ΥCΠΕΧИ ΦИЗИЧЕСКИХ НАУК

ПРИБОРЫ И МЕТОДЫ ИССЛЕДОВАНИЙ

Микроскоп ближнего поля как инструмент для исследования наночастиц

И.С. Осадько

Показано, что поле переменного диполя, наведённое светом на конце зонда микроскопа ближнего поля, обеспечивает его более высокую разрешающую способность по сравнению с обычным оптическим микроскопом.

PACS numbers: 07.79.Fc, 41.20.-q, 68.37.Vj

DOI: 10.3367/UFNr.0180.201001c.0083

Содержание

- 1. Введение (83).
- 2. Ближняя и дальняя зоны (84).
- 3. Разложение потенциалов по малым параметрам (85).
- 4. Ближнее и дальнее поле (85).
- Как реализуется разрешение нанообъектов в микроскопе ближнего поля (87).

Список литературы (87).

1. Введение

Изобретение различных типов зондовых микроскопов позволило исследователю получить в своё распоряжение новые инструменты для изучения с нанометровым разрешением молекул, расположенных на поверхности [1]. Основным элементом таких микроскопов служит зонд — тонкая игла, сделанная либо из металла, как это имеет место в туннельных микроскопах, где измеряется туннельный ток между иглой и подложкой, либо из оптически прозрачного диэлектрического материала, как это имеет место в микроскопе ближнего поля (МБП) [2], в котором используется свет для возбуждения молекул на поверхности.

Хорошо известно, что обычные микроскопы, использующие в качестве "щупа" световую волну, или электронные микроскопы, использующие с этой целью электроны, не в состоянии разрешить два объекта, если расстояние между ними меньше длины волны света λ или соответственно де-бройлевской волны электрона. Поэтому возможность МБП, использующего свет, различить объекты, разнесённые на расстояние в десятки раз меньшие,

И.С. Осадько. Физический институт им. П.Н. Лебедева РАН, Ленинский просп. 53, 119991 Москва, Российская Федерация Тел. (499) 135-78-91 E-mail: osadko@sci.lebedev.ru

Статья поступила 24 апреля 2009 г., после доработки 13 сентября 2009 г.

чем длина волны λ , представляется удивительной с точки зрения традиционной волновой микроскопии. Причина, по которой разрешающая способность МБП в десятки раз превосходит разрешение обычного оптического микроскопа, и является темой этой заметки, ориентированной на студентов-физиков.

Качественный ответ на вопрос о высокой разрешающей способности МБП довольно прост и может быть пояснён с помощью рис. 1. Лазерное излучение, например, голубого цвета, направляется по светопроводу в кварцевую иглу с металлизированным покрытием, конец которой свободен от покрытия и по диаметру меньше длины волны излучения. На свободном кончике иглы наводится поляризация, колеблющаяся с частотой лазерного излучения. Эта переменная поляризация является источником переменного электромагнитного поля вне иглы, которое представляет собой сложную суперпозицию полей электрических и магнитных мультиполей. Как будет показано в разделе 4, самым сильным из них вблизи кончика иглы является переменное электрическое поле наведённого диполя. Поскольку оно спадает с расстоянием r от кончика иглы как $1/r^3$, то молекулы, расположенные вдали от иглы, возбуждаются этим электрическим полем намного слабее, чем молекулы, расположенные вблизи иглы в так называемой

Рис. 1. Принципиальная схема действия микроскопа ближнего поля.

ближней зоне, размер которой существенно меньше длины волны прошедшего через иглу света.

Возбуждённые молекулы подложки флуоресцируют, и их излучение детектируется фотоэлектрическим умножителем (ФЭУ). Поскольку интенсивность флуоресценции молекулы пропорциональна вероятности её возбуждения, а вероятность возбуждения наибольшая у молекул, которые расположены в ближней зоне, то наибольший вклад в детектируемую флуоресценцию будут давать именно эти молекулы, а флуоресценция молекул, расположенных вне ближней зоны, потеряется в шумах фотоприёмника. Различная интенсивность флуоресценции молекул, обусловленная различной вероятностью их возбуждения, изображена на рис. 1 различной толщиной стрелок, направленных к ФЭУ. Перемещая иглу вдоль исследуемой поверхности, мы будем в каждый момент времени детектировать преимущественно флуоресценцию тех молекул, которые в данный момент находятся непосредственно под иглой, т.е. в ближней зоне. Следовательно, если мы переместим кончик иглы вдоль поверхности образца, то просканируем поверхность образца с разрешением, превышающим длину волны возбуждающего света. Рассмотрим теперь картину физических явлений в микроскопе ближнего поля более детально.

2. Ближняя и дальняя зоны

Прежде всего нам потребуется оценить распределение электромагнитного поля в МБП. Вычисление этого распределения — довольно сложная, хотя и решаемая для конкретных моделей зонда задача математической физики. Однако для нашей цели — объяснения высокой степени разрешения в МБП — достаточно будет оценок, полученных на основе одного упрощающего предположения, и наличия в задаче нескольких характерных масштабов, порождающих малые физические параметры.

На рисунке 2 схематически изображена излучающая область V размера L, моделирующая кончик зонда, волна возбуждающего света, ближняя и дальняя (волновая) зоны по отношению к области V и характеризующие их масштабы. Излучающая область V— это область наведённых возбуждающим лазерным излучением переменной плотности заряда ρ и плотности тока **j**, которые являются источником электромагнитного поля вне области V. В ближнепольной спектроскопии вводятся понятия ближнего и дальнего полей, доминирующих в ближней и дальней зоне.

Упрощающее предположение состоит в том, что в интересующих нас областях пространства, заполненных исследуемыми молекулами, граничными эффектами зонда и светопровода можно пренебречь, так что для

Рис. 2. Схематическое изображение излучающей области, ближней и дальней зоны.

Рис. 3. Излучающая область V, радиус-вектор **r** точки наблюдения и радиус-вектор **r** ' точки области V.

расчёта электромагнитного поля в этих областях можно использовать известные выражения для запаздывающих потенциалов в пустоте, порождаемых зарядами и токами области V. В лоренцевской калибровке соответствующие выражения для скалярного и векторного потенциалов имеют вид [3]

$$\varphi(\mathbf{r}, t) = \int_{V} \frac{\rho(\mathbf{r}', t - R/c)}{R} \, \mathrm{d}V',$$
$$\mathbf{A}(\mathbf{r}, t) = \frac{1}{c} \int_{V} \frac{\mathbf{j}(\mathbf{r}', t - R/c)}{R} \, \mathrm{d}V'.$$
(1)

Здесь $R = |\mathbf{r} - \mathbf{r}'| = \sqrt{r^2 + r'^2 - 2(\mathbf{rr}')}$, а смысл радиусвекторов ясен из рис. 3.

Электрический и магнитный векторы поля мы найдём с помощью известных формул

$$\mathbf{E} = -\nabla \varphi - \frac{\dot{\mathbf{A}}}{c} , \quad \mathbf{B} = [\nabla \mathbf{A}] , \qquad (2)$$

связывающих поля с потенциалами.

Выводимые ниже выражения для полей являются первыми членами их разложения в ряд по двум малым параметрам:

$$\frac{L}{r} \ll 1, \quad \frac{2\pi L}{\lambda} \ll 1.$$
 (3)

Согласно рис. 2 эти неравенства выполнены как для ближней зоны, так, и тем более, для дальней зоны. Соответствующие выражения получаются разложением подынтегральных выражений в формуле (1) по соответствующим малым параметрам:

$$\frac{r'}{r} \leq \frac{L}{r} \ll 1, \quad \frac{2\pi r'}{\lambda} \leq \frac{2\pi L}{\lambda} \ll 1.$$
 (3a)

Поясним физический смысл второго параметра. Введём время запаздывания $t_r = r/c$ и время собственного запаздывания $t'_r = r'/c$. Они описывают соответственно запаздывание сигнала, распространяющегося от области V к точке наблюдения, и разницу в запаздывании сигнала, распространяющегося от разных точек области V.

Пусть ω — частота света, возбуждающего молекулы на подложке. Она же есть частота колебаний плотности заряда ρ и плотности тока **j**. Тогда параметры (3а) можно представить в эквивалентном виде:

$$\frac{r'}{r} \ll 1, \quad t'_{\rm r}\omega \ll 1. \tag{36}$$

Малость второго параметра означает малость собственного запаздывания по сравнению с периодом световых колебаний.

3. Разложение потенциалов по малым параметрам

Разложим в ряд по малым параметрам (3а), (3б) две функции, стоящие в подынтегральном выражении для скалярного потенциала. Ограничиваясь учётом только линейных по этим параметрам членов, мы приходим к таким выражениям:

$$\frac{1}{|\mathbf{r} - \mathbf{r}'|} \cong \frac{1}{r} + \frac{(\mathbf{r}'\mathbf{n})}{r^2},$$

$$\rho\left(\mathbf{r}', t - \frac{R}{c}\right) \cong \rho\left(\mathbf{r}', \tau + \frac{(\mathbf{r}'\mathbf{n})}{c}\right) \cong$$

$$\cong \rho(\mathbf{r}', \tau) + \frac{\partial\rho(\mathbf{r}', \tau)}{\partial\tau} \frac{(\mathbf{r}'\mathbf{n})}{c}.$$
(4)

Здесь $\tau = t - r/c = t - t_r$, а **n** = **r**/*r* есть единичный вектор. Очевидно, что слагаемое

$$\frac{\partial \rho(\mathbf{r}', \tau)}{\partial \tau} \frac{(\mathbf{r}'\mathbf{n})}{c} \cong \rho \omega t'_{\mathbf{r}} \ll \rho$$

действительно является линейным по малому параметру. Подставляя разложения (4) в формулу для скалярного потенциала, мы приходим к следующему выражению:

$$\varphi(\mathbf{r},t) \cong \int_{V} \left(\frac{1}{r} + \frac{(\mathbf{r}'\mathbf{n})}{r^{2}}\right) \left(\rho(\mathbf{r}',\tau) + \dot{\rho}(\mathbf{r}',\tau) \frac{(\mathbf{r}'\mathbf{n})}{c}\right) \mathrm{d}V'.$$
(5)

Отбрасывая член, пропорциональный произведению двух малых параметров, мы приходим к следующему выражению для скалярного потенциала:

$$\varphi(\mathbf{r},t) \cong \varphi_{\rm m}(r,\tau) + \varphi_{\rm d}(\mathbf{r},\tau) + \varphi_{\rm rad}(\mathbf{r},\tau) \,. \tag{6}$$

Здесь

$$\varphi_{\rm m}(r,\tau) = \frac{1}{r} \int_{V} \rho(\mathbf{r}',\tau) \,\mathrm{d}V' = \frac{e(\tau)}{r} \tag{6a}$$

есть кулоновский потенциал полного заряда $e(\tau)$ системы. В нашем случае область V электрически нейтральна и поэтому этот заряд равен нулю. Второе слагаемое, т.е.

$$\varphi_{\mathrm{d}}(\mathbf{r},\tau) = \frac{1}{r^2} \int_{V} (\mathbf{r}'\mathbf{n}) \,\rho(\mathbf{r}',\tau) \,\mathrm{d}V' = \frac{(\mathbf{d}(\tau)\,\mathbf{n})}{r^2} \tag{66}$$

есть потенциал полного электрического диполя $\mathbf{d}(\tau)$ системы. И, наконец,

$$\varphi_{\rm rad}(\mathbf{r},\tau) = \frac{1}{r} \int_{V} \dot{\rho}(\mathbf{r}',\tau) \, \frac{(\mathbf{r}'\mathbf{n})}{c} \, \mathrm{d}V' = \frac{(\dot{\mathbf{d}}(\tau)\,\mathbf{n})}{cr} \tag{6B}$$

есть скалярный потенциал излучения.

Разложение скалярного потенциала по малому параметру L/r есть разложение по мультиполям, $\varphi_{\rm m}$ — это потенциал монополя, $\varphi_{\rm d}$ — потенциал диполя. Они не исчезают и при постоянном распределении зарядов $\rho(\mathbf{r}')$ в области V. Потенциал излучения $\varphi_{\rm rad}$ линеен по малому параметру $t'_{\rm r}\omega$; $\varphi_{\rm rad}$ порождён переменным дипольным моментом. Для векторного потенциала возьмём первый неисчезающий член в разложении подынтегрального выражения по малым параметрам (3а), (3б):

$$\mathbf{A}(\mathbf{r},t) = \frac{1}{c} \int_{V} \frac{\mathbf{j}(\mathbf{r}',t-R/c)}{R} \, \mathrm{d}V' \cong \frac{1}{cr} \int_{V} \mathbf{j}(\mathbf{r}',\tau) \, \mathrm{d}V' =$$
$$= \frac{1}{cr} \int_{V} \sum_{i} e_{i} \mathbf{v}_{i}(\tau) \, \delta(\mathbf{r}'-\mathbf{r}_{i}) \, \mathrm{d}V' =$$
$$= \frac{1}{cr} \sum_{i} e_{i} \mathbf{v}_{i}(\tau) = \frac{\dot{\mathbf{d}}(\tau)}{cr} = \mathbf{A}_{\mathrm{rad}}(\mathbf{r},t) \,.$$
(7)

Здесь \mathbf{r}_i — координаты точек области V, в которых расположены заряды. Скалярный и векторный потенциалы излучения связаны простым соотношением:

$$\mathbf{A}_{\rm rad}(\mathbf{r},\tau) = \frac{\dot{\mathbf{d}}(\tau)}{cr}, \quad \varphi_{\rm rad}(\mathbf{r},\tau) = \left(\mathbf{n}\mathbf{A}_{\rm rad}(\mathbf{r},\tau)\right). \tag{8}$$

Мы видим, что при использовании разложения запаздывающих потенциалов (1) по малым параметрам (3) потенциалы в первом неисчезающем приближении выражаются через электрический дипольный момент области V.

4. Ближнее и дальнее поле

Теперь, когда получены сравнительно простые формулы (6) и (7) для скалярного и векторного потенциалов, мы можем подставить их в формулы (2) и найти электрическое и магнитное поле. Проведём эту подстановку.

Подставляя (7) в выражение для магнитного поля и учитывая, что действие оператора ∇ на $d(\tau)$ эквивалентно дифференцированию по времени с умножением на множитель $-\mathbf{n}/c$, т.е.

$$\nabla d(\tau) = -\frac{\mathbf{n}}{c} \frac{\partial}{\partial \tau} d(\tau), \qquad (9)$$

приходим к следующему выражению для магнитного поля:

$$\mathbf{B} = \frac{1}{cr} \left[\nabla \dot{\mathbf{d}}(\tau) \right] - \left[\dot{\mathbf{d}}(\tau) \nabla \frac{1}{cr} \right] = \frac{\left[\ddot{\mathbf{d}} \mathbf{n} \right]}{c^2 r} + \frac{\left[\dot{\mathbf{d}} \mathbf{n} \right]}{cr^2} \,. \tag{10}$$

Выражение (10) состоит из члена, убывающего с расстоянием r как 1/r, и члена, убывающего как $1/r^2$.

Подставив теперь потенциалы (6) в выражение для градиента скалярного потенциала, находим

$$-\nabla \varphi_{\rm d} = -\frac{\nabla (\mathbf{nd})}{r^2} + \frac{2\mathbf{n} (\mathbf{nd})}{r^3} ,$$

$$-\nabla \varphi_{\rm rad} = -\frac{\nabla (\mathbf{nd})}{cr} + \frac{\mathbf{n} (\mathbf{nd})}{cr^2} .$$
(11)

Используя формулу $\nabla(\mathbf{a}\mathbf{b}) = (\mathbf{a}\nabla)\mathbf{b} + [\mathbf{a}[\nabla\mathbf{b}]] + (\mathbf{b}\nabla)\mathbf{a} + +[\mathbf{b}[\nabla\mathbf{a}]]$ векторного анализа [4], находим для градиентов скалярных произведений в формулах (11):

$$\nabla(\mathbf{nd}) = -\frac{\mathbf{d}}{c} - \frac{1}{c} \left[\left[\dot{\mathbf{dn}} \right] \mathbf{n} \right] + \frac{\mathbf{d} - \mathbf{n}(\mathbf{dn})}{r} ,$$

$$\nabla(\mathbf{nd}) = -\frac{\ddot{\mathbf{d}}}{c} - \frac{1}{c} \left[\left[\ddot{\mathbf{dn}} \right] \mathbf{n} \right] + \frac{\dot{\mathbf{d}} - \mathbf{n}(\dot{\mathbf{dn}})}{r} .$$
(12)

Подставляя (12) в (11), находим для градиентов потенциалов:

$$-\nabla \varphi_{\rm d} = \frac{\dot{\mathbf{d}}}{cr^2} + \frac{\left[\left[\dot{\mathbf{dn}}\right]\mathbf{n}\right]}{cr^2} - \frac{\mathbf{d}}{r^3} + 3\frac{\mathbf{n}(\mathbf{dn})}{r^3} ,$$

$$-\nabla \varphi_{\rm rad} = \frac{\ddot{\mathbf{d}}}{c^2r} + \frac{\left[\left[\ddot{\mathbf{dn}}\right]\mathbf{n}\right]}{c^2r} - \frac{\dot{\mathbf{d}}}{cr^2} + 2\frac{\mathbf{n}(\dot{\mathbf{dn}})}{cr^2} .$$
(13)

Учитывая, что $\phi_{\rm m} = 0$, и принимая во внимание, что $[[\dot{\mathbf{dn}}]\mathbf{n}] = -\dot{\mathbf{d}} + \mathbf{n}(\mathbf{dn})$, приходим к следующему выражению для градиента скалярного потенциала:

$$-\nabla \varphi = -\nabla \varphi_{d} - \nabla \varphi_{rad} = \frac{\ddot{\mathbf{d}}}{c^{2}r} + \frac{\left[\left[\ddot{\mathbf{d}} \mathbf{n} \right] \mathbf{n} \right]}{c^{2}r} + \frac{-\dot{\mathbf{d}} + 3\mathbf{n}(\dot{\mathbf{d}}\mathbf{n})}{cr^{2}} + \frac{-\mathbf{d} + 3\mathbf{n}(\mathbf{d}\mathbf{n})}{r^{3}} .$$
(14)

Согласно формуле (8) имеем

$$-\frac{\dot{\mathbf{A}}_{\mathrm{rad}}}{c} = -\frac{\ddot{\mathbf{d}}}{c^2 r} \,. \tag{15}$$

Поэтому, складывая (14) и (15), получим для электрического вектора:

$$\mathbf{E} = -\nabla \varphi - \frac{\dot{\mathbf{A}}}{c} = \frac{\left[\left[\mathbf{d} \mathbf{n} \right] \mathbf{n} \right]}{c^2 r} + \frac{-\dot{\mathbf{d}} + 3\mathbf{n}(\mathbf{d}\mathbf{n})}{cr^2} + \frac{-\mathbf{d} + 3\mathbf{n}(\mathbf{d}\mathbf{n})}{r^3} \,.$$
(16)

Вектор электрического поля содержит члены, убывающие с расстоянием как 1/r, $1/r^2$ и $1/r^3$.

Формулы (10) и (16) определяют магнитное и электрическое поле, порождаемое зарядами и токами области V, на расстояниях, превышающих размер этой области. Эти поля можно рассортировать по скорости их убывания при удалении от области V, т.е. как электрическое, так и магнитное поле можно представить в виде суммы двух полей:

$$\mathbf{E}(\mathbf{r},t) = \mathbf{E}_{\mathbf{F}}(\mathbf{r},t) + \mathbf{E}_{\mathbf{N}}(\mathbf{r},t),$$

$$\mathbf{B}(\mathbf{r},t) = \mathbf{B}_{\mathrm{F}}(\mathbf{r},t) + \mathbf{B}_{\mathrm{N}}(\mathbf{r},t) \,. \tag{17}$$

Здесь электрическое и магнитное поле

$$\mathbf{E}_{\mathrm{F}}(\mathbf{r},t) = \frac{\lfloor [\mathbf{dn}] \, \mathbf{n} \rfloor}{c^2 r} \,, \quad \mathbf{B}_{\mathrm{F}}(\mathbf{r},t) = \frac{[\mathbf{dn}]}{c^2 r} \,, \tag{18}$$

убывающее как 1/r, называется дальним полем, а электрическое и магнитное поле

$$\mathbf{E}_{\mathrm{N}}(\mathbf{r},t) = \frac{-\dot{\mathbf{d}} + 3\mathbf{n}(\dot{\mathbf{d}}\mathbf{n})}{cr^{2}} + \frac{-\mathbf{d} + 3\mathbf{n}(\mathbf{d}\mathbf{n})}{r^{3}},$$
$$\mathbf{B}_{\mathrm{N}}(\mathbf{r},t) = \frac{[\dot{\mathbf{d}}\mathbf{n}]}{cr^{2}},$$
(19)

убывающее в пространстве быстрее, чем 1/r, называется ближним полем. Именно об этом ближнем поле шла речь во введении при качественном объяснении причины более высокой степени разрешения МБП по сравнению с обычными оптическими микроскопами. Дальнее поле пропорционально второй производной дипольного момента системы. Часть ближнего поля, убывающая в пространстве как $1/r^2$, порождена первой производной дипольного момента. Эта часть поля исчезает в статическом случае. Электрическое поле диполя, убывающее как $1/r^3$, не исчезает даже в статическом случае, когда $\dot{\mathbf{d}} = 0$. Как мы увидим ниже, именно переменное поле, убываю

Рис. 4. Взаимное расположение векторов дальнего поля и единичного вектора **n**.

щее как $1/r^3$, играет главную роль в увеличении разрешающей способности МБП.

Проясним теперь вопрос о том, какие поля ответственны за уход энергии из области V, т.е. ответственны за излучение конца иглы. Векторы дальнего поля $\mathbf{E}_{\mathrm{F}}(\mathbf{r}, t)$, $\mathbf{B}_{\mathrm{F}}(\mathbf{r}, t)$ и единичный вектор **n** составляют правовинтовую тройку взаимно ортогональных векторов, как это показано на рис. 4.

Вектор Умова-Пойнтинга дальнего поля имеет следующий вид:

$$\mathbf{S}(\mathbf{r},t) = \frac{c}{4\pi} \left[\mathbf{E}_{\mathrm{F}} \mathbf{B}_{\mathrm{F}} \right] = \frac{c}{4\pi} \mathbf{n} \mathbf{B}_{\mathrm{F}}^2 = \mathbf{n} \frac{c}{4\pi} \frac{|\mathbf{\ddot{d}}|^2}{c^4 r^2} \sin^2 \theta \,. \tag{20}$$

Вычисляя с помощью этого вектора поток энергии через сферу, окружающую область *L*, приходим к известной формуле:

$$I = \oint_{\sigma} (\mathbf{S} \,\mathrm{d}\boldsymbol{\sigma}) = \frac{|\mathbf{\ddot{d}}|^2}{4\pi c^3 r^2} \int_0^{2\pi} r \,\mathrm{d}\alpha \int_{-1}^1 r \sin^2 \theta \,\mathrm{d}\cos\theta = \frac{2|\mathbf{\ddot{d}}|^2}{3c^3}.$$
(21)

Дальнее поле представляет собой свет, исходящий от иглы. Именно такое излучение формирует изображение в обычном микроскопе и фигурирует в качестве лучей в геометрической оптике. С помощью дальнего поля нельзя превзойти дифракционный предел, ограничивающий разрешение обычного микроскопа. Увеличение разрешающей способности МБП связано с существованием ближнего поля.

Поскольку электрический и магнитный векторы ближнего поля убывают в пространстве не медленнее, чем $1/r^2$, то вектор Умова – Пойнтинга ближнего поля убывает в пространстве как $1/r^4$, и поэтому интеграл по поверхности, окружающей область V, стремится к нулю как $1/r^2$ при удалении от этой области. Следовательно, ближнее поле не участвует в переносе энергии от области V. Но именно ближнее поле играет важную роль в возбуждении молекул, находящихся вблизи зонда МБП.

Действительно, сравним величину электрических векторов ближнего и дальнего поля в ближней зоне, т.е. вблизи зонда. Поскольку

$$\frac{\dot{d}}{c} \propto \frac{\omega}{c} d = \frac{2\pi}{\lambda} d, \quad \frac{\ddot{d}}{c^2} \propto \left(\frac{\omega}{c}\right)^2 d = \left(\frac{2\pi}{\lambda}\right)^2 d, \quad (22)$$

то легко оценить величины электрических векторов дальнего и ближнего поля как

$$E_{\rm F} \propto \left(\frac{2\pi}{\lambda}\right)^2 \frac{d}{r}, \quad E_{\rm N} \propto \left(\frac{2\pi}{\lambda}\right) \frac{d}{r^2} + \frac{d}{r^3} \cong \frac{d}{r^3}.$$
 (23)

Поскольку в ближней зоне справедливо неравенство $\lambda \gg r$, то ближнее поле существенно больше дальнего поля в ближней зоне:

$$\frac{E_{\rm N}}{E_{\rm F}} \propto \frac{\lambda^2}{4\pi^2 r^2} \gg 1 \,. \tag{24}$$

Из (23) следует, что электрическое поле в ближней зоне, т.е. ближнее поле, является фактически полем диполя, осциллирующего с оптической частотой.

5. Как реализуется разрешение нанообъектов в микроскопе ближнего поля

В обычном микроскопе, в котором работают законы геометрической оптики, мы используем для формирования изображения свет, распространяющийся в пространстве от объекта, т.е. дальнее поле. Электрическое поле этого света невозможно локализовать в пространственной области, которая меньше длины волны фотона. Проще всего это можно показать, используя соотношение неопределённости px > h для импульса фотона и его координаты. Подставляя сюда $p = \hbar k = h/\lambda$, мы приходим к известному условию для разрешения обычного микроскопа

$$\frac{x}{\lambda} > 1. \tag{25}$$

Хотя мы вывели это условие, исходя из соотношения неопределённости Гейзенберга, независимость его от постоянной Планка показывает, что оно не является квантовым. Оно справедливо также для классического света, рассматриваемого в геометрической оптике. Совсем с иной ситуацией мы сталкиваемся в ближнепольном микроскопе.

Вернёмся вновь к ситуации, изображённой на рис. 1, когда зонд приближен к поверхности образца на расстояние, которое много меньше длины волны света, излучаемого зондом. Диаметр пятна света, исходящего из зонда, в соответствии с (25) не может быть меньше длины волны и поэтому накрывает много молекул (как видно из рис. 1). Рассмотрим выражение для коэффициента поглощения молекулы, возбуждаемой электромагнитным полем. Скорость возбуждения молекулы светом определяется выражением

$$k = 2\left(\frac{\mathbf{pE}}{\hbar}\right)^2 \frac{\gamma}{\varDelta^2 + \gamma^2} \tag{26}$$

(см., например, формулу (7.42) в книге автора [5]). Здесь **р** — дипольный момент перехода в молекуле, **E** — вектор напряжённости электрического поля, действующего на молекулу, Δ есть разность между частотой излучения, вышедшего из зонда, и резонансной частотой молекулы, а 2 γ есть полуширина линии поглощения излучения молекулой. Полное электрическое поле состоит из ближнего и дальнего поля, т.е. $\mathbf{E} = \mathbf{E}_{\rm F} + \mathbf{E}_{\rm N}$. Ближнее поле, убывающее как $1/r^3$, практически равно нулю для молекул в дальней зоне, так что $\mathbf{E} \cong \mathbf{E}_{\rm F}$, поэтому коэффициент поглощения света молекулами, расположенными на периферии светового пятна, описывается формулой

$$k_{\rm F} = 2 \left(\frac{\mathbf{p} \mathbf{E}_{\rm F}}{\hbar}\right)^2 \frac{\gamma}{\varDelta^2 + \gamma^2} \,. \tag{27}$$

В ближней зоне, т.е. в центре светового пятна, не только возрастает величина дальнего поля, но к нему прибавляется ещё и ближнее поле, напряжённость которого согласно (24) существенно больше напряжённости дальнего поля в ближней зоне, т.е. $E_N \gg E_F$. Поэтому коэффициент поглощения света молекулой в ближней зоне выражается как

$$k_{\rm N} = 2 \left(\frac{\mathbf{p}(\mathbf{E}_{\rm N} + \mathbf{E}_{\rm F})}{\hbar} \right)^2 \frac{\gamma}{\varDelta^2 + \gamma^2} \gg k_{\rm F} \,. \tag{28}$$

Следовательно, молекулы в ближней зоне, которая по своей протяжённости меньше длины волны излучения, поглощают электромагнитную энергию намного эффективнее, чем молекулы, находящиеся в дальней зоне. Интенсивность же флуоресценции молекулы, возбуждаемой светом, тем больше, чем больше поглощение. Поэтому при возбуждении молекул подложки через зонд фотоумножитель на рис. 1 зафиксирует флуоресценцию молекул, находящихся только в ближней зоне и не "увидит" слабую флуоресценцию молекул, находящихся в дальней зоне, хотя пятно света согласно рис. 1 накрыло и те, и другие. Поэтому разрешающая способность МБП в десятки раз превосходит разрешающую способность обычных оптических микроскопов. Реальные МБП имеют пространственное разрешение порядка $\lambda/40$.

Автор благодарит Н.А. Попова и Б.Л. Воронова, прочитавших рукопись, за полезные замечания. Работа выполнена при поддержке грантов Российского фонда фундаментальных исследований №№08-07-00371, 07-02-00181 и 07-02-00547.

Список литературы

- 1. Binning G et al. Phys. Rev. Lett. 49 57 (1982)
- 2. Pohl D W, Denk W, Lanz M Appl. Phys. Lett. 44 651 (1984)
- Ландау Л Д, Лифпинц Е М *Теория поля* (М.: Физматгиз, 1962) [Landau L D, Lifshitz E M *The Classical Theory of Fields* (Oxford: Pergamon Press, 1983)]
- Тамм И Е Основы теории электричества (М.: Наука, 1966) [Tamm I E Fundamentals of the Theory of Electricity (Moscow: Mir, Publ., 1979)]
- Осадько И С Селективная спектроскопия одиночных молекул (М.: Физматлит, 2000) [Osad'ko I S Selective Spectroscopy of Single Molecules (Berlin: Springer, 2003)]

I.S. Osad'ko Lebedev Physical Institute, Russian Academy of Sciences, Leninskii prosp. 53, 119991 Moscow, Russian Federation Tel. (7-499) 135-7891 E-mail: osadko@sci.ledebev.ru

The near-field microscope as a tool for studying nanoparticles

The oscillating electric dipole field induced by laser light at the probe tip of the near field microscope is shown to allow a higher resolution compared to the conventional optical microscope.

PACS numbers: 07.79.Fc, **41.20.**–**q**, 68.37.Vj Bibliography — 5 references *Uspekhi Fizicheskikh Nauk* **180** (1) 83–87 (2010) DOI: 10.3367/UFNr.0180.201001c.0083 Received 24 April 2009, revised 13 September 2009 Physics – Uspekhi **53** (1) (2010)