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order for (D, F)5M to two sets of the fourth order. In this
case, as a result of the hybridization of electric and magnetic
components, there appear individual resonances determined
by the vanishing the factor ¢ + 1 in the electric components.
The renormalization factors G, which are responsible for the
collective effects, also change; however, because of the
retention of the polarization degeneracy, the new GFH
components are then determined by only quasistatic fields,
as before.

If we take the gyrotropy into account, then in the dipole
approximation, the system analogous to (6) remains a general
system of the eighth order, and hybridization must also occur
in the vector x and y components of the electric and magnetic
dipole moments, causing a mixing of the equations for the x
and y projections of the fields and dipole moments. In the
dipole components D1, all the resonances are then present,
both individual and collective. Because these resonances are
shifted in the different components due to the gyrotropy,
resonance effects of the polarization plane rotation must be
observed in both the reflected and the transmitted radiation.
Especially promising for the enhancement of the magnetoop-
tical effects seems to be the diffraction resonance; because of
the presence of singularities in frequency in the derivatives of
the excitation coefficient of the open channel, the difference in
the excitation coefficients of the left-handed and right-handed
components are anomalously large, which should lead to
anomalously strong Kerr and Faraday effects. It is well
possible that a significant enhancement of magnetooptical
effects observed recently in experiments [17] is connected
precisely with this mechanism.

5. Conclusions

We have considered the influence of nanoinhomogeneities on
the magnetooptical effects in ferromagnetic films. It has been
demonstrated that as a result of the retardation of waves in
nanowaveguides and the presence of individual internal
resonances in the waveguides and collective effects of multi-
ple scattering, the magnetooptical effects can be considerably
enhanced. We expect that the effects of a resonant enhance-
ment of magnetooptical effects can be used for creating new
devices for the recording and processing of information and
for the diagnostics of magnetic states in composite ferromag-
netic films.
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Superresolution and enhancement
in metamaterials

A N Lagarkov, A K Sarychev,
V N Kissel, G Tartakovsky

1. Introduction

We discuss the optical and microwave properties of artificial
materials that can have negative dielectric and magnetic
constants simultaneously. Backward electromagnetic waves
can propagate in such metamaterials, which leads to a
negative refraction. We discuss some unusual properties of
metamaterials, in particular, the effect of superresolution.
The large losses predicted in such materials in optics can be
compensated by using an amplifying laser medium. We also
consider the possibility of designing a nanolaser with a size
several dozen times less than the wavelength of light. This
article is intended as a general introduction to this thriving
field.

More than 100 years have passed since Lamb’s work
appeared [1], where he first noted the possibility of the
existence of backward waves, i.e., unusual wave processes
with oppositely directed phase and group velocities. The
properties of backward electromagnetic waves were also
discussed by Schuster [2]. Almost simultaneously, in the
article “Growth of a wave-group when the group velocity is
negative,” Pocklington [3] showed that in a medium that
supports backward waves, a point source excites convergent
waves, and the group velocity of waves is directed from the
source. These works did not attract much attention for almost
40 years, until the well-known work of Mandel’shtam [4] was
published, in which he predicted a new physical phenomenon,
the negative refraction. This phenomenon can exist only in
the case where the refracted waves propagate in a medium
that supports backward waves. A discussion of article [4] can
be found, for example, in recent work [5].

The next important step was made by Sivukhin in Ref. [6],
where it was first shown that in a medium with simultaneously
negative dielectric (¢) and magnetic (u) permeabilities, the
group and phase velocities of the wave are oppositely
directed. Until the appearance of Ref. [6], this sufficiently
fine circumstance remained unnoticed, possibly because the
wave equation preserves its form in the case of a simultaneous
change of the signs of ¢ and p.
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The work by Veselago [7] became a revolutionary step in
the study of negative refraction; the idea of a completely
original lens was suggested there based on a surprising
property of the plane-parallel layer of a material with
& = i = —1 (which is now called a metamaterial) to focus the
image of an object placed in front of it. Veselago also noted
that the optical properties of a metamaterial with negative ¢
and p can be described by introducing a negative refractive
index. Moreover, in the electromagnetic wave propagating in
such a metamaterial, the electric field E, the magnetic field H,
and the wave vector k form a left-handed triple. In all materials
known at that time, these vectors formed a right-handed
system. Among other predictions made by Veselago, we
mention the change in sign of light pressure in a metamaterial
with a negative refractive index. Veselago’s work was much
ahead of its time. More than 30 years passed after the
publication of Ref. [7] until a ‘big bang’ — the appearance of
numerous works on metamaterials— occurred, initiated by
Pendri [8], who showed that Veselago’s lens has an even more
remarkable property: it can create an image of a source
without the usual distortions on the wavelength scale. This
means that such a lens gives an image whose quality is not
confined by the diffraction limit. It is therefore frequently
called a superlens. Pendri explained this phenomenon by the
amplification in the medium with negative ¢ and u of waves
that exponentially decay in the usual optical materials and
media. The first experiment that demonstrated such a super-
resolution was performed in 2003 [9, 10].

We note that materials with negative ¢ and u were
generally developed and used long before the appearance of
Pendri’s work. It suffices to recall that the majority of well-
conducting metals (gold, silver, aluminum, etc.) have a
negative dielectric constant in the visible and infrared
spectral ranges. On the other hand, the phenomenon of
ferromagnetic resonance, which has been known already for
many decades, is very frequently accompanied by the
appearance of a negative magnetic permeability. But it is
only after the appearance of [8] in 2000 that the creation and
study of metamaterials with simultaneously negative ¢ and u
became a new scientific avenue, in which dozens of research-
ers in many countries worldwide now work.

We pause briefly at the history of metamaterials. In 1952,
a monograph was published [11] that contained a chapter
devoted to composite materials used for the optimization of
the work of radio antennas. To create artificial magnetic
permeability, it was proposed to use conducting inclusions in
the form of a horseshoe or in the form of a ring resonator with
a cut. The equations given in [11] demonstrate the typical
resonant behavior of u with a negative value at high
frequencies. In 1990, monograph [12] was published in
Russia, summarizing the results of some studies on the
electrodynamics of such composite materials performed at
the Institute of Theoretical and Applied Electrodynamics,
Russian Academy of Sciences. The results of the further
development of this work were published in [13-15]. In [14],
experimental studies were described of the dielectric constant
of metamaterials containing pieces of metallic microwires
(microdipoles) that resonate in the microwave range. Two
different values of the length of the microwire pieces were
chosen that ensured resonance at two frequencies, and a
composite material was demonstrated that had two minima
in the frequency dependence of the dielectric constant, both
having negative values. The position of the minima is
determined by the different length of the conducting inclu-

sions used in the mixture. In [16], it was shown that the
inclusions in the form of a pair of conducting cylinders allow
obtaining a nonzero magnetic permeability at optical fre-
quencies, which later served as the basis for creating artificial
magnetism in the infrared and visible ranges. In 1997 [17], as
an outgrowth of this work, experimental data were obtained
for a mixture with inclusions in the form of bifilar spirals with
negative ¢ and u, and equations were also proposed that
satisfactorily reproduced experimental data. These studies
were not aimed at obtaining a negative refraction but were
part of a systematic work on obtaining metamaterials with an
assigned frequency dispersion of the dielectric and magnetic
constants. In spite of the large freedom in the selection of
shape and concentration of the conducting inclusions, it
turned out that the Kramers—Kronig relations impose very
stringent constraints on the frequency dependence of the
effective parameters. One of the possible applications of
these studies is the creation of highly efficient materials for
the absorption of radio waves.

2. Superresolution in flat focusing systems

The ideas presented in [8] stimulated a detailed study of
superresolution mechanisms. In Refs [18-24], which
appeared almost simultaneously, it was shown that achieving
superresolution requires metamaterials with extremely low
losses. In [22, 23], it was noted that the negative influence of
Ohmic losses can be substantially reduced in a very thin
Veselago lens; therefore, a superresolution can also be
achieved under realistic conditions, with the use of accessible
metamaterials [9, 10]. In Ref. [23], it was also shown that the
focusing and superresolution in a Veselago lens, in contrast to
conventional lenses, can be achieved even with a small size of
the plate (aperture), which can even be shorter than the
wavelength.

In a typical Veselago lens made of a modern metamaterial,
the size of the conducting inclusions is comparable to the lens
thickness. Therefore, the concept of effective parameters (for
example, dielectric and magnetic constants) must be used with
care. It has been shown in [16, 25, 26] that for planar
metamaterials containing strongly elongated conducting
inclusions, the concept of a dielectric constant can be
introduced only if the thickness of the material layer exceeds
a certain critical value. The distribution of an electromagnetic
field in the lens also differs significantly from that obtained in
calculations with the use of effective parameters.

Taking the above considerations into account, we selected
a flat lens consisting of a single layer of resonators for
experiment [10] (Fig. 1). This structure can hardly be
considered a plate of a uniform material, not least because it
is not possible to clearly define the boundaries of the material
in the direction perpendicular to the plate. In a computer
model that we developed to describe the operation of the
planar superlens, we used the direct solution of the Maxwell
equations rather than the effective parameters. In the case
under consideration, i.e., for a metamaterial consisting of
wire inclusions, solving the Maxwell equations was reduced to
solving Pocklington-type equations, which are based on the
thin-wire approximation with capacitive load. In particular,
the double-coil short spiral used as the inclusion in the
metamaterial can be approximated by a metallic ring with a
capacitor inserted into the ring break.

In calculations, we also took the finite conductivity of the
metal and the corresponding skin effect into account. Our
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Figure 1. Distribution of inclusions in a metamaterial plate.

computational programs allowed calculating the electromag-
netic fields generated by different sources both in a finite set of
resonators and in an infinite two-dimensional periodic
system.

The calculations not only reproduce the effects of focusing
and superresolution but also allow comparing the electro-
dynamic properties of a real metamaterial with those of an
ideal completely uniform metasubstance. In particular, it was
shown that a plate consisting of only one layer of resonators
partly demonstrates the properties of a plate made of an ideal
metasubstance. For example, there is a frequency range
(positioned somewhat higher than the resonance frequency
of inclusions) in which superresolution is observed. This

phenomenon can be seen well in Fig. 2a, where the upper
part shows a 3D plot of the electric field strength and the
lower part shows contour lines calculated both inside and
outside the plate. For comparison, Fig. 2b shows the
distribution of the field of the same sources in free space. All
distances in the figures are given in dimensionless units, i.e.,
they are multiplied by k = 2nt/A.

On the whole, the plate of our metamaterial can be
described as a device that supports backward waves, because
a computer simulation indicates the presence of a zone near
the plate where the phase and group velocities have opposite
directions. However, there is an important difference in the
distribution of the local field in a layer of resonators and in an
ideal metamaterial. For example, in an ideal uniform
metamaterial with ¢ =y = —1, the phase and group velo-
cities of the propagation of electromagnetic waves are
opposite to each other only inside the metamaterial layer.
The excitation of currents in the layer of resonators forming
a real metamaterial leads to the appearance of a spatial zone
of backward waves that extends beyond the geometric
boundaries of the real metamaterial (the details of the
calculation are described in [27, 28]). It is also known [10,
29] that when a plane-parallel layer of an ideal metamaterial
is excited, the field energy is concentrated near the farther
(relative to the radiation source) face of the layer. This
effect is precisely the physical basis of the superresolution
phenomenon. In the plate of resonators, an accumulation of
energy also occurs, but this energy is concentrated only near
specific elements. In what follows, we consider the physical
causes for superresolution in a real metamaterial consisting
of a planar layer of ringlike resonators and elongated
conducting inclusions.

Asis known, the electromagnetic field radiated by a point-
like source can be represented in the form of a three-
dimensional spectrum of plane waves. The coefficients of
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Figure 2. Field of linear sources: (a) in the presence of a metamaterial plate and (b) without such a plate.
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wave propagation in this case take real and imaginary values.
The harmonics with real propagation coefficients are the
usual propagating waves. The harmonics with imaginary
propagation coefficients describe a wave process that is
exponentially damped with distance. To describe propagat-
ing waves, a classical beam approach is frequently used. Light
beams are focused by a usual optical lens and give an image of
an object with a spatial resolution of the order of the light
wavelength. For obtaining superresolution, it is necessary to
supplement this image with that part of the electromagnetic
field that is lost in the damped harmonics.

The problem lies in the fact that exponentially decaying
oscillations do not interact with a usual lens so as to be
focused into an image, and their amplitude unavoidably
decays both in free space and in the usual transparent
material. But for obtaining a superresolution, the relation
between the amplitudes of the propagating and evanescent
waves at the focus must be the same as near the source.
According to Pendri’s original result, the damped harmo-
nics in the plate of a metamaterial with a negative refractive
index begin to increase exponentially when approaching the
far (unilluminated) face. In the particular case where
& =u = —1, the relation between the amplitudes of the
propagating and damped waves is restored at the focus,
where an ‘exact’ image of the object is obtained, which is
unrestricted by the diffraction limit. Therefore, we can
regard a Veselago lens as an optical device that transmits
propagating waves without distortions, but amplifies har-
monics with imaginary propagation coefficients, preserving
the necessary phase relation.

In Pendri’s work and in several dozen subsequent works,
objects made of an ideal metasubstance uniquely character-
ized by their ¢ and pu were examined. We here consider a
‘microscopic’ theory of superresolution in a metamaterial
consisting of electric and magnetic resonators.

For simplicity, we consider a single layer consisting of
metallic needles, which play the role of electric resonators,
and of split rings, which play the role of magnetic resonators.
It is important that the propagating and damped harmonics
excite the resonators differently. The difference appears
because the electric E and magnetic H fields are in phase in
the propagating waves, and are shifted by 90° in the damped
harmonics. The electric and magnetic resonators are excited
differently by the propagating and decaying oscillations and,
correspondingly, differently emit the secondary electromag-
netic field.

Therefore, the electromagnetic response of an electric-
resonator-magnetic-resonator pair depends on the nature of
the exciting wave, as in the Veselago lens. For example, the
current in the resonators (Fig. 3a) determines the magnitudes
of the equivalent electric and magnetic moments (Fig. 3b)
and, eventually, the magnitudes of the effective ¢ and u.
Further studies [27, 28] showed that with the correctly chosen
phase and amplitude characteristics of the dipoles (equiva-
lents of the resonators), the system of electric and magnetic
dipoles gives clear separate images of point sources in the
region behind the plane of a plate made of such a metamater-
ial; the spacing between the sources is in this case much less
than the wavelength. The frequency at which the super-
resolution effect appears is 3—-5% higher than the frequency
of the electric and magnetic resonances. If it were possible to
introduce effective dielectric and magnetic constants, then
this frequency range would correspond to negative values of ¢
and u.

Figure 3. (a) Electromagnetic excitation of a pair of interacting resonators
(electric and magnetic). (b) Equivalent electric and magnetic dipoles.
(c) Directivity diagram for the emission of this pair.

3. Magnetic plasmonic resonance in optics.
Active metamaterials

In the microwave range, as was shown in Section 2,
metamaterials with a negative refractive index are prepared
using split ring resonators or spirals, which ensure negative
values of the effective magnetic permeability, Re u < 0. In the
microwave range, the metals can be considered almost ideal
conductors, because the skin depth (~ 1—10 pm) in them is
much less than the characteristic size of metallic inclusions in
metamaterials. The magnetic response is reached in the
vicinity of the LC resonance in spirals or in split rings [17,
30, 31]. Consequently, the frequencies of the LC resonances
are completely determined by the shape and sizes of
inclusions. The resonance appears under specific relations
between the size of the split ring and the wavelength of the
exciting field. Subsequently, we call the LC resonances in the
ideally conducting structures the geometric (GLC) reso-
nances.

The situation changes dramatically in the visible and
infrared ranges, where the nanosize metallic inclusions
behave quite specifically when their thickness becomes less
than the skin depth. For example, a plasmonic resonance
appears as a result of collective oscillations of electrons.
Because of these oscillations, the dielectric constant of metals
ém 1s negative in the visible and infrared ranges. The
plasmonic resonances cause many interesting optical phe-
nomena, e.g., the propagation of surface plasmons, anom-
alous absorption, giant Raman scattering, and light super-
transmission (see, e.g., [31, 32]).

The near-field superresolution also appears as a result of
the excitation of plasmons in metamaterials with ¢ = —1 [6].
The near-field superresolution can be explained on the basis
of the elementary solution of a problem in electrostatics (see,
e.g., book of problems [41], problem no. 209). The plasmonic
response of metals is the basic reason why the GLC resonance
method is not directly applicable in optics.

Optical metamaterials with a negative refractive index
were first demonstrated in [34-36]. In [34, 35], a plasmonic
resonance that appears in a system of parallel nanowires was
used. Such resonances were first examined in our previous
works [16, 31, 37]. In [36], a negative real part of the refractive
index was observed at the wavelength 2.0 um in a system
consisting of two parallel gold nanofilms with the openings of
a size much smaller than the wavelength. The metallic
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connections between the openings play the role of nanoan-
tennas analogous to pairs of nanowires.

The first work on obtaining and studying optical
metamaterials was continued by other successful experi-
ments [38-43]. For example, the creation of a prism from an
optical metamaterial and the demonstration of a negative
deviation of a light beam were described in [43]. The negative
optical magnetic permeability was first announced in [44]. But
we believe that the geometry used in that experiment (vertical
metallic columns perpendicular to the film plane) does not
allow exciting magnetic resonances in the case of normal
incidence of light on the film. Indeed, irrespective of the
polarization of the incident wave, the electric field is
perpendicular to the axis of the metallic columns and cannot
excite closed electric currents that flow in opposite directions
along the metal inclusions. Some other problems related to
the experiment in [44] were discussed in [45].

As was noted above, the losses are most important in the
microwave range. With decreasing the wavelength (shifting it
toward the visible range), the Ohmic losses become the
decisive factor limiting the application of metamaterials [46,
47]. In particular, these losses radically decrease the chances
of obtaining superresolution and make the creation of a flat
optical Veselago lens with a superresolution virtually impos-
sible. In other optical instruments based on the use of
metamaterials, such as a hyperlens [48—52] or an invisibility
device (a ‘cloak’) [53-56], the losses do not lead to the
disappearance of efficiency, but sharply reduce the optical
power of promising instruments. The problem of losses can be
solved by using amplifying laser materials.

A plasmonic resonance in a metallic nanoantenna placed
in an amplifying medium can be used for the excitation of
magnetic and electric dipoles. The amplifying medium
increases the amplitude of the excited dipoles and can in
principle lead to the complete compensation of losses in the
metamaterial. Because the enhancement of the electromag-
netic field in a laser material implies the presence of an
external energy source, this means that a metamaterial
including an active medium is a dissipative system. Conse-
quently, the substantial limitations imposed by the Kronig—
Kramers relations on the behavior of the effective parameters
become unobvious.

As an example of the use of an amplifying medium, we
consider the phenomenon of the magnetic plasmonic reso-
nance (MPR) in an optical nanoantenna placed into such a
medium [69]. An MPR has a very important property: its
frequency depends on the structure of the nanoantenna but
not on its overall size. An MPR can be excited in a metallic
‘nanohorseshoe’ (Fig. 4). Structures of this form act as optical
antennas, concentrating electric and magnetic fields on a scale
that is much smaller than the wavelength of light. The
magnetic response of nanohorseshoes is characterized by the
magnetic polarizability oy, which exhibits a Lorentz reso-
nance: the real part reverses sign near the resonance frequency
and becomes negative, as is necessary for creating optical
metamaterials with a negative magnetic permeability.

The concept of a magnetic plasmonic resonance, which
leads to optical magnetism, is relatively new and, of course,
contradicts the known concept [57] of the impossibility of
magnetism in optics. However, this only seem to be a
contradiction: the authors of [57] mean the microscopic
magnetism, while the negative magnetism we discuss here
arises at a mesoscopic level, as a result of collective electron
motion.

=

1]

a

Figure 4. Nanoantenna in the form of a horseshoe (nanohorseshoe). The
parameters used in computer simulation: ¢ = 300 nm, d = 70 nm, and
b =34 nm.

Our discussion in what follows is based on the considera-
tion of the collective effects in a metallic nanohorseshoe. The
results obtained can easily be extended to other antennas.

We consider the interaction of a nanohorseshoe with an
amplifying medium simulated by a two-level amplifying
system (TLS) represented, for example, by quantum dots or
molecules of a dye. The metallic horseshoe that interacts with
the TLS is arguably the simplest plasmon system; based on
this system, we can study the basic properties of active
metamaterials, including processes of nanolasing. The non-
radiative energy transfer from the active medium to quasi-
static plasmonic oscillations has been discussed in [58]. The
processes of propagation of a surface plasmon—polariton at
the boundary between a metal and an active medium have
been studied since the 1960s [59-63]. The superresolution in
the near-field lens due to the compensation of losses in the
presence of an amplifying medium was discussed in [64].
Work on active metamaterials performed before 2006 was
discussed in review [41]. The first experimental and theoretical
work on plasmonic resonance in metallic nanoparticles
placed into an active medium was performed in [65-67]. The
work that is nearest to our approach is [68], where a dipole
laser was considered.

We have already mentioned that the simple compensation
of losses in metamaterials does not necessarily lead directly to
an increase in superresolution. Nevertheless, active metama-
terials offer new possibilities for the optimization of the
operation of superresolution optical systems. The active
metamaterials are also important for practical applications
different from those related to superresolution. For example,
the plasmonic nanolaser discussed in Section 4 is a source of
coherent emission, whose size can be several dozen times less
than the wavelength of light. Such a nanolaser can be
regarded as a nanogenerator for the power supply of future
plasmonic devices, e.g., those intended for information
processing.

We consider a metallic nanohorseshoe with a TLS
introduced into it. The population inversion in the TLS is
ensured by external pumping. The pumping can be optical or
electrical, when the carriers are injected into the TLS, for
example, into a quantum dot, from the surrounding material.
The TLS interacts with the electromagnetic field that is
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excited inside the nanohorseshoe. In the equations of motion,
we use a phenomenological description of pumping, char-
acterizing the TLS by the value of the stationary inversion of
the population. In other words, we characterize the TLS by
the level of inversion that would exist if the TLS did not
interact with the nanohorseshoe. An external AC magnetic
field H = (Hy(¢),0,0) is applied in the plane of the nanohor-
seshoe, as is shown in Fig. 4. The displacement currents in the
gap of the horseshoe close the circuit.

The closed electric current /(z) flowing in the nanohorse-
shoe generates the magnetic field H(z) = 4nl(z)/c in the gap,
where I(z) is the density of the surface current in the upper
plate of the capacitor (i.e., in the plate oy in Fig. 4) and cis the
speed of light. To obtain a closed equation for the current, we
integrate the Maxwell equation rotE = -H /¢, which
expresses the Faraday induction law, along the contour
aByd and obtain the equation

{21(2)2—67(]} Az =— d(‘”‘ ()+H0>Az, (1)

oz c

where Az is the distance between the points o and  along the
integration contour shown in Fig. 4, dots denote time
derivatives, Z = 1/(ob) = 4in/(enwb) is the surface impe-
dance, and &, is the complex dielectric constant of the metal.

We substitute the potential difference U(z) = E,(z)d =
—4n(Q(z) + P(z)) d in (1), where Q(z) is the charge per unit
area and P(z) is the polarization of the medium inside the
nanohorseshoe. We then differentiate both parts of Eqn (1)
with respect to time and use the charge conservation law
01/0z = —0I,/0z = —0Q/0t, where I is the current in the
lower plate. Thus, we obtain the basic equation for the current
in the nanoantenna:

0%1(z,1) 0P(z,1) Z

1 [4rm . ..
A %{7“2)“{0]'
2)

This equation is analogous to the well-known telegrapher
equation [57, p. 91]. For determining the polarization P, a
matter equation must be added to Eqn (2). The polarization
of the medium inside the nanohorseshoe is the sum of two
polarizations: P = P; + P,, where P =y E, is the usual
polarization of a dielectric and P, is the ‘anomalous’
polarization due to pumping of the active medium; j,
denotes the usual (nonresonant) polarizability of the med-
ium. We substitute P = y;E, + P, in (1) and obtain

0%1(z,1) B 0Py (z, 1) Zeg
0z2 oz  2nd

i = [ i)+ .
®)

where the polarizability y; now enters the ‘regular’ part of the
dielectric constant g = 1 4 4my;,.

We first consider the simplest case where the laser
polarizability P, is linear in the applied field, P> = 3, E,.
This is possible if we are far from the generation threshold and
therefore the interaction with the plasmons does not lead to
the depletion of the upper level of the TLS. We also assume
that the external field oscillates with a frequency o,

Hy(t) = Hyexp(—iwt). Under these assumptions, Eqn (3)
takes the form
0%1(2) ) eqwk
= —g%(z) - 22 4
=gl -y, )

where the coordinate z varies in the range 0 < z < a, and the
coordinates z = 0 and z = a correspond to the beginning and
end of the nanohorseshoe, such that d/(0)/dz = I(a) = 0;
k = w/c; and the wave vector of the plasmon g is determined
from the equation

(5)

where the dielectric constant includes both the ordinary part
and the contribution of the TLS. The second term in the right-
hand side of Eqn (5) can be represented in the form
~ k2(8/b)?, where b is the characteristic size of the system
(for example, the thickness of the capacitor plate), and o is the
skin depth. If 6 < b, which is typical of the microwave range,
we obtain the usual GLC-antenna resonance. In the opposite
case k2bd|en| <1, the parameter g = /—2¢q/(embd) is
independent of the absolute length of the nanohorseshoe
and does not depend explicitly on the frequency. This is a
situation characteristic of the MPR, which occurs for the
nanohorseshoes in the visible range [69]. It is interesting that
the electric field is nonpotential under the conditions of MPR;
the E, component depends on the coordinate z, while the
component of the electric field £, depends on the coordinate
y. The presence of a solenoidal optical field at scales much
smaller than the wavelength of light is a characteristic feature
of the MPR.

The electric current /(x) found from Eqn (4) allows
calculating the magnetic moment of the nanohorseshoe. The
magnetic moment m has a resonance if the condition
ga = m/2 is satisfied as the magnitude of m becomes large.
We note that the resonance condition is satisfied not for the
absolute size of the nanohorseshoe but for the ratio of its
length to its width. For a typical metal, the frequency
behavior of the dielectric constant is %uahtatlvely described
by the Drude formula &y = —(wp/w) (1 + o, )", where
w, is the plasmonic frequency and . is the rela.xa.tlon
frequency, which are estimated, for example, as
hw, = 9.6 €V and hiw; = 0.02 eV for silver. In this notation,
the magnetic moment of the horseshoe is written as
" bdwé 1

w2 1 —o/or — i +%4) /2

where the resonance frequency is w, = wpm4/bd/[8Re (¢q)a?),

V' is the volume of the horseshoe, »,, is the dimensionless loss
in the metal (%, = Imeéy/Reen ~ @, /o < 1), and %4 is the
dimensionless loss in the dielectric, also assumed to be small:
%g =Imeg/Reeg < 1.

Expression (6) for ay contains the factor bd/i? <1,
which is small for the nanohorseshoes; however, near the
resonance, the condition |ap| > 1 can be satisfied in the
visible and infrared ranges as a result of the high quality of
the MPR. The presence of a frequency range where the
magnetic polarizability ay is negative and large in magnitude
allows creating optical metamaterials with a negative mag-
netic permeability.

The distribution of the magnetic field in the nanohorse-
shoe for a frequency close to the resonance is shown in Fig. 5.
The behavior of the optical magnetic permeability for a
metamaterial consisting of nanohorseshoes is shown in
Fig. 6. If the dielectric is an active medium, then the
dimensionless losses %4 become negative under pumping.
This leads to a compensation of losses in the metal. As the

(6)

oM =
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Figure 5. Magnetic plasmonic resonance in a silver nanohoof excited by an
external magnetic field H.y perpendicular to the figure plane. The external
field wavelength is A = 1.5 pm; &g = 2. The magnetic field A inside the
hoof'is directed against the external field, which corresponds to a negative
polarizability.

losses are compensated due to the active medium and the total
losses % = »y + %q decrease, the absorption line (dashed
curve in Fig. 6) becomes narrower. At some moment, the
losses become negative, which indicates the loss of stability.
The metamaterial begins lasing.

4. Interaction of plasmons with
an amplifying medium. Plasmonic nanolaser

To explain the nature of plasmonic lasing, we consider the
microscopic model suggested in [70-72]. In this model, the
equations of motion are derived from quantum mechanics,
but they are solved without taking the fluctuations into
account and with quantum mechanical operators regarded
as complex quantities. This approximation allows obtaining
an analytic solution and carrying out a qualitative analysis of
the system shown in Figs 4 and 7.

The Hamiltonian of a nanoantenna interacting with a
TLS is given by the sum of Hamiltonians H = Hy + Hrrs+
Vina + ', where H, and Hyrs respectively describe the
nanohorseshoes and the TLSs, Viy = —P2(E,)Sd=
—p(E,) NSd is the operator of the averaged interaction
between a TLS and a nanohorseshoe, p is the dipole moment
operator, N is the density of TLSs in the nanohorseshoe, S is
the area of the nanohorseshoe, d is the distance between the
plates of the capacitor, and I' describes the effects of
dissipation and pumping.

The electrons and the related electric field oscillate with a
frequency w close to the MPR frequency. These oscillations
are plasmons in the nanoantenna. We regard the electric
charge and field as classical quantities.

We introduce operators b and b corresponding to the
transition between the excited and ground states of the TLS.
Then the Hamiltonian of the TLS takes the form
Hrrs = haybthb. The operator of the dipole moment can be

Hys My %g =0
20 L ; 1M
H!
i
10 - 1
I
0 | I _b' ‘\
-
1.0 1.4 1.8 2.2
—10 4
20 - By by %4 = —0.01
10 1
H Il
HN
0 '*-N._"'
1.0 1.4 1.8 2.2
—10 | \ A pm
|
20 s f, %4 = —0.02
10 |
0 e
1.0
—10

W5 M, %4 = —0.005
20 i
i
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0 | L LY
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20 + H1s fs 24 = —0.015
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20 | M5 Mo, %4 = —0.025
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Figure 6. Effective magnetic permeability u = u; + iu, of a metamaterial made of silver nanohorseshoes placed in an active medium with the dielectric
constant &g = 4(1 +ixq), where the loss factor is negative (x < 0) because of the pumping of the medium. The nanohorseshoe parameters used in
computer simulation are ¢ = 300 nm, d = 70 nm, and b = 34 nm; the bulk concentration of the nanohorseshoes is p = 0.3. The real part of the magnetic
permeability g, is shown by the solid line, and the imaginary part u, is shown by the dashed line. Upon passing through the value »xq = —0.025, the

metamaterial loses stability and starts lasing.
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Figure 7. At plasmon oscillating in a nanohorseshoe (dotted lines); its
amplitude increases due to the interaction with excited two-level systems,
which give their energy to the plasmon.

written as

Py = Ibexp (—iwt) + IT* b exp (1wi) , (7)

where IT ~ (g|r|e) is the matrix element of the TLS dipole
operator. We also introduce the population inversion
operator D(t) = ng(t) — ne(t), where n.(r)=»b"b and
ng(t) = bb* are the respective operators of the population of
the upper and lower levels. We assume that the TLS oscillates
between the excited and ground levels with a frequency w that
is close to the frequency w, (hiw; is the difference between the
energy levels of the TLS).

Using known commutation relations between the opera-
tors b, b*, and n. 4, we can derive the Heisenberg equation of
motion for operators ihb = [b, H] and ihD = [D,H]. We
consider lasing as the process of oscillations of the electric
charge in the nanohoof even in the absence of an external
magnetic field. We assume that this is a stationary process,
i.e., the oscillation amplitude does not vary with time. Then
the equation for the charge and the equation for » and D can
be written as

(i04+7)g—1b=0,
D — Dy

(id+T)b—idDgs =0, (8)

—2id(g3b— q2b™) =0,

where ¢, = ¢/(SNII) is the dimensionless electric charge,
d=1— (/o) 7= (eh/leb(ofw) ~el/lchl. 4=
(w2—w)/w, [70-72], and the terms with I" and t respectively
take the processes of relaxation of the dipole moment and
population into account. In the ‘laser’ terminology, these are
the processes of transverse and longitudinal relaxation; Dy is
the value of the population that would be achieved by
pumping if the TLS did not interact with the nanohorse-
shoe. We assume that we are dealing with inversion, i.e.,
Dy < 0. Disregarding quantum fluctuations and correlations,
D and b can be considered complex quantities with the
replacement b+ — b*. The dimensionless constant is written
as

AnN|IIP

A
w,fin?

>0,

where N is the bulk density of TLSs and # is the refractive
index of the medium in which the TLSs are located, for
example, quantum dots. Equation (8) has a nontrivial
solution only if the following conditions, which are simulta-
neously the conditions of lasing, are satisfied:

A 5 5\ > AD,
2__° h 1 =0. 9
r .y’ <y> T ®)

The first condition gives the frequency of lasing, which always
lies between the MPR frequency w, and the TLS resonance
frequency ;. All terms in (9) are positive, except the
population in the second lasing condition. Consequently,
this condition is satisfied only in the case of inversion
ne > ng, when Dy < 0. According to the definition, Dy
cannot be less than —1, which corresponds to the case where
all the TLSs are in an excited state. Thus, we obtain the
condition necessary for lasing: 4/(I'y) > 1. As soon as the
second condition in (9) is satisfied, the interaction between the
TLS and the nanohorseshoe leads to coherent oscillations of
the electric charge, current, and magnetic moment even in the
absence of an external electromagnetic field.

The lasing condition can be expressed in terms of the
amplification coefficient G in the active medium located in the
nanohorseshoe. The amplification in the medium must be
large, and hence the inequality

GA
2nny

(10)

is satisfied, where y = ¢/ /|¢,| < 1is the dimensionless factor
of losses in the metal and n ~ 1 is the refractive index.

We note that the lasing condition depends on the
amplification in the active medium and on the losses in the
metal. We assume that this is a universal condition for the
operation of a plasmonic nanolaser with any configuration of
the metallic nanoantenna. For example, a silver nanoantenna
lases at the wavelength 1.5 pm if the active medium that fills it
has an amplification factor larger than G, ~ 5 x 103 cm™! at
this frequency.

We now consider the effect of an external magnetic field
on the operation of a nanolaser. A high-frequency magnetic
field excites currents in the nanohorseshoe and acts as a
driving force. In the absence of this force, the plasmonic
nanolaser, which should be regarded as a nonlinear oscillator,
self-oscillates and moves along its limit cycle with the lasing
frequency given by Eqn (9). When we apply an external force,
the plasmonic laser continues moving along the same limit
cycle but already with the frequency of the external force. In
other words, an external electromagnetic wave can retune the
nanolaser. This fantastic possibility requires further study.

5. Conclusions

We see that metamaterials offer new possibilities for devel-
oping different devices in the microwave and visible ranges,
such as focusing systems, nanolasers, absorbers, resonators,
and many other devices. The development of new electro-
magnetic materials, which starts from the construction of unit
cells with predetermined properties that may or may not exist
in nature, is a new technique that opens unique prospects. The
spectrum of the potential applications of metamaterials that
is discussed in the contemporary literature extends from
unique sensors of Raman scattering to the creation of
cloaking devices (‘magic caps’ and ‘magic carpets’). More-
over, work on the creation and analysis of mechanical (e.g.,
acoustic) metamaterials has actively been developed recently.
Nevertheless, we emphasize that in spite of all the progress
achieved in experimental and theoretical studies, no commer-
cially successful metamaterials or devices based on them have
been developed so far. This is partly connected with the
problem of losses, which was discussed in Sections 2 and 3.
We attempted to show that the physics of metamaterials is
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very interesting not only because of its attractive potential
applications but also in and of itself, and that many
fundamental problems remain unsolved to date.
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Application of the scattering matrix method
for calculating the optical properties of
metamaterials

N A Gippius, S G Tikhodeev

We consider the application of the scattering matrix formal-
ism for calculating the eigenfrequencies, radiation widths,
and field distributions of quasiwaveguide modes in photonic
crystal layers (PCLs) of finite thickness.

At present, investigations are being performed of one-
dimensional (1D) or two-dimensional (2D) periodic layers of
photonic crystals whose vertical geometry can be arbitrarily
complex [1-3]. Such PCLs have proved to be very interesting
and promising structures; they can be prepared by the modern
methods of layer-by-layer lithography; their optical proper-
ties are of practical interest in connection with their potential
compatibility with microelectronic devices.
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