
On 27 April 2009, in the conference hall of the Lebedev
Physical Institute, Russian Academy of Sciences, a scientific
session of the Division of Physical Sciences of the Russian
Academy of Sciences devoted to the problem of nanoplasmo-
nics and metamaterials took place. The following reports
were presented at the session:

(1) Tikhodeev S G, Gippius N A (Prokhorov Institute of
General Physics, Russian Academy of Sciences, Moscow)
``Plasmon±polariton effects in nanostructured metal±dielec-
tric photonic crystals and metamaterials'';

(2) Shubina T V, Ivanov S V, Toropov A A, Kop'ev P S
(Ioffe Physicotechnical Institute, Russian Academy of
Sciences, St. Petersburg) ``Plasmon effects in In(Ga)N-based
nanostructures'';

(3) Kurin V V (Institute of Physics of Microstructures,
Russian Academy of Sciences, Nizhnii Novgorod) ``Reso-
nance scattering of light in nanostructured metallic and
ferromagnetic films'';

(4) Lagarkov A N , Sarychev A K (Institute of Theoretical
and Applied Electrodynamics, Joint Institute of High
Temperatures, Russian Academy of Sciences, Moscow)
``Active optical metamaterials'';

(5) Gippius N A, Tikhodeev S G (Prokhorov Institute of
General Physics, Russian Academy of Sciences, Moscow)
``Application of the scattering matrix method for calculating
the optical properties of metamaterials.''

Summaries of reports 1±3 and 5 and of an article written
on the basis of report 4 are given below.
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Plasmon±polariton effects
in nanostructured metal±dielectric photonic
crystals and metamaterials

S G Tikhodeev, N A Gippius

In this report, we give a brief introduction to nanoplasmonics,
the optical properties of plasmon±polariton photonic crys-
tals, and metamaterials. In more detail, we analyze the

problem of determining the effective electromagnetic
response of thin layers of metamaterials of an arbitrary
symmetry, including gyrotropic ones.

Surface plasmons are collective oscillations of conduction
electrons of a metal excited by light near its surfaceÐ the
interface with a dielectric. Depending on the geometry of the
metal±dielectric structure, localized plasmons (in metal
clusters or pores inside metal with a size much smaller than
the wavelength of light, i.e., in nanoclusters) and delocalized
surface plasmons (on an infinite flat metal±dielectric inter-
face) are distinguished. However, even in the case of
delocalized plasmons, their excitation by light requires that
the metal surface be nanostructured. Therefore, this thriving
field of physics is frequently called nanoplasmonics.

In fact, nanoplasmonics has very long been used by
humankind. The localized plasmons in silver and gold
nanoclusters in glass ensure the extraordinary brightness
and longevity of the colored stained-glass windows of
medieval cathedrals. We can remember an even older
exampleÐ the famous Lycurgus Cup, which was made,
apparently, in Rome in the 4th century A.D. (now in the
British museum); it is also made from glass with metallic
nanoclusters. However, the truly thriving development and
application of nanoplasmonics started only recently in
connection with the development of nanotechnology and
computational electrodynamic methods [1±5].

Nanoplasmonics is attractive, first of all, because plas-
mons allow concentrating electromagnetic energy in small
volumes (in comparison with the wavelength of light).
Plasmons, having a giant dipole moment, are efficient
mediators in the interaction of these small volumes with
light. Furthermore, the properties of plasmons can be
controlled in extremely wide limits.

A detailed survey of the achievements of nanoplasmonics
is beyond the scope of this report. We only mention here that
one of the basic methods of controlling plasmons is con-
structing so-called polaritonic crystals. Polaritonic crystals
are artificial periodic media, in which optically active
electronic resonances exist together with photonic reso-
nances (which arise due to a periodic modulation of a
dielectric constant). The coupled photonic and electronic
resonances are conventionally called polaritons; therefore,
photonic crystals with interacting electronic and photonic
resonances are now called polaritonic crystals. Initially,
photonic crystals made of transparent dielectrics with light-
frequency-independent dielectric constants were studied [6±
9]. In the first polaritonic crystals, Bragg superlattices of
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semiconductor quantum wells were used [10, 11]. The role of
electronic resonances was then played by excitons in the
quantum wells. Later, exciton±polariton crystals with
another geometry were proposed, in the form of so-called
photonic-crystal slabs [12±14], i.e., planar waveguide layers
modulated by one-dimensional or two-dimensional lattices,
e.g., of depressions filled with a layered semiconductor with
strong excitonic resonances.

But polaritonic effects in modulated metal±dielectric
structures proved to be most interesting. The role of
electronic resonance is there played by localized or surface
plasmons. The first samples of such `polaritonic crystalline
layers' were investigated more than a hundred years ago;
however, they had a different name then, diffraction gratings.
The first plasmon±polariton effects were the resonance
anomalies found by Wood [15] in the optical spectra of
lattices created on the surface of a metal, and first explained
by the excitation of surface plasmons by Fano [16].

Subsequently, significant attention has been given to these
structures due to the detection of so-called anomalous light
transmission through a lattice of subwavelength holes in a
metal layer [17]. We also note the formation of plasmon±
waveguide polaritons in lattices of metallic nanoclusters or
nanowires on the surface of a planar dielectric waveguide
[18, 19], as well as interesting plasmonic effects in metal layers
with lattices of voids [20, 21].

It was recently revealed that when using ferromagnetic
materials (for preparing either a dielectric waveguide or
nanoclusters), extremely interesting magnetooptical effects
potentially important in applications [22, 23] appear in such
systems.

But the greatest burst of interest in metal±dielectric
polaritonic crystals arose in connection with the possibility
of designing artificial media, so-called metamaterials with a
controlled electromagnetic response, on their basis. Among
the possibilities discussed are metamaterials with a negative
refractive index [24] for creating unconventional new optic
devices and new methods of controlling light [3, 25±31].

A medium with a negative refractive index must have
negative dielectric and negative magnetic constants (a more
precise formulation for absorbing media: different signs of
the real and imaginary parts of the refractive index.) The
negative sign of the dielectric constant is ensured by the use of
a metal. To ensure a negative magnetic susceptibility,
structurization is required; it is necessary to ensure a
magnetoinductive resonance, which requires the presence of
circular current contours. A medium with a negative
refractive index was first realized for the microwave range
with the aid of split ring resonators [26]. Then it was
understood [27] that in the near-infrared and visible optical
ranges, the role of ring contours for the current can be played
by coupled localized plasmons, for example, based on double-
chain metallic nanowires. Metamaterials have been proposed
based on pairs of periodically perforated metallic layers, so-
called fishnet structures [28, 32], and media with a strong
natural optical activity [31, 33, 34] and with strong optical
nonlinearities [35, 36] have been created.

Metamaterials are short-period metal±dielectric plasmo-
nic crystals. The idea consists in the period of the metamater-
ial being less than the relevant wavelength of light. Then the
layer of the metamaterial in the far wave zone behaves as a
layer of a uniform substance; there is no diffraction, only
transmission, reflection, and absorption of light. The ques-
tion of correctly describing the effective electromagnetic

response of metamaterials is therefore very important [37,
38]. One of the methods to obtain the effective dielectric and
magnetic susceptibilities (e and m) of a metamaterial is the
parameterization of the experimentally measured or theore-
tically calculated coefficients of transmission and reflection of
a finite-thickness layer of a metamaterial [39, 40]. Below, we
briefly describe the scheme of this parameterization, which
becomes highly nontrivial in the case of a metamaterial of
lowered symmetry.

It is known that for a complete description of the
electromagnetic properties of a homogeneous medium
(including one without an inversion center, i.e., gyrotropic),
it is sufficient to introduce the nonlocal dielectric constant
tensor ei j�o; k� and to assume that m � 1 [37]. Such a
descriptionÐwith the aid of a nonlocal dielectric suscept-
ibilityÐ includes, as a special case, the traditional approach
to nongyrotropic media with the use of local ei j�o� and
mi j�o� 6� 1 generally accepted for describing media with a
negative refractive index.

We consider the most general case of a gyrotropic
metamaterial whose gyrotropy occurs exclusively because of
nanostructurization without an inversion center, while the
substances composing the metamaterial are nongyrotropic
(and there is no stationary magnetic field). Then, in addition
to the effective ei j�o� and mi j�o� tensors, it is necessary to
introduce local susceptibilities, which correspond to odd
terms in the expansion of the total nonlocal dielectric
susceptibility in the powers of k (beginning with the linear
term). These additional susceptibilities, which are sometimes
referred to as the coefficients of chirality w�o� and bianiso-
tropy b�o�, correspond to a linear coupling of the magnetic
induction B to the electric field E and of the electric induction
D to the magnetic fieldH [41±44].

It is known that a necessary condition for the existence of
such susceptibilities is the absence of both the inversion center
and time reversibility [45]. In the case of metal±dielectric
metamaterials, the first condition is ensured by the asymme-
try of the unit cell, and the second condition is always fulfilled
because metals are absorbing media.

As an example, we consider the case of a plane electro-
magnetic wave (propagating along the z axis) incident
normally on a layer of a metamaterial in the plane xy. Then,
in the most general case of a gyrotropic metamaterial
consisting of nongyrotropic components, the effective elec-
tromagnetic response can be completely described by intro-
ducing ten linearly independent coefficients of response in the
far field, which relate the tangential components of the fields
�Djj;Bjj� to �Ejj;Hjj�,
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1CCCA : �2�

The ten components exx, eyy, exy, mxx, myy, mxy, bx, by, wx,
and wy (for the normal incidence of light) of the effective
response of the layer of the metamaterial thus introduced
can be obtained [46] by parameterizing the scattering matrix
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in the far field calculated for this layer [19, 47, 48]. For the
normal incidence of light with the wavelength exceeding the
period of the metamaterial (such that there is no diffraction,
and the layer of the metamaterial behaves like a layer of a
uniform material), the scattering matrix in the far field has
the size 4� 4 and is symmetric (Si j � Sj i) as a result of the
reciprocity of the channels of scattering. Therefore, only 10
of the 16 components of Si j are linearly independent, for
example, those with i4 j, which exactly corresponds to the
number of linearly independent response coefficients in
formula (1).

The results of the parameterization of the scattering
matrix for metamaterials layers of a bi-fishnet type [28] are
illustrated in Fig. 1 for an asymmetric dielectric environment
and in Fig. 2 for a symmetric environment. A frequency
region is shown near the plasmonic magnetic resonance at
�ho � 0:6 eV in which the system has a negative refractive
index. Although the layer of the metamaterial by itself has an
inversion symmetry, it is seen that in the case of an
asymmetric dielectric environment, its effective electromag-
netic response has a sufficiently strong resonant bianisotropy
(Fig. 1c). But if the layer is located in a symmetric dielectric
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Figure 1. Frequency dependence of the effective electromagnetic response coefficients e, m, and b for a metamaterial layer of the bi-fishnet type [28] on a

glass substrate (e � 2:32). The layers represent gold films 10 nm thick perforated by a square lattice of holes (with the period 838 nm and the diameter of

holes 360 nm); the films are separated by a dielectric (e � 2:72) with the thickness 60 nm.
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Figure 2. Frequency dependence of the effective electromagnetic response coefficients e, m, and b for a metamaterial layer of the bi-fishnet type analogous

to the material described in Fig. 1, but in a symmetric dielectric environment (air from above and from below). The bianisotropy coefficient in this case

vanishes, which indicates that the structure as a whole is centrally symmetric.
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environment (see Fig. 2), the bianisotropy disappears, as in
the case of a centrally symmetric structure. These results are
the direct demonstration of the nonlocality of the electro-
magnetic response of thin layers of metamaterials: the
effective susceptibilities are not only the characteristics of
the structure itself but also depend on the dielectric environ-
ment. Therefore, the effective susceptibilities can be used only
with great caution, remembering that they are not the
characteristics of a bulk metamaterial, but adequately
characterize only the response of a specific finite-thickness
structure in a given dielectric environment.

Figure 3 shows the results of parameterization of the
scattering matrix for a thin layer of a chiral stereometamater-
ial [31], which has strong natural optical activity. In this case,
the system has the complete set of nonzero components of the
response matrix Ẑk.
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Plasmon effects
in In(Ga)N-based nanostructures

T V Shubina, S V Ivanov,
A A Toropov, P S Kop'ev
In this report, we consider the influence of effects of localized
plasmons in metallic nanoparticles on optical processes in
In(Ga)N-based structures. The emission and absorption of
light and the generation of photoinduced charge carriers is
investigated; data on the estimation of the averaged enhance-
ment in InN/In nanocomposites are given.

Plasmonics is a rapidly developing field of applied physics
and nanotechnology characterized by the use of effects
related to collective oscillations of conduction electrons in
metallic structures (plasmons), frequently for quite uncom-
mon applications [1]. The many-sidedness of plasmonics is
manifested in various applications such as the realization of
media with a negative refractive index [2], the creation of
markers used in decoding human genome [3], the enhance-
ment of the luminescence of organic semiconductors [4], an
increase in the efficiency of photodetectors [5] and light-
emitting diodes [6], controlling liquid-crystal layers [7], and
the generation of emission in the terahertz range [8]. Of great
interest are also the fundamental properties of plasmonic
metastructures, for example, the formation of strong plas-
mon±polariton resonances, which can be efficiently con-
trolled by changing their structure [9, 10].

There is one additional promising avenue for the realiza-
tion of the potential of plasmonics: the creation of single-
photon sources that can work at room temperature. The local
enhancement of an electromagnetic field by plasmons and,
correspondingly, an increase in the rate of spontaneous
recombination near a metallic surface are analogs of the
Purcell effect [11] in microresonators. We note that a
reproducible production of microresonators with quantum
dots based on wide-gap semiconductors for the same purpose
is at present quite problematic.

Here, we consider optical effects in semiconductor layers
and nanocomposites caused by localized plasmons (Mie
resonances) excited in metallic nanoparticles. The use of
particles instead of a continuous film has some advantages
[12]. In particular, because of the curvature of the particle
surfaces, the interaction of plasmonic excitation and light

emission, forbidden due to a difference in their wave vectors,
is then allowed. In essence, the study whose results are
presented in this report, especially in the part that concerns
nanocomposites, is a continuation of the investigation of InN
layers with spontaneously formed In clusters [13±19]. In the
course of this investigation, we discovered Mie resonances in
the spectra of thermally detected optical absorption (TDOA)
and established that the plasmons exert a noticeable influence
on the emission. For illustration, Fig. 1 depicts combined
images obtained via scanning electronmicroscopy (SEM) and
micro-cathodeluminescence (micro-CL) studies of one and
the same region of an InN layer. These images show an
enhancement of infrared micro-CL near metallic clusters and
near pores surrounded by In precipitates.

Current studies are mainly conducted using two systems:
(1) InGaN and anAu nanoparticle, and (2) InNwith specially
formed In clusters. The choice of these pairs of materials is by
no means accidental. The energy of plasmonic resonances in
Au particles is close to the energy of excitonic transitions in
layers of the solid alloy In0.25Ga0.75. Indium as a plasmonic
metal is less known than gold. But, the applicability of ametal
for the amplification of optical processes is determined by the
oscillator strength of plasma resonance. The spectral depen-
dence of this parameter can be described by the ratio of the
real part of the complex dielectric function of metal to its
imaginary part, jRe ej=Im e. In the infrared range (0.7±1 eV),
where radiative optical transitions are observed in InN, this
ratio for In is not less than that for Au in the visible range
(about 2 eV) (Fig. 2).

An increase in the efficiency of emission implies the
formation of coupled localized plasmon±radiating dipole
states. For the radiative plasmon decay, the metallic particle
can act as a radiating antenna; but in the case of the
dominance of a nonradiative decay (with large internal losses
of the particle), the coupling can quench emission of the
radiating dipole. The balance between these components
depends, among other factors, on the particle size [20]. In
the general case, to guarantee the interaction of the radiating
dipole and localized plasmon, a number of conditionsmust be

1 mm

Figure 1. Superimposed images of the same region of a layer of InN

obtained by SEM and micro-CL. The clusters and pores are respectively

seen as bright and dark spots. The violet spots (in the electronic version of

the paper at http://www.ufn.ru) correspond to intense infrared (0.75 eV)

cathodoluminescence.
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satisfied, such as (1) the spatial proximity of the dipole and
metallic particle, (2) the correct orientation of the dipole
relative to the direction of the plasmon polarization, and (3)
the coincidence of resonance frequencies.

In the approximation of a metallic cluster by an ellipsoid
of revolution (spheroid) (with c being the semiaxis of
revolution, and the equatorial semiaxes a and b being equal
to each other), the frequency oi of the plasmon polarized
along the ith axis of the spheroid (i � x; y; z) is determined by
the resonance condition e�o��ÿe1�Lÿ1i ÿ1�, where e1�o� is
the permeability of the environment andLi is the depolarizing
factor depending on the ratio of the lengths of the axes. The
approximated expression for the frequency is written as [21]

oi � op

�
e1 � e1�Lÿ1i ÿ 1��ÿ1=2 ; �1�

where op and e1 are the plasma frequency and the dielectric
constant of the bulk metal. According to Eqn (1), oi depends
substantially on the permeability of the environment and on
the shape of the cluster. For example, the plasmonic
frequency in bulk indium corresponds to 11.2 eV, and in a
spherical In cluster located in InN (e1 � 8), theMie resonance
is at 2.8 eV. Resonances in clusters with the ratio c=a that
considerably differs from unity fall into the infrared range if
the plasmon is polarized along the longer axis of the spheroid.

In the first approximation, the plasmonic enhancement of
luminescence and absorption is proportional to jgj2, where
g � E=E0 is defined as the ratio of the local electric field to the
field of the incident light wave E0 [22]. With the polarization
along the ith axis, the partial factor of field enhancement in
the vicinity of the ith pole of the spheroid is given by

jgi�o�j �
���� e�o�
e1�o� � Li

ÿ
e�o� ÿ e1�o�

� ���� : �2�

At the resonance frequency oi, the partial factor jgi�o�j
reaches the value Lÿ1i jRe ej=Im e4 1. Generally, the
enhancement factor jgi�o; r�j as a function of position r on
the surface of the spheroid varies from the value given by
Eqn (2) to the extremely small value Lÿ1i jRe e1j=Im e � 1 at
the pole of an orthogonal axis (not equal to the ith axis)
[19, 23].

The application of near-field scanning optical microscopy
has allowed investigating the interaction of a localized
plasmon in a single Au particle with a limited number of
excitonic dipole transitions in an InGaN layer [24]. The layers
were grown by the method of molecular beam epitaxy (MBE)
using a regime that facilitates the formation of a nanocolum-
nar relief of the surface [25], which was confirmed by the data
of transmission electron microscopy (TEM) (Fig. 3a). Fluc-
tuations of the solid alloy composition led to the appearance
of deeply localized states, similar to quantum dots [26]. The
use of a Nanonics CryoView 2000 microscope allowed
simultaneously obtaining maps of the intensity of micro-
photoluminescence (micro-PL) and a three-dimensional
relief of the surface. A gold nanoparticle of a spheroidal
shape, from 50 to 200 nm in size, was attached to the tip of a
nonaperturate probe. This allowed precisely positioning the
particle with respect to the InGaN layer.

The basic result of this experiment was the observation of
an enhancement of the emission intensity as the gold particle
approached the surface of the InGaN layer (Fig. 3b). In
addition, the appearance of narrow lines in the low-
temperature spectra, corresponding to the recombination of
single excitons, was noted, which is a prerequisite for
investigating the InGaN/Au system for the purpose of
creating single-photon emitters. We note that the intensity
of photoluminescence at room temperature was enhanced by
a factor of several tens, whereas the previous studies of single
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molecules of organic dyes and colloidal quantum dots showed
only a moderate (up to a few times) enhancement [27, 28].
Possibly, one of the reasons for this difference is the rough-
ness of the samples being investigated. A comparison of the
maps of photoluminescence intensity with images obtained
by atomic force microscopy registered for the same region
showed that the brightest spots of photoluminescence
typically corresponded to dips in the relief into which the tip
of the probe could sink. We note that according to electro-
dynamics, precisely in such a configuration the plasmon in the
metallic particle polarized along the electric field vector can
efficiently interact with the dipole of the exciton in the case of
confocal optical microscopy. We also note that the enhance-
ment observed for Au particles with the diameter 100 nm was
absent for particles with the diameter 50 nm. This agrees well
with the estimation using the model in [29]. The critical size of
the spherical Au particle that allows enhancement is close to
100 nm.

Studying InN/In nanocomposites allowed understanding
the specific features of the action of plasmonic resonances on
the basic optical processes (emission, absorption, generation
of carriers by light) in the case where the metallic clusters are
located inside an optically active semiconductor matrix. The
most distinct results followed from the analysis of a series of
structures with periodic In inserts grown by theMBEmethod
[23]. The inserts (6 or 20 in number) had a nominal thickness
from 2 to 48 monolayers (MLs); the thickness of an ML is of
the order of 0.3 nm. The inserts were separated by InN layers
with the thickness 25 nm, which was grown using the ratio of
the flux of N to the flux of In slightly exceeding unity for the
purpose of suppressing spontaneous formation of In clusters.
However, the TEM data indicate that the In clusters are
formed even under these conditions.

Studies of samples by the micro-CL method were
conducted using a Hitachi S4300SE microscope equipped
with a detector with the sensitivity threshold 0.6 eV. The
critical thickness of the metallic inserts of In in InN is
� 1 ML. If this thickness is exceeded, the flat inserts are
transformed into arrays of clusters. There then occur
processes of a coarsening of the clusters and their accumula-
tion near defects with the formation of agglomerates. These
agglomerates are clearly seen in SEM images as brighter
regions (Fig. 4). In the sample without inserts, no visible
agglomeration of clusters exists, and the CL is weak and
almost uniform. The bright spots of CL always coincide with
the accumulations of clusters of In. A study in the so-called
spot regime of a sample with inserts 48 MLs in thickness
showed that the intensity of emission at the agglomerations of
the In clusters exceeds the intensity of the signal from the
regions between them by a factor of 70. On the average, this
sample demonstrates emission that is five times brighter than
that of the layer without inserts.

In real nanocomposites, the clusters can have an arbitrary
shape and orientation relative to the electric field vector. To
estimate the enhancement averaged over an ensemble of
clusters, we considered a model of spheroids with a random
ratio of semiaxes a=c, which had an equal (unit) volume [23].
The inhomogeneously broadened enhancement spectrum
G�o� � 
jg�o; r�j2�, determined by the full set of plasmons,
was obtained by averaging over the shape of clusters specified
by the axial ratio a=c. The variation of the relation between
the areas of regions with small and large surface curvatures
and the depth of penetration of the field into the semiconduc-
tor were also taken cuto account. The electronic structure of

indium is characterized by the presence of parallel regions of
electron bands, between which intense transitions near the
Fermi surface are possible, leading to an additional absorp-
tion in the infrared range (the (111) and (200) transitions in
Fig. 2 are denoted in accordance with the classification in
[30]). This feature was also taken into account in the
calculations.

The maximum value of the emission and absorption
enhancement coefficient jg�oi�j2 for an elementary plasma
excitation in InN/In, according to Eqn (2), is equal to
103ÿ104 in surface regions with a large curvature. But
because of the small fraction of such regions and a dispersion
in the shape of the spheroids, the average enhancement in the
nanocomposites does not exceed 102 at the energy 0.7 eV for
the distribution center position a=c � 1 (sphere) and the
distribution width d < 10. The averaged value of enhance-
ment obtained agrees well with the data on the enhancement
of micro-CL near clusters. The spectral dependences in Fig. 5
show that an increase in d must shift the main peak in the
absorption spectra into the region of lower energies and
sharpen its edge, because the elementary resonances are
strongest in this region. A comparison of Figs 5a and 5b
illustrates the suppression of plasmonic enhancement by
interband transitions in the semiconductor matrix, as was
noted in [14]. The same effect comes from the transitions
between parallel bands in In. This, in particular, causes the
dip frequently observed in TDOA spectra [15±17] at the
energy 1.5 eV, which corresponds to (111) transitions.

Metal±semiconductor nanocomposites are extremely
inhomogeneous media. It can be assumed that some optical
processes in them can occur in different regions, which are
under different plasmon influences. The most distinct results
that confirm this were obtained by a comparison of the
spectra of TDOA and photocurrent in InN/In. The ther-
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mally detected absorption technique records an increase in
the sample temperature, which can be caused by two factors:
interband absorption in the matrix and a dissipative decay of
plasmons in metallic clusters. On the other hand, the
generation of charge carriers under optical excitation arises
only in the interband absorption region in InN. Therefore, the

difference in the TDOA and photocurrent spectra indicates
the existence of plasmonic resonances.

The photocurrent spectra were recorded under excitation
by semiconductor lasers with the power 100 mW at various
wavelengths. Under excitation by an incandescent lamp, the
signal in the absorption edge regionwas negligible, in contrast
to signals in other semiconductors, e.g., GaN and GaAs, in
which a photocurrent can easily be excited by the lamp light in
the same experimental configuration. The edges of the
absorption and photocurrent spectra in these compounds
were virtually coincident. But in nanocomposites, the edge of
the TDOA proved to be substantially lower than the
photocurrent-related edge (Fig. 6a), which can be explained
by the contribution of optical losses due to a dissipative decay
of plasmonic resonances. We emphasize that plasmons could
enhance the rate of generation of charge carriers that form the
photocurrent [31] if some density of states existed in this
region. Consequently, the matrix indeed has an absorption
edge shifted to the region of high energies, which can be partly
caused by deviations from the stoichiometry that accompany
the formation of clusters [32, 33].

At present, there is great interest in InN as a promising
material for solar cells [34]. Based on the data obtained, it can
be concluded that the absence of real achievements in this
area is possibly connected with the neglect of spontaneous
formation of In clusters. On the one hand, the plasmons in
these clusters enhance photoluminescence, but on the other
hand, the effective absorption edge of the matrix is shifted
toward higher energies in such structures and the density of
defects is increased [35]. This suppresses the photovoltaic
response in InN at excitation energies less than 1.3±1.5 eV.

In InN/In nanocomposites, terahertz emission (with a
frequency about 3 THz) was registered upon pumping by
electric pulses [36, 37]. The measurements were conducted at
the temperature 4.2 K, as was described in [38]. The nature of
the terahertz emission is being refined at present. It has been
reliably established that its intensity depends on the concen-
tration n of free electrons and mobility m (Fig. 6b). The
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emission spectral range agrees with the terahertz emission
mechanism due to two-dimensional plasmons excited in the
semiconductor matrix of the n type [39]. In this case, the
observed increase in the intensity of terahertz emission with
increasing the power of pumping can be related to an increase
in the temperature of the electron gas, which facilitates
thermal filling of plasmonic modes [40]. SEM studies with a
subsequent Fourier transformation of images showed that the
nanocomposites frequently exhibit a periodicity in the
arrangement of nanocolumns, clusters, and pores. The
fulfillment of the condition for the Bragg diffraction on
structural inhomogeneities can favor an effective generation
of terahertz emission. At the same time, the radiative decay of
localized plasmons in sufficiently large In clusters has
characteristic times corresponding to close frequencies that
can indicate the involvement of these plasmons in the
emission generation process.

We have considered effects related to the excitation of
localized plasmons in metallic nanoparticles and their
interaction with dipole transitions in a semiconductor.
Experimental results are given for systems based on
In(Ga)N. However, preliminary studies show that similar
results can also be obtained for other semiconductors. This
opens up great possibilities for the application of plasmonic
effects in optoelectronics.
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Resonance scattering of light
in nanostructured metallic
and ferromagnetic films

V V Kurin

1. Introduction

In this report, we show that magnetooptical effects can be
considerably enhanced in composite nanostructured meta-
materials and ferromagnetic photonic crystals. The factors
responsible for the enhancement can be both individual
resonances in nanoparticles (plasma or geometrical) and
collective resonances caused by multiple-scattering effects in
lattices of nanoinhomogeneities.

Magnetooptical effects, which consist of a change in light
polarization upon interaction with ferromagnetic materials,
have been intensely studied for a sufficiently long time and are
used in practice for the magnetooptical recording of informa-
tion [1].

It seems obvious that magnetooptical effects can be
substantially enhanced in nanostructured composite materi-
als due to electrodynamic resonance effects, which have been
given increased attention recently [2]. The nature of reso-
nances can be different. In particular, these can be resonances
connected with the excitation of natural modes of individual
nanoinhomogeneities. An example of an enhancement of
magnetooptical effects caused by individual resonances in a
medium consisting of ferromagnetic nanospheres was first
considered in Ref. [3].

Here, we demonstrate that an enhancement of magne-
tooptical effects can also be caused by resonance effects of
another nature, such as the excitation of slowed-down
waveguide modes, resonance scattering by nanowaveguides,
and multiple scattering effects.

To demonstrate the effects of resonance enhancement of
magnetooptical effects, we consider a simple model of an
artificial medium consisting of a ferromagnetic film with
cylindrical holes, assuming that the magnetization vector is
directed along the normal to the film and the sizes of
inhomogeneities are less than both the wavelength and the
skin depth in the metal. Figure 1 shows a schematic of the
scattering of an electromagnetic wave by such a structure and
the basic excited waves.
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In the visible frequency range, the gyrotropy of a ferro-
magnet is connected with a gyroelectric mechanism [1] caused
by the spin±orbital interaction [4], which manifests itself only
in the off-diagonal elements of the dielectric constant tensor.
The magnetic permeability can be set equal to the unit
diagonal tensor mik � dik. In the coordinate system where
the z axis is oriented along the magnetization vector M and
the vector r? � �x; y� lies in the perpendicular plane, the
dielectric constant tensor of the ferromagnetic film is
analogous in structure to the tensor of the electron gas in a
magnetic field and is written in the form

ê �
e ig 0
ÿig e 0
0 0 Z

0@ 1A ; �1�

where e and Z are respectively the longitudinal and transverse
dielectric constants and g is the gyrotropy parameter
proportional to the magnitude of the magnetization. A
characteristic magnitude of gyrotropy of a typical ferro-
magnet Co is g � 10ÿ2, which corresponds to the effective
magnetic field 106 G. The diagonal elements of the tensor
e � Z � 1 have an order of magnitude characteristic of
metals.

2. Propagation of waves in a ferromagnetic
nanowaveguide

It is natural to begin solving the problem of scattering by a
perforated film by studying eigenmodes of a cylindrical
nanohole. We assume that the magnetization vector is
parallel to the waveguide axis, which is directed along the
normal to the film. We note that such a direction of
magnetization in a continuous film is sufficiently difficult to
realize in view of the large contribution of the magnetostatic
energy; therefore, to achieve the vertical magnetization,
ferromagnets with a large internal anisotropy must be used.
It is known, for example, that such a direction of M can be
realized in films of CoPt and CoPd [5, 6]. But we note that the
magnetic state of the film can change because of the presence
of openings in the film, because the fields in the openings
make a contribution to the free energy of the magnet, and the
magnetic state of a film with nanoinhomogeneities must be
determined with the aid of micromagnetic calculations.

We consider the problem of eigenwaves of a nanowave-
guide in a ferromagnet with the magnetization along the
waveguide axis. By finding solutions of the Maxwell equa-

tions in the form �E;B� � �e; b�� exp�iot� imj� ihz�,
where o is the frequency, m is the azimuthal index, and h is
the longitudinal wave number, and by matching the solutions
for the external and internal regions according to the
requirement of the continuity of the tangential �z;j�
component of the fields, we obtain a dispersion relation,
which in the case of weak gyrotropy takes the form

�
ei f �x� ÿ ZF �y��� f �x� ÿ F �y��ÿ m 2z 2

u 2

�
1

x 2
� 1

y 2

�2

� gm

y 4x 2

�
�2z 2 � x 2�ÿx 2f �x� � y 2F �y��

� z 2�x 2 � y 2� qy
2F �y�
y qy

�
: �2�

Here, we let ei denote the dielectric constant inside the
waveguide and introduce dimensionless transverse wave
numbers x � qia and y � iqea (where qi and qe are the
transverse wave numbers for the internal and external
regions), dimensionless longitudinal wave number z � ha
and frequency u � ka, a dimensionless plasma frequency
n � opa=c, and Z � 1ÿ n 2=u 2, where a is the nanowaveguide
radius and k � o=c is the wave number in the vacuum;
f �x��J 0m�x�=

ÿ
xJm�x�

�
and F�y��ÿK 0m�y�=

ÿ
yKm�y�

�
, where

Jm and Km are the respective Bessel and MacDonald
functions.

The vanishing of the left-hand side of Eqn (2) yields a well-
known dispersion relation for a waveguide in an isotropic
nonferromagnetic metal; the right-hand side expresses first-
order corrections in g due to gyrotropy, which lift the
degeneracy in the azimuthal index m. An incident plane
wave can excite only waves with m � �1; we analyze these
waves in the case of narrow channels, where x, y5 1.
Expressing the frequency x, y5 1, the longitudinal wave
number u, and the permeability z in terms of the transverse
wave numbers and using the undisturbed dispersion relations
z 2�ei ÿ 1�ÿ1�eix 2 � y 2 ÿ ein 2�, u 2��ei ÿ 1�ÿ1�x 2 � y 2 ÿ n 2�,
we obtain a closed equation for x and y, which is solved
explicitly using the expansions f � xÿ2 ÿ 0:25 and
F � yÿ2 � ln 2�gy�ÿ1 that are valid in the limit of a narrow
waveguide and a small gyrotropy parameter g. The character-
istic dispersion curves are shown in Fig. 2.

As h! 0, the frequencies of modes with the azimuthal
indices m � �1 tend to the frequency of the surface plasmon
osp � op�1� ei�ÿ1=2, irrespective of the size of the holes. This
corresponds to the well-known fact that even an arbitrarily
narrow waveguide in a real metal can carry a dipole mode.

We now consider a change in the polarization with the
propagation of a wave in the waveguide. For this, we assume
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Waveguide
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Figure 1. Scattering of an electromagnetic wave by a perforated ferromag-

netic film (schematic). The main types of waves excited in the process of
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Figure 2.Dispersion curves of dipole waveguide modes in a ferromagnetic

nanowaveguide.
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that the direction of polarization of the waveguidemode is the
direction of the electric field vector at the waveguide axis. In
the case of a small gyrotropy parameter g, we can use the
correct zero-approximation eigenvectors and find that the
polarization rotation angle, which is given by

y � ÿh1�o� ÿ hÿ1�o�
�
d � do d

vg
;

is anomalously large as a result of a strong slowdown of waves
in the nanowaveguide. Here, h�1 are the longitudinal wave
numbers of waves with the azimuthal indicesm � �1, d is the
thickness of the ferromagnetic film, do is the splitting of
dispersion curves with m � �1, and vg is the group velocity.
We note that the wave slowdown increases not only the rate of
Faraday rotation but also the damping of the waveguide
modes. The characteristic attenuation length of the wave-
guidemodes depends on the diameter of the waveguide, and is
approximately 10 mm for the diameter of the order of 50 nm.

3. Individual resonance in the case of scattering
by a single waveguide

In this section, we consider the problem of the transmission
and reflection of external electromagnetic radiation upon
interaction with a single nanowaveguide in a ferromagnetic
film. As previously, we assume that the magnetization is
perpendicular to the surface of the film. To solve the
problem, we must estimate the efficiency of the excitation of
waveguide modes by a wave incident on the upper boundary
and the excitation of the transmitted and reflected waves by
the arising waveguide modes. The problem can be solved
approximately as follows. It is well known [7, 8] that a hole in
the metal can be replaced by effective electric and magnetic
currents concentrated on both sides of the film in a region
with the thickness of the order of the skin depth in the metal,
as is shown in Fig. 3.

Near the ends of the waveguide, we separate regions with
the depth and the radius of the order of the skin depth in the
surrounding metal, in which the effective magnetic and
electric currents flow [4], and assume that their multipole
moments are known; hence, we find the external fields with
respect to these regions. In the free space before the film, this
is a set of the fields of multipoles, incident wave, and the wave
reflected from the flat surface; in the waveguide, these are
only the fields of the counterpropagating waves; in the space

on the other side of the film, these are only the fields of the
multipoles. We must also write a solution for the internal
regions of the ends of the waveguide. The next step consists in
matching the tangential components of the internal and
external representations of the fields on the surface that
separates these regions, and finding the amplitudes of an
infinite number of modes in the waveguide, including the
nonpropagating ones, as well as of the magnitudes of all
multipole moments and the distribution of the field in the
vicinities of the waveguide ends.

If such a procedure were carried out, we would obtain an
exact solution of the problem. Unfortunately, this solution
leads to complex integral equations, which can be solved only
numerically. However, for nanowaveguides with a diameter
that is small compared with the wavelength and the skin
depth, we can obtain an approximate solution by restricting
ourselves to only fields of dipoles outside the nanowaveguide
and to only propagating waves inside it. For simplicity, we
neglect the intermediate region and match the components of
the solution E? and B? at one point, e.g., the point on the z
axis located at a distance equal to the waveguide radius from
the film plane. In this approach, we ignore effects connected
with the existence of plasma resonance at the frequency of the
surface plasmon osp, assuming that the wave frequency is far
from it.

We consider the case of normal incidence, where the
scattering occurs only in the magnetodipole channel and the
magnetic dipoles have only components that are perpendi-
cular to the z axis. We assume that the incident wave is
linearly polarized along the x axis. We decompose the �E;B�?
fields on the z axis and the magnetic dipole moments on one
side and the other side of the film ML and MR into the left-
handed and right-handed components �E;B;M �� �
�E;B;M �x � i�E;B;M �y, which are eigenvectors for the
field both outside and inside the waveguide; for the field on
the side of the wave incidence (L), we then write these
components as

E� � exp �ikz� ÿ exp �ÿikz�
� kML

��ikÿ jzjÿ1�
exp �ikjzj�
jzj ;

B� � �i
�
exp �ikz� � exp �ÿikz��

�ML
��k 2 � ikjzjÿ1 ÿ zÿ2� exp �ikjzj�jzj ;

next, for the field on the waveguide axis,

E� � c� exp �ik�z� � d� exp �ÿik�z� ;

B� � �i k�
k

�
c� exp �ik�z� � d� exp �ÿik�z�

�
;

where k� is the solution of dispersion equation (2), and for the
transmitted field (R),

E� � �kMR
�
ÿ
ikÿ jzjÿ1� exp �ikjzj�jzj ;

B� �MR
�
ÿ
k 2 � ikjzjÿ1 ÿ zÿ2

� exp �ikjzj�
jzj :

In the last two expressions, the coordinate z is referenced to
the right end of the waveguide. In all the expressions, we omit
the common factor exp�ÿiot� imj�, and in the expression
for the reflected wave, we neglect the difference from ÿ1 for
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m 0y
p 0z

mx

my

pz

Reêected wave

Transmitted wave

Figure 3. Response of a nanowaveguide to external radiation. Effective

dipole moments.
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the reflection coefficient from themetal and ignore the change
in the polarization. These simple effects can be easily taken
into account, if necessary, in the framework of the suggested
scheme. Furthermore, in calculating fields of the dipoles, we
disregarded the excitation of a surface plasmon. By matching
the solutions, we obtain the magnitudes of the magnetic
dipole moments on the left-hand and right-hand boundaries
of the nanowaveguide and the amplitudes of the modes
propagating in the waveguide. The expression for the
magnetic moments on the left-hand boundary of the layer is
written as

ML
�

� �i �h�=k�GE ÿ iGH tan�h�d�
�h�=k�GEGHÿ�i=2���GH�2��h 2

�=k 2��GE�2�tan�h�d � ;
and that on the right-hand boundary, as

MR
�

� �i �h�=k�GE cosÿ1�h�d�
�h�=k�GEGHÿ�i=2���GH�2��h 2

�=k 2��GE�2� tan�h�d � ;
where d is the film thickness, k is the wave number in the
vacuum, and GE and GH are the electric and magnetic
components of the magnetodipole Green's function, which
are defined as GE � ÿikaÿ2�ikaÿ 1� exp �ika� and
GH � GEÿ aÿ3 exp �ika�. These expressions resemble the
formulas for the coefficients of reflection of a plane wave
from a layer of a dielectric medium and of the transmission
through this medium; but we note that, unlike the law of
conservation of the energy flux in the case of a layer, the
energy flux conservation law in the case under consideration
is given by the so-called optical theorem:

�ReML
� �

1

3
k 3
ÿjML

�j2 � jMR
� j2 �Q

�
;

where Q denotes the losses in the waveguide. The left-hand
side of this expression represents the flux lost from the
incident and reflected plane waves. The formulas for ML;R

�
define it as a positive definite quantity. However, the
condition that this flux is equal to the sum of dissipated and
absorbed fluxes is violated in general because the matching
conditions are here satisfied only approximately. Therefore,
the expressions obtained are applicable only under the
condition of the smallness of radiation losses compared to
the dissipation. Given the formulas for ML;R

� , we can easily
find the Cartesian coordinates of the dipole momentsMx and
My.

Figure 4 qualitatively displays the frequency dependence
of the polarization parameters for the backward scattering of
linearly polarized radiation in the near-resonance region
kd � p. The figure shows the dependence of the angle of the
inclination of the major axis of the ellipse of polarization of
themagnetic dipolemoment with respect to themagnetic field
direction in the incident wave of polarization
(tan y � Re�ML

x =M
L
y �; dashed curve), and the dependence

of the ratio of the minor semiaxis of the ellipse of polarization
to the major semiaxis, b � Im�ML

x =M
L
y � (solid curve), on the

dimensionless frequency O � u=ures in the vicinity of one of
the resonances, whose frequencies are determined by the
relations h�1�u� d � hÿ1�u� d � npd. Analogous resonance
effects are also to be observed in the case of radiation passing
through the film. It is seen from the figure that the angle of the
inclination of polarization increases substantially as the

resonance is approached. For typical film parameters and
room temperature, an approximately tenfold resonant
enhancement of the magnetooptical effect can be expected in
comparison with that in a continuous ferromagnetic film. For
cooled samples, the resonances must be even more clearly
pronounced. It is interesting to note that the resonance
magnetooptical effect under consideration is characterized
by a change in the sign of the rotation angle of the
polarization plane in the near-resonance region.

4. Multiple scattering effects

If we now consider a lattice of waveguides instead of one
nanowaveguide, then the external electromagnetic field in the
vicinity of the waveguide ends is determined not only by the
fields of waves incident on the metal surface and reflected
from it but also by the fields created by effective sources
located at the ends of other nanowaveguides.

In the case of a regular lattice, the interaction of individual
nanoinhomogeneities is resonantly enhanced when some
diffraction maximum becomes grazing, and the diffracted
field undergoes a transformation from the field of radiation to
the field `pressed' to the surface. Resonances of this type were
discovered experimentally in [9] and were described theoreti-
cally in [10]. The experimentally measured resonant enhance-
ment of the local field considerably exceeds the enhancement
of the field on single particles, and reach values of the order of
several thousand for gold nanoparticles. It is absolutely
obvious that these collective resonances, which can naturally
be called diffraction resonances, also strongly influence the
magnetooptical effects.

The resonance scattering must be described with due care
because seemingly natural approximations, which lead to the
replacement of an infinite system for the amplitudes of
natural waves by a finite system as in Section 3, or, for
example, the approximations of a given polarizability
described in [8], lead to a violation of the physically natural
conservation laws. This restricts the field of the applicability
of the formulas obtained to the condition of the domination
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Figure 4. Typical frequency dependence of the parameters of the ellipse of

polarization of reflected light in the vicinity of one of the resonances with a

mode of a finite waveguide. The solid curve shows the ratio of the major

axes of the ellipse of polarization of the magnetic dipole moment; the

dashed curve demonstrates the behavior of the angle of rotation of its

major axis with respect to the polarization direction in the incident wave.
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of collisional losses over radiative losses. It is obvious that
with an increase in the size of the system, the role of collisional
losses in the case of diffraction resonance decreases because of
an increase in the stored energy, and the requirements
concerning the accuracy of the calculations of radiation
effects should increase considerably. To achieve physically
reasonable results, it is usually necessary to use numerical
methods [10]. However, we here describe an example of a
problem that allows a self-consistent analytic solution; we
also show how it can be extended to the case of a gyrotropic
medium.

We consider the simple problem of scattering of a plane
electromagnetic wave by a lattice of equispaced (at points
x � 0, y � jL) narrow parallel cylinders with the generatrices
parallel to the z axis. Let the plane of incidence be
perpendicular to the generatrices of the cylinders and let the
angle of incidence be w. In this case, the problem splits into
two scalar problems, which correspond to two independent
polarizations, H and E, with the magnetic and electric field
vectors directed along the z axis. We perform calculations for
theHpolarization, which ismore interesting because with this
polarization, upon scattering by a cylinder, there exists an
individual quasistatic resonance whose frequency is deter-
mined from the equation e� 1 � 0. The calculations for the
second polarization are conducted analogously. We write the
expressions for the fields outside and inside the cylinders as:

B out
z � exp �ikxx� ikyy� �

X
m; j

im exp �imjj�Dj
mH

1
m�krj� ;

B in �
X
m; j

im exp �imjj�Fj
mJm�k

��
e
p

rj� ; �3�

where Dj
m and F j

m are the multipole coefficients, which
respectively characterize the outside and inside fields,
H 1

m�krj� is the Hankel function of the first order, which
describes the diverging wave, Jm�krj� is the Bessel function,
and the radius rj is referenced to the center of the jth cylinder.
Using an expansion of the plane wave in Bessel functions and
Graf's addition theorem for the cylinder functions of the
shifted argument q j � x0x� y0�yÿ jL�, where L is the
distance between the cylinders, we represent the external
field in the vicinity of the jth cylinder as

Bz �
X
m

im exp �imj�
n
Jm�krj�

�
exp �ikLj sin wÿ imw�

�
X
n; l<j

D l
ÿnH

1
n�m�kLj jÿ l j�

�
X
n; l>j

�ÿ1�m�nD l
ÿnH

1
n�m�kLj jÿ l j���Dj

mH
1
m�krj�

o
: �4�

Thence, it follows that as a result of the emission from
cylinders with numbers l 6� j, a renormalization of the
incident wave occurs. If we now match the external and
internal tangential fields Bz and Ej � i=�ek� qBz=qr on the
surface of this cylinder, we obtain a set of equations for the
multipole coefficients Dj

m and F j
m. In contrast to the

procedure used in Section 3, this approach the boundary
conditions to be satisfied exactly over the entire surface of the
cylinder. Thismethod of solving the problem is an application
of the well-known Korringa±Kohn±Rostoker method [11,
12], which was first proposed for scalar quantum mechanical

problems and is widely used in calculations of the band
structure of solids. (For the extension of this method to
vector electrodynamic problems, see [13].) In Ref. [14], an
analogous method was used to numerically solve the problem
of scattering of an electromagnetic wave by a lattice of
isotropic cylinders.

Now, using the translational symmetry of the problem, we
perform a discrete Fourier transformation with respect to the
order number of cylinders j. The formulas for the direct and
inverse transformations are determined by the relation

Dj
m �

� p=L

ÿp=L
Dm�q� exp �iqLj� L dq

2p
;

Dm�q� �
X
j

D j
m exp �ÿiqLj� : �5�

The transformation for the incident wave has the form
d�qLÿ kL sin w� exp �ÿimw�; therefore, by isolating this
singularity, �Dm�q�;Fm�q�� � d�qLÿ kL sin w��Dm;Fm�, we
obtain the following set of equations for the coefficients
�Dm;Fm�:

Jm�ka�
h
exp �ÿimw� �

X
n

DÿnGn�m�kL; sin w�
i

�DmH
1
m�ka� � FmJm�k

��
e
p

a� ;

J 0m�ka�
h
exp �ÿimw� �

X
n

DÿnGn�m�kL; sin w�
i

�D 0mH
1
m�ka� �

1��
e
p FmJ

0
m�k

��
e
p

a� ; �6�

which is identical in structure to the set that determines the
multipole coefficients in the case of wave scattering by a single
cylinder. The only difference is in the additional term in
brackets, which describes the renormalization of the incident
wave. The coefficients Gm that are responsible for the
renormalization are given by

Gm�kL; sin w� �
X
j>0

H 1
m

ÿ
kLj j j�

� � exp �ikLj sin w� � �ÿ1�m exp �ÿikLj sin w�� :
If we now assume that the radius of the scatterers is small in
comparison with the length of the optical wave, such that
ka5 1, then the main contributions come from the dipole
components D�1 and the set of equations (6) transforms into
a set of four equations for four unknowns D�1 and F�1. The
two renormalization factors G0 and G2 enter this set as
coefficients.

Introducing the coefficients 2�D;F �y��D;F �1 � �D;F �ÿ1
and 2i�D;F �x � �D;F �1 ÿ �D;F �ÿ1, we see that the equa-
tions for them split and can easily be solved. We here write
only expressions for the dipole moments that determine the
diffracted field:

Dx;y � sin w
ÿ cos w

� �

� J 01�u� J1�
��
e
p

u� ÿ �1= ��
e
p � J1�u� J 01�

��
e
p

u��
H 1

1 �u� � Gx;yJ1�u�
�
J1�

��
e
p

u� ÿ �1= ��
e
p ��H 1

1 �u� � Gx;yJ1�u�
�
J 01�

��
e
p

u� ;

�7�
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where u � ka and where the Cartesian renormalization
factors are linear combinations of Gm,

Gx �
X1
j�1

�
H 1

0 � jkL� ÿH 1
2 � jkL�

�
cos�kLj sin w� ;

Gy �
X1
j�1

�
H 1

0 � jkL� �H 1
2 � jkL�

�
cos�kLj sin w� : �8�

For small u5 1, the cylinder functions can be expanded into a
series, with the result

Dx;y � pu 2

4i

�
e� 1

eÿ 1
ÿ p

4
iu 2�1�ReGx;y�

ÿ u 2

8

��
e� 2ÿ 4

�
ln
u

2
� g
��
ÿ 2pu 2 ImGx;y

��ÿ1
; �9�

which allows a simple physical interpretation. We isolated
three groups of terms in the denominator. The first is
responsible for the individual quasistatic polarization; the
remaining two groups give wave corrections. The imaginary
part of the denominator describes the energy losses, including
those for emission. The real part gives reactive corrections
and determines the resonance frequency. In the case of a real
dielectric constant e, the only channel of losses is radiative
losses, which are determined by the second term in the
denominator. The collective effects of the renormalization
of the fields of emission and `pressed-to-surface' nonradiative
fields are determined by the factors Gx;y � G0 � G2, the
typical dependences of the real and imaginary parts for
which are shown in Fig. 5. Both the real and imaginary parts
of the factorsG0:2 have square-root singularities in the vicinity
of the frequencies or incidence angles at which some
diffraction maxima become grazing and the field propagat-
ing along the z axis is converted into a nonpropagating one,
`pressed' to the lattice of cylinders. It is natural that for finite
lattices or for lattices with a disorder, neither an infinite
increase nor an infinitely sharp discontinuity occurs. The
asymptotic behavior near the diffraction peak, which can be
found analytically (for example, see [15], Eqns 8.522), is
determined by the real and imaginary parts of the expression

G0:2 �
��kL�2 ÿ �2pl� kL sin w�2�ÿ1=2 ; �10�

where l is an integer that corresponds to the order number of
the diffraction peak. From the graphs presented in Fig. 5, it
can be seen that the behavior of the real and imaginary parts is
described by characteristic resonance curves of an asymmetric
shape, which is specularly symmetric relative to the singular-
ity point. We note that the factorGy does not become infinite,
apparently because the y components of the dipole moments
interact with each other via quasistatic fields, since the dipoles
do not emit radiation along themselves.

Now, using the known coefficients (7) and inverting the
discrete Fourier transformation, we can find the local multi-
pole coefficients �D;F � jm � �D;F�m exp �ikLj sin w� and calcu-
late the scattered field and the fields inside the cylinders. An
analysis of the far field with known coefficients is carried out
in the standard manner [10], by passing from expansion (3) to
an expansion in terms of spatial harmonics of the form

B scatter
z �

X
l

Cl exp

�
i

����������������������������������������������
k 2 ÿ

�
k sin w� 2pl

L

�2
s

x

� i

�
k sin w� 2pl

L

�
y

�
: �11�

An analysis of the behavior of the coefficients Ci shows
that near the edge of an lth diffraction maximum, the power
radiated into an appropriate partial wave Pl �
Re
�
k 2 ÿ �k sin w� 2pl=L�2�1=2jClj2 as a function of fre-

quency has a threshold nature. The power radiated into an
open channel as a function of frequency has a discontinuity in
the derivative. The situation here is in many respects
analogous to that characteristic of the behavior of reaction
cross sections near reaction thresholds [16].

We now discuss the consequences that can result from the
nonperpendicularity of the plane of incidence to the axis of
the cylinders and from the presence of gyrotropy caused by
the ferromagnetism of the dielectric cylinders. Let the ferro-
magnetmagnetization vector, as previously, be directed along
the axes of the cylinders. We first note that the existence of a
wave vector of the incident wave parallel to the cylinder axis
in the absence of gyrotropy leads to a hybridization of the E
and H modes, which until now were accepted to be
independent. If we supply the coefficients D and F with an
additional index taking values E or H depending on which of
the z component is different from zero, and write equations
analogous to (6), these equations are no longer be diagonal
with respect to this additional index. But the degeneracy in the
azimuthal numberm � �1 is preserved. Then, by introducing
Cartesian components, we can reduce the set of the eighth

2

4

2

0

ÿ2
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Figure 5. Typical frequency dependences of the real (solid curves) and

imaginary (dashed curves) parts of the factors of the renormalization of

the Cartesian components of the dipole moments (a)Gy and (b)Gx, which

determine the dissipative and reactive contributions of the collective field.

The graphs are plotted at a fixed angle of incidence w, sin w � 0:8.
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order for �D;F �E;H�1 to two sets of the fourth order. In this
case, as a result of the hybridization of electric and magnetic
components, there appear individual resonances determined
by the vanishing the factor e� 1 in the electric components.
The renormalization factors G, which are responsible for the
collective effects, also change; however, because of the
retention of the polarization degeneracy, the new GE;H

y

components are then determined by only quasistatic fields,
as before.

If we take the gyrotropy into account, then in the dipole
approximation, the system analogous to (6) remains a general
system of the eighth order, and hybridization must also occur
in the vector x and y components of the electric and magnetic
dipole moments, causing a mixing of the equations for the x
and y projections of the fields and dipole moments. In the
dipole components D�1, all the resonances are then present,
both individual and collective. Because these resonances are
shifted in the different components due to the gyrotropy,
resonance effects of the polarization plane rotation must be
observed in both the reflected and the transmitted radiation.
Especially promising for the enhancement of the magnetoop-
tical effects seems to be the diffraction resonance; because of
the presence of singularities in frequency in the derivatives of
the excitation coefficient of the open channel, the difference in
the excitation coefficients of the left-handed and right-handed
components are anomalously large, which should lead to
anomalously strong Kerr and Faraday effects. It is well
possible that a significant enhancement of magnetooptical
effects observed recently in experiments [17] is connected
precisely with this mechanism.

5. Conclusions

We have considered the influence of nanoinhomogeneities on
the magnetooptical effects in ferromagnetic films. It has been
demonstrated that as a result of the retardation of waves in
nanowaveguides and the presence of individual internal
resonances in the waveguides and collective effects of multi-
ple scattering, the magnetooptical effects can be considerably
enhanced. We expect that the effects of a resonant enhance-
ment of magnetooptical effects can be used for creating new
devices for the recording and processing of information and
for the diagnostics of magnetic states in composite ferromag-
netic films.
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Superresolution and enhancement
in metamaterials

A N Lagarkov, A K Sarychev,
V N Kissel, G Tartakovsky

1. Introduction

We discuss the optical and microwave properties of artificial
materials that can have negative dielectric and magnetic
constants simultaneously. Backward electromagnetic waves
can propagate in such metamaterials, which leads to a
negative refraction. We discuss some unusual properties of
metamaterials, in particular, the effect of superresolution.
The large losses predicted in such materials in optics can be
compensated by using an amplifying laser medium. We also
consider the possibility of designing a nanolaser with a size
several dozen times less than the wavelength of light. This
article is intended as a general introduction to this thriving
field.

More than 100 years have passed since Lamb's work
appeared [1], where he first noted the possibility of the
existence of backward waves, i.e., unusual wave processes
with oppositely directed phase and group velocities. The
properties of backward electromagnetic waves were also
discussed by Schuster [2]. Almost simultaneously, in the
article ``Growth of a wave-group when the group velocity is
negative,'' Pocklington [3] showed that in a medium that
supports backward waves, a point source excites convergent
waves, and the group velocity of waves is directed from the
source. These works did not attractmuch attention for almost
40 years, until the well-known work of Mandel'shtam [4] was
published, in which he predicted a new physical phenomenon,
the negative refraction. This phenomenon can exist only in
the case where the refracted waves propagate in a medium
that supports backward waves. A discussion of article [4] can
be found, for example, in recent work [5].

The next important step was made by Sivukhin in Ref. [6],
where it was first shown that in amediumwith simultaneously
negative dielectric (e) and magnetic (m) permeabilities, the
group and phase velocities of the wave are oppositely
directed. Until the appearance of Ref. [6], this sufficiently
fine circumstance remained unnoticed, possibly because the
wave equation preserves its form in the case of a simultaneous
change of the signs of e and m.
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The work by Veselago [7] became a revolutionary step in
the study of negative refraction; the idea of a completely
original lens was suggested there based on a surprising
property of the plane-parallel layer of a material with
e � m � ÿ1 (which is now called a metamaterial) to focus the
image of an object placed in front of it. Veselago also noted
that the optical properties of a metamaterial with negative e
and m can be described by introducing a negative refractive
index. Moreover, in the electromagnetic wave propagating in
such a metamaterial, the electric field E, the magnetic fieldH,
and thewave vectorj forma left-handed triple. In allmaterials
known at that time, these vectors formed a right-handed
system. Among other predictions made by Veselago, we
mention the change in sign of light pressure in a metamaterial
with a negative refractive index. Veselago's work was much
ahead of its time. More than 30 years passed after the
publication of Ref. [7] until a `big bang'Ð the appearance of
numerous works on metamaterialsÐoccurred, initiated by
Pendri [8], who showed that Veselago's lens has an even more
remarkable property: it can create an image of a source
without the usual distortions on the wavelength scale. This
means that such a lens gives an image whose quality is not
confined by the diffraction limit. It is therefore frequently
called a superlens. Pendri explained this phenomenon by the
amplification in the medium with negative e and m of waves
that exponentially decay in the usual optical materials and
media. The first experiment that demonstrated such a super-
resolution was performed in 2003 [9, 10].

We note that materials with negative e and m were
generally developed and used long before the appearance of
Pendri's work. It suffices to recall that the majority of well-
conducting metals (gold, silver, aluminum, etc.) have a
negative dielectric constant in the visible and infrared
spectral ranges. On the other hand, the phenomenon of
ferromagnetic resonance, which has been known already for
many decades, is very frequently accompanied by the
appearance of a negative magnetic permeability. But it is
only after the appearance of [8] in 2000 that the creation and
study of metamaterials with simultaneously negative e and m
became a new scientific avenue, in which dozens of research-
ers in many countries worldwide now work.

We pause briefly at the history of metamaterials. In 1952,
a monograph was published [11] that contained a chapter
devoted to composite materials used for the optimization of
the work of radio antennas. To create artificial magnetic
permeability, it was proposed to use conducting inclusions in
the form of a horseshoe or in the form of a ring resonator with
a cut. The equations given in [11] demonstrate the typical
resonant behavior of m with a negative value at high
frequencies. In 1990, monograph [12] was published in
Russia, summarizing the results of some studies on the
electrodynamics of such composite materials performed at
the Institute of Theoretical and Applied Electrodynamics,
Russian Academy of Sciences. The results of the further
development of this work were published in [13±15]. In [14],
experimental studies were described of the dielectric constant
of metamaterials containing pieces of metallic microwires
(microdipoles) that resonate in the microwave range. Two
different values of the length of the microwire pieces were
chosen that ensured resonance at two frequencies, and a
composite material was demonstrated that had two minima
in the frequency dependence of the dielectric constant, both
having negative values. The position of the minima is
determined by the different length of the conducting inclu-

sions used in the mixture. In [16], it was shown that the
inclusions in the form of a pair of conducting cylinders allow
obtaining a nonzero magnetic permeability at optical fre-
quencies, which later served as the basis for creating artificial
magnetism in the infrared and visible ranges. In 1997 [17], as
an outgrowth of this work, experimental data were obtained
for a mixture with inclusions in the form of bifilar spirals with
negative e and m, and equations were also proposed that
satisfactorily reproduced experimental data. These studies
were not aimed at obtaining a negative refraction but were
part of a systematic work on obtaining metamaterials with an
assigned frequency dispersion of the dielectric and magnetic
constants. In spite of the large freedom in the selection of
shape and concentration of the conducting inclusions, it
turned out that the Kramers±Kronig relations impose very
stringent constraints on the frequency dependence of the
effective parameters. One of the possible applications of
these studies is the creation of highly efficient materials for
the absorption of radio waves.

2. Superresolution in flat focusing systems

The ideas presented in [8] stimulated a detailed study of
superresolution mechanisms. In Refs [18±24], which
appeared almost simultaneously, it was shown that achieving
superresolution requires metamaterials with extremely low
losses. In [22, 23], it was noted that the negative influence of
Ohmic losses can be substantially reduced in a very thin
Veselago lens; therefore, a superresolution can also be
achieved under realistic conditions, with the use of accessible
metamaterials [9, 10]. In Ref. [23], it was also shown that the
focusing and superresolution in a Veselago lens, in contrast to
conventional lenses, can be achieved even with a small size of
the plate (aperture), which can even be shorter than the
wavelength.

In a typical Veselago lensmade of amodernmetamaterial,
the size of the conducting inclusions is comparable to the lens
thickness. Therefore, the concept of effective parameters (for
example, dielectric andmagnetic constants)must be usedwith
care. It has been shown in [16, 25, 26] that for planar
metamaterials containing strongly elongated conducting
inclusions, the concept of a dielectric constant can be
introduced only if the thickness of the material layer exceeds
a certain critical value. The distribution of an electromagnetic
field in the lens also differs significantly from that obtained in
calculations with the use of effective parameters.

Taking the above considerations into account, we selected
a flat lens consisting of a single layer of resonators for
experiment [10] (Fig. 1). This structure can hardly be
considered a plate of a uniform material, not least because it
is not possible to clearly define the boundaries of the material
in the direction perpendicular to the plate. In a computer
model that we developed to describe the operation of the
planar superlens, we used the direct solution of the Maxwell
equations rather than the effective parameters. In the case
under consideration, i.e., for a metamaterial consisting of
wire inclusions, solving theMaxwell equations was reduced to
solving Pocklington-type equations, which are based on the
thin-wire approximation with capacitive load. In particular,
the double-coil short spiral used as the inclusion in the
metamaterial can be approximated by a metallic ring with a
capacitor inserted into the ring break.

In calculations, we also took the finite conductivity of the
metal and the corresponding skin effect into account. Our
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computational programs allowed calculating the electromag-
netic fields generated by different sources both in a finite set of
resonators and in an infinite two-dimensional periodic
system.

The calculations not only reproduce the effects of focusing
and superresolution but also allow comparing the electro-
dynamic properties of a real metamaterial with those of an
ideal completely uniform metasubstance. In particular, it was
shown that a plate consisting of only one layer of resonators
partly demonstrates the properties of a plate made of an ideal
metasubstance. For example, there is a frequency range
(positioned somewhat higher than the resonance frequency
of inclusions) in which superresolution is observed. This

phenomenon can be seen well in Fig. 2a, where the upper
part shows a 3D plot of the electric field strength and the
lower part shows contour lines calculated both inside and
outside the plate. For comparison, Fig. 2b shows the
distribution of the field of the same sources in free space. All
distances in the figures are given in dimensionless units, i.e.,
they are multiplied by k � 2p=l.

On the whole, the plate of our metamaterial can be
described as a device that supports backward waves, because
a computer simulation indicates the presence of a zone near
the plate where the phase and group velocities have opposite
directions. However, there is an important difference in the
distribution of the local field in a layer of resonators and in an
ideal metamaterial. For example, in an ideal uniform
metamaterial with e � m � ÿ1, the phase and group velo-
cities of the propagation of electromagnetic waves are
opposite to each other only inside the metamaterial layer.
The excitation of currents in the layer of resonators forming
a real metamaterial leads to the appearance of a spatial zone
of backward waves that extends beyond the geometric
boundaries of the real metamaterial (the details of the
calculation are described in [27, 28]). It is also known [10,
29] that when a plane-parallel layer of an ideal metamaterial
is excited, the field energy is concentrated near the farther
(relative to the radiation source) face of the layer. This
effect is precisely the physical basis of the superresolution
phenomenon. In the plate of resonators, an accumulation of
energy also occurs, but this energy is concentrated only near
specific elements. In what follows, we consider the physical
causes for superresolution in a real metamaterial consisting
of a planar layer of ringlike resonators and elongated
conducting inclusions.

As is known, the electromagnetic field radiated by a point-
like source can be represented in the form of a three-
dimensional spectrum of plane waves. The coefficients of
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wave propagation in this case take real and imaginary values.
The harmonics with real propagation coefficients are the
usual propagating waves. The harmonics with imaginary
propagation coefficients describe a wave process that is
exponentially damped with distance. To describe propagat-
ing waves, a classical beam approach is frequently used. Light
beams are focused by a usual optical lens and give an image of
an object with a spatial resolution of the order of the light
wavelength. For obtaining superresolution, it is necessary to
supplement this image with that part of the electromagnetic
field that is lost in the damped harmonics.

The problem lies in the fact that exponentially decaying
oscillations do not interact with a usual lens so as to be
focused into an image, and their amplitude unavoidably
decays both in free space and in the usual transparent
material. But for obtaining a superresolution, the relation
between the amplitudes of the propagating and evanescent
waves at the focus must be the same as near the source.
According to Pendri's original result, the damped harmo-
nics in the plate of a metamaterial with a negative refractive
index begin to increase exponentially when approaching the
far (unilluminated) face. In the particular case where
e � m � ÿ1, the relation between the amplitudes of the
propagating and damped waves is restored at the focus,
where an `exact' image of the object is obtained, which is
unrestricted by the diffraction limit. Therefore, we can
regard a Veselago lens as an optical device that transmits
propagating waves without distortions, but amplifies har-
monics with imaginary propagation coefficients, preserving
the necessary phase relation.

In Pendri's work and in several dozen subsequent works,
objects made of an ideal metasubstance uniquely character-
ized by their e and m were examined. We here consider a
`microscopic' theory of superresolution in a metamaterial
consisting of electric and magnetic resonators.

For simplicity, we consider a single layer consisting of
metallic needles, which play the role of electric resonators,
and of split rings, which play the role of magnetic resonators.
It is important that the propagating and damped harmonics
excite the resonators differently. The difference appears
because the electric E and magnetic H fields are in phase in
the propagating waves, and are shifted by 90� in the damped
harmonics. The electric and magnetic resonators are excited
differently by the propagating and decaying oscillations and,
correspondingly, differently emit the secondary electromag-
netic field.

Therefore, the electromagnetic response of an electric-
resonator±magnetic-resonator pair depends on the nature of
the exciting wave, as in the Veselago lens. For example, the
current in the resonators (Fig. 3a) determines the magnitudes
of the equivalent electric and magnetic moments (Fig. 3b)
and, eventually, the magnitudes of the effective e and m.
Further studies [27, 28] showed that with the correctly chosen
phase and amplitude characteristics of the dipoles (equiva-
lents of the resonators), the system of electric and magnetic
dipoles gives clear separate images of point sources in the
region behind the plane of a plate made of such a metamater-
ial; the spacing between the sources is in this case much less
than the wavelength. The frequency at which the super-
resolution effect appears is 3±5% higher than the frequency
of the electric and magnetic resonances. If it were possible to
introduce effective dielectric and magnetic constants, then
this frequency range would correspond to negative values of e
and m.

3. Magnetic plasmonic resonance in optics.
Active metamaterials

In the microwave range, as was shown in Section 2,
metamaterials with a negative refractive index are prepared
using split ring resonators or spirals, which ensure negative
values of the effective magnetic permeability, Re m < 0. In the
microwave range, the metals can be considered almost ideal
conductors, because the skin depth (� 1ÿ10 mm) in them is
much less than the characteristic size of metallic inclusions in
metamaterials. The magnetic response is reached in the
vicinity of the LC resonance in spirals or in split rings [17,
30, 31]. Consequently, the frequencies of the LC resonances
are completely determined by the shape and sizes of
inclusions. The resonance appears under specific relations
between the size of the split ring and the wavelength of the
exciting field. Subsequently, we call the LC resonances in the
ideally conducting structures the geometric (GLC) reso-
nances.

The situation changes dramatically in the visible and
infrared ranges, where the nanosize metallic inclusions
behave quite specifically when their thickness becomes less
than the skin depth. For example, a plasmonic resonance
appears as a result of collective oscillations of electrons.
Because of these oscillations, the dielectric constant of metals
em is negative in the visible and infrared ranges. The
plasmonic resonances cause many interesting optical phe-
nomena, e.g., the propagation of surface plasmons, anom-
alous absorption, giant Raman scattering, and light super-
transmission (see, e.g., [31, 32]).

The near-field superresolution also appears as a result of
the excitation of plasmons in metamaterials with e � ÿ1 [6].
The near-field superresolution can be explained on the basis
of the elementary solution of a problem in electrostatics (see,
e.g., book of problems [41], problem no. 209). The plasmonic
response of metals is the basic reason why theGLC resonance
method is not directly applicable in optics.

Optical metamaterials with a negative refractive index
were first demonstrated in [34±36]. In [34, 35], a plasmonic
resonance that appears in a system of parallel nanowires was
used. Such resonances were first examined in our previous
works [16, 31, 37]. In [36], a negative real part of the refractive
index was observed at the wavelength 2.0 mm in a system
consisting of two parallel gold nanofilms with the openings of
a size much smaller than the wavelength. The metallic
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connections between the openings play the role of nanoan-
tennas analogous to pairs of nanowires.

The first work on obtaining and studying optical
metamaterials was continued by other successful experi-
ments [38±43]. For example, the creation of a prism from an
optical metamaterial and the demonstration of a negative
deviation of a light beam were described in [43]. The negative
optical magnetic permeability was first announced in [44]. But
we believe that the geometry used in that experiment (vertical
metallic columns perpendicular to the film plane) does not
allow exciting magnetic resonances in the case of normal
incidence of light on the film. Indeed, irrespective of the
polarization of the incident wave, the electric field is
perpendicular to the axis of the metallic columns and cannot
excite closed electric currents that flow in opposite directions
along the metal inclusions. Some other problems related to
the experiment in [44] were discussed in [45].

As was noted above, the losses are most important in the
microwave range. With decreasing the wavelength (shifting it
toward the visible range), the Ohmic losses become the
decisive factor limiting the application of metamaterials [46,
47]. In particular, these losses radically decrease the chances
of obtaining superresolution and make the creation of a flat
optical Veselago lens with a superresolution virtually impos-
sible. In other optical instruments based on the use of
metamaterials, such as a hyperlens [48±52] or an invisibility
device (a `cloak') [53±56], the losses do not lead to the
disappearance of efficiency, but sharply reduce the optical
power of promising instruments. The problem of losses can be
solved by using amplifying laser materials.

A plasmonic resonance in a metallic nanoantenna placed
in an amplifying medium can be used for the excitation of
magnetic and electric dipoles. The amplifying medium
increases the amplitude of the excited dipoles and can in
principle lead to the complete compensation of losses in the
metamaterial. Because the enhancement of the electromag-
netic field in a laser material implies the presence of an
external energy source, this means that a metamaterial
including an active medium is a dissipative system. Conse-
quently, the substantial limitations imposed by the Kronig±
Kramers relations on the behavior of the effective parameters
become unobvious.

As an example of the use of an amplifying medium, we
consider the phenomenon of the magnetic plasmonic reso-
nance (MPR) in an optical nanoantenna placed into such a
medium [69]. An MPR has a very important property: its
frequency depends on the structure of the nanoantenna but
not on its overall size. An MPR can be excited in a metallic
`nanohorseshoe' (Fig. 4). Structures of this form act as optical
antennas, concentrating electric andmagnetic fields on a scale
that is much smaller than the wavelength of light. The
magnetic response of nanohorseshoes is characterized by the
magnetic polarizability aM, which exhibits a Lorentz reso-
nance: the real part reverses sign near the resonance frequency
and becomes negative, as is necessary for creating optical
metamaterials with a negative magnetic permeability.

The concept of a magnetic plasmonic resonance, which
leads to optical magnetism, is relatively new and, of course,
contradicts the known concept [57] of the impossibility of
magnetism in optics. However, this only seem to be a
contradiction: the authors of [57] mean the microscopic
magnetism, while the negative magnetism we discuss here
arises at a mesoscopic level, as a result of collective electron
motion.

Our discussion in what follows is based on the considera-
tion of the collective effects in a metallic nanohorseshoe. The
results obtained can easily be extended to other antennas.

We consider the interaction of a nanohorseshoe with an
amplifying medium simulated by a two-level amplifying
system (TLS) represented, for example, by quantum dots or
molecules of a dye. The metallic horseshoe that interacts with
the TLS is arguably the simplest plasmon system; based on
this system, we can study the basic properties of active
metamaterials, including processes of nanolasing. The non-
radiative energy transfer from the active medium to quasi-
static plasmonic oscillations has been discussed in [58]. The
processes of propagation of a surface plasmon±polariton at
the boundary between a metal and an active medium have
been studied since the 1960s [59±63]. The superresolution in
the near-field lens due to the compensation of losses in the
presence of an amplifying medium was discussed in [64].
Work on active metamaterials performed before 2006 was
discussed in review [41]. The first experimental and theoretical
work on plasmonic resonance in metallic nanoparticles
placed into an active medium was performed in [65±67]. The
work that is nearest to our approach is [68], where a dipole
laser was considered.

We have already mentioned that the simple compensation
of losses in metamaterials does not necessarily lead directly to
an increase in superresolution. Nevertheless, active metama-
terials offer new possibilities for the optimization of the
operation of superresolution optical systems. The active
metamaterials are also important for practical applications
different from those related to superresolution. For example,
the plasmonic nanolaser discussed in Section 4 is a source of
coherent emission, whose size can be several dozen times less
than the wavelength of light. Such a nanolaser can be
regarded as a nanogenerator for the power supply of future
plasmonic devices, e.g., those intended for information
processing.

We consider a metallic nanohorseshoe with a TLS
introduced into it. The population inversion in the TLS is
ensured by external pumping. The pumping can be optical or
electrical, when the carriers are injected into the TLS, for
example, into a quantum dot, from the surrounding material.
The TLS interacts with the electromagnetic field that is
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excited inside the nanohorseshoe. In the equations of motion,
we use a phenomenological description of pumping, char-
acterizing the TLS by the value of the stationary inversion of
the population. In other words, we characterize the TLS by
the level of inversion that would exist if the TLS did not
interact with the nanohorseshoe. An external AC magnetic
field H � �H0�t�; 0; 0� is applied in the plane of the nanohor-
seshoe, as is shown in Fig. 4. The displacement currents in the
gap of the horseshoe close the circuit.

The closed electric current I�z� flowing in the nanohorse-
shoe generates the magnetic fieldH�z� � 4pI�z�=c in the gap,
where I�z� is the density of the surface current in the upper
plate of the capacitor (i.e., in the plate ab in Fig. 4) and c is the
speed of light. To obtain a closed equation for the current, we
integrate the Maxwell equation rotE � ÿ _H=c, which
expresses the Faraday induction law, along the contour
abgd and obtain the equation�

2I�z�Zÿ qU
qz

�
Dz � ÿ d

c

�
4p
c

_I�z� � _H0

�
Dz ; �1�

where Dz is the distance between the points a and b along the
integration contour shown in Fig. 4, dots denote time
derivatives, Z � 1=�sb� � 4ip=�emob� is the surface impe-
dance, and em is the complex dielectric constant of the metal.

We substitute the potential difference U�z� � Ey�z� d �
ÿ4p�Q�z� � P�z�� d in (1), where Q�z� is the charge per unit
area and P�z� is the polarization of the medium inside the
nanohorseshoe. We then differentiate both parts of Eqn (1)
with respect to time and use the charge conservation law
qI=qz � ÿqI1=qz � ÿqQ=qt, where I1 is the current in the
lower plate. Thus, we obtain the basic equation for the current
in the nanoantenna:

q 2I�z; t�
qz 2

ÿ q _P�z; t�
qz

ÿ Z

2pd
_I�z; t� � 1

4pc

�
4p
c

�I�z� � �H0

�
:

�2�

This equation is analogous to the well-known telegrapher
equation [57, p. 91]. For determining the polarization P, a
matter equation must be added to Eqn (2). The polarization
of the medium inside the nanohorseshoe is the sum of two
polarizations: P � P1 � P2, where P1 � w1Ey is the usual
polarization of a dielectric and P2 is the `anomalous'
polarization due to pumping of the active medium; w1
denotes the usual (nonresonant) polarizability of the med-
ium. We substitute P � w1Ey � P2 in (1) and obtain

q 2I�z; t�
qz 2

ÿ q _P2�z; t�
qz

ÿ Zed
2pd

_I�z; t� � ed
4pc

�
4p
c

�I�z� � �H0

�
;

�3�

where the polarizability w1 now enters the `regular' part of the
dielectric constant ed � 1� 4pw1.

We first consider the simplest case where the laser
polarizability P2 is linear in the applied field, P2 � w2Ey.
This is possible if we are far from the generation threshold and
therefore the interaction with the plasmons does not lead to
the depletion of the upper level of the TLS. We also assume
that the external field oscillates with a frequency o,
H0�t� � H0 exp�ÿiot�. Under these assumptions, Eqn (3)
takes the form

q 2I�z�
qz 2

� ÿg 2I�z� ÿ edok
4p

H0 ; �4�

where the coordinate z varies in the range 0 < z < a, and the
coordinates z � 0 and z � a correspond to the beginning and
end of the nanohorseshoe, such that dI�0�=dz � I�a� � 0;
k � o=c; and the wave vector of the plasmon g is determined
from the equation

g 2 � ed k 2 ÿ 2ed
bdem

; �5�

where the dielectric constant includes both the ordinary part
and the contribution of the TLS. The second term in the right-
hand side of Eqn (5) can be represented in the form
� k 2�d=b�2, where b is the characteristic size of the system
(for example, the thickness of the capacitor plate), and d is the
skin depth. If d5 b, which is typical of the microwave range,
we obtain the usual GLC-antenna resonance. In the opposite
case k 2bd jemj5 1, the parameter g � ���������������������������ÿ2ed=�embd �

p
is

independent of the absolute length of the nanohorseshoe
and does not depend explicitly on the frequency. This is a
situation characteristic of the MPR, which occurs for the
nanohorseshoes in the visible range [69]. It is interesting that
the electric field is nonpotential under the conditions ofMPR;
the Ey component depends on the coordinate z, while the
component of the electric field Ez depends on the coordinate
y. The presence of a solenoidal optical field at scales much
smaller than the wavelength of light is a characteristic feature
of the MPR.

The electric current I�x� found from Eqn (4) allows
calculating the magnetic moment of the nanohorseshoe. The
magnetic moment m has a resonance if the condition
ga � p=2 is satisfied as the magnitude of m becomes large.
We note that the resonance condition is satisfied not for the
absolute size of the nanohorseshoe but for the ratio of its
length to its width. For a typical metal, the frequency
behavior of the dielectric constant is qualitatively described
by the Drude formula em � ÿ�op=o�2�1� ot=o�ÿ1, where
op is the plasmonic frequency and ot is the relaxation
frequency, which are estimated, for example, as
�hop � 9:6 eV and �hot � 0:02 eV for silver. In this notation,
the magnetic moment of the horseshoe is written as

aM � V
bdo 2

p

pl 2o 2
r

1

1ÿ o=or ÿ i�Km � Kd�=2 ; �6�

where the resonance frequency isor � opp
��������������������������������
bd=�8Re �ed�a 2�p

,
V is the volume of the horseshoe, Km is the dimensionless loss
in the metal (Km � Im em=Re em � ot=o5 1), and Kd is the
dimensionless loss in the dielectric, also assumed to be small:
Kd � Im ed=Re ed 5 1.

Expression (6) for aM contains the factor bd=l 2 5 1,
which is small for the nanohorseshoes; however, near the
resonance, the condition jaMj4 1 can be satisfied in the
visible and infrared ranges as a result of the high quality of
the MPR. The presence of a frequency range where the
magnetic polarizability aM is negative and large in magnitude
allows creating optical metamaterials with a negative mag-
netic permeability.

The distribution of the magnetic field in the nanohorse-
shoe for a frequency close to the resonance is shown in Fig. 5.
The behavior of the optical magnetic permeability for a
metamaterial consisting of nanohorseshoes is shown in
Fig. 6. If the dielectric is an active medium, then the
dimensionless losses Kd become negative under pumping.
This leads to a compensation of losses in the metal. As the
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losses are compensated due to the activemedium and the total
losses K � Km � Kd decrease, the absorption line (dashed
curve in Fig. 6) becomes narrower. At some moment, the
losses become negative, which indicates the loss of stability.
The metamaterial begins lasing.

4. Interaction of plasmons with
an amplifying medium. Plasmonic nanolaser

To explain the nature of plasmonic lasing, we consider the
microscopic model suggested in [70±72]. In this model, the
equations of motion are derived from quantum mechanics,
but they are solved without taking the fluctuations into
account and with quantum mechanical operators regarded
as complex quantities. This approximation allows obtaining
an analytic solution and carrying out a qualitative analysis of
the system shown in Figs 4 and 7.

The Hamiltonian of a nanoantenna interacting with a
TLS is given by the sum of Hamiltonians H � H0 �HTLS�
Vint � G, where H0 and HTLS respectively describe the
nanohorseshoes and the TLSs, Vint � ÿP2hEyiSd �
ÿphEyiNSd is the operator of the averaged interaction
between a TLS and a nanohorseshoe, p is the dipole moment
operator, N is the density of TLSs in the nanohorseshoe, S is
the area of the nanohorseshoe, d is the distance between the
plates of the capacitor, and G describes the effects of
dissipation and pumping.

The electrons and the related electric field oscillate with a
frequency o close to the MPR frequency. These oscillations
are plasmons in the nanoantenna. We regard the electric
charge and field as classical quantities.

We introduce operators b and b� corresponding to the
transition between the excited and ground states of the TLS.
Then the Hamiltonian of the TLS takes the form
HTLS � �ho2b

�b. The operator of the dipole moment can be
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written as

P2 � Pb exp �ÿiot� �P �b� exp �iot� ; �7�

where P � h gj r jei is the matrix element of the TLS dipole
operator. We also introduce the population inversion
operator D�t� � ng�t� ÿ ne�t�, where ne�t� � b�b and
ng�t� � bb� are the respective operators of the population of
the upper and lower levels. We assume that the TLS oscillates
between the excited and ground levels with a frequencyo that
is close to the frequency o2 (�ho2 is the difference between the
energy levels of the TLS).

Using known commutation relations between the opera-
tors b, b�, and ne; g, we can derive the Heisenberg equation of
motion for operators i�h _b � �b;H � and i�h _D � �D;H �. We
consider lasing as the process of oscillations of the electric
charge in the nanohoof even in the absence of an external
magnetic field. We assume that this is a stationary process,
i.e., the oscillation amplitude does not vary with time. Then
the equation for the charge and the equation for b and D can
be written as

�id� g� q2 ÿ ib � 0 ; �iD� G� bÿ iADq2 � 0 ; �8�
DÿD0

t
ÿ 2iA�q �2 bÿ q2b

�� � 0 ;

where q2 � q=�SNP� is the dimensionless electric charge,
d � 1ÿ �o=or�2, g � �e 00m=je 0mj��o=or�2 � e 00m=je 0mj, D �
�o2ÿo�=or [70±72], and the terms with G and t respectively
take the processes of relaxation of the dipole moment and
population into account. In the `laser' terminology, these are
the processes of transverse and longitudinal relaxation; D0 is
the value of the population that would be achieved by
pumping if the TLS did not interact with the nanohorse-
shoe. We assume that we are dealing with inversion, i.e.,
D0 < 0. Disregarding quantum fluctuations and correlations,
D and b can be considered complex quantities with the
replacement b� ! b �. The dimensionless constant is written
as

A � 4pNjPj2
or�hn 2

> 0 ;

where N is the bulk density of TLSs and n is the refractive
index of the medium in which the TLSs are located, for
example, quantum dots. Equation (8) has a nontrivial
solution only if the following conditions, which are simulta-
neously the conditions of lasing, are satisfied:

D
G
� ÿ d

g
;

�
d
g

�2

� 1� AD0

Gg
� 0 : �9�

The first condition gives the frequency of lasing, which always
lies between the MPR frequency or and the TLS resonance
frequency o2. All terms in (9) are positive, except the
population in the second lasing condition. Consequently,
this condition is satisfied only in the case of inversion
ne > ng, when D0 < 0. According to the definition, D0

cannot be less than ÿ1, which corresponds to the case where
all the TLSs are in an excited state. Thus, we obtain the
condition necessary for lasing: A=�Gg� > 1. As soon as the
second condition in (9) is satisfied, the interaction between the
TLS and the nanohorseshoe leads to coherent oscillations of
the electric charge, current, and magnetic moment even in the
absence of an external electromagnetic field.

The lasing condition can be expressed in terms of the
amplification coefficientG in the activemedium located in the
nanohorseshoe. The amplification in the medium must be
large, and hence the inequality

Gl
2png

> 1 �10�

is satisfied, where g � e 0m=je 00mj5 1 is the dimensionless factor
of losses in the metal and n � 1 is the refractive index.

We note that the lasing condition depends on the
amplification in the active medium and on the losses in the
metal. We assume that this is a universal condition for the
operation of a plasmonic nanolaser with any configuration of
the metallic nanoantenna. For example, a silver nanoantenna
lases at the wavelength 1.5 mm if the active medium that fills it
has an amplification factor larger than Gc � 5� 103 cmÿ1 at
this frequency.

We now consider the effect of an external magnetic field
on the operation of a nanolaser. A high-frequency magnetic
field excites currents in the nanohorseshoe and acts as a
driving force. In the absence of this force, the plasmonic
nanolaser, which should be regarded as a nonlinear oscillator,
self-oscillates and moves along its limit cycle with the lasing
frequency given by Eqn (9). When we apply an external force,
the plasmonic laser continues moving along the same limit
cycle but already with the frequency of the external force. In
other words, an external electromagnetic wave can retune the
nanolaser. This fantastic possibility requires further study.

5. Conclusions

We see that metamaterials offer new possibilities for devel-
oping different devices in the microwave and visible ranges,
such as focusing systems, nanolasers, absorbers, resonators,
and many other devices. The development of new electro-
magnetic materials, which starts from the construction of unit
cells with predetermined properties that may or may not exist
in nature, is a new technique that opens unique prospects. The
spectrum of the potential applications of metamaterials that
is discussed in the contemporary literature extends from
unique sensors of Raman scattering to the creation of
cloaking devices (`magic caps' and `magic carpets'). More-
over, work on the creation and analysis of mechanical (e.g.,
acoustic) metamaterials has actively been developed recently.
Nevertheless, we emphasize that in spite of all the progress
achieved in experimental and theoretical studies, no commer-
cially successful metamaterials or devices based on them have
been developed so far. This is partly connected with the
problem of losses, which was discussed in Sections 2 and 3.
We attempted to show that the physics of metamaterials is

Figure 7. At plasmon oscillating in a nanohorseshoe (dotted lines); its

amplitude increases due to the interaction with excited two-level systems,

which give their energy to the plasmon.
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very interesting not only because of its attractive potential
applications but also in and of itself, and that many
fundamental problems remain unsolved to date.
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Application of the scatteringmatrixmethod
for calculating the optical properties of
metamaterials

N A Gippius, S G Tikhodeev

We consider the application of the scattering matrix formal-
ism for calculating the eigenfrequencies, radiation widths,
and field distributions of quasiwaveguide modes in photonic
crystal layers (PCLs) of finite thickness.

At present, investigations are being performed of one-
dimensional (1D) or two-dimensional (2D) periodic layers of
photonic crystals whose vertical geometry can be arbitrarily
complex [1±3]. Such PCLs have proved to be very interesting
and promising structures; they can be prepared by themodern
methods of layer-by-layer lithography; their optical proper-
ties are of practical interest in connection with their potential
compatibility with microelectronic devices.
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We note that PCLs are in fact diffraction gratings.
Diffraction gratings play an extremely important role in
optics and its applications. Therefore, their history, of
course, is considerably older than the term `photonic
crystal.' The first diffraction grating was created and
investigated by the American astronomer D Rittenhause in
1786 [4]. (The curious history of the creation of the first
diffraction grating is described in [5].) But this discovery
remained unnoticed, and in themajority of optics courses and
encyclopedias, the creation of the diffraction grating (in 1821)
is credited to Fraunhofer [6]. In 1902, Wood [7] experimen-
tally detected narrow-frequency features in the reflection
spectra of metallic diffraction gratings, which have been
called Wood's anomalies since then. Two types of Wood's
anomalies are distinguished. Diffraction anomalies, or
Rayleigh anomalies [8], appear upon opening (with increas-
ing frequency of incident light) new diffraction channels; the
threshold frequency of opening a channel is characterized by
the fact that the arising diffracted beam is parallel to the
surface of the lattice (see also [9]). Resonance anomalies are
connected with the excitation of resonance modes in the
lattice, namely, surface plasmons or quasiwaveguide
(Fabry±Perot) modes, depending on the type of structure.
The qualitative laws governing the behavior of such reso-
nances were first analyzed, as far as we know, by Fano [10].
Twenty years later, Fano in his famous work [11] analyzed the
general laws governing the behavior of a discrete level in the
background of the continuum; the arising asymmetric
resonances are now called Fano resonances. Wood's reso-
nance anomalies refer to precisely this type of resonance.

In view of the importance of the effect of the resonance
optical response of diffraction gratings for many applica-
tions, including, for example, lasers with a distributed feed-
back, optical filters, and polarizers, this issue has been
considered in an enormous number of studies. The majority
ofmethods are based on the expansion of the scattered field of
the diffraction grating in terms of three-dimensional Fourier
harmonics (plane waves), as was first suggested by Rayleigh
[8]. With the advent of computers, very powerful methods of
calculation of optical spectra of arbitrarily complex diffrac-
tion gratings were developed. In this connection, we note the
important work by Hessel and Oliner [12] and the develop-
ment of the scattering matrix formalism in [13, 14]. Very
powerful computational methods were developed [15] and
[16], but, unfortunately, they are practically unknown to
modern researchers working in this field.

A convenient method of constructing a scattering matrix
for 1D or 2D PCLs with an arbitrarily complex structure in
the direction perpendicular to the layer was developed in [17,
18]. The authors of these works extended the method of
constructing the scattering matrix in [19] to electrodynamics
for calculating electron tunneling in complex heterostruc-
tures. The scattering matrix method allows efficiently remov-
ing the numerical instabilities that appear in the method of
transfer matrices because of the presence of exponentially
decreasing and exponentially increasing linearly independent
solutions. This method allows constructing a scattering
matrix on the complex frequency plane [20] and developing
efficient approximate descriptions of photonic resonances in
such structures.

We note that the application of the scattering matrix
method for metamaterials involves certain difficulties
because of the poor convergence of Fourier series for the
metal±dielectric structures. Recently, we succeeded in con-

siderably improving the convergence of the method [21],
using Li factorization rules [22] and the Granet method of
adaptive spatial resolution [23], by supplementing the latter
with a special curvilinear transformation of coordinates
matched to the shape of the metal±dielectric interface.

The modes in a planar waveguide, as is known, have real
eigenenergies O, and the corresponding field distributions are
localized near the waveguide layer and exponentially attenu-
ate outside the waveguide. But in the case of a periodic
modulation of the waveguide, a coupling of modes occurs
with the continuum in the vacuum and in the substrate, and
the quasiwaveguide modes acquire a finite radiation width.
Only the waveguide modes with energies less than all
diffraction thresholds remain undamped [24]. The spatial
distributions of the electromagnetic fields of quasiwaveguide
modes calculated at the natural complex frequency exponen-
tially diverge as z! �1. Although such solutions make no
physical sense at first glance, a detailed analysis shows that
this is not the case [15, 25]. These solutions increasing as
z! �1 have the physical meaning of eigenoscillations of the
field in thewaveguide that become damped in time;moreover,
the solutions propagating into the vacuum and the substrate
are finite because their exponential spatial growth is compen-
sated by the decay of the eigenmode exp �ÿj ImO j t � damped
in time. The space±time dependence of the solution, which is
proportional to exp�j ImO j�zÿ ct�=c�, describes the propaga-
tion of the front of the solution decaying in time.

In the theory of diffraction gratings, a traditional
procedure is to construct the scattering matrix as a function
of the complex propagation constant [13, 14] rather than the
complex frequency [15]. The supporters of this approach
believe that because the scattering matrix leads to `nonphy-
sical' solutions in the complex frequency plane, exponentially
increasing in space, this method is mathematically incon-
sistent. Such increasing solutions have been known since the
work of Thomson [26], who calculated the emission of an
ideally conducting sphere. (For some reason, it has not been
noticed that in constructing a scattering matrix as a function
of the complex propagation constant, such exponentially
increasing solutions also inevitably appear.) This apparent
mathematical inconsistency, is removed by passing to non-
stationary scattering, for example, to a decay; the exponential
increase with moving away from the system is cut off by the
exponentially decreasing time-dependent coefficient; as a
result, the decay front moves with a limited amplitude. We
also note that an essential advantage of constructing the
scattering matrix in the complex frequency plane is the
possibility of using causality relations.

The linear system eigenmodes are the nontrivial solutions
of the equation

Bout � S�o; k�B in ; �1�

which correspond to the zero vector of the amplitudes of the
incoming waves Bin. To find the eigenfrequencies of the
system, it is necessary to find the scattering matrix on the
complex plane. The causality principle ensures the absence of
singularities in the scattering matrix on the upper half-plane
of complex frequencies o; but the S matrix can have poles at
o � Oÿ ig; g5 0, including those on the real axis. Such poles
correspond to the decay of the mode in time at a rate
proportional to / exp�ÿiOtÿ gt� as t!1, and g deter-
mines their inverse lifetime. For 0 < g5O, these modes are
associated with sharp changes in the transmission spectra of
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the photonic crystal structure and with a strong resonance
increase in the field near it.

For each fixed value of the wave vector in the k plane, S
matrix (1) as a function of o on the complex plane can be
obtained by an analytic continuation from the real o axis on
which it is defined uniquely [20]. We note that the analytic
continuation of the Smatrix from the real o axis to the lower
half-plane depends on the choice of the axis interval limited
by the points of opening of diffraction channels from which
this continuation is performed. We consider this problem in
more detail.

A two-dimensional diffraction grating couples the inci-
dent electromagnetic wave with a frequency o and a wave
vector k � �kx; ky; kz�,

kx � o
c
sin# cosj; ky � o

c
sin# sinj; kz � o

c
cos# ; �2�

to all Bragg harmonics with the same frequency o and the
wave vectors

k�G;a � �kx;G; ky;G � kz;G; a� ; �3�

where

kx;G � kx � Gx ; ky;G � ky � Gy ; �4�

kz;G; a �
�����������������������������������������������������������������
o 2ea
c 2
ÿ �kx � Gx�2 ÿ �ky � Gy�2

r
; �5�

(a � v for the vacuum (ev � 1) and a � s for a substrate), and

G � 2p
d
�gx; gy; 0�; gx; y � 0;�1;�2; . . . �6�

are the vectors of the reciprocal 2D lattice. In what follows,
the following rule for choosing the square root sign is used:
Re

����
A
p

5 0 for all complex A, and Im
����
B
p

> 0 for ImB � 0
and ReB < 0.

For a transparent nonabsorbing substrate, Im es � 0.
Under this condition, Bragg harmonics (3), depending on
the frequency of the incident light o (real number), are either
propagating (Im �kz;G��0) or exponential (Re �kz;G� � 0).
Below, the harmonics that exponentially increase (exponen-
tially decay) when moving away from the PCL are called
exponential (increasing or decaying). They should not be
confused with the damped solutions for a two-dimensional
photonic crystal inside the forbidden band. If k 2

z;G; a > 0,
a � v; s, then the corresponding harmonics are the non-
damped propagating solutions both in the vacuum and in
the substrate. If k 2

z;G; v < 0 and k 2
z;G; s > 0, the harmonics are

exponential in the vacuum and propagating in the substrate.
Finally, if k 2

z;G; a < 0, then the corresponding harmonics are
exponential on both sides of the PCL.

Thus, the k�G; v and kÿG; s harmonics on the real o axis,
depending on whether the diffraction channel that corre-
sponds to the reciprocal lattice vectorG is open or is not open,
are the solutions that either propagate toward the PCL or
exponentially increase when moving away from it. They form
a set of `incoming' waves.

On the complex o plane, the standard definition of the
complex root in (5) for the `propagating' harmonics, i.e., for
Re k 2

z;G; a > 0, has a cut below the negative real semiaxis (i.e.,
at Re k 2

z;G; a < 0) and implies an analytic continuation of
kz;G; a into the lower half-plane when k 2

z;G; a intersects the
positive real semiaxis, i.e., for open diffraction channels.

However, this cut prevents the analytic continuation of
kz;G; a into the lower half-plane for closed diffraction
channels. For these, it is therefore necessary to choose a cut
in the definition of the square root differently, for example, to
draw the cut under the positive real axis, as this is always done
in the resonance theory.

Because the question of whether k 2
z;G; a intersects the

positive or negative real semiaxis as o is shifted into the
lower complex half-plane is equivalent to the question of
whether the G diffraction channel is open or not at a given
energy, the choice of the position of the square root cut is
limited to the segment of the real axis of energies located
between the adjacent diffraction thresholds.

The distribution of the amplitudes of the outgoing waves
can be found by solving the homogeneous linear set of
equations

RX � 0 ; �7�

where R � Sÿ1. As is well known, a homogeneous set of
equations has a nontrivial solution only if its determinant is
equal to zero. Therefore, dispersion curves are typically found
by solving scalar equations equivalent to the vanishing
condition for the determinant of the inverse scattering matrix
as a function of o and k. But in numerical calculations, it is
much more convenient to use the method of linearization of
the inverse scattering matrix (a variant of the multidimen-
sional Newton algorithm), which is as follows.

Instead of solving a dispersion equation nonlinear in
frequency,

detR�o; k� � 0 ; �8�

which gives the spectra of eigenmodes o�k� for linear system
(7), it is necessary to calculate the inverse scattering matrix
and its derivative with respect to energy at a certain point o0

(for example, at the point where a certain state is obtained in
the approximation of the empty lattice)

R0 � R�o0�; R 00 �
qR
qo

����
o�o0

: �9�

We then obtain

R�o� � R0 � �oÿ o0�R 00 : �10�

Instead of solving system (7), we can, as the first iteration, find
nontrivial solutions for the linear approximation of the
inverse Smatrix in (10):ÿ

R0 � �oÿ o0�R 00
�
X � 0 : �11�

It can be seen that the last equation is equivalent to the linear
problem for eigenvalues

ÿ�R 00�ÿ1R0X � �oÿ o0�X : �12�

The computational effort for solving this linear problem is
typically less than that required for calculating the inverse
scattering matrix R. As a result, the 4Ng eigenvalues dj are
found, which give approximate values for the solutions of
Eqn (7): Oj � o0 � dj. The closer to the point of linear
expansion o0, i.e., the less the value of dj, the more precise
these approximation become.
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The choice of the linear expansion point for the next
iteration depends on which mode is sought and, correspond-
ingly, which of the approximate solutions we should shift to.
Typically, three iterations are found to be already sufficient
for finding the nearest eigenvalue with a relative accuracy
better than 10ÿ5.

The advantages of this method are obvious; instead of the
repeated cumbersome calculation of the S matrix and the
search for zeroes of the nonlinear scalar function of energy
detR�o; k�, which contains no information about the
structure of the mode, we can implement the search by taking
the structure of approximate modes into account, which
allows a virtually complete automatization of data proces-
sing.

Furthermore, the `remote' eigenvalues Oj and the corre-
sponding vectors X j allow judging on the qualitative
structure of the spectrum and symmetry of resonance states,
because the procedure described preserves all the symmetry
properties of the Smatrix.

If X is an eigenvector and and D is the eigenvalue of the
matrix ÿ�R 00�ÿ1R0, then by definition we have

ÿ�R 00�ÿ1R0X � XD : �13�

It follows from (13) that

R0 � ÿR 00XDXÿ1 : �14�

Substituting this expression in (10), we obtain approxima-
tions for R�o� as

R�o� � R 00X�oÿ o0 ÿ D�Xÿ1 ; �15�
and for the matrix S�o� � Rÿ1�o� as

S�o� � X�oÿ o0 ÿ D�ÿ1�R 00X�ÿ1 : �16�

If we now choose o0 to be the resonance energy of the
multiplicity n found above, then the first n values Di; i become
zero and relations (16) allows explicitly isolating the reso-
nance singularity in the scattering matrix.

We note in conclusion that in the case where the analytic
continuation of the S matrix into the lower half-plane from
the chosen interval of the realo axis has poles whose distance
to the diffraction thresholds is more than the distance to the
real axis, then in order to analyze the optical properties of the
system in this energy range, it suffices to examine only the
analytic continuation of the S matrix from the selected
interval. For example, this approach was used in [27] for an
analysis of the manifestation of cell symmetry in the
resonance features in the reflection spectra of PCLs. As an
illustration of the capacity of this computational method,
Fig. 1 shows the energies and the quality factors of the quasi-
waveguide modes of a PCL schematically depicted in the inset
in Fig. 1b (see also [29]). On the other hand, near the cutoff
frequency of the quasiwaveguide mode, the poles of the
scattering matrix closely approach the diffraction thresholds
and begin to affect the spectral dependence of the S matrix
elements on the adjacent intervals of the real o axis. Such
behavior was first analyzed in [30].

Thus, we have demonstrated a very efficient method of
calculating eigenfrequencies, radiation widths, and the dis-
tribution of fields of quasiwaveguide modes in photonic-
crystal layers of a finite thickness, which is based on the
scattering matrix formalism.
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