
very interesting not only because of its attractive potential
applications but also in and of itself, and that many
fundamental problems remain unsolved to date.
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Application of the scatteringmatrixmethod
for calculating the optical properties of
metamaterials

N A Gippius, S G Tikhodeev

We consider the application of the scattering matrix formal-
ism for calculating the eigenfrequencies, radiation widths,
and field distributions of quasiwaveguide modes in photonic
crystal layers (PCLs) of finite thickness.

At present, investigations are being performed of one-
dimensional (1D) or two-dimensional (2D) periodic layers of
photonic crystals whose vertical geometry can be arbitrarily
complex [1±3]. Such PCLs have proved to be very interesting
and promising structures; they can be prepared by themodern
methods of layer-by-layer lithography; their optical proper-
ties are of practical interest in connection with their potential
compatibility with microelectronic devices.
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We note that PCLs are in fact diffraction gratings.
Diffraction gratings play an extremely important role in
optics and its applications. Therefore, their history, of
course, is considerably older than the term `photonic
crystal.' The first diffraction grating was created and
investigated by the American astronomer D Rittenhause in
1786 [4]. (The curious history of the creation of the first
diffraction grating is described in [5].) But this discovery
remained unnoticed, and in themajority of optics courses and
encyclopedias, the creation of the diffraction grating (in 1821)
is credited to Fraunhofer [6]. In 1902, Wood [7] experimen-
tally detected narrow-frequency features in the reflection
spectra of metallic diffraction gratings, which have been
called Wood's anomalies since then. Two types of Wood's
anomalies are distinguished. Diffraction anomalies, or
Rayleigh anomalies [8], appear upon opening (with increas-
ing frequency of incident light) new diffraction channels; the
threshold frequency of opening a channel is characterized by
the fact that the arising diffracted beam is parallel to the
surface of the lattice (see also [9]). Resonance anomalies are
connected with the excitation of resonance modes in the
lattice, namely, surface plasmons or quasiwaveguide
(Fabry±Perot) modes, depending on the type of structure.
The qualitative laws governing the behavior of such reso-
nances were first analyzed, as far as we know, by Fano [10].
Twenty years later, Fano in his famous work [11] analyzed the
general laws governing the behavior of a discrete level in the
background of the continuum; the arising asymmetric
resonances are now called Fano resonances. Wood's reso-
nance anomalies refer to precisely this type of resonance.

In view of the importance of the effect of the resonance
optical response of diffraction gratings for many applica-
tions, including, for example, lasers with a distributed feed-
back, optical filters, and polarizers, this issue has been
considered in an enormous number of studies. The majority
ofmethods are based on the expansion of the scattered field of
the diffraction grating in terms of three-dimensional Fourier
harmonics (plane waves), as was first suggested by Rayleigh
[8]. With the advent of computers, very powerful methods of
calculation of optical spectra of arbitrarily complex diffrac-
tion gratings were developed. In this connection, we note the
important work by Hessel and Oliner [12] and the develop-
ment of the scattering matrix formalism in [13, 14]. Very
powerful computational methods were developed [15] and
[16], but, unfortunately, they are practically unknown to
modern researchers working in this field.

A convenient method of constructing a scattering matrix
for 1D or 2D PCLs with an arbitrarily complex structure in
the direction perpendicular to the layer was developed in [17,
18]. The authors of these works extended the method of
constructing the scattering matrix in [19] to electrodynamics
for calculating electron tunneling in complex heterostruc-
tures. The scattering matrix method allows efficiently remov-
ing the numerical instabilities that appear in the method of
transfer matrices because of the presence of exponentially
decreasing and exponentially increasing linearly independent
solutions. This method allows constructing a scattering
matrix on the complex frequency plane [20] and developing
efficient approximate descriptions of photonic resonances in
such structures.

We note that the application of the scattering matrix
method for metamaterials involves certain difficulties
because of the poor convergence of Fourier series for the
metal±dielectric structures. Recently, we succeeded in con-

siderably improving the convergence of the method [21],
using Li factorization rules [22] and the Granet method of
adaptive spatial resolution [23], by supplementing the latter
with a special curvilinear transformation of coordinates
matched to the shape of the metal±dielectric interface.

The modes in a planar waveguide, as is known, have real
eigenenergies O, and the corresponding field distributions are
localized near the waveguide layer and exponentially attenu-
ate outside the waveguide. But in the case of a periodic
modulation of the waveguide, a coupling of modes occurs
with the continuum in the vacuum and in the substrate, and
the quasiwaveguide modes acquire a finite radiation width.
Only the waveguide modes with energies less than all
diffraction thresholds remain undamped [24]. The spatial
distributions of the electromagnetic fields of quasiwaveguide
modes calculated at the natural complex frequency exponen-
tially diverge as z! �1. Although such solutions make no
physical sense at first glance, a detailed analysis shows that
this is not the case [15, 25]. These solutions increasing as
z! �1 have the physical meaning of eigenoscillations of the
field in thewaveguide that become damped in time;moreover,
the solutions propagating into the vacuum and the substrate
are finite because their exponential spatial growth is compen-
sated by the decay of the eigenmode exp �ÿj ImO j t � damped
in time. The space±time dependence of the solution, which is
proportional to exp�j ImO j�zÿ ct�=c�, describes the propaga-
tion of the front of the solution decaying in time.

In the theory of diffraction gratings, a traditional
procedure is to construct the scattering matrix as a function
of the complex propagation constant [13, 14] rather than the
complex frequency [15]. The supporters of this approach
believe that because the scattering matrix leads to `nonphy-
sical' solutions in the complex frequency plane, exponentially
increasing in space, this method is mathematically incon-
sistent. Such increasing solutions have been known since the
work of Thomson [26], who calculated the emission of an
ideally conducting sphere. (For some reason, it has not been
noticed that in constructing a scattering matrix as a function
of the complex propagation constant, such exponentially
increasing solutions also inevitably appear.) This apparent
mathematical inconsistency, is removed by passing to non-
stationary scattering, for example, to a decay; the exponential
increase with moving away from the system is cut off by the
exponentially decreasing time-dependent coefficient; as a
result, the decay front moves with a limited amplitude. We
also note that an essential advantage of constructing the
scattering matrix in the complex frequency plane is the
possibility of using causality relations.

The linear system eigenmodes are the nontrivial solutions
of the equation

Bout � S�o; k�B in ; �1�

which correspond to the zero vector of the amplitudes of the
incoming waves Bin. To find the eigenfrequencies of the
system, it is necessary to find the scattering matrix on the
complex plane. The causality principle ensures the absence of
singularities in the scattering matrix on the upper half-plane
of complex frequencies o; but the S matrix can have poles at
o � Oÿ ig; g5 0, including those on the real axis. Such poles
correspond to the decay of the mode in time at a rate
proportional to / exp�ÿiOtÿ gt� as t!1, and g deter-
mines their inverse lifetime. For 0 < g5O, these modes are
associated with sharp changes in the transmission spectra of
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the photonic crystal structure and with a strong resonance
increase in the field near it.

For each fixed value of the wave vector in the k plane, S
matrix (1) as a function of o on the complex plane can be
obtained by an analytic continuation from the real o axis on
which it is defined uniquely [20]. We note that the analytic
continuation of the Smatrix from the real o axis to the lower
half-plane depends on the choice of the axis interval limited
by the points of opening of diffraction channels from which
this continuation is performed. We consider this problem in
more detail.

A two-dimensional diffraction grating couples the inci-
dent electromagnetic wave with a frequency o and a wave
vector k � �kx; ky; kz�,

kx � o
c
sin# cosj; ky � o

c
sin# sinj; kz � o

c
cos# ; �2�

to all Bragg harmonics with the same frequency o and the
wave vectors

k�G;a � �kx;G; ky;G � kz;G; a� ; �3�

where

kx;G � kx � Gx ; ky;G � ky � Gy ; �4�

kz;G; a �
�����������������������������������������������������������������
o 2ea
c 2
ÿ �kx � Gx�2 ÿ �ky � Gy�2

r
; �5�

(a � v for the vacuum (ev � 1) and a � s for a substrate), and

G � 2p
d
�gx; gy; 0�; gx; y � 0;�1;�2; . . . �6�

are the vectors of the reciprocal 2D lattice. In what follows,
the following rule for choosing the square root sign is used:
Re

����
A
p

5 0 for all complex A, and Im
����
B
p

> 0 for ImB � 0
and ReB < 0.

For a transparent nonabsorbing substrate, Im es � 0.
Under this condition, Bragg harmonics (3), depending on
the frequency of the incident light o (real number), are either
propagating (Im �kz;G��0) or exponential (Re �kz;G� � 0).
Below, the harmonics that exponentially increase (exponen-
tially decay) when moving away from the PCL are called
exponential (increasing or decaying). They should not be
confused with the damped solutions for a two-dimensional
photonic crystal inside the forbidden band. If k 2

z;G; a > 0,
a � v; s, then the corresponding harmonics are the non-
damped propagating solutions both in the vacuum and in
the substrate. If k 2

z;G; v < 0 and k 2
z;G; s > 0, the harmonics are

exponential in the vacuum and propagating in the substrate.
Finally, if k 2

z;G; a < 0, then the corresponding harmonics are
exponential on both sides of the PCL.

Thus, the k�G; v and kÿG; s harmonics on the real o axis,
depending on whether the diffraction channel that corre-
sponds to the reciprocal lattice vectorG is open or is not open,
are the solutions that either propagate toward the PCL or
exponentially increase when moving away from it. They form
a set of `incoming' waves.

On the complex o plane, the standard definition of the
complex root in (5) for the `propagating' harmonics, i.e., for
Re k 2

z;G; a > 0, has a cut below the negative real semiaxis (i.e.,
at Re k 2

z;G; a < 0) and implies an analytic continuation of
kz;G; a into the lower half-plane when k 2

z;G; a intersects the
positive real semiaxis, i.e., for open diffraction channels.

However, this cut prevents the analytic continuation of
kz;G; a into the lower half-plane for closed diffraction
channels. For these, it is therefore necessary to choose a cut
in the definition of the square root differently, for example, to
draw the cut under the positive real axis, as this is always done
in the resonance theory.

Because the question of whether k 2
z;G; a intersects the

positive or negative real semiaxis as o is shifted into the
lower complex half-plane is equivalent to the question of
whether the G diffraction channel is open or not at a given
energy, the choice of the position of the square root cut is
limited to the segment of the real axis of energies located
between the adjacent diffraction thresholds.

The distribution of the amplitudes of the outgoing waves
can be found by solving the homogeneous linear set of
equations

RX � 0 ; �7�

where R � Sÿ1. As is well known, a homogeneous set of
equations has a nontrivial solution only if its determinant is
equal to zero. Therefore, dispersion curves are typically found
by solving scalar equations equivalent to the vanishing
condition for the determinant of the inverse scattering matrix
as a function of o and k. But in numerical calculations, it is
much more convenient to use the method of linearization of
the inverse scattering matrix (a variant of the multidimen-
sional Newton algorithm), which is as follows.

Instead of solving a dispersion equation nonlinear in
frequency,

detR�o; k� � 0 ; �8�

which gives the spectra of eigenmodes o�k� for linear system
(7), it is necessary to calculate the inverse scattering matrix
and its derivative with respect to energy at a certain point o0

(for example, at the point where a certain state is obtained in
the approximation of the empty lattice)

R0 � R�o0�; R 00 �
qR
qo

����
o�o0

: �9�

We then obtain

R�o� � R0 � �oÿ o0�R 00 : �10�

Instead of solving system (7), we can, as the first iteration, find
nontrivial solutions for the linear approximation of the
inverse Smatrix in (10):ÿ

R0 � �oÿ o0�R 00
�
X � 0 : �11�

It can be seen that the last equation is equivalent to the linear
problem for eigenvalues

ÿ�R 00�ÿ1R0X � �oÿ o0�X : �12�

The computational effort for solving this linear problem is
typically less than that required for calculating the inverse
scattering matrix R. As a result, the 4Ng eigenvalues dj are
found, which give approximate values for the solutions of
Eqn (7): Oj � o0 � dj. The closer to the point of linear
expansion o0, i.e., the less the value of dj, the more precise
these approximation become.
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The choice of the linear expansion point for the next
iteration depends on which mode is sought and, correspond-
ingly, which of the approximate solutions we should shift to.
Typically, three iterations are found to be already sufficient
for finding the nearest eigenvalue with a relative accuracy
better than 10ÿ5.

The advantages of this method are obvious; instead of the
repeated cumbersome calculation of the S matrix and the
search for zeroes of the nonlinear scalar function of energy
detR�o; k�, which contains no information about the
structure of the mode, we can implement the search by taking
the structure of approximate modes into account, which
allows a virtually complete automatization of data proces-
sing.

Furthermore, the `remote' eigenvalues Oj and the corre-
sponding vectors X j allow judging on the qualitative
structure of the spectrum and symmetry of resonance states,
because the procedure described preserves all the symmetry
properties of the Smatrix.

If X is an eigenvector and and D is the eigenvalue of the
matrix ÿ�R 00�ÿ1R0, then by definition we have

ÿ�R 00�ÿ1R0X � XD : �13�

It follows from (13) that

R0 � ÿR 00XDXÿ1 : �14�

Substituting this expression in (10), we obtain approxima-
tions for R�o� as

R�o� � R 00X�oÿ o0 ÿ D�Xÿ1 ; �15�
and for the matrix S�o� � Rÿ1�o� as

S�o� � X�oÿ o0 ÿ D�ÿ1�R 00X�ÿ1 : �16�

If we now choose o0 to be the resonance energy of the
multiplicity n found above, then the first n values Di; i become
zero and relations (16) allows explicitly isolating the reso-
nance singularity in the scattering matrix.

We note in conclusion that in the case where the analytic
continuation of the S matrix into the lower half-plane from
the chosen interval of the realo axis has poles whose distance
to the diffraction thresholds is more than the distance to the
real axis, then in order to analyze the optical properties of the
system in this energy range, it suffices to examine only the
analytic continuation of the S matrix from the selected
interval. For example, this approach was used in [27] for an
analysis of the manifestation of cell symmetry in the
resonance features in the reflection spectra of PCLs. As an
illustration of the capacity of this computational method,
Fig. 1 shows the energies and the quality factors of the quasi-
waveguide modes of a PCL schematically depicted in the inset
in Fig. 1b (see also [29]). On the other hand, near the cutoff
frequency of the quasiwaveguide mode, the poles of the
scattering matrix closely approach the diffraction thresholds
and begin to affect the spectral dependence of the S matrix
elements on the adjacent intervals of the real o axis. Such
behavior was first analyzed in [30].

Thus, we have demonstrated a very efficient method of
calculating eigenfrequencies, radiation widths, and the dis-
tribution of fields of quasiwaveguide modes in photonic-
crystal layers of a finite thickness, which is based on the
scattering matrix formalism.
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