
Respectively setting o � OR � igR and o � OB � igB in (126)
and (127) and assuming oÿ kVg � d � igR;B, we obtain the
growth rates for stimulated Raman and Brillouin scattering
instabilities (denoted by the subscripts R and B):

gR �
ope ekjA0j2

2
���������������
2o0OR

p
mec

�128�

and

gB �
ope ekjA0j2

2
�������������������������
2o0OBmemi

p
c
; �129�

where jkVg ÿ dj � OR, OB. We note that the growth rates for
stimulated Raman and Brillouin scattering instabilities are
inversely proportional to the square roots of OR and OB,
which depend on the quantum parameters. Stimulated
Raman and Brillouin scattering instabilities of the EM wave
on the ES waves should provide invaluable information
regarding the density fluctuations and the equation of states
that might exist in dense quantum plasmas.

The quantum-corrected 3D Zakharov equations [127]
have been derived by Haas [215] and Haas and Shukla [216],
who demonstrated that the dispersive effects associated with
quantum corrections can prevent the collapse of localized
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Langmuir envelope electric fields in both two and three
spatial dimensions.

8.4 Self-trapped EM waves in a quantum hole
Nonlinear interactions between large-amplitude electromag-
netic waves and electrostatic plasma waves can produce
nonlinear nanostructures composed of a density cavity that
traps the electromagnetic wave envelope. Here, we demon-
strate the trapping of intense electromagnetic waves in a
finite-amplitude density hole [65] arising at a scale size of the
order of the electron skin depth c=ope.

A powerful circularly polarized electromagnetic (CPEM)
plane wave interacting nonlinearly with the EPOs generates
an envelope of the CPEM vector potential A?�A?�x̂� iŷ��
exp �ÿio0t� ik0z�, which satisfies the nonlinear Schr�odinger
equation [178]

2iO0
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q
qt
� Vg

q
qz

�
A? � q2A?

qz 2
ÿ
� jcj2

g
ÿ 1

�
A? � 0 ;

�130�

where the electron wave function c and the scalar potential
are governed by the equations

iHe
qc
qt
�H 2

e

2

q2c
qz 2
� �fÿ g� 1�c � 0 �131�

and

q2f
qz 2
� jcj2 ÿ 1 ; �132�

and where the electron number density is defined by the jcj2
term. Here, O0 represents the CPEM wave frequency, Vg is
the x component of the group velocity of the CPEMwave,He

is a quantum coupling parameter, and g � �1� jA?j2�1=2 is
the relativistic gamma factor due to the electron quiver
velocity in the CPEM wave fields. The details of normal-
ization of the variables are given in Ref. [65]. The nonlinear
coupling between intense CPEMwaves and EPOs occurs due
to the nonlinear current density, which is represented by the
term jcj2A?=g in Eqn (130). In Eqn (131), 1ÿ g is the
relativistic ponderomotive potential [178], which arises due
to the cross coupling between the CPEM wave-induced
electron quiver velocity and the CPEM wave magnetic field.

The effect of quantum dispersion on localized electro-
magnetic pulses can be studied by considering a steady-state
structure moving with a constant speed Vg. Inserting the
ansatz A? �W�x� exp �ÿiOt�, c � P�x� exp �ikxÿ iot�, and
f � f�x� into Eqns (130)±(132), where x � zÿ Vgt,
k � Vg=He, and o � V 2

g =2He, and where W�x� and P�x� are
real, we obtain the coupled system of equations

q2W
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H 2
e
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q2P

qx 2
� �fÿ g� 1�P � 0; �134�

where g � �1�W 2�1=2, and
q2f

qx 2
� P 2 ÿ 1 �135�

with the boundary conditions W � F � 0 and P 2 � 1 at
jxj � 1. In Eqn (133), l � 2O0O represents a nonlinear
frequency shift of the CPEM wave. In the limit He ! 0, it
follows from (134) that f � gÿ 1, where P 6� 0, and we
recover the classical (nonquantum) case of relativistic
solitary waves in a cold plasma [217]. System of equations
(133)±(135) admits the Hamiltonian

QH � 1
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e
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ÿ 1

2
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2
�l� 1�W 2 � P 2 ÿ gP 2 � fP 2 ÿ f � 0 ; �136�

where the boundary conditions q=qx � 0, W � f � 0, and
jPj � 1 at jxj � 1 have been used.

Numerical solutions of quasistationary system (133)±
(135) are presented Figs 17 and 18, while time-dependent
solutions of Eqns (130)±(132) are shown in Figs 19 and 20.
Here, parameters were used that are representative of the next
generation of laser-based plasma compression (LBPC)
schemes [13, 14, 81]. The formula [178] eA?=mc 2 �
6� 10ÿ10ls

��
I
p

determines the normalized vector potential if
the CPEM wavelength ls (in microns) and the intensity I
(in W cm2) are known. It is expected that in LBPC schemes,
the electron number density n0 may reach 1027 cmÿ3 and
beyond, and the peak values of eA?=mc 2 may be in the range
1±2 (e.g., for focused EM pulses with ls � 0:15 nm and
I � 5� 1027 W cm2). For ope � 1:76� 1018 sÿ1, we have
�hope � 1:76� 10ÿ9 erg and He � 0:002, because mc 2 �
8:1� 10ÿ7 erg. The electron skin depth is le � 1:7 A

�
. On the

other hand, a higher value He � 0:007 is achieved for
ope � 5:64� 1018 sÿ1. Therefore, our numerical solutions
below, based on these two values of He, are focused on
scenarios that are relevant for the next generation of intense
laser-solid density plasma interaction experiments [81].

Figures 17 and 18 show numerical solutions of
Eqns (133)±(135) for several values of He. The nonlinear
boundary value problem was solved with the boundary

al � ÿ0:3 bl � ÿ0:34 cl � ÿ0:4
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Figure 17. Profiles of the CPEM vector potentialW (top row), the electron
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conditions W � f � 0 and P � 1 at the boundaries at
x � �10. It follows that the solitary envelope pulse is
composed of a single maximum of the localized vector
potentialW, a local depletion of the electron density P 2, and
a localized positive potential f at the center of the solitary
pulse. The pulse has a continuous spectrum in l, where larger
values of negative l are associated with larger-amplitude
solitary EM pulses. At the center of the solitary EM pulse,
the electron density is partially depleted, as in panels a) in
Fig. 17; for larger amplitudes of the EM waves, a stronger
depletion of the electron density occurs, as shown in panels b)
and c) in Fig. 17. In the cases where the electron density
almost tends to zero in the classical case [217], one important
quantum effect is that the electrons can tunnel into the
depleted region. This is seen in Fig. 18, where the electron
density remains nonzero for the larger value ofHe in panels a)
but shrinks to zero for the smaller value of He in panels b).

Figures 19 and 20 show numerical simulation results of
Eqns (130)±(132), with the aim to investigate the quantum
diffraction effects on the dynamics of localized CPEM
wavepackets. The long-wavelength limit o0 � 1 and Vg � 0
is considered here. As the initial conditions, an EM pump
with the constant amplitude A? � A0 � 1 and the uniform
plasma densityc � 1 is used, together with a small-amplitude
noise (random numbers) of the order of 10ÿ2 added to A? to
give a seeding any instability. The numerical results are
displayed in Figs 19 and 20 for the respective values
He � 0:002 and He � 0:007. In both cases, we can see an
initial linear growth phase and a wave collapse at t � 70, in
which almost all the CPEM wave energy is contracted into a
few well-separated localized CPEM wave pipes. These are
characterized by a large bell-shaped amplitude of the CPEM
wave, an almost complete depletion of the electron number
density at the center of the CPEM wavepacket, and a large-
amplitude positive electrostatic potential. Comparing Fig. 19
with Fig. 20, we see that there are more complex dynamics in
the interaction between the CPEMwavepackets for the larger
value He � 0:007 in Fig. 19 than for He � 0:002 in Fig. 19,

where the wavepackets are almost stationary when they are
fully developed.

9. Summary and prospects

In this paper, we have presented our up-to-date theoretical
knowledge of nonlinear physics of nonrelativistic quantum
plasmas. We started with nonlinear quantum models that
describe the physics of localized excitations in different areas
of physics. We then discussed the well-known electron and
ion plasma wave spectra in dense quantum plasmas, and
presented nonlinear models for treating nonlinear interac-
tions among finite-amplitude plasma waves at nanoscales. As
examples, we demonstrated the existence of localized non-
linear EPOs and localized ion waves in dense quantum
plasmas. For electrostatic EPOs, the electron dynamics is
governed by a pair composed of nonlinear Schr�odinger and
Poisson (NLSP) equations. We stress that the nonlinear
Schr�odinger equation governing the spatio±temporal evolu-
tion of the electron wave function in the presence of a self-
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consistent electrostatic potential in dense plasmas was
obtained from the quantum electron momentum equation
by introducing the eikonal representation as a mathematical
tool for understanding the complex electron plasma wave
interactions at nanoscales. Such a description also appears in
the context of nonlinear electron dynamics in thin metal
films [112]. Our NLSP equations admit a set of conserved
quantities: the total number of electrons, the electron
momentum, the electron angular momentum, and the
electron energy. We have found that the NLSP equations
admit quasistationary, localized structures in the form of one-
dimensional quantized dark solitons and two-dimensional
quantized vortices. These nanostructures are associated with
a local depletion of the electron density associated with a
positive electrostatic potential, and are parameterized by the
quantum coupling parameter only. In the two-dimensional
geometry, there exists a class of vortices of different excited
states (charge states) associated with a complete depletion of
the electron density and an associated positive potential.
Numerical simulations of the time-dependent NLSP equa-
tions demonstrate the stability of stable dark solitons in one
spatial dimension with an amplitude consistent with the one
found from time-independent solutions. In two spatial
dimensions, the dark solitons of the first excited state were
found to be stable and the preferred nonlinear state was in the
form of vortex pairs of different polarities. One-dimensional
dark solitons and single charged two-dimensional vortices are
thus long-lived nonlinear structures in quantum plasmas.

Similarly to the Bernstein±Green±Kruskal modes [164],
we accounted for the trapping of electrons in the electrostatic
wave potential andnumerically studied the deformationof the
equilibrium Fermi±Dirac distribution function and the sub-
sequent emergence of localized phase-space kinetic structures.
This was investigated using the time-dependent Wigner and
Poisson equations. Furthermore, we presented two mechan-
isms for generation of magnetic fields in quantum plasmas.
They are associatedwith the quantumWeibel instability in the
presence of the equilibrium anisotropic Fermi±Dirac electron
distribution function and with the nonstationary pondero-
motive force of a large-amplitude electromagnetic wave in
quantum plasmas with streaming electrons. Spontaneously
generated magnetic fields can affect the linear and nonlinear
propagation of both electrostatic and electromagnetic waves
in quantum magnetoplasmas [39]. The quantum corrections
produce dispersion at short scales for the electrostatic upper-
hybrid, lower-hybrid, and ion-cyclotron waves, while the
quantum Bohm force and the electron spin-1/2 effects
introduce new features to the elliptically polarized extraor-
dinary electromagnetic mode [40]. Furthermore, the electron
spin 1/2 is responsible for a new electromagnetic spin wave
propagating normally to the magnetic field direction, which
can be excited by intense neutrino bursts in supernovae. The
newly derived nonlinear EMHD and Hall-MHD equations
can be used for investigating the multidimensional linear and
nonlinear electromagnetic waves in quantum plasmas.
Finally, we have also presented theoretical and numerical
studies of stimulated Raman and Brillouin scattering instabil-
ities of a large-amplitude electromagnetic wave, and the
trapping of arbitrarily large amplitude circularly polarized
EM waves in a fully nonlinear electron density hole in an
unmagnetized quantum plasma. It is expected that localized
nanostructures can transport electromagnetic wave energy
over nanoscales in laboratory and astrophysical dense
plasmas with degenerate electrons.

The field of nonlinear quantum plasma physics is
extremely rich and vibrant today, and it holds great promise
for providing new practical technologies. For example,
plasma assisted carbon nanostructures and nanomaterials
are the future of nanotechnologies, as are the new radiation
sources in the X-ray and gamma-ray regimes. In such
circumstances, it is desirable to fully understand the funda-
mentals of collective nonlinear interactions (e.g., intense high-
order harmonic generation of ultrashort laser pulses from
laser-irradiated dense plasma surfaces) in quantum plasmas.
Furthermore, in magnetars and in the next generation of
intense laser±solid density plasma interaction experiments,
we would certainly have degenerate positrons, in addition to
degenerate electrons. The physics of dense quantum magne-
toplasmas with degenerate electron±positron pairs is
expected to be quite different from what has been described
in this paper. The reason is the complex nonlinear dynamics
of the electron±positron pairs, which would have relativistic
velocities in a dense magnetoplasma. Accordingly, we should
develop new theories involving relativistic kinetic and
quantum relativistic magnetohydrodynamic equations that
include quantum relativistic effects [218 ± 220], electromag-
netic forces, angular momentum spin, and nonlinear effects
on equal footings. A detailed analysis of such theories would
provide us with a guideline for understanding the origin of
localized high-energy radiation and other complex phenom-
ena (e.g., the formation of structures) from astrophysical
settings and future laboratory experiments aiming to model
astrophysical scenarios.
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10. Appendix

10.1 Derivation of the Vlasov equation from the Wigner
equation
We here show that the Wigner equation converges to the
Vlasov equation in the classical limit �h! 0. The Wigner
equation is given by

qf
qt
� v � Hf � ÿ iem 3

e

�2p�3�h4
��

d3l d3v 0 exp
�
i
me

�h
�vÿ v 0� k

�

�
�
f
�
x� k

2
; t

�
ÿ f

�
xÿ k

2
; t

��
f �x; v0; t�: �137�

Changing the variable as k � �hn=me we have
d3l � �h3 d3x=m 3

e , and Eqn (137) takes the form

qf
qt
� v � Hf � ÿ ie

�2p�3�h

��
d3x d3v 0 exp

�
i�vÿ v0� n �

�
�
f
�
x� �hn

2me
; t

�
ÿ f

�
xÿ �hn

2me
; t

��
f �x; v 0; t� : �138�
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Assuming that �h=me is small, we expand f in a Taylor series
around x through the third order,

f
�
x� �hn

2me
; t

�
� f�x; t� � �h

2me
�n � H�f�x; t�

� �h 2

8m 2
e

�n � H�2f�x; t� � �h 3

48m 3
e

�n � H�3f�x; t�; �139�

whence

qf
qt
� v � Hf � ÿ ie

�2p�3me

��
d3x d3v 0 exp

�
i�vÿ v 0� n �

�
�
n � Hf�x; t� � �h 2

24m2
e

�n � H�3f�x; t�
�
f �x; v 0; t�: �140�

From the identity

exp
�
i�vÿ v 0� n � n � iHv 0 exp

�
i�vÿ v 0� n � ; �141�

where Hv 0 � bxq=qv 0x � byq=qv 0y �bzq=qv 0z, we have
qf
qt
� v � Hf � e

�2p�3me

��
d3x d3v 0

�
exp

�
i�vÿ v 0� n �

�
�
�H v 0 � H!� ÿ �h 2

24m 2
e

�H v 0 � H!�3
�
f�x; t�

�
f �x; v 0; t�; �142�

where the arrows indicate the direction of action of the nabla
operators.

Integration by parts in v 0 space, with f! 0 as jv 0j ! 1,
now yields

qf
qt
� v � Hf � ÿ e

�2p�3me

��
d3x d3v 0 exp

�
i�vÿ v 0� n �

�
�
f�x; t�

�
�H � H!v 0 � ÿ �h 2

24m 2
e

�H � H!v 0 �3
�
f �x; v 0; t�

�
:

�143�

The integration in n space can now be formally performed,
with the result

qf
qt
� v � Hf � ÿ e

me

�
d3v 0 d�vÿ v 0�

�
�
f�x; t�

�
�H � H!v 0 � ÿ �h 2

24m 2
e
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�144�

where the identity�
d3x exp

�
i�vÿ v 0� n � � �2p�3d�vÿ v 0� �145�

was used (and where d is the Dirac delta function). Finally,
integration over v 0 space yields

qf
qt
� v � Hf � ÿ e

me

�
f�x; t�

�
�
�H � H!v� ÿ �h 2

24m 2
e

�H � H!v�3
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f �x; v; t�

�
: �146�

In the limit �h! 0, we recover the Vlasov equation

qf
qt
� v � Hf � ÿ e

me
Hf�x; t� � Hv f �x; v; t� : �147�

10.2 Derivation of the dispersion relation
for the Wigner±Poisson system
We here derive the dispersion relation for electrostatic waves
in a degenerate quantum plasma governed by the Wigner±
Poisson system of equations. The linearized Wigner±Poisson
system of equations is given by

qf1
qt
� v � Hf1�ÿ iem 3

e

�2p�3�h 4

��
d3l d3v 0 exp

�
i
me

�h
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2
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2
; t

��
f0�v 0� ; �148�

and

H2f1 � 4pe
�
f1 d

3v ; �149�

where f0 denotes the background distribution function, and
f1 and f1 respectively denote the perturbed distribution
function and the electrostatic potential. Using the Fourier
transformation for (148) and (149) in space and the Laplace
transformation in time, we obtain
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Rewriting (150) as

�oÿ k v� f1 � iem 3
e

�2p�3�h 4
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and integrating over k space, we have

�oÿ v k� f1 � em 3
e

�h 4
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Now, the integration can be performed over v 0 space, yielding
the result

�oÿ k v� f1� e
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v� �hk

2me
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ÿ f0
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2me
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Solving Eqn (154) for f1 and substituting the result in (151),
we obtain the dispersion relation

1ÿ 4pe 2k 2

�h

�
��

f0
ÿ
v��hk=2me

�
�ÿo�k v� ÿ f0

ÿ
vÿ�hk=2me

�
�ÿo�k v�

�
d3v�0: �155�

Suitable changes of variables in the two terms now give

1ÿ 4pe 2k;2

�h

� �
1�ÿ o� k�uÿ �hk=2me�

�
ÿ 1�ÿ o� k�u� �hk=2me�

� � f0�u� d3u � 0 ; �156�

which can be rewritten as

1ÿ 4pe 2

me

�
f0�u�

�oÿ k u�2 ÿ �h 2k 4=4m 2
e

d3u � 0 : �157�

Dispersion relation (157) was also derived in [3] via a series
of canonical transformations of the Hamiltonian of the
system (see, e.g., Eqn (57) in [3]). We now choose a
coordinate system such that the x axis is aligned with the
wave vector k. Then (157) takes the form

1ÿ 4pe 2

me

�
f0�u�

�oÿ kux�2 ÿ �h 2k 4=4m 2
e

d3u � 0 : �158�

We next consider a dense plasma with degenerate
electrons in the zero-temperature limit. Then the background
distribution function takes the simple form

f0 � 2

�
me

2p�h

�3

; juj4VFe ,

0 ; elsewhere;

8<: �159�

where VFe � �2EFe=me�1=2 is the speed of an electron on the
Fermi surface, and EFe � �3p2n0�2=3�h 2=�2me� is the Fermi
energy. The integration in (158) can be performed over the
space of velocities perpendicular to ux, using the cylindrical
coordinate in uy and uz, with the result

1 � 4pe 2
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where
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Equation (160) can be written as

1 � 8p2e 2
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First, in the limit as �hk=me ! 0, it follows from (162) that

1� 3o 2
pe

k 2V 2
Fe

�
1ÿ o

2kVFe
log

����o� kVFe

oÿ kVFe

����� � 0 ; �163�

where we assume that o is real and o=k > VFe.
Expanding (163) for small wavenumbers through terms

containing k 2, we have

o 2 � o 2
pe �

3

5
k 2V 2

Fe : �164�

Second, for nonzero �hk 2=me, Eqn (162) implies the dispersion
relation

1� 3o 2
pe

4k 2V 2
Fe

�
2ÿ me

�hkVFe

�
V 2

Fe ÿ
�
o
k
� �hk

2me
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log
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Expanding (165) for small wavenumbers through terms
containing k 4, we obtain

o 2 � o 2
pe �

3

5
k 2V 2

Fe � �1� a� �h
2k 4

4m 2
e

; �166�

where a � �48=175�m 2
e V

4
Fe=�h

2o 2
pe � 2:000�n0a 3

0 �1=3 and a0 �
�h 2=mee

2 � 53� 10ÿ10 cm is the Bohr radius. For a typical
metal such as gold, whose free-electron number density is
n0 � 5:9� 1022 cmÿ3, we then have a � 0:4. For the free-
electron density in semiconductors that is many orders of
magnitude less than in metals, a is much smaller and can
safely be dropped compared to unity.
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